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In Section A, we microfound the construction and land costs in the empirical framework

in Section 3. In Section B, we present additional empirical results on the role of investors

and speculators, on the Bartik and urbanization instruments, on the robustness of our IV

results, and a number of additional empirical results. In Section C, we present a number

of model derivations and proofs. In Section D, we discuss the literature in greater detail.

A Microfounding Construction and Land Costs

A.1 Construction

Assume a construction function for producing houses out of materials Mi,t and labor Ni,t:

Ḣi,t = Ãi,t
(
Mκ
i,tN

1−κ
i,t

)
H−αii,t . (A.1)

The term H−αii,t captures the possibility that construction becomes more difficult as easier-

to-develop plots get built first. Competitive construction firms obtain materials at a

price PM
t on the national market and hire labor at local wage Wi,t. The FOC for cost

minimization yields a cost-per-new-home Ci,t of:

Ci,t = Ai,tH
αi
i,t , (A.2)

where: Ai,t = (PM
t )κ(Wi,t)

1−κ/Ãi,t. (A.3)

The same result would arise if the local construction wage Wi,t depended on population,

with a re-definition of the exponent αi.



A.2 Land

We extend Alonso (1964), Muth (1969), and Mills (1967) and Saiz (2010) to incorporate

population growth, permitting restrictions, and an additional downtown premium.

We consider a city with population Hi,t laid out on a disk with radius Φi,t, of which a

fraction Λi,t is buildable land. A share 1 − ςi of the population are spaced uniformly on

the buildable part of the disk and the remaining share ς live in an “urban core” at the

center of the disk, giving:

Φi,t =

√
(1− ς)Hi,t

Λi,tπ
, (A.4)

where we have normalized lot size to 1. We allow the buildable share to increase with

population with a semi-elasticity that depends on permitting restrictions:

Λi,t = Λi,0H
g(mi)
i,t , (A.5)

where mi measures regulatory and permitting hurdles and g′ (mi) < 0.1

Outside of the urban core mass point, the rental cost of a plot of land νi,t (τ) depends

on its distance τ from the city center:

νi,t(τ) = κi,t
(
Φχ
i,t − τ

χ
)
. (A.6)

At the city’s edge (τ = Φ), the rental value of land equals 0, a normalization that reflects

a residual supply of unused land. The city-specific parameter κi,t > 0 shifts the value of all

plots of land in a city proportionally. The parameter χ > 0 is the elasticity of the premium

to living one step outside the urban core, νi,t(0), relative to living 1% of the city radius

outside of the center; denoting ν̂i,t (τ) ≡ νi,t(0)−νi,t(τ)
νi,t(0) =

(
τ

Φi,t

)χ
, χ = ∂ ln ν̂i,t(τ)

∂(τ/Φi,t)
. The term(

Φχ
i,t − τχ

)
has the literal interpretation of offsetting commuting costs to the city center;

1This functional form allows Λ to rise above 1, with the interpretation of allowing high-rises.
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more generally it reflects the desirability of different neighborhoods. As a city grows, the

premium to living closer to the city-center rises to preserve intra-city spatial equilibrium.

The urban core provides special amenities that create an additional premium (willingness-

to-pay) above the value one step outside the core. This valuation is individual-specific and

given by Uj,tνi,t (0), where P (U > x) = 1 − F (U) for a CDF F (.). Market clearing for

living in the downtown core defines a cutoff U∗i,t such that ςi = P (U > U∗i,t). Below we

parameterize the CDF and characterize the cutoff U∗i,t as a function of resident types and

preferences; for now we treat it as exogenous. Denoting the rental value in the urban core

as νUi,t (0) (superscript U for “urban”), we have:

νUi,t (0) = U∗i,tνi,t (0) = U∗i,tκi,tΦ
χi
i,t. (A.7)

Thus U∗i,t is the urban premium.

The price of a plot of land is the discounted future rents:

Not in core: Li,t (τ) =

∫ ∞
t

e−ρ(s−t)κi,s
(
Φχi
i,s − τ

χi
)
ds, (A.8)

Urban core: LUi,t (0) =

∫ ∞
t

e−r(s−t)U∗i,sκi,sΦ
χi
i,sds. (A.9)

We consider a balanced growth path with κi,s = κi, Ui,s = Ui, and population growth of

Ii, giving Φi,s =
√

(1−ςi)Hi,s
Λiπ

=
√

eIi(s−t)(1−ςi)Hi,t
Λiπ

= e
Ii
2

(s−t)Φi,t. Along this path:

Li,t (0) =

∫ ∞
t

e−ρ(s−t)κie
χiIi(1−g(mi))

2
(s−t)Φχi

i,tds =
κiΦ

χi
i,t

ρ− χiIi (1− g (mi)) /2
,

Li,t (τ) = Li,t (0)− κiτ
χi

ρ
, and LUi,t (0) = U∗i Li,t (0) .

With positive population growth, the price Li,t (Φi,t) of land at the city boundary is strictly

positive, reflecting the capitalization of future non-zero rents.

We obtain the analog of equation (3) in the main text by integrating over the available
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land at each distance τ to arrive at the average price of a plot of land in the city:

Li,t =
1

Hi,t

∫ Φi,t

0

Li,t (τ) Λi,t2πτdτ + ςiL
U
i,t (0)

= Bi,tH
βi
i,t, (A.10)

where: Bi,t = κi

(
1 + ςi (U

∗
i − 1)

ρ− χiIi (1− g (mi)) /2
− (1− ςi)
ρ (χi/2 + 1)

)(
(1− ςi)
Λi,0π

)χi
2

, (A.11)

βi = (1− g (mi))χ/2. (A.12)

Setting g (mi) = ζ0 − ζ1mi, we have βi = β0 + β1mi, where β0 = (1− ζ0)χi/2 and

β1 = ζ1χi/2, as in the main text. Furthermore, as in Saiz (2010) the average price of land

is higher in places with a smaller share Λi,0 of land available for development. In addition,

equation (A.11) illustrates how a reduction in the discount rate ρ or increase in the city

center premium U∗i,t both raise average land prices in a city.

We next use this framework to motivate instruments for a changing city center pre-

mium, u∗i,t = d lnU∗i,t. We partition the city’s residents into two types, college graduate (E)

and non-college graduate ( 6 E), with a population share ωi,t of college graduates. An indi-

vidual’s willingness-to-pay to live in the urban core, Uj,tνi,t (0), is Uj,t = UE
i,t exp (εj) if a col-

lege graduate and Uj,t = U 6Ei,t exp (εj) if not, where εj is a random variable drawn from a uni-

form distribution with support [0, ε]. Let ςEi,t = P
(
U > U∗i,t|E

)
and ς 6Ei,t = P

(
U > U∗i,t| 6 E

)
denote the share of college graduates and of non-college graduates who live in the down-

town core, respectively. For k ∈ {E, 6 E} , we have:

ςki,t = P
(
U > U∗i,t|k

)
= 1− (1/ε)

(
lnU∗i,t − lnUk

i,t

)
. (A.13)

Substituting equation (A.13) into the market clearing condition ςi = ωi,tς
E
i,t + (1− ωi,t) ς 6Ei,t
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and rearranging gives:

lnU∗i,t = ωi,t

(
lnUE

i,t − lnU 6Ei,t

)
+ (1− ςi,t) ε+ lnU 6Ei,t, (A.14)

u∗i,t = ωi,t

(
d lnUE

i,t − d lnU 6Ei,t

)
+ dωi,t

(
lnUE

i,t − lnU 6Ei,t

)
+ other. (A.15)

Equation (A.15) motivates two instruments for the change in the downtown premium: (i)

from the first term, the initial share of the CBSA that are college graduates interacted

with the relative change in valuation of downtown amenities by college graduates, which

we measure using the initial relative restaurant density downtown; and (ii) from the second

term and using lnUE
i,t − lnU 6Ei,t = ε

(
ςEi,t − ς

6E
i,t

)
, the predicted change in the CBSA college

share interacted with the initial difference in the share of each type who live downtown.2

B Empirical Appendix

Appendix B.1 characterizes the relationship between our fundamental and investors/speculators.

Appendix B.2 reports time series break tests for rent growth. Appendix B.3 provides de-

tails on the Bartik instruments. Appendix B.4 describes the data and measurement under-

lying the downtown housing premium and associated excluded instruments. Appendix B.5

demonstrates robustness of our main IV results. Appendix B.6 explains how we estimate

the short-run elasticity χ. Appendix B.7 contains additional empirical results.

