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A B S T R A C T

With the advancement in the digital camera technology, the use of high resolution images and videos has been
widespread in the modern society. In particular, image and video frame registration is frequently applied in
computer graphics and film production. However, conventional registration approaches usually require long
computational time for high resolution images and video frames. This hinders the application of the registration
approaches in the modern industries. In this work, we first propose a new image representation method to
accelerate the registration process by triangulating the images effectively. For each high resolution image or
video frame, we compute an optimal coarse triangulation which captures the important features of the image.
Then, we apply a surface registration algorithm to obtain a registration map which is used to compute the
registration of the high resolution image. Experimental results suggest that our overall algorithm is efficient and
capable to achieve a high compression rate while the accuracy of the registration is well retained when com-
pared with the conventional grid-based approach. Also, the computational time of the registration is significantly
reduced using our triangulation-based approach.

1. Introduction

In recent decades, the rapid development of the digital camera
hardware has revolutionized human lives. On one hand, even mid-level
mobile devices can easily produce high resolution images and videos.
Besides the physical elements, the widespread use of the images and
videos also reflects the importance of developing software technology
for them. On the other hand, numerous registration techniques for
images and video frames have been developed for a long time. The
existing registration techniques work well on problems with a moderate
size. However, when it comes to the current high quality images and
videos, most of the current registration techniques suffer from ex-
tremely long computations. This limitation in software seriously im-
pedes fully utilizing the state-of-the-art camera hardware.

One possible way to accelerate the computation of the registration is
to introduce a much coarser grid on the images or video frames. Then,
the registration can be done on the coarse grid instead of the high re-
solution images or video frames. Finally, the fine details can be added
back to the coarse registration. It is noteworthy that the quality of the
coarse grid strongly affects the quality of the final registration result. If
the coarse grid cannot capture the important features of the images or
video frames, the final registration result is likely to be unsatisfactory.

In particular, for the conventional rectangular coarse grids, since the
partitions are restricted in the vertical and horizontal directions, im-
portant features such as slant edges and irregular shapes cannot be
effectively recorded. By contrast, triangulations allow more freedom in
the partition directions as well as the partition sizes. Therefore, it is
more desirable to make use of triangulations in simplifying the regis-
tration problems.

In this work, we propose a two-stage algorithm for effective regis-
tration of specially large images. In stage 1, a content-aware image
representation algorithm to TRiangulate IMages, abbreviated as TRIM,
is developed to simplify high quality images and video frames.
Specifically, for each high quality image or video frame, we compute a
coarse triangulation representation of it. The aim is to create a high
quality triangulation on the set of the content-aware sample points
using the Delaunay triangulation. The computation involves a series of
steps including subsampling, unsharp masking, segmentation and
sparse feature extraction for locating sample points on important fea-
tures. Then in stage 2, using coarse triangular representation of the
images, the registration is computed by a landmark-based quasi-con-
formal registration algorithm [17] for computing the coarse registra-
tion. The fine detail of the image or video frame in high resolution is
computed with the aid of a mapping interpolation. Our proposed
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framework may be either used as a standalone fast registration algo-
rithm or also served as a highly efficient and accurate initialization for
other registration approaches.

The rest of this paper is organized as follows. In Section 2, we re-
view the literature on image and triangular mesh registration. Our
proposed method is explained in details in Section 3. In Section 4, we
demonstrate the effectiveness of our approach with numerous real
images. The paper is concluded in Section 5.

2. Previous works

In this section, we describe the previous works closely related to our
work.

Image registration have been widely studied by different research
groups. Surveys on the existing image registration approaches can be
found in [39,6,16,38]. In particular, one common approach for guar-
anteeing the accuracy of the registration is to make use of landmark
constraints. Bookstein [1–3] proposed the unidirectional landmark
thin-plate spline (UL-TPS) image registration. In [13], Johnson and
Christensen presented a landmark-based consistent thin-plate spline
(CL-TPS) image registration algorithm. In [14], Joshi et al. proposed the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) for re-
gistering images with a large deformation. In [10,11], Glaunès et al.
computed large deformation diffeomorphisms of images with pre-
scribed displacements of landmarks.

A few works on image triangulations have been reported. In [8],
Gee et al. introduced a probabilistic approach to the brain image
matching problem and described the finite element implementation. In
[15], Kaufmann et al. introduced a framework for image warping using
the finite element method. The triangulations are created using the
Delaunay triangulation method [31] on a point set distributed ac-
cording to variance in saliency. In [18,19], Lehner et al. proposed a
data-dependent triangulation scheme for image and video compression.
Recently, Yun [35] designed a triangulation image generator called
DMesh based on the Delaunay triangulation method [31].

