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A State Unemployment Rate Estimation Methodology

In this appendix we outline the BLS methodology for estimating the state unemployment rates.

The BLS first introduced state space models in 1989 and began to apply these models to

all states in 1996. Bureau of Labor Statistics (2014) provides an in-depth but non-technical

overview of what follows and Tiller (1992) and Pfeffermann and Tiller (1996) provide a more

technical treatment.

The first step of the real-time estimation involves estimating the state space models sepa-

rately for total unemployment and employment. The unemployment rate is constructed from

these two estimates. Let ys,t + os,t denote the direct count of a variable such as state employ-

ment or unemployment from the CPS, where os,t denotes any outlier component identified using

intervention model methods. For each state, the observation equation is:

ys,t = αs,txs,t + Ls,t + Ss,t + es,t, (A.1)

where xs,t is an external regressor (insured unemployment for unemployment and CES payroll

employment for employment), Ls,t is a trend level, Ss,t is a seasonal component, and es,t is the

observation error. The state space model employment or unemployment is Ys,t = αs,txs,t+Ls,t+

Ss,t = ys,t − es,t.
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The model state equations are:

αs,t = αs,t−1 + ηα,s,t, (A.2)

Ls,t = Ls,t−1 +Rs,t + ηL,s,t, (A.3)

Rs,t = Rs,t−1 + ηR,s,t, (A.4)

Ss,t =
6∑
j=1

Sj,s,t, (A.5)

where es,t, ηα,s,t, ηL,s,t, and ηR,s,t are independent normal random variables, and Sj,s,t are

seasonal frequency functions. A generalized Kalman filter estimates the system.1

BLS introduced a major update in 2005 with the incorporation of real-time benchmarking

to Census Division and national totals. Each month, after estimation of the state space system,

BLS would allocate the residual between the sum of model estimates of not seasonally adjusted

series for Census Divisions (Lt + It) and the national CPS total pro rata to each division, and

then repeat the process for states within a division.2 In that way, the real-time sum of state

employment and unemployment would always equal the national total. However, the pro rata

allocation meant that state-specific residuals would “spillover” to neighboring states. In 2010,

BLS began applying a one-sided moving average Henderson filter to the benchmarked series.

The most recent major update to the real-time model occurred in 2015 and involved three

main changes. First, the benchmarking constraint now enters directly into the state space

filter. The observation vector is augmented to include the difference between the sum of not

seasonally adjusted model state unemployment and employment levels and their Census Division

direct estimate (excluding identified outliers), and the estimation constrains the variance of the

innovation in this component to be zero. Incorporating benchmarking within the state space

filter more efficiently allocates the benchmark residual across states. Second, outlier components

os,t identified by intervention model methods are added back to the states from which they

1Because of the rotating panel structure of the CPS sample, the observation equation errors may be serially
correlated. The generalized Kalman filter uses GLS instead of OLS to find the conditional mean of the state vector
given the updated observation vector.

2At the Census Division level the state space estimation excludes the external regressors insured unemployment
or payroll employment. In terms of equations (A.1) to (A.5), αcd,t = 0 and var(ηcd,t) = 0.
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originated after the state space estimation. Both of these changes reduce spillovers of unusual

residuals across states within a division. Third, the 2015 redesign incorporated an improved

seasonal adjustment procedure.

Table A.1 provides an overview of the importance of different components of the revision

process using as a metric theR2 from a regression of ûs,t on the components.3 The first row shows

that the revisions to the CES employment data explain a small part of the unemployment rate

revision. While the CES revisions themselves can be large, they enter into the unemployment

rate only through the denominator and therefore have a smaller effect on the unemployment rate

revision. The second row adds elements related to the 2015 LAUS redesign and the treatment

of state-specific outliers in the CPS. Specifically, we add to the regression the difference between

the vintage 2014 and vintage 2015 LAUS seasonally adjusted unemployment rates, the difference

between the unemployment rate constructed directly from the CPS monthly files and the real-