B.1 Investors/Speculators

In this appendix we explain how our long-run fundamental determinant of house prices

relates to work emphasizing the role of speculation in the boom. We make five observa-

2This framework also accommodates forces discussed in the urbanization literature that do not suggest
obvious city-specific instruments, including: (i) a rising skill-premium and convexity in the wage-hours
worked profile, which increased the value of time for high-skill workers and hence their demand for short
commutes to the city business center (Edlund et al., 2015; Su, 2022); (ii) exogenous improvement in downtown
amenities, such as the decline in crime (Pope and Pope, 2012; Ellen et al., 2019); and (iii) endogenous
improvement in downtown amenities in response to rising average incomes (Diamond, 2016; Su, 2022).
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tions: (i) speculative activity appears potentially important to house price growth late

in the boom in some places such as Las Vegas; (ii) long-run fundamentals also explain

price growth late in the boom; (iii) speculative activity has much less explanatory power

for price growth in the boom up to 2004 or for the full 1997-2019 period, especially com-

pared with the explanatory power of long-run fundamentals; (iv) the degree of speculative

activity in the late boom is uncorrelated with the long-run fundamental in an area; and

(v) speculators did not contribute disproportionately to selling pressure during the bust.

These observations suggest forces orthogonal to fundamentals that made some areas prone

to speculation late in the boom, rather than systematic price return chasers who reversed

course and added to selling pressure during the bust.

We follow Gao et al. (2020) and associate speculative activity by investors with the

non-owner occupier share of purchase mortgages, measured using Home Mortgage Dis-

closure Act (HMDA) data.3 Gao et al. (2020) show that the investor share in 2004-06

predicts house price growth in the same period, including when instrumented with state

tax treatment of capital gains. Panel (a) of Figure B.1 replicates in our sample of CBSAs

the OLS result found in Gao et al. (2020) and shows a strong positive relationship.4

Panel (b) shows that house price growth during 2004-2006 also correlates strongly with

3DeFusco et al. (2017) show that non-occupant buyers are somewhat more likely to pay in cash, suggesting
the HMDA-based measure may understate the investor share. On the other hand, some non-occupant buyers
likely purchase for reasons other than speculation, such as for the utility of a vacation home. Any such
differences should have minimal impact on the conclusions that follow, because uniform level differences
between the HMDA-based measure and the actual share of speculators rescale the investor measure and the
comparisons across periods in Table B.1 hold fixed the investor share.

4For readability, the figure omits the seven CBSAs with pre-boom, 1994-1996 average share above 20%:
Barnstable Town, MA (Cape Cod, 28.3%); Cape Coral-Fort Myers, FL (26.6%); Daphne-Fairhope-Foley,
AL (25.6%); Hilton Head Island-Bluffton, SC (27.8%); Myrtle Beach-Conway-North Myrtle Beach, SC-NC
(37.6%); Napes-Marco Island, FL (34.4%); and Ocean City, NJ (45.1%). The investor share in 1994-1996
correlates strongly with the share in 2004-2006 (correlation coefficient of 0.81), reflecting persistence in tax
treatment of capital gains and that some areas have high non-owner occupier shares because they are common
vacation destinations, as suggested by the list of areas with the highest shares in 1994-1996. The patterns
shown in Figure B.1 and Table B.1 continue to hold if we replace the 2004-2006 level of the investor share
with the change in the share from 1994-1996.
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Figure B.1: Investors’ Role in the Late Boom and Relation to Fundamentals
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(b) Fundamental and Late Boom
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(c) Investors and Fundamental Boom
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(d) Investors and Non-fundamental Boom
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Notes: Panel (a) plots the HMDA investor share of purchases averaged over 2004-2006 against house price
growth in 2004-2006. Panel (b) plots the long-run fundamental against house price growth in 2004-2006.
Panel (c) plots the investor share against the fitted value from a regression of 2004-2006 house price growth
on the long-run fundamental. Panel (d) plots the investor share against the residual from this regression. All
panels exclude seven CBSAs with a 1994-96 share above 20%: Barnstable, Town, MA (Cape Cod, 28.3%);
Cape Coral-Fort Myers, FL (26.6%); Daphne-Fairhope-Foley, AL (25.6%); Hilton Head Island-Bluffton, SC
(27.8%); Myrtle Beach-Conway-North Myrtle Beach, SC-NC (37.6%); Napes-Marco Island, FL (34.4%); and
Ocean City, NJ (45.1%). CBSAs with more than 1 million persons in 1997 are labeled in red.

the long-run fundamental, measured as usual as the fitted value from column (3) of Table 1.

Thus, even at the end of the boom when speculative activity was plausibly most rampant,

long-run fundamentals continue to explain house price growth.

Table B.1 summarizes the relationship among investors, fundamentals, and house price

growth for several periods. Columns (1)-(2) reproduce the positive correlations shown in

panels (a) and (b) of Figure B.1 of investor share and fundamentals with 2004-2006 house

price growth. Column (3) shows that both variables contain predictive power when entered

into a joint regression. Consistent with speculative activity peaking in the late boom,
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Table B.1: House Price Growth, Investors, and Fundamentals

House price growth: 2004-2006 1997-2004 1997-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Investor share 0.87∗∗ 0.81∗∗ 0.57∗∗ 0.32∗ 0.92∗∗ 0.58∗∗

(0.10) (0.09) (0.16) (0.15) (0.16) (0.14)
Long-run fundamental 0.24∗∗ 0.19∗∗ 0.73∗∗ 0.71∗∗ 1.01∗∗ 0.97∗∗

(0.05) (0.04) (0.08) (0.08) (0.07) (0.08)
Standard deviation of explanatory variables:
Investor share 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
Fundamental (×100) 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
R2 0.330 0.131 0.407 0.034 0.290 0.300 0.068 0.429 0.455
Observations 301 301 301 301 301 301 301 301 301

Notes: The table reports the coefficients from regressions of real house price growth by CBSA on the investor
share, measured as the 2004-2006 average share of purchase mortgages to non-owner occupiers in HMDA,
and the long-run fundamental, measured as the fitted value of column (3) of Table 1. Robust standard errors
in parentheses. ∗∗,+ denote significance at the 1, and 10 percent levels, respectively.

the investor share has much less explanatory power for 1997-2004 house price growth

(R2 = 0.03, column (4)), especially compared to the explanatory power of the long-

run fundamental for the early boom (R2 = 0.29, column (5)). The R2 of the long-run

fundamental for house price growth over the full 1997-2019 period of 0.43 (column (8))

substantially exceeds the R2 of 0.07 for the investor share (column (7)).

Panels (c) and (d) of Figure B.1 decompose the correlation from Panel (a) into the

correlation of investor share with the part of house price growth explained by long-run

fundamentals and a residual, respectively. We measure the part explained by fundamen-

tals as the fitted value from the relationship plotted in Panel (b) and the non-fundamental

part as the residual from this regression. Panel (c) displays a small positive correlation

between the investor share and the part of 2004-2006 price growth correlated with funda-

mentals, but the explanatory power is weak (R2 = 0.02) and the positive sign does not

survive weighting by population. In other words, the 2004-2006 investor share is essen-

tially uncorrelated with the long-run fundamental that is the focus of our paper. Las Vegas
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provides an example of a CBSA with a high investor share but a relatively low long-run

fundamental and hence a small predicted value for 2004-2006 house price growth.

Panel (d) plots the investor share against the non-fundamental component of house

price growth in 2004-2006. Areas with late price booms not explained by their long-run

fundamental had higher investor shares of purchases, explaining essentially all of the overall

correlation shown in Panel (a). Las Vegas again provides a leading example, with faster

house price growth than its fundamental would predict and a high investor share.

Finally, we show empirically that investors do not contribute to significant selling

pressure in the bust. Using a merge of HMDA and the DataQuick deeds data from

Diamond et al. (2019) and the HMDA-based investor measure, we identify the next arms-

length transaction on a property previously purchased by an investor. Figure B.2 shows

that the survival functions for continuing to own the property flatten around 2006 for

all investor cohorts; rather than dump their properties en masse in the bust, investors

became less likely to sell. Consequently, while the emergence and receding of investor

demand can potentially also explain a rise and fall in prices, it cannot substitute for the

role of foreclosures in explaining why prices fell far below their long-run level in the bust.5

Overall, these results are consistent with speculation playing a role late in the house

price boom in areas such as Las Vegas. However, they also suggest that the role of

investors was mostly or wholly orthogonal to the role of fundamentals, less important

than fundamentals to explaining the entirety of the boom or the full 1997-2019 period,

and mostly unrelated to the over-shooting of prices in the bust.