In our work, we handle image registration problems with the aid of
triangulations. Numerous algorithms have been proposed for the re-
gistration of triangular meshes. In particular, the landmark-driven ap-
proaches use prescribed landmark constraints to ensure the accuracy of
mesh registration. In [34,22,33], Wang et al. proposed a combined
energy for computing a landmark constrained optimized conformal
mapping of triangular meshes. In [23], Lui et al. used vector fields to
represent surface maps and computed landmark-based close-to-con-
formal mappings. Shi et al. [32] proposed a hyperbolic harmonic re-
gistration algorithm with curvature-based landmark matching on tri-
angular meshes of brains. In recent years, quasi-conformal mappings
have been widely used for feature-endowed registration [36,37,24,26].
Choi et al. [5] proposed the FLASH algorithm for landmark aligned
harmonic mappings by improving the algorithm in [34,22] with the aid
of quasi-conformal theories. In [17], Lam and Lui reported the quasi-
conformal landmark registration (QCLR) algorithm for triangular me-
shes.

Contributions. Our proposed approach for fast registration of high
resolution images or video frames is advantageous in the following
aspects:

(1) The triangulation algorithm is fully automatic. The important
features of the input image are well recorded in the resulting coarse
triangulation.
(2) The algorithm is fast and robust. The coarse triangulation of a
typical high resolution image can be computed within seconds.
(3) The registration algorithm for the triangulated surfaces by a
Beltrami framework incorporates both the edge and landmark con-
straints to deliver a better quality map as fine details are restored.
By contrast, for regular grid-based approaches, the same landmark
correspondences can only be achieved on the high resolution image

representation.
(4) Using our approach, the problem scale of the image and video
frame registration is significantly reduced. Our method can alter-
natively serve as a fast and accurate initialization for the state-of-
the-art image registration algorithms.

3. Proposed method

In this section, we describe our proposed approach for efficient
image registration in details.

3.1. Stage 1 – Construction of coarse triangulation on images

Given two high resolution images I1 and I2, our goal is to compute a
fast and accurate mapping →f I I: 1 2. Note that directly working on the
high resolution images can be inefficient. To accelerate the computa-
tion, the first step is to construct a coarse triangular representation of
the image I1. In the following, we propose an efficient image triangu-
lation scheme called TRIM. The pipeline of our proposed framework is
described in Fig. 1.

Our triangulation scheme is content-aware. Specifically, special
objects and edges in the images are effectively captured by a segmen-
tation step, and a suitable coarse triangulation is constructed with the
preservation of these features. Our proposed TRIM method consists of 6
steps in total.

3.1.1. Subsampling the input image without affecting the triangulation
quality

Denote the input image by I. To save the computational time for
triangulating the input image I, one simple remedy is to reduce the
problem size by performing certain subsampling on I. For ordinary
images, subsampling unavoidably creates adverse effects on the image
quality. Nevertheless, it does not affect the quality of the coarse trian-
gulation we aim to construct on images.

In our triangulation scheme, we construct triangulations based on
the straight edges and special features on the images. Note that straight
edges are preserved in all subsamplings of the images because of the
linearity. More specifically, if we do subsampling on a straight line, the
subsampled points remain to be collinear. Hence, our edge-based tri-
angulation is not affected by the mentioned adverse effects. In other
words, we can subsample high resolution images to a suitable size for
enhancing the efficiency of the remaining steps for the construction of
the triangulations. We denote the subsampled image by ∼I . In practice,
for images larger than ×1000 1000, we subsample the image so that it is
smaller than ×1000 1000.

3.1.2. Performing unsharp masking on the subsampled image
After obtaining the subsampled image ∼I , we perform an unsharp

masking on ∼I in order to preserve the edge information in the final
triangulation. More specifically, we first transform the data format of
the subsampled image ∼I to the CIELAB standard. Then, we apply the
unsharp masking method in [27] on the intensity channel of the CIELAB
representation of ∼I . The unsharp masking procedure is briefly de-
scribed as follows.

By an abuse of notation, we denote ∼I x y( , ) and I x y( , ) the

Fig. 1. The pipeline of our proposed TRIM algorithm for accelerating image
registration via coarse triangulation.
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intensities of the input subsampled image ∼I and the output image I
respectively, andG x y( , )σ the Gaussian mean of the intensity of the pixel
x y( , ) with standard derivation . Specifically, G x y( , )σ is given by

∫≜
∈

− − + −
G x y

σ π
e( , ) 1

2
.σ u v

u x v y
σ

( , ) Ω

( ) ( )
2

2 2
2

(1)

We perform an unsharp masking on the image using the following
formula
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s u v M( , ) s (4)

Here, ∗ is the convolution operator and Ms is the disk with center
x y( , ) and radius s. The effect of the unsharp masking is demonstrated in
Fig. 2. With the aid of this step, we can highlight the edge information
in the resulting image I for the construction of the triangulation in the
later steps. For simplicity we set =s σ . In our experiment, we choose

= = =λ σ s0.5, 2, 2, and =θ 0.5. An analysis on the choice of the
parameters is provided in Section 4.

3.1.3. Segmenting the image
After obtaining the image I upon unsharp masking, we perform a

segmentation in this step in order to optimally locate the mesh vertices
for computing the coarse triangulation. Mathematically, our segmen-
tation problem is described as follows.