time LAUS seasonally unadjusted unemployment rate, the difference between the unemployment

rate constructed directly from the CPS files and seasonally adjusted using an X-11 moving

average and the average of the same variable for three months before and three months after

the observation, and the labor force weighted average of the previous variable for other states in

the same Census Division. These variables increase the explained part of ûs,t to 49%. In row 3,

adding the component due to updated seasonal factors in the revised data further increases the

explained part of ûs,t to 59%. Rows 4 and 5 next add lags and leads of us,t to explore whether

the path of the unemployment rate affects the revision through the state space smoother and

symmetric filter. In row 4, adding 12 lags of the unemployment rate raises the R2 by 0.02, while

in row 5 adding the contemporaneous and 12 leads of the unemployment rate raises it by an

additional 0.01.4 Overall, these components explain 62% of the variation in the unemployment

rate revision. Because the LAUS process uses a nonlinear state space model, we would not

expect a linear projection on the major sources of revisions to generate an R2 of 1.

3Because the procedure for the real-time data changed in 2005 and most of the UI errors in our sample occur
during the Great Recession, we limit the sample in this table to 2005 to 2013.

4The incremental R2 is not invariant to the ordering of variables. Including just the 12 lags of the unemployment
rate produces an R2 of 0.10. Adding the contemporaneous and 12 leads raises the R2 to 0.15.
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Table A.1: Determinants of Unemployment Rate Errors

Determinants R2

CES revisions 0.03
+ 2015 LAUS redesign and identification of outliers 0.49
+ Updated seasonal factors 0.59
+ 12 lags of unemployment rate 0.61
+ Contemporaneous and 12 leads of unemployment rate 0.62

Notes: The table reports the R2 from a regression of the measurement error in the unemployment rate ûs,t on
the regressors indicated in the left column. The sample is January 2005 to December 2013. In the first row, CES
revisions are the log difference between the real-time and revised nonfarm seasonally unadjusted employment level
from the CES. The second row adds the difference between the vintage 2014 and vintage 2015 LAUS seasonally
adjusted unemployment rates, the difference between the unemployment rate constructed directly from the CPS
monthly files and the real-time LAUS seasonally unadjusted unemployment rate, the difference between the un-
employment rate constructed directly from the CPS files and seasonally adjusted using an X-11 moving average
and the average of the same variable for three months before and three months after the observation, and the
labor force weighted average of the previous variable for other states in the same Census Division. The third row
adds the difference between the revised LAUS seasonally adjusted unemployment rate and the real-time seasonally
unadjusted unemployment rate after rescaling the numerator and denominator by the revised seasonal factors for
LAUS unemployment and employment. The fourth row adds 12 lags of the revised unemployment rate. The fifth
row adds the contemporaneous and 12 leads of the revised unemployment rate.

Figure A.1 illustrates that in our example of Vermont the 2015 LAUS technical improvements

account for all of the unemployment rate error during the period of the UI error in the beginning

of 2010.

B Measurement Error in the Revised Data

In this appendix we examine the case in which the revised data measure the fundamentals

with some error. Measurement error in the revised data introduces an attenuation bias in

our estimated impulse responses. We derive an upper bound of this bias under the plausible

assumption that the revised data measure fundamentals with less error than the real-time data.

Even under this upper bound, we can reject the hypothesis that our estimated responses are

consistent with large effects of UI benefit extensions on unemployment.

Our discussion applies to observations at the state-month level, but we drop state-month

subscripts to ease the notation. Let the observed duration of benefits, T ∗, be equal to the sum
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Figure A.1: Extended Benefits and Unemployment in Vermont

Notes: The figure plots the actual duration of benefits T ∗
s,t and the duration based on the revised data Ts,t (left

axis) together with the real-time u∗s,t and revised unemployment rates us,t (right axis). The dashed green line
shows the unemployment rate using the 2014 vintage of data.

of two orthogonal components:

T ∗ = TF + TE, (A.6)

where TF denotes the duration of benefits using the true unemployment rate and TE denotes

the duration of benefits due to measurement error of the true unemployment rate. The true

unemployment rate and TF are unknown to the econometrician. We allow T to be based on an

imperfect measure of the fundamentals:

T = TF + TX , (A.7)

where TX is a component due to measurement error in the revised data.