5Las Vegas again illustrates the exception that proves the rule: It had a larger-than-predicted bust given
the size of its fundamental and a relatively muted rebound given the magnitude of the boom, indicating a
larger role for speculation in driving the boom-bust cycle than in the typical area. This pattern is represen-
tative; a regression of 2006-2019 house price growth on the 2004-2006 investor share indicates 5 percentage
points lower house price growth in the bust-rebound for each 10 percentage points higher investor share
(Table B.1 column (7) less sum of columns (1) and (4)).
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Figure B.2: Survival Function For Investors From Matched HMDA-DQ Data
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Notes: This figure shows survival functions for cohorts of investors in the matched HMDA-DataQuick data.
Investors are defined as non-owner-occupiers in the HMDA data. For each cohort of investors that purchased
in a given year, we compute the fraction of investors who have yet to sell at each year. The figure plots this
survival function for each cohort.

B.2 Rent Break Tests

Table B.2 investigates the acceleration in rent growth around the start of the housing

boom using a structural break test. The upper panel shows that the national break in

rent growth in 1997Q3 closely coincides with the break in price growth in 1998Q2. The

lower panel shows that among the 17 CBSAs with a statistically significant price break

between 1994Q1 and 2000Q4 and with CPI rent data, 10 have statistically significant

breaks in rent growth within two years of the price break. Moreover, these cities have

larger and more statistically significant mean jumps in price at the timing of their breaks.

B.3 Bartik Instrument Details

We combine the CBP files provided by the Census with the files from Eckert et al. (2020)

that optimally impute suppressed employment cells and provide a consistent correspon-

dence to NAICS 2012. We use 1998 rather than 1997 as the initial year because the NAICS

version of the data start in that year. The final year of data available is 2018. We imple-

ment “leave-one-out” shift shares: defining Ei,j,0 as employment in area i and industry j as

10



Table B.2: Rent Break Timing

National price growth break: 1998Q2
National CPI rent growth break: 1997Q3

Price-rent break gap
Number of

CBSAs
Mean price
jump (p.p.)

Mean rent
jump (p.p.)

Mean price
break test
statistic

0-1 year 5 2.5 1.7 98.5
1-2 years 5 2.1 1.3 109.3
3-4 years 1 0.8 1.1 54.7
No rent break 6 0.9 . 55.5

Notes: The top panel reports the quarter (price) or half-year (rent) date of the Bai and Perron (1998) test for
a series break between 1992 and 2006 as implemented in Ditzen et al. (2021). Both breaks are statistically
significant at the 1% level. The bottom panel reports statistics grouped by the gap in years between the
break date for prices and rents for the 17 CBSAs with a price break significant at the 5% level and CPI rent
data. The last column reports the mean of the double maximum test statistic for the price break.

a share of total date 0 employment in area i, g−i,j as the growth rate of employment in in-

dustry j in all other areas between dates 0 and 1, w−i,j,t as the wage (payroll per employee)

in industry j in all other areas at date t, and Êi,j,1 ≡ Ei,j,0 × g−i,j/ [
∑

k Ei,k,0 × g−i,k] as

the predicted date 1 area i employment share in industry j, the shift-share for the growth

of employment is
∑

j Ei,j,0g−i,j and the shift-share for the growth of the average wage is[∑
j Êi,j,1 × w−i,j,1

]
/
[∑

j Ei,j,0 × w−i,j,0
]
− 1, where date 0 is 1998 and date 1 is 2018.

For area-industries with suppressed wage data, we replace w−i,j,t with wj,t, where wj,t is

the national wage in industry j at date t.

B.4 Urbanization Measurement and Instrument Details

We measure the downtown price premium and associated excluded instruments as follows.

We follow Holian and Kahn (2012) and define the center of the downtown of each CBSA as

the coordinates returned from inputting the largest city in the CBSA into Google Earth.

As in Couture and Handbury (2020), we then rank all Census tracts in the CBSA by their

distance to the downtown center and define the downtown as those tracts covering the

11



closest 5% of population using 2010 tract definitions and 1990 Census population counts

apportioned to 2010 tract definitions by the US2010 Project webpage.6

We compute the downtown price premium using ZIP code-level house price data from

Zillow and FHFA and tract-level data from the Census. We map tracts into ZIP codes using

the 2014 crosswalk from the Missouri Census Data Center, assigning partial downtown

shares to ZIP codes covering tracts in and out of the downtown. We compute population-

weighted house price growth for ZIP codes or tracts in the downtown and not in the

downtown for each CBSA. Both Zillow and FHFA have incomplete coverage of ZIP codes

in 1997. We use the log change in the downtown premium from Zillow if data exist and

from FHFA otherwise. If neither Zillow nor FHFA cover ZIP codes in the downtown and

remainder of a CBSA in 1997 (30 of 308 and CBSAs), we use the fitted value from a

regression of the log change in the Zillow/FHFA premium from 1997 to the end year on

the log change in the premium from the 2000 Census to the 2015-2019 ACS.

We measure the 1990 share of the CBSA that are college graduates using the decennial

Census as compiled in the US2010 Project webpage. We measure the relative density of

restaurants (SIC code 5812) in the downtown using the 1997 County Business Pattern ZIP

code files and the mapping described above from ZIP codes to downtown. We measure

the 1990 shares of college and non-college residents who live in downtown tracts using

the Census data from the US2010 Project webpage. Finally, we predict for each CBSA

the change in the share of the CBSA with a college degree by combining the actual 1990

CBSA industry distribution from the County Business Patterns, the national share of

workers in each industry with a college degree in the 1990 Census and 2019 ACS, and the

predicted 2019 industry distribution obtained by applying the national industry growth

rates between the 1990 Census and 2019 ACS to the actual 1990 industry distribution.

6http://www.s4.brown.edu/us2010/Researcher/Bridging.htm.
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Table B.3: Robustness of Long-run Regression

Regressor: s h s×m× h s× u Obs.

Coef. SE Coef. SE Coef. SE Coef. SE
Specification:
1. Baseline 0.78 0.20 0.63 0.10 1.30 0.28 1.40 0.38 308
2. FHFA HPI 0.70 0.21 0.55 0.09 1.22 0.27 1.26 0.37 306
3. CoreLogic HPI 0.80 0.21 0.46 0.10 1.20 0.29 1.35 0.38 308
4. Zillow HPI 0.81 0.24 0.37 0.10 1.01 0.25 1.07 0.34 225
5. Saiz unavail. 0.92 0.21 0.76 0.10 1.10 0.28 1.21 0.35 260
6. Alt. pop. 0.87 0.18 0.61 0.08 1.70 0.29 1.14 0.37 308
7. Pop. weighted 1.71 0.28 0.87 0.14 1.22 0.39 0.07 0.21 308
8. Drop pop.< 150K 0.80 0.23 0.60 0.10 0.97 0.23 1.42 0.35 219
9. Drop shrinking 1.00 0.22 0.55 0.10 1.12 0.26 0.98 0.36 277
10. GMM 0.57 0.14 0.79 0.08 1.46 0.22 1.60 0.32 308
11. Bias-adjusted 2SLS 0.69 0.28 0.71 0.14 1.83 0.62 1.34 0.71 308
12. JIVE 0.31 0.42 0.70 0.18 2.25 0.84 1.82 1.81 308
13. No climate instr. 1.01 0.24 0.76 0.13 1.45 0.40 1.09 0.41 308
14. No lifestyle instr. 0.78 0.20 0.63 0.10 1.30 0.28 1.40 0.38 308
15. No Bartik instr. 0.72 0.22 0.66 0.10 1.41 0.32 1.55 0.47 308
16. No land avail. instr. 0.77 0.25 0.83 0.12 1.45 0.35 1.09 0.37 308
17. No density instr. 0.89 0.22 0.59 0.11 1.52 0.34 1.65 0.59 308
18. Control lag units 0.75 0.20 0.61 0.15 1.29 0.28 1.39 0.39 308
19. Control lag HPI 0.76 0.21 0.64 0.09 1.33 0.29 1.32 0.38 308

Notes: Each row reports coefficients and standard errors from a separate modification of the specification in
column (3) of Table 1. In the table header, s denotes the land share, h units growth, m the 2006 WRLURI,
and u the growth of the price premium in downtown neighborhoods. Coefficients in bold font are statistically
different from 0 at the 5% level.

We construct this shift-share using the ind1990 variable from IPUMS adjusted to give a

balanced panel by updating the file from David Dorn and a Census crosswalk from the

1987 SIC variable in the County Business Patterns to ind1990.7

B.5 IV Robustness

Table B.3 collects several specifications that address potential concerns with the baseline

IV regression. Each row reports the coefficients and standard errors from a separate

specification. The first row reproduces the baseline coefficients from column (3) of Table 1.

7See https://www.ddorn.net/data/subfile_ind1990dd.zip and https://www.census.gov/

content/dam/Census/library/working-papers/2003/demo/techpaper2000.pdf.
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Rows (2)-(4) show robustness to alternative house price indexes from FHFA, CoreLogic,

and Zillow. Although these indexes vary in their samples and methodologies, all yield

similar results.8 Row (5) replaces the land unavailability instrument with the measure

from Saiz (2010).9 Because Saiz (2010) developed his measure for 1999 MSA definitions,

we lose 16% of the sample, but the coefficients change little. Row (6) replaces housing

units growth with the growth of population with little change.

