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a b s t r a c t 

Shape analysis is important in anthropology, bioarchaeology and forensic science for interpreting useful 

information from human remains. In particular, teeth are morphologically stable and hence well-suited 

for shape analysis. In this work, we propose a framework for tooth morphometry using quasi-conformal 

theory. Landmark-matching Teichmüller maps are used for establishing a 1-1 correspondence between 

tooth surfaces with prescribed anatomical landmarks. Then, a quasi-conformal statistical shape analysis 

model based on the Teichmüller mapping results is proposed for building a tooth classification scheme. 

We deploy our framework on a dataset of human premolars to analyze the tooth shape variation among 

genders and ancestries. Experimental results show that our method achieves much higher classification 

accuracy with respect to both gender and ancestry when compared to the existing methods. Furthermore, 

our model reveals the underlying tooth shape difference between different genders and ancestries in 

terms of the local geometric distortion and curvatures. In particular, our experiment suggests that the 

shape difference between genders is mostly captured by the conformal distortion but not the curvatures, 

while that between ancestries is captured by both of them. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Shape analysis and classification is an important topic in pat-

ern recognition [1,2] . The use of computer technology in medicine

nd biology dates back to the seminal works by Ledley et al. [3–

] in the1950’s and60’s, which formed the foundation of modern

omputerized biomedical analysis. To detect patterns from shapes,

andmarks have been widely used [6–8] . By comparing the land-

ark positions of different shapes, one can have a better under-

tanding of their difference. Therefore, it is necessary to have an ef-

ective method for landmark-based shape matching. Furthermore, a

ethod for detecting and extracting the underlying geometric vari-

tion of the shapes is needed for classifying them. 

Geometric morphometrics (GM) aims at analyzing biological

orms using Cartesian geometric coordinates [9] . The Procrustes

uperimposition method [10] aligns and compares two shapes by

escaling, translating and rotating two sets of landmarks defined

n them to a common size and position. The thin plate spline (TPS)

ethod [11] finds a non-rigid transformation that balances land-
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ark correspondence and smoothness. In recent years, conformal

nd quasi-conformal mappings have been considered for the anal-

sis of medical and biological shapes such as brain cortical sur-

aces [12] , hippocampi [13,14] , vestibular systems [15] , carotid ar-

eries [16] and insect wings [17,18] . In particular, Teichmüller map,

 special type of quasi-conformal maps, is advantageous in the

ense that it allows for exact landmark matching and is associated

ith a constant conformal distortion, as well as a natural metric

alled the Teichmüller distance. The Teichmüller distances between

hapes, together with the differences in curvature of the shapes,

erve as a powerful tool for capturing and quantifying shape vari-

tion. 

In anthropology, bioarchaeology and forensic science, a ma-

or problem is to obtain useful information from human remains.

hile it is possible to extract the DNA from the remains, the ge-

etic information may be degraded during excavation or decom-

osition [19] . Also, the extraction process may create irreversible

amages to the samples [20] . To avoid the above-mentioned issues,

ne possible alternative approach is to analyze the shape of the

emains. Unlike tissues and skins, which decay significantly over

ime, teeth are morphologically stable and resistant to degrada-

ion. Hence, the shape analysis of teeth is important for interpret-

ng information of gender, ancestry and other identifiable factors.

https://doi.org/10.1016/j.patcog.2019.107064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107064&domain=pdf
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Fig. 1. Examples of the second upper premolar occlusal surfaces from two popula- 

tions in Australia [26,27] , with four landmarks of the buccal cusp, the lingual cusp, 

the mesial fossa pit and the distal fossa pit highlighted in red. Each row shows 

four specimens with the same ancestry and gender. First row: Indigenous males. 

Second row: Indigenous females. Third row: European males. Fourth row: European 

females. It can be observed that the surfaces are different in terms of the over- 

all shape, curvature and landmark positions. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Traditional morphometric methods have been extensively used for

the study of the human tooth variation in terms of tooth size [21] ,

tooth weight [22] etc. To have a better understanding of the tooth

shape variation, landmark-based geometric morphometric methods

such as the Procrustes superimposition [10] and thin plate spline

transformation [11] have been applied for studying the dental vari-

ation of different populations [23–25] . However, a well-known lim-

itation of these mapping methods is that in general neither the en-

tire tooth shapes nor the landmarks can be exactly matched. This

inaccuracy may compromise the comparison between the geome-

try of different tooth shapes. 