The UI error that we defined in the main text, T̂ , can be written as:

T̂ = T ∗ − T = TE − TX . (A.8)

In the presence of measurement error in the revised data, the UI error T̂ is the difference between

the measurement error in the true unemployment rate, TE, and the measurement error in the

revised data, TX .
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The three primitive objects of our analysis are TF , TE, and TX . We write each variable

j = {F,E,X} as the sum of its expected value plus an innovation, T j = ET j + εj. All

innovations εj’s are serially uncorrelated and uncorrelated with each other. The innovations in

the measurement error components, εE and εX , are uncorrelated with the fundamentals F . By

contrast, the innovation εF is potentially correlated with the fundamentals F .

Taking expectations in equation (A.6) and using the definition of the innovations, we write

the innovation in the real-time duration of benefits as:

εT
∗

= εF + εE. (A.9)

Similarly, using equations (A.7) and (A.8), we write the innovation in the duration of UI benefits

under the revised data and the innovation in the UI error (which we called ε in the main text)

as:

εT = εF + εX , (A.10)

εT̂ = εE − εX . (A.11)

Suppose the relationship between some outcome variable y (that could be measured in a

future period) and the innovation in the duration of benefits under the real-time data is:

y = βεT
∗

+ γF, (A.12)

where F collects all other factors that affect y. The fundamentals in F are potentially correlated

with εT through εF but are uncorrelated with the measurement error component εE. Using

equations (A.9) and (A.11) we can write:

y = βεF + βεX + βεT̂ + γF. (A.13)

The OLS coefficient in a bivariate regression of y on εT̂ is given by:

βOLS =
Cov

(
y, εT̂

)
Var

(
εT̂
) =

Cov
(
βεX + βεT̂ , εT̂

)
Var

(
εT̂
) = β

1−
Var

(
εX
)

Var
(
εT̂
)
 , (A.14)

where the second equality uses equation (A.13) and the fact that Cov
(
F, εT̂

)
= Cov

(
εF , εT̂

)
=

0, and the third equality uses the fact that Cov
(
εX , εT̂

)
= Cov

(
εX , εE − εX

)
= −Var

(
εX
)
. If
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the revised data measure the true fundamentals without any error up to a constant, Var
(
εX
)

=

0, then the OLS estimator is unbiased βOLS = β. The attenuation bias is increasing in the

variance of the measurement error in the revised data relative to the variance of the UI error,

Var
(
εX
)
/Var

(
εT̂
)

.

We now show that attenuation bias in our estimates is too small to affect our main conclusions

under the plausible assumption that revised data do not deteriorate the quality of measurement

of true fundamentals. We say that the revised data are a (weakly) better measure of the true

fundamentals than the real-time data if the measurement error in the revised data has a (weakly)

lower variance:

Var
(
εX
)
≤ Var

(
εE
)
. (A.15)

The assumption that the revised data contain less measurement error than the real-time data

places an upper bound on the attenuation bias. From equation (A.11), we see that Var
(
εT̂
)

=

Var
(
εX
)
+Var

(
εE
)

and, therefore, under assumption (A.15) less than 50 percent of the variance

of εT̂ is attributed to εX :

Var
(
εX
)

Var
(
εT̂
) ≤ 0.5. (A.16)

We estimate in the data an upper bound of βOLS = 0.02. Using the upper bound of the bias

Var
(
εX
)
/Var

(
εT
)

= 0.50, the true coefficient could be as large as β = 0.04. Using a standard

error of 0.02, this β is still 4.5 standard errors below the 0.14 level that would rationalize a large

effect of extended benefits on unemployment during the Great Recession.