Rows (7) to (9) explore robustness to the sample, in row (7) by weighting by popula-

tion, in row (8) by excluding 89 CBSAs with 1997 population below 150,000, and in row

(9) by excluding CBSAs with declining population. The only notable difference is that

the weighted specification has a higher loading on the main effect on land share and a

smaller loading on the urbanization term, reflecting the fact that much of the variation in

urbanization occurs across large and small CBSAs (Couture and Handbury, 2020).

Rows (10) to (12) explore robustness to the estimator, in row (10) by replacing two-

stage least squares with GMM, in row (11) with the JIVE estimator of Angrist et al. (1999),

and in row (12) with the biased-adjusted estimator of Donald and Newey (2001). The

JIVE and bias-adjusted estimators address a particular concern that many instruments

over-fit the first stage, biasing the second stage toward OLS (Bekker, 1994; Bound et

al., 1995).10 Unlike in the canonical many weak instrument case of Angrist and Krueger

(1991), however, Table B.5 shows that the instruments are generally strong predictors of

the endogenous variables, and these specifications produce qualitatively similar coefficients.

8Like Freddie Mac, FHFA uses a repeat-sales methodology in a sample of loans purchased by Fannie
Mae or Freddie Mac, but weights the sales differently. CoreLogic also uses a repeat sales methodology but
includes sales not associated with mortgages purchased by a GSE. Zillow combines sales and other data in
order to estimate the average price of a home in the middle tercile of each market regardless of whether it
transacts in a period. Row (4) contains all CBSAs with non-missing Zillow data in 1997.

9Lutz and Sand define the CBSA boundary as the polygon containing the CBSA plus a 5% buffer. They
argue that this improves on the Saiz (2010) measure of the 50km radius around each metropolitan city.

10JIVE avoids overfitting by obtaining the fitted value for each observation using a first-stage coefficient
vector estimated by excluding that observation from the sample. The Donald and Newey (2001) bias ad-
justment is a K-class estimator that exactly corrects the IV bias when residuals are homoskedastic.
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Rows (13)-(17) remove groups of excluded instruments. The estimation does not crit-

ically depend on any particular instrument for population or land, with similar results

omitting the climate variables (row 13), CBSA restaurant employment (row 14), shift-

shares (row 15), land unavailability (row 16), and population density (row 17). Rows (18)

and (19) show that the results change little after controlling for lagged growth.

B.6 Estimation of Short-run Elasticity χ

We augment equations (2) and (3) in the main text to include short-run adjustment costs:

Ci,t = Ai,tH
αi
i,t

(
Ii,t/Īi

)1/χci ,

Li,t = Bi,tH
βi
i,t

(
Ii,t/Īi

)1/χ`i ,

where: 1/χci = αχ0 + αχ1mi, 1/χ`i = βχ0 + βχ1mi.

Then applying the same transformations and zero restrictions as in the main text and

letting ii,t = d ln Ii,t, we have the analogous regression to equation (8):

pi,t − (1/ηi)hi,t = c0 + c1si,t + c2ii,t + c5 (si,t ×mi × ii,t) + c6 (si,t × ui,t) + ei,t, (B.1)

where we form the left hand side using the estimated values of ηi implied by column

(3) of Table 1. The inverse short-run supply elasticity is c2 + c5 × si ×mi. We estimate

equation (B.1) over the period 2000-2005 (to avoid the censal break in 2000) using the same

excluded instruments as in the long-run regression and obtain c1 = 1.02 (s.e. 0.23), c2 =

0.29 (s.e. 0.05), c5 = 0.78 (s.e. 0.19), c6 = 0.65 (s.e. 1.10), from which we form 1/χi.

B.7 Additional Empirical Results

Figure B.3 plots the timing of boom starts, peaks, and bust troughs across CBSAs. Fig-

ure B.4 replicates Figure 2 across CBSAs, as discussed in Footnote 5. Table B.4 reports
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Figure B.3: CBSA Boom, Peak, and Trough Timing
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(b) Peak quarter
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(c) Trough quarter
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Notes: Panel (a) reports a histogram of the first quarter between 1992:Q1 and 2006:Q2 with a positive
structural break in the growth rate of real house prices, using the structural break test of Bai and Perron
(1998, 2003) as implemented in Ditzen et al. (2021). Areas without a break identified at the 95% confidence
level are shown in the bar labeled “None.” Panels (b) and (c) report histograms of the quarter with the
peak in real house prices between 2003:Q2 and 2009:Q2 and trough in prices between 2007:Q1 and 2015:Q4,
respectively, with areas without an interior extremum shown in the bar labeled “None.”

summary statistics. Table B.5 reports first-stage-type regressions for each endogenous

variable separately, using only the excluded instruments motivated by that variable and

also using the full set of uninteracted instruments to establish the explanatory power of the

instruments without broaching many-instrument asymptotics. As discussed in Section 4.1,

the instruments are strong and enter with the expected sign. The final column shows the

reduced form of house price growth over the BBR on the (uninteracted) instruments, which

corresponds to Figure 4. Figure B.5 repeats Figure 4 using only the supply or demand

instruments separately and shows that both contribute to higher long-run growth and to

the boom-bust-rebound pattern, as discussed in Section 3.3.
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Figure B.4: CBSA Boom, Bust, and Rebound
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Notes: Each blue circle represents one CBSA. The red circles show the mean value of the y-axis variable for
20 bins of the x-axis variable. Data from Freddie Mac deflated using the national GDP price index.

Table B.4: Summary Statistics

Variable Mean SD P10 P50 P90 Obs.
House price growth 1997-2019 28.0 23.4 −0.6 25.5 59.9 308
Population growth 1997-2019 19.9 17.2 −0.1 17.7 42.3 308
Units growth 1997-2019 25.2 14.8 8.1 23.0 45.0 308
Land share 28.0 9.4 17.8 26.2 40.8 308
WRLURI 2006 −11.8 81.9 −104.5 −23.0 89.7 308
Log change in downtown premium 1.4 15.7 −14.3 0.8 18.5 308
Bartik employment 1998-2018 22.8 6.3 15.6 22.9 30.4 308
Bartik wage 1998-2018 84.5 9.1 71.5 85.4 94.1 308
January temperature 35.6 12.1 21.4 34.3 51.9 308
January sunlight hours 151.1 39.0 104.0 150.9 210.0 308
July humidity 56.4 16.4 26.0 60.3 73.6 308
Land unavailable 30.8 20.4 6.7 26.8 62.7 308
1997 population density 26.6 30.7 5.7 17.3 52.7 308
Non-traditional Christian share 41.5 23.0 10.4 39.5 73.8 308
Inspection/tax revenue 0.8 0.8 0.2 0.5 1.7 308
Col. share × restaurants 27.1 17.5 9.6 22.9 47.9 308
Downtown diff. ×∆ col. share −1.3 25.8 −32.9 −3.1 30.8 308

Notes: This table shows summary statistics for our cross-section of CBSAs.
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Table B.5: Pseudo First-stage and Reduced Form Regressions

Dep. var.: s h m u p

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Unavailability 3.0∗∗ 3.0∗∗ −0.6 22.6∗∗ 1.3+ 10.0∗∗

(0.5) (0.5) (0.9) (4.5) (0.8) (1.1)
Pop. density 4.8∗∗ 4.4∗∗ −2.3∗∗ 18.3∗∗ 2.5∗ 2.2+

(0.5) (0.5) (0.5) (5.7) (1.2) (1.2)
Bartik wage 0.3 1.3 1.1 3.8 −0.3 1.8+

(0.5) (0.8) (0.7) (4.4) (0.7) (1.0)
Bartik emp. −0.3 −0.1 1.5+ 7.7+ 1.8∗ 2.2∗

(0.5) (0.8) (0.8) (4.3) (0.8) (1.0)
January temp. 0.4 4.5∗∗ 3.7∗∗ −2.1 −0.2 3.2∗

(0.6) (0.9) (1.3) (6.4) (1.1) (1.5)
January sunlight 0.3 2.2∗ 2.7∗∗ 9.2+ 1.7∗ 3.2∗∗

(0.5) (0.9) (0.9) (5.1) (0.8) (1.2)
July humidity −0.2 −4.6∗∗ −3.7∗∗ −14.3∗∗ −2.0∗ −7.0∗∗