In this work, we propose a framework for accurately classifying

a large set of 3D simply-connected open surfaces, by characterizing

the shape variations using landmark-matching Teichmüller maps.

The key to the unparalleled accuracy lies in taking into account

the additional surface shape information using ideas from compu-

tational geometry and quasi-conformal theory. Illustration of our

framework is done by applying the new algorithms to a dataset

of tooth occlusal surfaces from Indigenous Australians [26] and

Australians of European ancestry [27] (see Fig. 1 for examples).

More specifically, to capture and quantify the shape differences

between the 3D surfaces in terms of the overall shape, the cur-

vature and the positions of the anatomical landmarks, we extend

our previous work on landmark-matching Teichmüller map [28] to

achieve an accurate 1-1 mapping between them, and further de-

velop a quasi-conformal shape analysis model based on our pre-

vious work [14] for performing a classification. The classification

results for the tooth dataset shed light on the ancestral variation

and sexual dimorphism of teeth. 

2. Mathematical background 

We first review some important concepts in quasi-conformal

theory. Readers are referred to [28–30] for more details. 
.1. Quasi-conformal map 

Intuitively, quasi-conformal maps are orientation-preserving

omeomorphisms with bounded conformality distortions. Under a

uasi-conformal map, an infinitesimal circle is mapped to an in-

nitesimal ellipse with bounded eccentricity. The formal definition

f quasi-conformal maps on the complex plane is given below. 

efinition 2.1 (Quasi-conformal maps) . A quasi-conformal map f :

 → C is a map satisfying the Beltrami equation 

∂ f 
∂ ̄z 

= μ f (z) ∂ f 
∂z 

, for

ome complex-valued function μf ( z ) with ‖ μf ‖ ∞ 

< 1. 

One can easily see that if μ f = 0 , the above equation becomes

he Cauchy-Riemann equation and hence f is conformal (i.e. angle

reserving). 

More generally, let S 1 , S 2 be two Riemann surfaces in R 

3 . A

eltrami differential μ(z) dz 
dz 

on a Riemann surface S is an as-

ignment to each chart ( U α , φα) on an L ∞ 

complex-valued func-

ion μα , defined on local parameter z α such that μα
dz α
dz α

= μβ
dz β
dz β

n the domain which is also covered by another chart ( U β , φβ ).

n orientation-preserving diffeomorphism f : S 1 → S 2 is said to be

 quasi-conformal map associated with the Beltrami differential

(z) dz 
dz 

if for any chart ( U α , φα) on S 1 and any chart ( U β , ψ β ) on

 2 , the map f αβ = ψ β ◦ f ◦ φ−1 
α is a quasi-conformal map. 

In case the surfaces are simply-connected open surfaces, they

an be represented by a single chart. Then, the computation of

uasi-conformal maps between them can be easily reduced to the

omputation on the complex plane via a composition of mappings.

elow is a useful property concerning the Beltrami coefficient as-

ociated with a composition of quasi-conformal maps, also known

s the composition formula. 

roposition 2.2 (Composition of quasi-conformal maps) . If f : C →
 and g : C → C are quasi-conformal maps, then g ◦f is also a quasi-

onformal map with Beltrami coefficient 

g◦ f (z) = 

μ f (z) + 

f z 
f z 
μg ( f (z)) 

1 + 

f z 
f z 
μ f (z) μg ( f (z)) 

. (1)

From the above composition formula, it is easy to see that if

 is conformal and g is quasi-conformal, then μg◦ f (z) = μg ( f (z))

s μ f = 0 . Also, if f is quasi-conformal and g is conformal, then

g◦ f (z) = μ f (z) as μg = 0 . In other words, the composition with a

onformal map does not change the Beltrami coefficient. 

.2. Teichmüller map 

Teichmüller map is a quasi-conformal map whose Beltrami co-

fficient has a constant norm. Hence, a Teichmüller map has a uni-

orm conformal distortion over the entire domain. The formal def-

nition of Teichmüller map is described below. 

efinition 2.3 (Teichmüller map) . Let f : S 1 → S 2 be a quasi-

onformal map. f is said to be a Teichmüller map (T-map) associ-

ted with the quadratic differential q = ϕdz 2 where ϕ : S 1 → C is

 holomorphic function if its associated Beltrami coefficient is of

he form 

( f ) = k 
ϕ 

| ϕ| , (2)

or some constant k < 1 and quadratic differential q � = 0 with

| q || 1 = 

∫ 
S 1 

| ϕ| < ∞ . 