This calculation is very conservative because it assumes that revisions do not improve mea-

surement and uses the upper bound of our estimates of β. In Section 5.4 we provided ev-

idence that revisions are informative about actual spending patterns and beliefs. This im-

plies that Var
(
εX
)
/Var

(
εT̂
)

is likely to be smaller than 0.5. Indeed, we find in the data

that there is smaller variance of outcomes in the revised data and, consistent with our as-

sumption that Var
(
εX
)
≤ Var

(
εE
)
, that Var

(
εT
)
< Var

(
εT

∗)
. If we apply, for example,

Var
(
εX
)
/Var

(
εT̂
)

= 0.25 to our maximum estimate of βOLS = 0.02, we obtain that the true
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coefficient is β < 0.03. In general, the more informative is the revised data for the true funda-

mentals, the lower is Var
(
εX
)
/Var

(
εT̂
)

and the smaller is the attenuation bias.

C Model Appendix

This appendix contains a self-contained description of our model validation exercise.

C.1 Model Description

Labor Market and Eligibility Flows. Each period a measure ut of unemployed search for

jobs and a measure 1 − ut of employed produce output. Unemployed individuals find jobs at

a rate ft which is determined in equilibrium. Employed individuals separate from their jobs at

an exogenous rate δt. The law of motion for unemployment is:

ut+1 = (1− ft)ut + δt(1− ut). (A.17)

Employed individuals who lose their jobs become eligible for UI benefits with probability γ.

There are uEt unemployed who are eligible for and receive UI benefits. Eligible unemployed who

do not find jobs lose their eligibility with probability et. The key policy variable in our model

is the (expected) duration of benefits T ∗t which equals the inverse of the expiration probability,

T ∗t = 1/et.
5 Finally, there are ut−uEt ineligible unemployed. Ineligible unemployed who do not

find jobs remain ineligible for UI benefits.

We denote by ωt = uEt /ut the fraction of unemployed who are eligible for and receive UI.

This fraction evolves according to the law of motion:6

ωt+1 =
δtγ(1− ut)

ut+1
+

(
ut(1− ft)(1− et)

ut+1

)
ωt. (A.18)

5For expository reasons, in the model T ∗
t denotes the total duration of benefits (including the regular benefits),

whereas in the data we defined T ∗
t as the extension of benefits beyond their regular duration.

6In the data we have a measure of the fraction of unemployed who receive UI benefits (what we called φ in the
empirical analysis) based on administrative data on UI payments. Constructing a high quality panel of take-up
rates at the state-month level is not feasible with currently available data. A difference relative to the model of
Chodorow-Reich and Karabarbounis (2016) is that, because of this data unavailability, here we do not consider
the take-up decision of an unemployed who is eligible for benefits. Therefore, we use interchangeably the terms
eligibility for UI benefits and receipt of UI benefits.
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Household Values. All individuals are risk-neutral and discount the future with a factor β.

Employed individuals consume their wage earnings wt. The value of an individual who begins

period t as employed is given by:

Wt = wt + β(1− δt)EtWt+1 + βδt
(
γEtUE

t+1 + (1− γ)EtU I
t+1

)
, (A.19)

where UE
t denotes the value of an eligible unemployed and U I

t denotes the value of an ineligible

unemployed. These values are given by:

UE
t = ξ +B + βftEtWt+1 + β(1− ft)

(
etEtU I

t+1 + (1− et)EtUE
t+1

)
, (A.20)

U I
t = ξ + βftEtWt+1 + β(1− ft)EtU I

t+1, (A.21)

where ξ is the value of non-market work and B is the UI benefit per eligible unemployed.7 We

assume that both ξ and B are constant over time. This allows us to focus entirely on the role

of benefit extensions for fluctuations in the opportunity cost of employment.8

Surplus and Opportunity Cost of Employment. Firms bargaining with workers over wages

cannot discriminate with respect to workers’ eligibility status. Therefore, there is a common

wage for all unemployed. This implies that we need to keep track of values and flows for the

average unemployed. We define the value of the average unemployed individual as:

Ut = ωtU
E
t + (1− ωt)U I

t . (A.22)

The surplus of employment for the average unemployed is given by the difference between the

value of working and the value of unemployment. We take:

St = Wt − Ut = wt − zt + β(1− δt − ft)EtSt+1, (A.23)

7Benefit extensions were federally funded between 2009 and 2013. We think of our model as applying to an
individual state during this period and, therefore, we do not impose UI taxes on firms.