Suppose the image I has L intensity levels in each RGB channel.
Denote i as a specific intensity level ⩽ ⩽ −i e i L( . . 0 1). Let C be a color
channel of the image (i.e. ∈C R G B{ , , }), and let hi

C denote the image
histogram for channel C, in other words, the number of pixels which
correspond to its i-th intensity level.

Define ≜pi
C h

N
i
C
, where N represents the total number of pixels in

the image I . Then we have
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Suppose that we want to compress the color space of the image I to l
intensity levels. Equivalently, I is to be segmented into l classes

…D D, ,C
l
C

1 by the ordered threshold levels = … −x j l, 1, , 1j
C . We define

the best segmentation criterion to be maximizing the inter-class in-
tensity-mean variance. More explicitly, we define the cost
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where the probability wj
C of occurrence of a pixel being in the class Dj

C

and the intensity-mean μj
C of the class Dj

C are respectively given by
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Hence, we maximize three objective functions of each RGB channel
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where ∈C R G B{ , , }. Our goal is to find a set of = =
−xx { }j

C
j
l

1
1 such that

above function is maximized for each RGB channel.
To solve the aforementioned segmentation optimization problem,

we apply the Particle Swarm Optimization (PSO) segmentation algo-
rithm [9] on the image I . The PSO method is used in this segmentation
optimization problem for reducing the chance of trapping in local op-
timums.

An illustration of the segmentation step is provided in Fig. 3. After
performing the segmentation, we extract the boundaries of the seg-
ments. Then, we can obtain a number of large patches of area in each of
which the intensity information is almost the same. They provide us
with a reasonable edge base for constructing a coarse triangulation in
later steps.

3.1.4. Sparse feature extraction on the segment boundaries
After computing the segment boundaries B on the image I , we aim

to extract sparse feature points on B in this step. For the final trian-
gulation, it is desirable that the edges of the triangles are as close as
possible to the segment boundaries B , so as to preserve the geometric
features of the original image I. Also, to improve the efficiency for the
computations on the triangulation, the triangulation should be much
coarser than the original image. To achieve the mentioned goals, we

Fig. 2. An illustration of unsharp masking. Left: the input image. Right: the
resulting image. The unsharp masking procedure helps preserving the edge
information of the input image to ensure that the vertices in unclear edges can
also be extracted.

Fig. 3. An illustration of the segmentation step for compressing the color space
to achieve a sparse intensity representation. Left: the original image. Right: the
segmentation result.
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consider extracting sparse features on the segment boundaries B and
use them as the vertices of the ultimate triangulated mesh.

Consider a rectangular grid table G on the image I . Apparently, the
grid table G intersects the segment boundariesB at a number of points.
DenoteP as our desired set of sparse features. Conceptually,P is made
up of the set of points at which B intersect the grid G, with certain
exceptions.

In order to further reduce the number of feature points for a coarse
triangulation, we propose a merging procedure for close points.
Specifically, let gi j, be the vertex of the grid G at the i-th row and the j-th
column. We denotePi j,

1 andPi j,
2 respectively as the set of points at which

B intersect the line segment +g gi j i j, , 1 and the line segment +g gi j i j, 1, . See
Fig. 4 for an illustration of the parameters.

There are 3 possible cases for Pi j
k
, , where =k 1, 2:

(i) If P =| | 0i j
k
, , then there is no intersection point between the line

segment and B and hence we can neglect it.
(ii) If P =| | 1i j

k
, , then there is exactly one intersection point pi j

k
, be-

tween the line segment andB . We include this intersection point pi j
k
,

in our desired set of sparse features P .
(iii) If P >| | 1i j

k
, , then there are multiple intersection points between

the line segment and B . Since these multiple intersection points lie
on the same line segment, it implies that they are sufficiently close
to each other. In other words, the information they contain about
the segment boundaries B is highly similar and redundant.
Therefore, we consider merging these multiple points as one point.

More explicitly, for the third case, we compute the centre mi j
k
, of the

points in Pi j
k
, by

P= ∈m mean p.i j
k

p p, { | }i j
k
, (9)

The merged point mi j
k
, is then considered as a desired feature point. In

summary, our desired set of sparse features is given by

P = ⋃⋃ p p m m{ , , , }.
i j

i j i j i j i j,
1

,
2

,
1

,
2

(10)

An illustration of the sparse feature extraction scheme is given in
Fig. 4. However, one important problem in this scheme is to determine
a suitable size of the grid G so that the sparse feature points are opti-
mally computed. Note that to preserve the regularity of the extracted
sparse features, it is desirable that the elements of the grid G are close to
perfect squares. Also, to capture the important features as complete as
possible, the elements of G should be small enough. Mathematically,
the problem can be formulated as follows.