Furthermore, Teichmüller maps are closely related to a class of

aps called extremal quasi-conformal maps. 

efinition 2.4 (Extremal quasi-conformal map) . Let f : S 1 → S 2 be a

uasi-conformal map. f is said to be an extremal quasi-conformal
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ap if for any quasi-conformal map h : S 1 → S 2 isotopic to f relative

o the boundary, we have 

( f ) ≤ K(h ) , (3) 

here K ( f ) is the maximal quasi-conformal dilation of f . It is

niquely extremal if the inequality (3) is strict when h � = f . 

The two above-mentioned concepts are connected by the fol-

owing theorem. 

heorem 2.5 (Landmark-matching Teichmüller map [31] ) . Let g :

D → ∂D be an orientation-preserving diffeomorphism of ∂D , where

 is the unit disk. Suppose further that g ′ ( e i θ ) � = 0 and g ′′ ( e i θ ) is

ounded. Let { l k } n 
k =1 

∈ D and { q k } n 
k =1 

∈ D be the corresponding in-

erior landmark constraints. Then there exists a unique Teichmüller

ap f : (D , { l k } n 
k =1 

) → (D , { q k } n 
k =1 

) matching the interior landmarks,

hich is the unique extremal extension of g to D . Here (D , { l k } n 
k =1 

)

enotes the unit disk D with prescribed landmark points { l k } n 
k =1 

. 

Therefore, besides equipped with uniform conformal distortion,

eichmüller maps are extremal in the sense that they minimize the

aximal quasi-conformal dilation. Furthermore, Teichmüller maps

nduce a natural metric, called the Teichmüller distance [30] , which

an be used to measure the difference between two shapes in

erms of local geometric distortion. 

efinition 2.6 (Teichmüller distance) . For every i , let S i be a Rie-

ann surface with landmarks { p k 
i 
} n 

k =1 
. The Teichmüller distance be-

ween ( f i , S i ) and ( f j , S j ) is defined as 

 T (( f i , S i ) , ( f j , S j )) = inf 
ϕ 

1 

2 

log K(ϕ) , (4)

here ϕ: S i → S j varies over all quasi-conformal maps with { p k 
i 
} n 

k =1 

orresponds to { p k 
j 
} n 

k =1 
, which is homotopic to f −1 

j 
◦ f i , and K is

he maximal quasi-conformal dilation. 

. Proposed method 

In this section, we describe our proposed method for accurately

lassifying a large set of 3D simply-connected open surfaces. To

haracterize the shape variation in terms of the surface geometry

s well as the prescribed landmarks on them, we first propose a

ethod for computing landmark-matching Teichmüller maps be-

ween 3D surfaces. Then, with the Teichmüller mapping results,

e further propose a shape classification model based on quasi-

onformal theory. 

.1. Landmark-matching Teichmüller map between simply-connected 

pen surfaces 

Denote two simply-connected open surfaces by S i and S j , each

ith n landmarks { l 1 
i 
, . . . , l n 

i 
} and { l 1 

j 
, . . . , l n 

j 
} . We aim to quan-

ify the difference between the two surfaces using a landmark-

atching Teichmüller map f ij : S i → S j that satisfies f i j (l k 
i 
) = l k 

j 
, k =

 , . . . , n. Unlike other methods such as radial basis function and

pline-based methods, our approach takes both the overall shape

nd the landmarks of the surfaces into account, and is guaranteed

y quasi-conformal theory. 

The procedure for finding f ij is outlined in Fig. 2 . It consists of

hree steps, namely the rectangular conformal parameterizations,

he landmark-matching Teichmüller map between the rectangles

nd the composition. Below, we discuss the technical detail of each

tep. 
.1.1. Rectangular conformal parameterizations 

To simplify the mapping problem, we begin with flattening S i 
nd S j onto the plane. While there exists other flattening methods

uch as area-preserving maps [32,33] , conformal parameterizations

re preferred in our case as they preserve the Beltrami coefficient

nd hence the conformal distortion under compositions. Following

he approach in [28] , we compute two conformal maps g i : S i → R i 
nd g j : S j → R j that flatten S i and S j onto two rectangular domains

 i , R j on the plane. 

Note that the rectangular conformal parameterization algorithm

n [28] was developed for point clouds. In our case of surface mor-

hometry here, the approximation of the differential operators in

28] can be replaced by the mesh-based approximations, which are

uch simpler and more accurate. The rectangular conformal pa-

ameterization algorithm in [28] consists of a step of conformally

arameterizing a surface onto the unit disk and a step of confor-

ally mapping the unit disk to a rectangle. Here, the disk confor-

al parameterization step can be replaced by our more recent disk

onformal map algorithms [34,35] for accelerating the computation

nd improving the accuracy. 