8In previous work (Chodorow-Reich and Karabarbounis, 2016), we found that the ξ component of the oppor-
tunity cost is procyclical. Benefit extensions typically occur when unemployment is high and ξ is low. However,
our empirical exercise compares two states with different duration of benefits that have the same economic funda-
mentals and, therefore, it is appropriate to not control for ξ in our regressions. The constancy of ξ in the model is
conservative for our conclusions in this section. Allowing ξ to respond endogenously would lead to an even smaller
effect of benefit extensions on unemployment because the decline in ξ would tend to offset the increase in the value
of benefits (denoted b below) in the opportunity cost z = ξ + b.
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where zt denotes the (flow) opportunity cost of employment for the average unemployed.

The opportunity cost of employment is defined as the flow utility that an unemployed forgoes

upon moving to employment. It is given by:

zt = ξ + ωtB − (δt(γ − ωt) + (1− ft)ωtet) β
(
EtUE

t+1 − EtU I
t+1

)︸ ︷︷ ︸
bt

, (A.24)

where bt denotes the benefit component of the opportunity cost of employment. The expression

nests the standard model (for instance, Shimer, 2005) that has bt = B if et = 0, that is when

benefits do not expire, and γ = ωt = 1, that is when all unemployed are eligible for benefits.

More generally, the flow utility loss bt of moving an average unemployed to employment is lower

than the benefit B. The difference occurs because some unemployed are not eligible for benefits

and, even for those unemployed who are eligible, benefits will eventually expire.9 Additionally,

bt is in general time varying. Extending benefits, which here means a decline in the expiration

probability et, increases the fraction of unemployed who are eligible ωt and raises bt and the

opportunity cost of employment zt.

Firm Value, Matching, and Bargaining. The value of a firm from matching with a worker

is given by:

Jt = pt − wt + β(1− δt)EtJt+1, (A.25)

where pt denotes aggregate labor productivity. There is free entry and, therefore, the expected

value of creating a vacancy equals zero:

κ

qt
= βEtJt+1, (A.26)

where κ denotes the upfront cost that an entrant pays to create a vacancy and qt denotes the

rate at which vacancies are filled.

Trade in the labor market is facilitated by a constant returns to scale matching technology

that converts searching by the unemployed and vacancies by firms into new matches, mt =

9The first effect is captured by the first term of bt which is lower than B when ωt < 1. The second effect is
captured by the second term which is positive because γ > ωt and EtU

E
t+1 > EtU

I
t+1.
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Mvηt u
1−η
t . We denote by η the elasticity of the matching function with respect to vacancies.

We define market tightness as θt = vt/ut. An unemployed matches with a firm at a rate

ft(θt) = mt/ut and firms fill vacancies at a rate qt(θt) = mt/vt = ft(θt)/θt.

Firms and workers split the surplus from an additional match according to the generalized

Nash bargaining solution. We denote by µ the bargaining power of workers. The wage is chosen

to maximize the product Sµt J
1−µ
t , where Jt in equation (A.25) is a firm’s surplus of employing

a worker and St in equation (A.23) is the surplus that the average unemployed derives from

becoming employed. This leads to a standard wage equation:

wt = µpt + (1− µ)zt + µκθt. (A.27)

The wage is an increasing function of labor productivity, the opportunity cost, and market

tightness.

UI Policy. The duration of UI benefits is given by T ∗t = Tt+ T̂t, where Tt denotes the duration

of UI benefits in the absence of any measurement error and T̂t is the UI error. Consistent with

the results in Section 5.4 that agents respond only to the revised unemployment rate, we assume

that firms and workers know the underlying fundamentals (for instance, ut, pt, wt etc.) at the

beginning of each period. The statistical agency makes errors in the measurement of the true

unemployment rate which result in UI errors T̂t.