Denote w as the width of the image I h, as the height of the image
′I w, as the number of columns in ′G h, as the number of rows inG l, w as

the horizontal length of every element of G, and lh as the vertical length
of every element of G. See Fig. 4 for a geometric illustration of lw and lh.
We further denote p as the percentage of grid edges in G which intersect
the segment boundaries B , and n as the desired number of the sparse
feature points. Given the two inputs p and n, to find a suitable grid size
of G, we aim to minimize the cost function

= −c l l l l( , ) | |w h w h
2 (11)

subject to

= ′h h l(i) ,h (12)

= ′w w l(ii) ,w (13)

′ + ′ + ′ ′ =p w h w h n(iii) ( 2 ) . (14)

Here, the first and the second constraint respectively correspond to
the horizontal and vertical dimensions of the grid G, and the third
constraint corresponds to the total number of intersection points. To
justify Eq. (14), note that

= +
= ′ ′ + + ′ ′ +
= ′ + ′ + ′ ′

h w w h
w h w h

Total # of line segments
Total # of horizontal line segments Total # of vertical line segments

( 1) ( 1)
2 .

(15)

Note that this minimization problem is nonlinear. To simplify the
computation, we assume that ′ ′w h, are very large, that is, the grid G is
sufficiently dense. Then, from Eq. (14), we have

=
′ + ′ + ′ ′

≈
′ ′

= =
( )( )

p
n w h w h w h

l l
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2
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2 2
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w
l

h
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By further assuming that the grid G is sufficiently close to a square grid,
we have ≈l lw h. Then, it follows that

≈ ≈
p
n

l
wh

l
pwh
n2

,
2

.w
w

2

(17)

Similarly,

≈l
pwh
n

2
.h (18)

To satisfy the integral constraints for ′w and ′h , we make use of the
above approximations and set

′ = ′ ≔
⎢
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Similarly, we set

′ = ′ ≔
⎢
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⎥
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Finally, we take

Fig. 4. An illustration of our sparse feature extraction scheme. The chosen
sparse feature points are represented by the red dots. If the segment boundary
does not intersect an edge, no point is selected. If the segment boundary in-
tersects an edge at exactly one point, the point is selected as a feature point. If
the segment boundary intersects an edge at multiple points, the centre of the
points is selected as a feature point.
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=
′

=
′

l h
h

l w
w

and .h w
0 0 (21)

To summarize, with the abovementioned strategy for the feature
point extraction, we obtain a set of sparse feature points which ap-
proximates the segment boundaries B . Specifically, given the inputs p
and n, the rectangular grid G we introduce leads to approximately n
regularly-extracted sparse feature points. An illustration of the sparse
feature extraction scheme is shown in Fig. 5 (left). In our experiments, p
is set to be 0.2, and n is set to be 10% of the number of pixels in the
segmentation result. A denser triangulated representation can be
achieved by increasing the value of p.

3.1.5. Adding landmark points to the vertex set of the desired coarse
triangulation

This step is only required when our TRIM algorithm is used for
landmark-constrained registration. For accurate landmark-constrained
registration, it is desirable to include the landmark points in the vertex
set of the coarse representations of the input image I. One of the most

important features of our coarse triangulation approach is that it allows
registration with exact landmark constraints on a coarse triangular re-
presentation. By contrast, the regular grid-based registration can only
be achieved on very dense rectangular grid domains in order to reduce
the numerical errors.

With the above mentioned advantage of our approach, we can freely
add a set of landmark points PLM to the set of sparse features P ex-
tracted by the previous procedure. In other words, the landmark points
are now considered as a part of our coarse triangulation vertices:

P P= ⋃⋃ ∪p p m m{ , , , } .
i j

i j i j i j i j LM,
1

,
2

,
1

,
2

(22)

Then, the landmark-constrained registration of images can be computed
by the existing feature-matching techniques for triangular meshes. The
existing feature detection approaches such as [12,21] can be applied for
obtaining the landmark points.

3.1.6. Computing a Delaunay triangulation
In the final step, we construct a triangulation based on the set P of

feature points. Among all triangulation schemes, the Delaunay trian-
gulation method is chosen since the triangles created by the Delaunay
triangulations are more regular. More specifically, if α and β are two
angles opposite to a common edge in a Delaunay triangulation, then
they must satisfy the inequality

+ ⩽α β π. (23)

In other words, Delaunay triangulations always aim to minimize the
formation of sharp and irregular triangles. Note that the regularity does
not only enhance the visual quality of the resulting triangulation but
also lead to a more stable approximation of the derivatives on the tri-
angles when applying various registration schemes. Therefore, we

Fig. 5. An illustration of computing a Delaunay triangulation on the extracted features. Left: the points obtained by the feature extraction step from Fig. 3. Middle: a
Delaunay triangulation on the feature points. Right: the triangulation with a color approximated on each triangle.

Fig. 6. An illustration of quasi-conformal mappings. The maximal magnifica-
tion and shrinkage are determined by the Beltrami coefficient μ of the map-
pings.

Fig. 7. Several images and the triangulations by our TRIM algorithm. Top: the input images. Bottom: the resulting triangulations. The key features of the images are
well represented in our triangulations, and the regions with similar color can be represented by coarse triangulations.
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Fig. 8. A bee image and the triangulations created by our TRIM algorithm and DMesh [35]. Left to right: The input image, the coarse triangulation created by TRIM,
our TRIM coarse triangulation with a color approximated on each triangle, and the triangulation by DMesh [35].

