Corrigendum:

Regional Data in Macroeconomics

Gabriel Chodorow-Reich

James Stratton

Harvard University

Harvard University

January 2023

Summary. This note corrects a small error in Example II of Chodorow-Reich (2020).¹ Example II considers government spending multipliers in an economy with multiple regions, each containing "Old Keynesian" rule-of-thumb agents. There is an error in the expression for fiscal multipliers in the example. This note corrects the error and provides a derivation for the corrected expression. The asymptotic results for the impacts of local expenditure are correctly stated in the article.

Correction. Equation (12) of Chodorow-Reich (2020) describes element (i, j) of the matrix **B** as:

$$b_{i,j} = \begin{cases} \frac{1}{m} + \frac{1}{Nm - \frac{N-1}{\alpha \rho}m^2}, & i = j, \\ \frac{1}{Nm - \frac{N-1}{\alpha \rho}m^2}, & i \neq j. \end{cases}$$

The second term in the i = j case, and the full expression in the $i \neq j$, case, have been reversed in sign. The corrected equation is:

$$b_{i,j} = \begin{cases} \frac{1}{m} + \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}, & i = j, \\ \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}, & i \neq j. \end{cases}$$

Derivation. The model is described in Chodorow-Reich (2020). For convenience, the key parts are excerpted below:

The economy again consists of N regions, each with fixed size 1/N (no inter-regional migration, unlike the example above). Let $\mathbf{c} = (c_1, \dots, c_N)'$ denote the vector of consumption expenditures in each region, $\mathbf{y} = (y_1, \dots, y_N)'$ the vector of outputs, and $\mathbf{g} = (g_1, \dots, g_N)'$ the vector of government purchases, where each variable c_i, y_i, g_i is the (level) deviation from its steady state value. A representative agent in each region allocates $1 - \alpha$ of her expenditure to locally-produced output and $\frac{\alpha}{N-1}$ of her expenditure to output produced in each other region. Market clearing then requires:

$$\mathbf{y} = \mathbf{A}\mathbf{c} + \mathbf{g},$$
 where:
$$\mathbf{A} = \begin{pmatrix} (1 - \alpha) & \frac{\alpha}{N-1} & \dots & \frac{\alpha}{N-1} \\ \frac{\alpha}{N-1} & (1 - \alpha) & \dots & \frac{\alpha}{N-1} \\ \vdots & \frac{\alpha}{N-1} & \ddots & \vdots \\ \frac{\alpha}{N-1} & \dots & \frac{\alpha}{N-1} & (1 - \alpha) \end{pmatrix}.$$

The agent also has a marginal propensity to consume out of income of ρ :

$$\mathbf{c} = \rho \mathbf{y}$$
.

Our goal is to find the effects of local government spending on local output, output in other regions, and aggregate output. That is (following the notation in Chodorow-Reich (2020)), we look for a matrix \mathbf{B} such that $\mathbf{y} = \mathbf{B}\mathbf{g}$

¹Chodorow-Reich, Gabriel (2020). "Regional Data in Macroeconomics: Some Advice for Practicioners." Journal of Economic Dynamics and Control 115: 103875.

for an arbitrary **g** vector:

$$\mathbf{y} = \mathbf{A}\mathbf{c} + \mathbf{g} = \mathbf{B}\mathbf{g}.$$

$$\Rightarrow \rho \mathbf{A}\mathbf{y} + \mathbf{g} = \mathbf{B}\mathbf{g}.$$

$$\Rightarrow \rho \mathbf{A}\mathbf{B}\mathbf{g} + \mathbf{g} = \mathbf{B}\mathbf{g}.$$

$$\Rightarrow (I - \rho \mathbf{A})\mathbf{B} = I.$$

$$\Rightarrow \mathbf{B} = (I - \rho \mathbf{A})^{-1}.$$

The last line appears in Chodorow-Reich (2020), but there is an error in the matrix inversion. Using the definition of \mathbf{A} , we write:

$$\mathbf{B} = \begin{pmatrix} 1 - \rho(1-\alpha) & -\frac{\alpha\rho}{N-1} & \dots & -\frac{\alpha\rho}{N-1} \\ -\frac{\alpha\rho}{N-1} & 1 - \rho(1-\alpha) & \dots & -\frac{\alpha\rho}{N-1} \\ \vdots & -\frac{\alpha\rho}{N-1} & \ddots & \vdots \\ -\frac{\alpha\rho}{N-1} & \dots & -\frac{\alpha\rho}{N-1} & 1 - \rho(1-\alpha) \end{pmatrix}^{-1}.$$