The process for Tt is:

Tt =



T 1, if 0 ≤ ut < ū1,

T 2, if ū1 ≤ ut < ū2,

...

T J , if ūJ−1 ≤ ut < ūJ = 1.

(A.28)

The UI error follows a first-order Markov process πT

(
T̂t | T̂t−1;ut

)
. As in the data, the unem-

ployment rate enters into the Markov process to capture the fact that UI errors occur only in

particular regions of the state space.10

10The timing convention in our model follows the convention in the DMP literature in which the unemployment
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Equilibrium. The state vector of the economy is given by xt = [ut, ωt, pt, δt, T̂t]. Given

exogenous and known processes for pt, δt, and T̂t, an equilibrium of this model consists of

functions of the state vector:

{
ut+1 (xt) , ωt+1 (xt) , θt (xt) ,Wt (xt) , U

E
t (xt) , U

I
t (xt) , wt (xt) , Jt (xt) , bt (xt) , Tt (xt)

}
,

such that: (i) The law of motion for unemployment (A.17) and the law of motion for eligibility

(A.18) are satisfied. (ii) Worker values in equations (A.19), (A.20), and (A.21) are satisfied.

(iii) The firm value is given by equation (A.25) and the free-entry condition (A.26) holds. (iv)

Wages are determined by equation (A.27), where the opportunity cost of employment is given

by equation (A.24). (v) The duration of UI benefits in the absence of measurement error is

given by the schedule (A.28). Starting from each state vector xt, we have 10 equations to solve

for the 10 unknowns.

Effects of UI Policy in the Model. An increase in the current duration of benefits (T ∗t =

1/et) affects equilibrium outcomes to the extent that firms and workers expect it to persist in

future periods. Combining equations (A.25) and (A.26), the decision to create a vacancy in the

current period depends on the expectation of the present discounted value of firm profits:

κ

qt(θt)
= Et

∞∑
j=1

βj

(
j∏
i=1

(1− δt+i−1)
(1− δt)

)
(pt+j − wt+j) , (A.29)

where qt(θt) is a decreasing function of current market tightness θt = vt/ut. By raising the frac-

tion of unemployed who are eligible for UI, an extension of benefits increases future opportunity

costs and wages. The increase in wages lowers the expected present value of firm profits and

decreases firms’ willingness to create vacancies in the current period. The decline in vacancies

makes it more difficult for the unemployed to find jobs, which increases the unemployment rate.

rate ut is a state variable and has been determined in period t− 1. For this reason UI policy in the model depends
on ut. We remind the reader than in the data the unemployment rate in period t− 1 determines the extension of
benefits in period t.
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Table A.2: Parameter Values

β ρ σ η µ δ ξ M γ B κ

0.997 0.91 0.008 0.60 0.40 0.035 0.81 0.60 0.72 {0.26, 0.10} {0.05, 0.17}

C.2 Parameterization

A model period corresponds to a month. The schedule for the Tt component of UI benefit

duration is:

Tt =



6, if ut < 0.065,

9, if 0.065 ≤ ut < 0.08,

12, if 0.08 ≤ ut < 0.09,

20, if 0.09 ≤ ut.

(A.30)

For the UI error component, T̂t, we estimate the probabilities πT

(
T̂t | T̂t−1;ut

)
in the data

separately for each region ut < 0.06, 0.06 ≤ ut < 0.065, and ut ≥ 0.065.