Fig. 9. An butterfly image and the triangulations created by our TRIM algorithm and DMesh [35]. Left to right: The input image, the coarse triangulation created by
TRIM, our TRIM coarse triangulation with a color approximated on each triangle, and the triangulation by DMesh [35].

Fig. 10. Two more examples created by our TRIM algorithm and Dmesh [35]. Our coarse triangulations capture the important features and closely resemble the
original images. Left: The input images. Middle: The triangulations by TRIM. Right: The triangulations by DMesh [35].

Fig. 11. Two triangulation examples by
our TRIM algorithm for noisy images.
Left to right: The noise-free images, the
triangulations computed by TRIM based
on the noise-free images, the noisy
images, and The triangulations com-
puted by TRIM based on the noisy
images. Note that the important fea-
tures of the images are preserved even
for noisy images.
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compute a Delaunay triangulation on the set P of feature points for
achieving the ultimate triangulation T . An illustration of the con-
struction of the Delaunay triangulations is shown in Fig. 5.

These 6 steps complete our TRIM algorithm as summarized in
Algorithm 1.

Algorithm 1: Our proposed TRIM algorithm for triangulating
images

Input: An image I , the desired number of image intensity levels l
for segmentation, the desired number of feature points n, the
sparse ratio p.
Output: A coarse triangulationT that captures the main features
of the image.

1 Subsample the input image I to a suitable size and denote the

result by ∼I
2 Apply an unsharp masking on the subsampled image ∼I and denote
the result by I

3 Apply the PSO segmentation for compressing the color space of I
to l intensity levels, and extract boundaries B of the segments

4 Extract a set of sparse feature points P from the segment
boundaries B based on the parameters n and p

5 Add a set of extra landmark points PLM to P if necessary
6 Compute a Delaunay triangulationT on the sparse feature points
P .

It is noteworthy that our proposed TRIM algorithm significantly
trims down high resolution images without distorting their important
geometric features. Experimental results are shown in Section 4 to de-
monstrate the effectiveness of the TRIM algorithm.

3.2. Stage 2 – Registration of two triangulated image surfaces

With the above triangulation algorithm for images, we can simplify
the image registration problem as a mapping problem of triangulated
surfaces rather than of sets of landmark points. Many conventional
image registration approaches are hindered by the long computational
time and the accuracy of the initial maps. With the new strategy, it is
easy to obtain a highly efficient and reasonably accurate registration of
images. Our registration result can serve as a high quality initial map
for various algorithms.

To preserve angles and hence the local geometry of two surfaces,
rather than simply mapping two sets of points, conformal mappings
may not exist due to presence of landmark constraints. We turn to
consider quasi-conformal mappings, a type of mappings which is clo-
sely related to the conformal mappings. Mathematically, a quasi-con-
formal mapping  →f : satisfies the Beltrami equation

∂
∂

=
∂
∂

f
z

μ z
f
z

( )
(24)

where μ (called the Beltrami coefficient of f) is a complex-valued func-
tion with sup norm less than 1. Intuitively, a conformal mapping maps
infinitesimal circles to infinitesimal circles, while a quasi-conformal
mapping maps infinitesimal circles to infinitesimal ellipses (see Fig. 6).
Readers are referred to [7] for more details.

In this work, we apply the quasi-conformal landmark registration
(QCLR) algorithm (designed for general surfaces in [17]) to our coarse
triangulations of images. More explicitly, to compute a registration
mapping →f I I: 1 2 between two images I1 and I2 with prescribed point
correspondences

↔ = …p q i n, 1, 2, , ,i i (25)

where =p{ }i i
n

1 are a set of points on I1 and =q{ }i i
n

1 are a set of points on I2,
we first apply our proposed TRIM algorithm and obtain a coarse

triangulationT1 on I1. Here, we include the feature points =p{ }i i
n

1 in the
generation of the coarse triangulation, as described in the fifth step of
the TRIM algorithm. Then, instead of directly computing f, we can solve
for a map T →∼f I: 1 2. Since the problem size is significantly reduced
under the coarse triangulation, the computation for

∼f is much more
efficient than that for f.

The QCLR algorithm makes use of the penalty splitting method and
minimizes

T T T
∫ ∫ ∫= ∇ + + −∼ ∼E ν f ν α ν ρ ν μ f( , ) | | | | | ( )|LM

split 2 2 2
1 1 1 (26)

subject to (i) =∼f p q( )i i for all = …i n1, 2, , and (ii) <∞ν‖ ‖ 1. Further
alternating minimization of the energy ELM

split over ν and
∼f is used.