In order to compute this inverse, we use the following fact: if an $L \times L$ matrix **D** can be written $\mathbf{D} = (a-b)I + b\mathbf{J}$, where a and b are scalars with $a \neq b$ and $a - b + Lb \neq 0$, I is the $L \times L$ identity matrix, and \mathbf{J} is an $L \times L$ matrix of ones, then the diagonal elements of \mathbf{D}^{-1} are equal to $\frac{1}{a-b} - \frac{b}{(a-b)(a-b+Lb)}$ and the off-diagonal elements are

equal to $\frac{-b}{(a-b)(a-b+Lb)}$. Writing \mathbf{B}^{-1} as $\left(1-\rho(1-\alpha)+\frac{\alpha\rho}{N-1}\right)I-\frac{\alpha\rho}{N-1}\mathbf{J}$ and applying this result, the diagonal elements of **B** are:

$$b^d = \frac{1}{1 - \rho(1 - \alpha) + \frac{\alpha\rho}{N - 1}} + \frac{\frac{\alpha\rho}{N - 1}}{\left(1 - \rho(1 - \alpha) + \frac{\alpha\rho}{N - 1}\right)\left(1 - \rho(1 - \alpha) + \frac{\alpha\rho}{N - 1} - \frac{N}{N - 1}\alpha\rho\right)}.$$

Defining $m \equiv 1 - \rho(1 - \alpha) + \frac{\alpha \rho}{N-1}$, we then have:

$$\begin{split} b^d &= \frac{1}{m} + \frac{\frac{\alpha\rho}{N-1}}{m(m - \frac{N}{N-1}\alpha\rho)} \\ &= \frac{1}{m} + \frac{1}{m(\frac{m}{\alpha\rho}(N-1) - N)} \\ &= \frac{1}{m} + \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}. \end{split}$$

The off-diagonal elements of ${\bf B}$ are:

$$b^{od} = \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}.$$

Then we conclude that element (i, j) of **B** is:

$$b_{i,j} = \begin{cases} \frac{1}{m} + \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}, & i = j, \\ \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}, & i \neq j. \end{cases}$$

Implications for multipliers as the number of regions $N \to \infty$. Chodorow-Reich (2020) makes several statements regarding the behavior of the multipliers in **B** as $N \to \infty$. Each of these statements is true with the

To derive this result, we can first conjecture that D^{-1} can be written $xI + y\mathbf{J}$, for some scalars x and y. Under the conjecture, To derive this result, we can first conjecture that D^{-1} can be written $xI + y\mathbf{J}$, for some scalars x and y. Under the conjecture, we have $[(a-b)I+\mathbf{J}][xI+y\mathbf{J}]=I$, which implies $x(a-b)I+[y(a-b+Lb)+xb]\mathbf{J}=I$. After making the assumptions that $a \neq b$ and $a-b+Lb \neq 0$, we can simultaneously solve x(a-b)=1 and y(a-b+Lb)+xb=0 to yield $x=\frac{1}{a-b}$ and $y=\frac{-b}{(a-b)(a-b+Lb)}$. Since x and y are scalar constants (given a,b, and L), this verifies the conjecture. Finally, since $\mathbf{D}^{-1}=xI+y\mathbf{J}$, its diagonal elements are equal to $x+y=\frac{1}{a-b}-\frac{b}{(a-b)(a-b+Lb)}$, and its off-diagonal elements are equal to $y=\frac{-b}{(a-b)(a-b+Lb)}$.

3We can apply the result because the on-diagonal and on-diagonal elements differ, since $(1-\rho)>0>-\frac{\alpha\rho}{N-1}$, and $1-\rho(1-\alpha)-(N-1)\frac{\alpha\rho}{N-1}=1-\rho>0$

corrected expression. First, as $N \to \infty$, the off-diagonal elements of **B** converge to zero:

$$b^{od} = \frac{1}{\frac{N-1}{\alpha\rho}m^2 - Nm}$$

$$= \frac{1}{Nm\left(\frac{N-1}{N}\frac{m}{\alpha\rho} - 1\right)}$$

$$= \frac{N\alpha\rho}{Nm(N-1)(1-\rho)}$$

$$= \frac{\alpha\rho}{m(N-1)(1-\rho)}$$

$$\to^{N\to\infty} 0.$$

Second, as $N \to \infty$, the diagonal elements of **B** converge to $\frac{1}{1-\rho(1-\alpha)}$:

$$b^{d} = \frac{1}{1 - \rho(1 - \alpha) + \frac{\alpha \rho}{N - 1}} + b^{od}$$
$$\rightarrow^{N \to \infty} \frac{1}{1 - \rho(1 - \alpha)}.$$

Third, the column sum down ${f B}$ – the impact on the aggregate economy of local expenditure – is:

$$b^{d} + (N-1)b^{od} = \frac{1}{m} + N \frac{\alpha \rho}{m(N-1)(1-\rho)}.$$

$$= \frac{1}{m} \frac{1}{1-\rho} \left(1 - \rho + \frac{N}{N-1} \alpha \rho \right).$$

$$= \frac{1}{1-\rho} \frac{1-\rho + \frac{N}{N-1} \alpha \rho}{1-\rho + \alpha \rho + \frac{\alpha \rho}{N-1}}$$

$$= \frac{1}{1-\rho},$$

which demonstrates that the impact of local expenditure on the aggregate economy not only converges to the "Old Keynesian" closed economy multiplier as $N \to \infty$, but in fact is equal to the "Old Keynesian" multiplier for any $N \ge 2$.