(0.5) (0.9) (0.9) (5.0) (0.8) (1.2)
Restaurants 1.9∗∗ 4.5∗∗ 3.1∗∗ −2.9 −1.0 0.9

(0.4) (0.8) (0.9) (5.2) (0.9) (1.0)
Nontrad. Christ. −1.2∗ 1.5 −26.7∗∗−23.1∗∗ −0.7 −3.1∗∗

(0.6) (1.1) (4.3) (5.1) (1.0) (1.1)
Inspection/tax 0.9+ −1.4 21.9∗∗ 8.1∗ −0.1 3.7∗∗

(0.5) (0.9) (3.4) (3.7) (0.7) (1.1)
Col. share × rest. 1.1∗ 0.8 2.7 5.6∗∗ 4.5∗∗ 4.8∗∗

(0.5) (0.8) (4.9) (0.9) (1.0) (1.2)
Downtown diff. × −0.4 2.9∗∗ −1.2 2.0∗ 2.8∗∗ 0.3

∆ ̂col. share (0.4) (0.8) (4.0) (0.9) (0.8) (0.9)
Effective F 64.5 19.2 19.1 13.9 39.3 12.3 24.1 8.8
R2 0.366 0.444 0.295 0.382 0.179 0.341 0.158 0.241 0.575
Observations 308 308 308 308 308 308 308 308 308

Notes: Columns (1), (3), (5), and (7) report regressions of an endogenous variable on the group of excluded
instruments associated with that variable. Columns (2), (4), (6), and (8) report regressions of an endogenous
variable on all excluded instrument main effects. Column (9) reports the reduced form regression of house
price growth on all excluded instrument main effects. In the table header, s denotes the land share, h
units growth from 1997 to 2019, m the 2006 WRLURI, u the growth of the price premium in downtown
neighborhoods from 2007 to 2019, and p the log change in the house price from 2007 to 2019. All independent
variables normalized to have unit variance. Heteroskedastic-robust standard errors in parentheses. The
effective F-statistic is computed as in Montiel Olea and Pflueger (2013). ∗∗,∗ ,+ denote significance at the 1,
5, and 10 percent levels, respectively.
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Figure B.5: Predicted and Actual Price Growth

Land Share and Regulation Instruments Only
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Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MA

Richmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL
San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA
San Francisco-Oakland-Berkeley, CA

San Jose-Sunnyvale-Santa Clara, CA

Seattle-Tacoma-Bellevue, WA

Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NC

Washington-Arlington-Alexandria, DC-VA-MD-WV

y = -0.03+1.36x (se=0.07) R2=0.520.0
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1997-2019 reduced form fitted value

(c) Bust: 2006-2012

Atlanta-Sandy Springs-Alpharetta, GA

Austin-Round Rock-Georgetown, TX

Baltimore-Columbia-Towson, MD

Birmingham-Hoover, ALBoston-Cambridge-Newton, MA-NH

Buffalo-Cheektowaga, NY

Charlotte-Concord-Gastonia, NC-SC

Chicago-Naperville-Elgin, IL-IN-WI

Cincinnati, OH-KY-IN

Cleveland-Elyria, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX
Denver-Aurora-Lakewood, CO

Detroit-Warren-Dearborn, MI

Hartford-East Hartford-Middletown, CT

Houston-The Woodlands-Sugar Land, TX

Indianapolis-Carmel-Anderson, IN

Jacksonville, FL

Kansas City, MO-KS

Las Vegas-Henderson-Paradise, NV

Los Angeles-Long Beach-Anaheim, CA

Louisville/Jefferson County, KY-IN

Memphis, TN-MS-AR

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha, WI
Minneapolis-St. Paul-Bloomington, MN-WI

Nashville-Davidson--Murfreesboro--Franklin, TN
New Orleans-Metairie, LA

New York-Newark-Jersey City, NY-NJ-PA

Oklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MA

Richmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL

San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA
San Francisco-Oakland-Berkeley, CA

San Jose-Sunnyvale-Santa Clara, CA
Seattle-Tacoma-Bellevue, WA

Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NCWashington-Arlington-Alexandria, DC-VA-MD-WV

y = -0.04-0.91x (se=0.08) R2=0.32-1.0
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1997-2019 reduced form fitted value

(d) Rebound: 2012-2019

Atlanta-Sandy Springs-Alpharetta, GA
Austin-Round Rock-Georgetown, TX

Baltimore-Columbia-Towson, MD

Birmingham-Hoover, AL
Boston-Cambridge-Newton, MA-NH

Buffalo-Cheektowaga, NY

Charlotte-Concord-Gastonia, NC-SC

Chicago-Naperville-Elgin, IL-IN-WI
Cincinnati, OH-KY-IN

Cleveland-Elyria, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX

Denver-Aurora-Lakewood, CO

Detroit-Warren-Dearborn, MI

Hartford-East Hartford-Middletown, CT

Houston-The Woodlands-Sugar Land, TXIndianapolis-Carmel-Anderson, IN

Jacksonville, FL

Kansas City, MO-KS

Las Vegas-Henderson-Paradise, NV

Los Angeles-Long Beach-Anaheim, CA

Louisville/Jefferson County, KY-IN
Memphis, TN-MS-AR

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha, WI

Minneapolis-St. Paul-Bloomington, MN-WI

Nashville-Davidson--Murfreesboro--Franklin, TN

New Orleans-Metairie, LA
New York-Newark-Jersey City, NY-NJ-PAOklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MARichmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL

San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA

San Francisco-Oakland-Berkeley, CA
San Jose-Sunnyvale-Santa Clara, CA
Seattle-Tacoma-Bellevue, WA

Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NC

Washington-Arlington-Alexandria, DC-VA-MD-WV

y = 0.07+0.55x (se=0.06) R2=0.19

0.0
0.2
0.4
0.6
0.8
1.0

Ac
tu

al
 p

ric
e 

gr
ow

th

0.0 0.2 0.4 0.6 0.8 1.0
1997-2019 reduced form fitted value

Population and Urbanization Instruments Only

(e) BBR: 1997-2019

Atlanta-Sandy Springs-Alpharetta, GA

Austin-Round Rock-Georgetown, TX

Baltimore-Columbia-Towson, MD

Birmingham-Hoover, AL

Boston-Cambridge-Newton, MA-NH

Buffalo-Cheektowaga, NY
Charlotte-Concord-Gastonia, NC-SC

Chicago-Naperville-Elgin, IL-IN-WI
Cincinnati, OH-KY-IN

Cleveland-Elyria, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX

Denver-Aurora-Lakewood, CO

Detroit-Warren-Dearborn, MI

Hartford-East Hartford-Middletown, CT

Houston-The Woodlands-Sugar Land, TX

Indianapolis-Carmel-Anderson, IN

Jacksonville, FL

Kansas City, MO-KS

Las Vegas-Henderson-Paradise, NV

Los Angeles-Long Beach-Anaheim, CA

Louisville/Jefferson County, KY-IN

Memphis, TN-MS-AR

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha, WI

Minneapolis-St. Paul-Bloomington, MN-WI

Nashville-Davidson--Murfreesboro--Franklin, TN

New Orleans-Metairie, LA

New York-Newark-Jersey City, NY-NJ-PA

Oklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MA

Richmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL

San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA
San Francisco-Oakland-Berkeley, CASan Jose-Sunnyvale-Santa Clara, CA

Seattle-Tacoma-Bellevue, WA

Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NC

Washington-Arlington-Alexandria, DC-VA-MD-WV

y = 0.00+1.00x (se=0.07) R2=0.350.0
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1997-2019 reduced form fitted value

(f) Boom: 1997-2006

Atlanta-Sandy Springs-Alpharetta, GA
Austin-Round Rock-Georgetown, TX

Baltimore-Columbia-Towson, MD

Birmingham-Hoover, AL

Boston-Cambridge-Newton, MA-NH

Buffalo-Cheektowaga, NY
Charlotte-Concord-Gastonia, NC-SC

Chicago-Naperville-Elgin, IL-IN-WI

Cincinnati, OH-KY-IN

Cleveland-Elyria, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX

Denver-Aurora-Lakewood, CO

Detroit-Warren-Dearborn, MI

Hartford-East Hartford-Middletown, CT

Houston-The Woodlands-Sugar Land, TX

Indianapolis-Carmel-Anderson, IN

Jacksonville, FL

Kansas City, MO-KS

Las Vegas-Henderson-Paradise, NV

Los Angeles-Long Beach-Anaheim, CA

Louisville/Jefferson County, KY-IN
Memphis, TN-MS-AR

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha, WI

Minneapolis-St. Paul-Bloomington, MN-WI

Nashville-Davidson--Murfreesboro--Franklin, TN

New Orleans-Metairie, LA

New York-Newark-Jersey City, NY-NJ-PA

Oklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MA

Richmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL
San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA
San Francisco-Oakland-Berkeley, CA