.1.2. Landmark-matching Teichmüller map between the rectangular 

omains 

We then proceed to compute the landmark-matching Teich-

üller map h ij : R i → R j between the rectangular domains, following

he approach in [28] . In particular, to satisfy the landmark corre-

pondences, we require that 

 i j (g i (l k i )) = g j (q k i ) , k = 1 , . . . , n. (5)

gain, note that [28] was developed for point clouds while the

esh structure is available in our case here. Therefore, the numer-

cal algorithm used in [28] can be replaced by the more efficient

esh-based QC Iteration algorithm [29] . 

Besides the landmark-matching Teichmüller map h ij , we can

lso obtain the associated Beltrami coefficient μh i j 
. Since h ij is Te-

chmüller, μh i j 
is with uniform norm, i.e. | μh i j 

| is a constant over

he entire domain. 

.1.3. Composition for obtaining the landmark-matching Teichmüller 

ap between the surfaces 

With the rectangular conformal maps g i , g j and the landmark-

atching Teichmüller map h ij , a map f ij : S i → S j can be obtained by

f i j = g −1 
j 

◦ h i j ◦ g i . Note that for any landmark l k 
i 
, we have 

f i j (l k i ) = g −1 
j 

◦ h i j ◦ g i (l k i ) = g −1 
j 

(h i j (g i (l k i ))) = g −1 
j 

(g j (q k i )) = q k i . 

(6) 

ence, f ij is a landmark-matching map between S i and S j . 

Furthermore, the conformal distortion of f ij is the same as the

onformal distortion of h ij . In other words, f ij achieves a uniform

onformal distortion | μh i j 
| and hence f ij is a Teichmüller map. This

an be explained by the composition formula (1) . Since g i , g j are

onformal, we have μg i = μg j = 0 . Now, by the composition for-

ula, we have 

h i j ◦g i 
(z) = 

μg i (z) + 

g i z 
g i z 

μh i j 
( g i (z)) 

1 + 

g i z 
g i z 

μg i (z) μh i j 
( g i (z)) 

= 

0 + 

g i z 
g i z 

μh i j 
( g i (z)) 

1 + 0 

= 

g i z 
g i z 

μh i j 
( g i (z)) , (7) 

hich implies that 

 μh i j ◦g i 
(z) | = 

∣∣∣∣
g i z 
g i z 

μh i j 
( g i (z)) 

∣∣∣∣ = | μh i j 
(g i (z)) | = | μh i j 

| . (8)
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Similarly, 

| μ f i j 
(z) | = | μg −1 

j 
◦h i j ◦g i 

(z) | = | μh i j ◦g i 
(z) | = | μh i j 

(g i (z)) | = | μh i j 
| . 

(9)

As a consequence, the Teichmüller distance is also uniquely

determined by the maximal quasi-conformal dilation of the ex-

tremal map between the two rectangular domains. The Teichmüller

distance d between the two surfaces S i and S j is then given by

d i j = 

1 
2 log 

1+ | μh i j 
| 

1 −| μh i j 
| . 

This completes the computation of the landmark-matching Te-

ichmüller map between the two surfaces. The algorithm is summa-

rized in Algorithm 1 (see Fig. 2 for a graphical illustration). 

Algorithm 1: Landmark-matching Teichmüller map between 

simply-connected open surfaces. 

Input : Two simply-connected open surfaces S i , S j with 

landmarks { l 1 
i 
, . . . , l n 

i 
} and { l 1 

j 
, . . . , l n 

j 
} . 

Output : A landmark-matching Teichmüller map f i j : S i → S j , 

the Teichmüller distance d i j . 