Table A.2 lists values for other parameters of the model. The discount factor equals β =

0.997. Log productivity follows an AR(1) process log pt+1 = ρ log pt + σνpt , with νpt ∼ N(0, 1),

where from the data we estimate that at monthly frequency ρ = 0.91 and σ = 0.008. The

mean separation rate is δ = 0.035. We set the elasticity of the matching function with respect

to vacancies to η = 0.60, worker’s bargaining power to µ = 0.40, and the value of non-market

work to ξ = 0.81. We then calibrate four parameters, M , γ, B, and κ, to hit four targets in the

steady state of the model with no benefit extensions (so T ∗ = 6 months).11

We parameterize two versions of the model. In the “low b” model we pick B such that

b = 0.06 in the steady state and so z = ξ + b = 0.87. The value of b = 0.06 accords with the

11We target θT = 1, uT = 0.055, ωT = 0.65, and bT = {0.06, 0.15}. Because we do not consider the take-
up decision of the unemployed, B should be understood as the after-tax value of benefits for the average eligible
unemployed. This differs from the replacement rate per recipient because of taxes, utility costs of taking up benefits,
and a take-up rate below one.
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finding in Chodorow-Reich and Karabarbounis (2016) that benefits comprise a small fraction

of the average opportunity cost.12 In the “high b” model we pick B such that b = 0.15 and

z = ξ+ b = 0.96. The value of z = 0.96 was found by Hagedorn and Manovskii (2008) to match

the rigidity of wages with respect to productivity.

C.3 Computation

We solve the model globally by iterating on the equilibrium conditions. We begin by guessing

functions θ0(ut, ωt, pt, δt, T̂t) and b0(ut, ωt, pt, δt, T̂t) defined over grids of state variables. Given

these guesses, we obtain f(.), T (.), u′(.) and ω′(), where primes denote next period values, and

use equation (A.27) to obtain the wage function w(.). Next, we iterate on equation (A.25) to

solve for firm value J(.). Finally, we use the free-entry condition (A.26) and the definition of the

opportunity cost in equation (A.24) to obtain the implied θ1(.) and b1(.) functions. We update

the guesses and repeat until convergence. To evaluate value functions at points u′ and ω′ we

use linear interpolation. When solving for the equilibrium policy functions, we impose that the

probabilities f(.) and q(.) lie between zero and one. These restrictions also guarantee that v

and θ are always positive.

C.4 Additional Results

In Figures A.2, A.3, and A.4, we present the impulses of the fraction of unemployed receiving UI,

the log opportunity cost, and log vacancies to a one-month increase in the UI error innovation.

In Figures A.5 and A.6 we depict the path of productivity and separations shocks underlying

the experiment depicted in Figure 8 in the main text. In each figure, the left panel corresponds

to the high b model and the right panel corresponds to the low b model.

12Our calibration is conservative in the sense that reducing the level of ξ would produce even smaller effects of UI
policy on aggregate outcomes. Chodorow-Reich and Karabarbounis (2016) show that, with standard preferences, z
is between 0.47 and 0.75. Hornstein, Krusell, and Violante (2011) argue that z has to be even smaller in order for
models to generate large frictional wage dispersion. Hall and Mueller (2015) also arrive at a small value of z given
the large observed dispersion in the value of a job. Costain and Reiter (2008) first pointed out that models with a
high level of z generate stronger effects of policies on labor market outcomes than the effects found in cross-country
comparisons.
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(b) Low b Model

Figure A.2: Impulse Response of Fraction Receiving UI in the Model

Notes: The figure plots the coefficients on εt from the regression ωt+h = β(h)εt +
∑11

j=0 γj(h)ut−j + νt+h using
data generated from model simulations.
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(b) Low b Model

Figure A.3: Impulse Response of Log Opportunity Cost in the Model

Notes: The figure plots the coefficients on εt from the regression log bt+h = β(h)εt +
∑11

j=0 γj(h)ut−j + νt+h using
data generated from model simulations.
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Figure A.4: Impulse Response of Log Vacancies in the Model

Notes: The figure plots the coefficients on εt from the regression log vt+h = β(h)εt +
∑11

j=0 γj(h)ut−j + νt+h using
data generated from model simulations.
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Figure A.5: Productivity Path in the Model

Notes: The figure plots the path of productivity used to generate the simulation in Figure 8.
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Figure A.6: Separations in the Model

Notes: The figure plots the path of the separation rate used to generate the simulation in Figure 8.
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