San Jose-Sunnyvale-Santa Clara, CA

Seattle-Tacoma-Bellevue, WA

Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NC

Washington-Arlington-Alexandria, DC-VA-MD-WV

y = 0.08+0.97x (se=0.09) R2=0.250.0
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1997-2019 reduced form fitted value

(g) Bust: 2006-2012

Atlanta-Sandy Springs-Alpharetta, GA

Austin-Round Rock-Georgetown, TX

Baltimore-Columbia-Towson, MD

Birmingham-Hoover, AL Boston-Cambridge-Newton, MA-NH

Buffalo-Cheektowaga, NY

Charlotte-Concord-Gastonia, NC-SC

Chicago-Naperville-Elgin, IL-IN-WI

Cincinnati, OH-KY-IN

Cleveland-Elyria, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX
Denver-Aurora-Lakewood, CO

Detroit-Warren-Dearborn, MI

Hartford-East Hartford-Middletown, CT

Houston-The Woodlands-Sugar Land, TX

Indianapolis-Carmel-Anderson, IN

Jacksonville, FL

Kansas City, MO-KS

Las Vegas-Henderson-Paradise, NV

Los Angeles-Long Beach-Anaheim, CA

Louisville/Jefferson County, KY-IN

Memphis, TN-MS-AR

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha, WI
Minneapolis-St. Paul-Bloomington, MN-WI

Nashville-Davidson--Murfreesboro--Franklin, TN
New Orleans-Metairie, LA

New York-Newark-Jersey City, NY-NJ-PA

Oklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MA

Richmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL

San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA
San Francisco-Oakland-Berkeley, CA

San Jose-Sunnyvale-Santa Clara, CA
Seattle-Tacoma-Bellevue, WA

Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NC Washington-Arlington-Alexandria, DC-VA-MD-WV

y = -0.14-0.57x (se=0.10) R2=0.12-1.0
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1997-2019 reduced form fitted value

(h) Rebound: 2012-2019

Atlanta-Sandy Springs-Alpharetta, GA
Austin-Round Rock-Georgetown, TX

Baltimore-Columbia-Towson, MD

Birmingham-Hoover, AL
Boston-Cambridge-Newton, MA-NH

Buffalo-Cheektowaga, NY

Charlotte-Concord-Gastonia, NC-SC

Chicago-Naperville-Elgin, IL-IN-WI
Cincinnati, OH-KY-IN

Cleveland-Elyria, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX

Denver-Aurora-Lakewood, CO

Detroit-Warren-Dearborn, MI

Hartford-East Hartford-Middletown, CT

Houston-The Woodlands-Sugar Land, TXIndianapolis-Carmel-Anderson, IN

Jacksonville, FL

Kansas City, MO-KS

Las Vegas-Henderson-Paradise, NV

Los Angeles-Long Beach-Anaheim, CA

Louisville/Jefferson County, KY-IN
Memphis, TN-MS-AR

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha, WI

Minneapolis-St. Paul-Bloomington, MN-WI

Nashville-Davidson--Murfreesboro--Franklin, TN

New Orleans-Metairie, LA
New York-Newark-Jersey City, NY-NJ-PAOklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Chandler, AZ

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Providence-Warwick, RI-MARichmond, VA

Riverside-San Bernardino-Ontario, CA

Rochester, NY

Sacramento-Roseville-Folsom, CA

St. Louis, MO-IL

San Antonio-New Braunfels, TX

San Diego-Chula Vista-Carlsbad, CA

San Francisco-Oakland-Berkeley, CA
San Jose-Sunnyvale-Santa Clara, CA

Seattle-Tacoma-Bellevue, WA
Tampa-St. Petersburg-Clearwater, FL

Virginia Beach-Norfolk-Newport News, VA-NC

Washington-Arlington-Alexandria, DC-VA-MD-WV

y = 0.06+0.59x (se=0.06) R2=0.21

0.0
0.2
0.4
0.6
0.8
1.0

Ac
tu

al
 p

ric
e 

gr
ow

th

0.0 0.2 0.4 0.6 0.8 1.0
1997-2019 reduced form fitted value

Notes: In each panel, each blue dot is the real house price growth in a CBSA over the period indicated on
the vertical axis plotted against the predicted real house price growth over the period 1997-2019. Panels
(a)-(d) predict price growth using only the excluded instruments associated with land share and WRLURI
(land unavailability, 1997 population density, non-traditional Christian share, and public expenditure on
protective inspection). Panels (e)-(h) predict price growth using only the excluded instruments associated
with population growth and urbanization (employment and wage shift-shares, climate variables, CBSA
restaurant density, relative restaurant density in the downtown × the 1990 college share, and the 1990
difference in the college/non-college likelihood of living downtown × the CBSA predicted change in college
share). CBSAs with more than 1 million persons in 1997 are labeled in red.
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C Model Appendix

This appendix provides derivations and proofs for the model in Section 5. Appendix C.1

derives the present value of dividends. Appendix C.2 provides an analytic path of beliefs

that we use to calculate impulse responses. Appendix C.3 defines the balanced growth

path. Appendix C.4 derives the user cost for rents. Appendix C.5 associates rent accel-

eration with dividend growth. Appendix C.6 shows impulse responses when lenders have

perfect foresight rather than diagnostic beliefs.

C.1 Present Value of Dividends

We restate equation (16) for convenience:

P ∗t =

∫ ∞
−∞

Et
[∫ ∞

t

e−ρ(s−t)Dsds|µt
]
hθt (µt) dµt.

We want to prove that this integral depends only on Dt,m
θ
t , and parameters. Start

by fixing µt and Dt. Since Dt is a geometric Brownian motion, we have e−ρ(s−t)Ds =

Dt exp
(
−ρ (s− t)− 1

2σ
2
D (s− t) +

∫ s
t µτdτ + σD

∫ s
t dWD,τ

)
. Taking an expectation:

Et
[
e−ρ(s−t)Ds|µt

]
= Dt exp

[
−ρ (s− t) + Et

[∫ s

t

µτdτ |µt

]
+

1

2
Var

(∫ s

t

µτdτ |µt

)]
.

One can show: Et
[∫ s

t

µτdτ |µt
]

= µ̄ (s− t) +
1

ϑ

(
1− e−ϑ(s−t)

)
(µt − µ̄) ,

Var

(∫ s

t

µτdτ |µt
)

=
σ2
µ

ϑ2
(s− t)−

3σ2
µ

2ϑ3
+

σ2
µ

2ϑ3

[
4e−ϑ(s−t) − e−2ϑ(s−t)

]
,

giving: Et
[
e−ρ(s−t)Ds|µt

]
= Dt exp

[
− (ρ− µ̄) (s− t) +

1

ϑ

(
1− e−ϑ(s−t)

)
(µt − µ̄) +G (s− t)

]
,

where: G (s− t) =
σ2
µ

2ϑ2
(s− t)−

3σ2
µ

4ϑ3
+

σ2
µ

4ϑ3

[
4e−ϑ(s−t) − e−2ϑ(s−t)

]
.
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Substituting these expressions into equation (16) gives the desired result:

P ∗t /Dt =

∫ ∞
0

Eθµt
exp

[
− (ρ− µ̄) τ +

1

ϑ

(
1− e−ϑτ

)
(µt − µ̄) +G (τ)

]
dτ

=

∫ ∞
0

exp

[
− (ρ− µ̄) τ +

1

ϑ

(
1− e−ϑτ

) (
mθ
t − µ̄

)
+G (τ)

]
exp

[
σ2
m

2ϑ2

(
1− e−ϑτ

)2
]
dτ.

(C.1)

C.2 Analytic Path of Beliefs

We solve for the mean path of beliefs mθ
t starting from the initial condition m0 = µ̄ and

the initial drift rate µ0. That is, we solve for mθ
t if all subsequent Wiener shocks are equal

to 0. From equation (14), we have:

mθ
t = mt + θIt. (C.2)

We first characterize the path of mt, and then the path of θIt.

We first solve the SDE for mt. Substituting equations (9) and (12) into equation (11):

dmt = ϑ (µ̄−mt) dt+KdBt

= ϑ (µ̄−mt) dt+Kσ−1
D (µtdt+ σDdWD,t −mtdt)

= (ϑµ̄+ κµt − (κ+ ϑ)mt) dt+KdWD,t, (C.3)

where κ ≡ K/σD. The solution to this SDE is:

mt = m0e
−(κ+ϑ)t + ϑµ̄

∫ t

0

e−(κ+ϑ)(t−s)ds+ κ

∫ t

0

e−(κ+ϑ)(t−s)µsds+K

∫ t

0

e−(κ+ϑ)(t−s)dWD,s.