Specifically, for computing
∼fn while fixing νn and the landmark con-

straints, we apply the linear Beltrami solver by Lui et al.[25]. For
computing +νn 1 while fixing

∼fn , by considering the Euler–Lagrange
equation, it suffices to solve

− + + = ∼
+αI ρI ν ρμ f( Δ 2 2 ) 2 ( ).n n1 (27)

From +νn 1, one can compute the associated quasi-conformal mapping
∼

+fn 1 and then update +νn 1 by

← + −∼
+ + + +ν ν t μ f ν( ( ) )n n n n1 1 1 1 (28)

for some small t to satisfy the landmark constraints (25).
After computing the quasi-conformal mapping

∼f on the coarse tri-
angulation, we interpolate once to retrieve the fine details of the re-
gistration in the high resolution. Since the triangulations created by our
proposed TRIM algorithm preserves the important geometric features
and prominent straight lines of the input image, the details of the re-
gistration results can be accurately interpolated. Moreover, since the
coarse triangulation largely simplifies the input image and reduces the
problem size, the computation is significantly accelerated.

The overall registration procedure is summarized in Algorithm 2.
Experimental results are illustrated in Section 4 to demonstrate the
significance of our coarse triangulation in the registration scheme.

Algorithm 2: Feature-based registration via our proposed TRIM
algorithm

Input: Two images or video frames I1, I2 to be registered, with the
prescribed feature correspondences.
Output: A feature-matching registration mapping →f I I: 1 2.

1 Compute a coarse triangulation T1 of I1 using our proposed TRIM
algorithm (Algorithm 1). Here, we include the prescribed feature
points on I1 in the generation of the coarse triangulation T1

2 Select landmark correspondences of the coarse triangulation T1

and the target image I2. Denote the landmark points on T1 and I2

by =p{ }i i
n

1 and =q{ }i i
n

1 correspondingly

3 Compute a landmark based quasi-conformal mapping T →∼f : 1

by the QCLR algorithm in [17]

4 Obtain f by
∼f with a bilinear interpolation between Tj and Ij.

4. Experimental results

In this section, we demonstrate the effectiveness of our proposed tri-
angulation scheme. The algorithms are implemented using MATLAB. The
unsharp masking step is done using MATLAB’s imsharpen. The PSO
segmentation is done using the MATLAB Central function segmenta-
tion. For solving the mentioned linear systems, the backslash operator (⧹)
in MATLAB is used. The test images are courtesy of the RetargetMe dataset
[28] and the Middlebury Stereo Datasets [29,30]. The bird image is
courtesy of the first author. All experiments are performed on a PC with an
Intel(R) Core(TM) i7-4500U CPU@1.80GHz processor and 8.00GB RAM.
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4.1. Performance of our proposed triangulation (Algorithm 1)

In this subsection, we demonstrate the effectiveness of our trian-
gulation scheme by various examples.

Our proposed algorithm is highly content-aware. Specifically, re-
gions with high similarities or changes in color on an image can be
easily recognized. As a result, the triangulations created faithfully
preserve the important features by a combination of coarse triangles
with different sizes. Some of our triangulation results are illustrated in
Fig. 7. For better visualizations, we color the resulting triangulations by
mean of the original colors of corresponding patches. In Fig. 8, we apply
our TRIM algorithm on a bee image. It can be observed that the regions
of the green background can be effectively represented by coarser tri-
angulations, while the region of the bee and flowers with apparent color
differences is well detected and represented by a denser triangulation.
Fig. 9 shows another example of our triangulation result. The butterfly
and the flowers are well represented in our triangulation result. The
above examples demonstrate the effectiveness of our triangulation
scheme for representing images in a simplified but accurate way. Some
more triangulation examples created by our TRIM algorithm are shown
in Fig. 10. Fig. 11 shows some triangulation examples for noisy images.
It can be observed that our TRIM algorithm can effectively compute
content-aware coarse triangulations even for noisy images.

We have compared our algorithm with the DMesh triangulator [35]
in Fig. 8, Fig. 9 and Fig. 10. It can be observed that our triangulation
scheme outperforms DMesh [35] in terms of the triangulation quality.
Our results can better capture the important features of the images.
Also, the results by DMesh [35] may contain unwanted holes while our
triangulation results are always perfect rectangles. The comparisons
reflect the advantage of our coarse triangulation scheme.

To quantitatively compare the content-aware property of our TRIM
method and the DMesh method, we calculate the average absolute in-
tensity difference −I I‖ ‖N

1
triangulated original 1 between the original image

Ioriginal (e.g. the left images in Fig. 10) and the triangulated image
Itriangulated with piecewise constant color for each method (e.g. the
middle and the right images in Fig. 10), where N is the number of pixels
of the image. Table 1 lists the statistics. It is noteworthy that the
average absolute intensity difference by TRIM is smaller than that by
DMesh by around 30% on average. This indicates that our TRIM algo-
rithm is more capable to produce content-aware triangulations.

Then, we evaluate the efficiency of our triangulation scheme for
various images. Table 2 shows the detailed statistics. The relationship
between the target coarse triangulation size and the computational time
is illustrated in Fig. 12. Even for high resolution images, the compu-
tational time for the triangulation is only around 10 s. It is noteworthy
that our TRIM algorithm significantly compresses the high resolution
images as coarse triangulations with only several thousand triangles.

It is noteworthy that the combination of the steps in our TRIM

Table 1
The content-aware property of our TRIM algorithm and the DMesh method.