(C.4)

Note that equation (10) implies:

E0 [µt|µ0] = e−ϑtµ0 +
(
1− e−ϑt

)
µ̄. (C.5)
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Taking a conditional expectation of (C.4), using (C.5), and simplifying terms:

E0 [mt|µ0,m0] = µ̄+ (µ0 − µ̄) e−ϑt − (µ0 −m0) e−(κ+ϑ)t. (C.6)

We next solve for the mean path of θIt. Using equations (9), (12) and (15), we have:

θIt = Kθ

t∫
t−k

e−ϑ(t−s)dBs = θκ

t∫
t−k

e−ϑ(t−s) (µs −ms) ds+ θK

t∫
t−k

e−ϑ(t−s)dWD,s. (C.7)

Note that equations (C.5) and (C.6) together imply that for any s ≥ 0, E0 [µs −ms|µ0,m0] =

(µ0 −m0) e−(κ+ϑ)s. Therefore:

E0 [θIt|µ0,m0] = θκ

t∫
max{t−k,0}

e−ϑ(t−s) (µ0 −m0) e−(κ+ϑ)sds

= θ (µ0 −m0)
(
e−κmax{t−k,0}−ϑt − e−(κ+ϑ)t

)
. (C.8)

Equations (C.6) and (C.8) together characterize the mean path of diagnostic beliefs

E0

[
mθ
t |µ0,m0

]
that we use to solve for the path of P ∗

(
Dt,m

θ
t

)
.

C.3 Balanced Growth Path

A balanced growth path (BGP) consists of a fixed µ, constant rate of construction and

foreclosures, and constant ratio of points to price. Let δf denote the BGP ratio of foreclo-

sures to population and ω denote the ratio of points to price. Substituting this notation

into the market-clearing condition (22) gives:

gHHtx
γ
m [Vt/ (1 + ω)Pt]

γ = Ḣt + δfHt. (C.9)

Dividing through by Ht and recognizing that a constant construction rate means dHt/Ht =

It is constant on the BGP, it is apparent that Vt/Pt is also constant. Since Vt grows at

rate µ (see the valuation function (C.1)), BGP prices also grow at µ.
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It only remains to verify that the foreclosure rate is constant on the BGP. With a

constant liquidity shock ι, this will be true if the loan-to-value (LTV) distribution remains

stable. Let M (s, t) denote the balance in period s of a buyer who bought in period t and

m (s, t) = M (s, t) /Ps the current LTV of that buyer. With initial LTV of φ and allowing

for generality for a mortgage pay down rate of ς, we have that m (s, t) = φe−(ς+µ)(s−t).

This expression can be inverted to find the date t at which someone with LTV m at date s

must have bought: t (m, s) = s− ln(φ/m)
ς+µ . Let F (s, t) be the cumulative share of mortgages

outstanding that bought before date t. Since new mortgages are written at a rate of I + ι

each period, F (s, t) = e−(I+ι)(s−t). Let G (m, s) denote the share of mortgages outstanding

at date s with LTV of less than m. Then:

G (m, s) =

(
φ

m

)− I+ι
ς+µ

, (C.10)

confirming that the LTV distribution is stable on the BGP.

C.4 Rent Details

We first derive a general user cost expression. To clarify notation, throughout this section

we suppress the i subscript for an individual city and let τ index time elapsed since period

t, j = τ/∆ be the number of periods of length ∆ that have elapsed after τ time units (e.g.,

if ∆ is 1 week and τ is in years then at the end of one year when τ = 1 there have been

52 periods of length 1 week), and t+ T be the end of time.

With Poisson intensity λ a household may re-optimize the rent-own decision. Let

Rt+τ |t denote the rent paid in period t+τ for a contract signed in period t. An agent must

be indifferent between renting and owning, where owning involves an outlay of the down

payment (1− φ)Pt at date t plus the discounted sum of interest payments itφPt, other

costs of owning such as maintenance or property taxes that are assumed to be proportional
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to the dividend, ζDt, and expected cash-flow at sale Eθt [Pt+j] − φPt, where the notation

Eθt indicates that expectations are taken using the diagnostic measure.11 We have:

T/∆∑
j=0

(
1− λ∆

1 + ρ∆

)τ/∆
∆Eθt

[
Rt+∆j|t

]
= (1− φ)Pt +

T/∆∑
j=0

(
1− λ∆

1 + ρ∆

)τ/∆ [
φPtit∆ + ζ∆Eθt [Dt+∆j]− λ∆

(
Eθt [Pt+∆j]− φPt

)]
.

Taking the limit as ∆→ 0, T →∞ and solving the integral multiplying Pt gives:∫ ∞
0

e−(ρ+λ)τEθt
[
Rt+τ |t

]
dτ =

(
1 + φ

(
it + λ

ρ+ λ
− 1

))
Pt

− λ
∫ ∞

0

e−(ρ+λ)τEθt [Pt+τ ] dτ + ctζDt. (C.11)

In the continuous time representation, the left hand side is the expected present value of

rents paid until the next rent/own decision. On the right hand side, the first term is the

price gross of expected discounted interest costs (the interest rate it is locked in when the

mortgage is signed). The second term is the expected discounted cash flow at sale, which

can be written as
∫∞

0 λe−λτEθt [e−ρτPt+τ ] dτ to make clear that λe−λτ is the probability of

selling at date t+τ and Eθt [e−ρτPt+τ ] is the expected discounted cash flow if the sale occurs

at date t+ τ . The third term is the expected present value of maintenance costs of owning

and is written as
∫∞

0 e−(ρ+λ)τEθt ζDt+τdτ = ctζDt for a scalar ct that depends on beliefs of

the drift rate and parameters and is given by the right hand side of equation (C.1) with ρ

replaced by ρ+ λ. Without uncertainty, ct = 1/ (ρ+ λ− µ).

Equation (C.11) involves an indeterminacy since only the expected discounted present

value of rents is pinned down by the expected cost of owning. We resolve this indeterminacy

by assuming a contract where rents grow at a rate gt|t until the λ reoptimization shock

11This derivation involves a slight abuse of notation, as the present value V should subtract these other
owning costs. This simply involves a redefinition of ζ.
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hits: Rt+τ |t = egt|tτRt|t. This assumption captures the empirical regularity that contract

rents are sticky but grow at some trend rate. We assume in particular that gt|t = mφ
t ,

the nowcast of the drift rate, but provide the derivation for a general gt|t. Imposing this

assumption on equation (C.11), the “reset” rent can then be written as:

Rt|t =

(
ρ+ λ− gt|t
ρ+ λ

)(
((1− φ) ρ+ φit)Pt − λ

∫ ∞
0

(ρ+ λ) e−(ρ+λ)τ
(
EθtPt+τ − Pt

)
dτ

)
+
(
ρ+ λ− gt|t

)
ctζDt. (C.12)

One can show that in the limit as λ → ∞, so that the rent-own decision is re-optimized

each instant, this expression collapses to Rt|t = ((1− φ) ρ+ φit)Pt − Eθt
[
Ṗt

]
+ ζDt.

The average rent paid at date t, denoted Rt, evolves according to:

Ṙt = gtRt + λ
(
Rt|t −Rt

)
, (C.13)

where: ġt =
(
Rt|t/Rt

)
λ
(
gt|t − gt

)
. (C.14)

Given initial conditions for Rt and gt, equations (C.12) to (C.14) characterize the path

of rents. The initial condition for gt is g0 = µ̄, the pre-boom growth rate of house prices

and rents. The initial condition for R0 is chosen to match an average price-rent ratio of

13 over the sample, which we achieve by choosing ζ.

C.5 Rent Growth Acceleration and Fundamentals

Along a BGP with dividend growth of µ, gt = µ, and i = ρ, (C.12) to (C.14) imply:

RBGP
t = (ρ− µ)Pt + ζDt. (C.15)

The following lemma shows that a BGP-to-BGP acceleration of rent growth will result

from an increase in µ but not from a decline in the discount rate ρ. We refer to this result

in Section 2 where we show that rent growth accelerated during the BBR.
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Lemma 1 Suppose up to time 0, ρt = ρ̄ and µi = µ̄i. Let x0− be the left-limit value of a
variable just before time 0 and xT the value after convergence to a new balanced growth path.

1. Following a change in the discount rate at date 0 from ρ̄ to ρ0, rents continue to growth
at µ̄i: log (Ri,T/Ri,0−) = µ̄it.

2. Following a change in the growth rate at date 0 from µ̄i to µi,0, rents grow at the
rate µ0 but shift down due to the decline in the price-rent ratio: log (Ri,T/Ri,0−) =

log
(

(µ0/µ̄)−1/γ (1− ζ) + ζ
)

+ µ0t.

Proof: Recall that along a balanced growth path we have that PBGP
t = AH

1/η
t and

ItHt = gHHtx
γ
m

(
Vt
Pt

)γ
.12 Using V̇t/Vt = Ṗt/Pt = µt and Ḣt/Ht = ηµt and explicitly

accounting for the costs of owning ζDt, the Gordon Growth representation is:

PBGP
t =

(
gH
ηµt

)1/γ

xm
Dt (1− ζ)

ρt − µt
. (C.16)

Substituting equation (C.16) into equation (C.15) and grouping terms, we have:

RBGP
t =

[(
gH
ηµ

)1/γ

xm (1− ζ) + ζ

]
Dt. (C.17)

The first claim in the lemma follows immediately, since this expression does not depend

on ρt. For the second claim, we can normalize P0− = V0−, which gives xm = (ηµ̄/gH)1/γ

and hence log
(
RBGP
T /RBGP

0−
)

= log
(

(µ0/µ̄)−1/γ (1− ζ) + ζ
)

+ µ0t.

C.6 Lender Perfect Foresight and Role of Credit Markets

Figure C.1 shows the paths of price, Pt, and upfront mortgage cost as a share of the price,

Wt/Pt, when lenders have perfect foresight over the path of dividends. Even when lenders

perfectly anticipate the peak in buyers’ beliefs and hence in prices, the rise in Wt/Pt of 9.6

p.p. has a small impact on prices. This insensitivity reflects the fact that mortgage costs

Wt are small relative to the price Pt so that even large changes in Wt shift the demand

12Note that the demand equation for ItHt coincides with equation (4) in Section 3 for G = gHx
γ
m. That

is, nothing in this proof requires any of the structure of Section 5 not already imposed in Sections 3 and 4.
We ignore foreclosures for simplicity and all of what follows holds in the more general case.
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curve by only a small amount relative to changes in Vt. Why do perfect foresight lenders

not raise Wt by even more so as to choke off the boom-bust? With the double-trigger for

default, the estimated liquidity shock frequency of roughly 5% per year, and the empirical

recovery rate of roughly 65% on foreclosures, lenders receive substantial cash flows even

on mortgages made just prior to a price peak. The 8p.p. rise in Wt/Pt is exactly sufficient

to compensate for the anticipated wave of foreclosures.

Figure C.1: Prices and Mortgage Costs with Lender Perfect Foresight
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Notes: The figure shows the paths of price, Pt, and upfront mortgage cost as a share of the price, Wt/Pt,
for the third quartile of CBSAs when lenders have perfect foresight over the path of dividends in the dashed
orange line. The baseline model third quartile of CBSAs is shown in the solid blue line for comparison.

Changes in credit that affect approval rates on the extensive margin offer greater po-

tential to impact prices in our model. We consider an extension in which each potential

entrant first draws income y from a CDF G(y) and gets approved for a mortgage only if

y > ctPt. The cutoff parameter ct encompasses a variety of mechanisms including down-

payment constraints and payment-to-income constraints (Greenwald, 2018). With this

modification, the parameter gH becomes instead (1−G (ctPt)) gH . With some abuse of

notation, we can therefore accommodate such policies by replacing gH in equation (17)

with a time-varying potential buyer share gH,t. In fact, in the presence of an approval con-

straint y > ctPt that binds in at least part of the distribution of y prior to the boom, our
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Figure C.2: Non-Prime Credit and Fundamentals
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Notes: Panel (a) plots the share of purchase mortgages originated by lenders flagged by the the Department
of Housing and Urban Development as subprime lenders against the long-run fundamental. Panel (b) plots
the share of purchase mortgages below the jumbo threshold and purchased by non-Agency institutions
(private securitization (HMDA code 5), commercial bank, savings bank or savings association (HMDA code
6), life insurance company, credit union, mortgage bank, or finance company (HMDA code 7), affiliate
institution (HMDA code 8), and other purchasers (HMDA code 9)) against the long-run fundamental. The
data include all first-lien purchase mortgages in HMDA not backed by manufactured housing or buildings
with more than four units. CBSAs with more than 1 million persons in 1997 are labeled in red.

calibration with constant gH requires an expansion of credit on the extensive margin (or

a rightward shift in the distribution of y), as otherwise an increasing number of potential

buyers would get denied mortgage approval as Pt rises (see also Foote et al., 2021). Even

so, Figure C.2 shows that the long-run fundamental is essentially uncorrelated with the

change in subprime share during the boom, suggesting the role of other types of credit

relaxation (e.g. low interest rates that ease payment-to-income constraints) and rising

incomes in keeping house prices affordable in high fundamental areas.

Finally, we circumscribe the potential for mortgage rate changes to affect house prices.

First, Figure C.3 shows that the timing of rate declines does not generally coincide with the

periods of rising prices. We next quantify the impact of the decline in the real mortgage

rate from 4.25% in 1998Q1 to 1.4% in 2019Q4. A standard fixed payment mortgage

sets a constant dollar payment of c∆ per time interval ∆ and amortizes to 0 after H
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Figure C.3: House Prices and Mortgage Rates
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Notes: The blue solid line shows the national Case-Shiller index deflated by the GDP price index. The red
dashed line shows the Freddie Mac 30 year fixed mortgage rate less median inflation expectations from the
Michigan Survey of Consumers.

years. The mortgage balance therefore evolves as Mt+h+∆ = Mt+h − (c∆− it∆Mt+h) =

(1 + it∆)Mt+h − c∆. Taking the limit as ∆ → 0 and using the boundary conditions

Mt = φPt and Mt+H = 0 gives c = itφPt/(1 − e−itH). As most buyers move before final

payment, we also allow for early termination after B years. The present value of mortgage

costs is therefore
∫ B
h=0 e

−ρhcdh+e−ρBMt+B =
((

1−e−ρB
1−e−itH

)(
it
ρ

)
+ e−ρB

(
1−e−it(H−B)

1−e−itH

))
φPt.

Combining this expression with the down payment of (1 − φ)Pt, for a 30 year mortgage

with initial LTV of 0.8 and an actual horizon of 15 years (approximately modal numbers

for the U.S.), the decline in i causes a decline in the present value of housing costs of 22

log points. This magnitude is not especially sensitive to parameter assumptions.

D Literature Appendix

This Appendix details how other leading models of housing cycles cannot generate a boom-

bust-rebound from a single shock.

Burnside et al. (2016) introduce a model in which beliefs spread through epidemiological

“social dynamics” about an infrequent, permanent improvement in fundamentals. They

consider cases where it is realized (a boom) or not (a boom-bust), but focus most of

29



their attention on intermediate cases where the uncertainty about the fundamental is

not realized. They show that if the skeptical agents are most certain (their pdf has the

lowest “entroy” in their terminology, which they call Case 1), then the optimism spreads

initially but then skeptics take over and one gets a boom-bust in prices. By contrast, if

the optimists are most certain (their pdf has lowest entropy, which they call Case 2), then

the optimism spreads unchecked and one obtains a boom without a bust, at least until

the fundamental uncertainty is resolved. This is most easily seen in the frictionless version

of their models in Figures 2 and 3 of their paper (Figures 6 and 7 have the equivalent

cases in their search and matching model, which feature smoothed-out versions of these

price dynamics). In their model, then, the only way to obtain a boom-bust-rebound is to

have two shocks, first an expectation about fundamentals that is not realized (generating

a boom-bust) followed by a fundamental shock that is realized, generating a rebound.

The model of Kaplan et al. (2020) produces a boom when agents become optimistic

about future growth and a bust when they learn that optimism was misplaced, but no

rebound, as can be seen in Figure 3 of their paper. This is driven by aggregate uncertainty

over future preferences for housing services, which can be low with a low probability of

switching to the high state, low with a high probability of switching to the high state, or

high. They simulate a boom by transitioning from the low with low probability to low with

high probability and a bust when they switch back (they also change labor productivity

and credit conditions simultaneously, but this drives their expectations of fundamentals

shock, see page 3310 of their paper for details). Again, one can only obtain a boom-bust-

rebound driven by expectations in their model with three shocks – the initial switch from

low with low state with low probability of switching to the high state to low state with

high probability of switching to the high state, the switch back for the bust, and then a

switch back again for the rebound.

30



Glaeser and Nathanson (2017) introduce a model in which buyers assume past prices

reflect only contemporaneous demand rather than both past demand and past beliefs.

This leads to a form of extrapolation that leads to persistent oscillations rather than a

boom-bust-rebound dynamics. It also leads to overshooting of beliefs in the bust, which

is inconsistent with the Case-Shiller-Thompson data. This can be seen in Figure 2 of

their paper. This is a numerical simulation that shows the evolution of beliefs after a

demand shock. One can see that they oscillate persistently and overshoot the truth on

the downside. This then feeds into prices.

We conclude that our model is the only mechanism in the literature to date that can

generate a boom-bust-rebound from a single shock.
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