Image Size Average intensity
difference (TRIM)

Average intensity
difference (DMesh)

Bee 640×425 0.1455 0.2115
Bird 1224×1224 0.1842 0.2074
Butterfly 1024×700 0.1629 0.2647
Book 601×809 0.1446 0.2130
Baseball 410× 399 0.1913 0.3554
Teddy 450×375 0.1505 0.2998
Pencil 615× 410 0.2610 0.4443
Eagle 600×402 0.1618 0.1897

Table 2
Performance of our TRIM algorithm. The compression rate is

× 100%# of triangle nodes
# of pixels .

Image Size Triangulation time
(s)

# of
triangles

Compression rate

Surfer 846× 421 5.78 1043 0.1536%
Helicopter 720× 405 5.78 1129 0.1989%

Bee 640×425 7.13 1075 0.2029%
Bird 1224×1224 7.04 1287 0.0859%

Butterfly 1024×700 8.00 1720 0.1232%
Book 601×809 8.38 1629 0.3350%

Baseball 410× 399 7.85 2315 0.7201%
Teddy 450×375 7.48 2873 0.8652%
Pencil 615× 410 8.93 2633 0.5838%
Tiger 2560×1600 13.91 3105 0.0414%
Eagle 600×402 13.27 1952 0.4299%

Fig. 12. The relationship of the desired coarse triangulation size and the
computational time of our proposed TRIM algorithm.

Fig. 13. The triangulations created by our TRIM algorithm (left) and by the algorithm without the segmentation step (Right). The results show that the segmentation
step is crucial for achieving a coarse triangulation. Number of triangles produced (left to right): 923, 3612, 1496, 8685.
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algorithm is important for achieving a coarse triangulation. More spe-
cifically, if certain steps in our algorithm are removed, the triangulation
result will become unsatisfactory. Fig. 13 shows two examples of tri-
angulations created by our entire TRIM algorithm and by our algorithm
with the segmentation step excluded. It can be easily observed that
without the segmentation step, the resulting triangulations are ex-
tremely dense and hence undesirable for simplifying further computa-
tions. By contrast, the number of triangles produced by our entire TRIM
algorithm is significantly reduced. The examples highlight the im-
portance of our proposed combination of steps in the TRIM algorithm
for content-aware coarse triangulation.

We also analyze the sensitivity of the triangulated images to the

parameters in the unsharp masking step. Fig. 14 shows several trian-
gulation results with different choice of λ σ s θ( , , , ). It can be observed
that the triangulation results are robust to the parameters.

4.2. Registration of two triangulated image surfaces (Algorithm 2)

In this subsection, we demonstrate the effectiveness of our proposed
triangulation-based method for landmark-based image registration. In
our experiments, the feature points on the images are extracted using
the Harris–Stephens algorithm [12] as landmark constraints. The
landmark extraction is fully automatic. More specifically, we use the
MATLAB functions detectHarrisFeatures,extractFeatures
and matchFeatures on the images. For the teddy example, 132
landmark pairs are generated using the above procedure. For the cones
example, 162 landmark pairs are generated.

For simplifying the image registration problems, one conventional
approach is to make use of coarse regular grids followed by interpola-
tion. It is natural to ask whether our proposed coarse triangulation-

Fig. 14. The triangulation results with different parameters λ σ s θ( , , , ) in the unsharp masking step. Top left: The original image. Top middle left to bottom right:
results with different parameters.)

Fig. 15. Stereo landmark registration of two images of doll using different al-
gorithms. (a): The source image. (b): The target image. (c): The prescribed
feature correspondences. (d): The registration result by the dense grid-based
approach (4 pixels per grid). (e): The registration result via DMesh [35]. (f): The
registration result by our TRIM-based method. (g): The intensity difference after
the registration by the dense grid-based approach. (h): The intensity difference
after the registration via DMesh [35]. (i): The intensity difference after the
registration by our TRIM-based method.

Fig. 16. Stereo landmark registration of two images of cones using different
algorithms. Please refer to Fig. 15 for the description of the images.
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based method produces better results. In Fig. 15, we consider a stereo
registration problem of two scenes. With the prescribed feature corre-
spondences, we compute the feature-endowed stereo registration via
the conventional grid-based approach, the DMesh triangulation ap-
proach [35] and our proposed TRIM method. For the grid-based ap-
proach and the DMesh triangulation approach [35], we take the mesh
vertices nearest to the prescribed feature points on the source image as
source landmarks. For our proposed TRIM method, as the landmark
vertices are automatically embedded in the content-aware coarse tri-
angulation, the source landmarks are exactly the feature points detected
by the method in [12].

It can be observed that our triangulation-based approach produces a
much more natural and accurate registration result when compared

with both the grid-based approach and the DMesh triangulation ap-
proach. In particular, sharp features such as edges are well preserved
using our proposed method. By contrast, the edges are seriously dis-
torted in the other two methods. In addition, the geometry of the
background in the scenes are well retained via our TRIM method but
not the other two methods. The higher accuracy of the registration
result by our approach can also be visualized by the intensity difference
plots. Our triangulation-based approach results in an intensity differ-
ence plot with more dark regions than the other two approaches. The
advantage of our method over the other two methods is attributed to
the geometry preserving feature of our TRIM algorithm, in the sense
that the triangulations created by TRIM are more able to fit into com-
plex features and have more flexibilities in size than regular grids. Also,
the triangulations created by DMesh [35] do not capture the geometric
features and hence the registration results are unsatisfactory. They re-
flect the significance of our content-aware TRIM triangulation scheme
in computing image registration. Another example is illustrated in
Fig. 16. Again, it can be easily observed that our proposed TRIM tri-
angulation approach leads to a more accurate registration result.

To highlight the improvement in the efficiency by our proposed
TRIM algorithm, Table 3 records the computational time and the error
of the registration via the conventional grid-based approach and our
TRIM triangulation-based approach. It is noteworthy that our proposed
coarse triangulation-based method significantly reduces the computa-
tional time by over 85% on average when compared with the tradi-
tional regular grid-based approach. To quantitatively assess the quality
of the registration results, we define the matching accuracy by

=
− ∊

×A
# pixels for which‖final intensity original intensity‖ is less than

Total # of pixels
100%.1

(29)

The threshold ∊ is set to be 0.2 in our experiments. Our triangulation-

Table 4
Comparison between our TRIM-based image registration, the Large Displacement Optical Flow (LDOF) [4] and the Spectral Log-Demons [20].

Images Size TRIM LDOF Spectral Log-Demons

Time (s) Matching accuracy (%) Time (s) Matching accuracy (%) Time (s) Matching accuracy (%)

Aloe 222×257 2.8 91.1 12.1 86.4 18.2 94.6
Computer 444×532 4.0 69.9 51.4 70.0 7.9 41.3
Laundry 444×537 4.1 73.2 52.4 75.7 9.02 50.8
Dwarves 777×973 7.9 80.5 311.8 82.5 36.7 50.8
Art 1390×1110 13.5 84.8 1110.6 87.4 242.9 77.9
Bowling2 1110×1330 20.9 90.1 1581.9 86.1 22.0 57.6

Fig. 17. Different landmark correspondences
and the TRIM-based registration results for the
teddy example in Fig. 15. Left: Only 1/2 of the
landmark pairs in Fig. 15 are randomly selected
for computing the registration. Middle: Only 1/3
of the landmark pairs are used. Right: Only 1/3
of the landmark pairs are used, with 2% random
noise added to the target landmark locations.
The matching accuracies are respectively
70.5%, 70.4%, 67.2%, which are very close to the
original result (70.7%).

Table 3
The performance of feature-based image registration via our proposed TRIM
coarse triangulation method and the ordinary coarse grids. Here, the time
saving rate is defined by ×− 100%TRIMRegistration time via regular grids Registration time via

Registration time via regular grids .

Images Size Registration Time
saving
rate

Via regular grids Via TRIM

Time (s) Matching
accuracy
(%)

Time (s) Matching
accuracy
(%)

Teddy 450×375 102.3 59.5 13.8 70.7 86.5103%
Cones 450×375 108.7 51.3 28.2 61.2 74.0570%
Cloth 1252×1110 931.0 70.7 36.0 75.4 96.1332%
Books 1390×1110 1204.5 59.0 51.0 63.0 95.7659%
Dolls 1390×1110 94.3 62.3 11.0 62.3 88.3351%
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based method produces registration results with the matching accuracy
higher than that of the regular grid-based method by 6% on average.
The experimental results reflect the advantages of our TRIM content-
aware coarse triangulations for image registration.

We further compare our TRIM-based registration method with two
other state-of-the-art image registration methods, namely the Large
Displacement Optical Flow (LDOF) [4] and the Diffeomorphic Log-
Demons [20]. Table 4 lists the performance of the methods. It is note-
worthy that our method is significantly faster than the two other
methods, with at least comparable and sometimes better matching ac-
curacy.

Besides, we study the stability of the TRIM-based registration result
with respect to the feature points detected. Fig. 17 shows the results
with different feature correspondences, including a change in the
number of landmark pairs and a change in the target landmark position.
From the resulting triangulated images and the statistics on the
matching accuracy, it can be observed that the deformation is stable
with respect to the choice of the feature points.

5. Conclusion and future work

In this paper, we have proposed a new image registration algorithm
(Algorithm 2), which operates on content-aware coarse triangulations
to aid registration of high resolution images. The obtained algorithm is
computationally efficient and capable to achieve a highly accurate re-
sult while resembling the original image. It has two stages with stage 1
obtaining content-aware coarse triangulations and stage 2 registering
two triangulated surfaces. Both algorithms can be used as standalone
methods: Algorithm 1 for extracting main features of images (com-
pression) and Algorithm 2 for registering two surfaces (quality map-
ping).

Our proposed method is advantageous for a large variety of regis-
tration applications with a significant improvement of the computa-
tional efficiency and registration accuracy. Our proposed method can
also serve as an effective initialization for other registration algorithms.
In the future, we aim to extend our proposed algorithm to high di-
mensions.
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