1 Compute disk conformal parameterizations of S i and S j using 

the linear disk conformal map algorithm [35]; 

2 Using the linear disk conformal map algorithm [35] and the 

disk-to-rectangle conformal map algorithm [28], obtain 

rectangular conformal parameterizations g i : S i → R 

2 and 

g j : S j → R 

2 ; 

3 Using the QC Iteration algorithm [29], compute the 

landmark-matching Teichmüller map h i j : g i (S i ) → g j (S j ) and 

obtain the Beltrami coefficient μh i j 
; 

4 Obtain f i j = g −1 
j 

◦ h i j ◦ g i and d i j = 

1 
2 log 

1+ | μh i j 
| 

1 −| μh i j 
| ; 

3.2. Quasi-conformal statistical shape analysis 

Note that the landmark-matching Teichmüller maps do not only

provide us with a quantitative measure of the local geometric dis-

tortion of surfaces but also an accurate 1-1 correspondence be-

tween different parts of them. As illustrated in Fig. 3 , the mean

and Gaussian curvatures also effectively quantify the surface ge-

ometry. With the aid of the landmark-matching Teichmüller maps,

it is possible for us to analyze the surface shapes in terms of both

the local geometric distortion and the curvature differences. Be-

low, we devise a quasi-conformal statistical shape analysis model

for building a surface classification machine. 

Suppose we are given a database of simply-connected open sur-

faces { S i } N i =1 
, with m of them being labelled as class “A” and n of

them being labelled as class “B” (i.e. m + n = N). We first compute

the landmark-matching Teichmüller maps f i : S i → S from every S i 
to their mean surface S . We can then obtain the associated Teich-

müller distance d i . Also, for each S i , we compute the mean curva-

ture H i and the Gaussian curvature K i at every vertex of it. After

obtaining the results for all surfaces, a classification model can be

built based on d i , H i , and K i . More specifically, given a landmark-

matching Teichmüller map f i : S i → S , the following shape index

E shape is considered: 

E shape ( f i )(v k ) = α| H i (v k ) − H( f i (v k )) | + β| K i (v k ) 

− K( f i (v k )) | + γ d i . (10)

Here H, K represent the mean and Gaussian curvature of the

mean surface S, v k are the vertices of S with k = 1 , 2 , . . . , M,
i 
nd α, β , γ are real nonnegative scalar parameters. Without

oss of generality, we assume α2 + β2 + γ 2 = 1 . Note that E shape 

s a complete shape index for measuring all kind of distor-

ion of the mapping f i . The first two terms measure the cur-

ature deviation of the mapping, and the third term measures

he local geometric distortion of the mapping. In particular,

 shape ≡ 0 if and only if the two surfaces are identical up to rigid

otion. 

When compared to the formulation of shape index in [14] , the

hape index E shape here consists of the same first two terms while

he third term is different. More specifically, here we use the Teich-

üller distance d i instead of the norm of the Beltrami coefficient

 μi ( v 
k )| for the third term. Note that by quasi-conformal theory,

 μi ( v 
k )| is always bounded by [0, 1] for any bijective mappings. In-

tead, the Teichmüller distance is a metric and lies within [0, ∞ ).

s the first two terms | H i (v k ) − H( f i (v k )) | and | K i (v k ) − K( f i (v k )) |
lso have range [0, ∞ ), using the Teichmüller distance as the third

erm gives a better balance between the three terms. Also, since

 i is a Teichmüller map, d i is constant over the entire domain. In-

tead of the vertex-wise evaluation of | μi ( v 
k )|, we can use a sin-

le scalar d i to capture the quasi-conformal distortion between

 i and S . 

Using the shape index function E shape , a feature vector c i =
(c 1 

i 
, c 2 

i 
, . . . , c M 

i 
) can be computed for each surface, with c k 

i 
=

 shape ( f i )(v k ) . Combining all feature vectors, we obtain a feature

atrix C = (c 1 , c 2 , · · · , c N ) . The feature matrix provides full infor-

ation of all shapes at every vertex on the surface. However, it is

ot necessarily true that all parts of the surfaces (i.e. all rows in

 ) are statistically significant for the desired classification. To ex-

ract the statistically significant regions that are the most related to

he classification from the surfaces, the bagging predictors [36] are

pplied to extract only those vertices having a p -value less than

r equal to a non-negative threshold parameter p cut ∈ [0, 1]. There-

ore, we obtained the truncated feature matrix ˆ C = ( ̂ c 1 , ̂  c 2 , · · · , ̂  c N ) ,

here ˆ c i = (c 
j 1 
i 

, . . . , c 
j m 
i 

) . Afterwards, the mean feature vector c mean 

s computed over all the m feature vectors associated to those sur-

aces labelled as class “A”. The distance d i = || ̂ c i − c mean || 2 of each

eature vector to the mean feature vector is computed. Since c mean 

s the mean of the feature vectors of class “A”, d i should be small if

he surface S i is labelled as class “A” and d i should be large if the

urface S i is labelled as class “B”. Under this assumption, we can

ompute the best cutting parameter δ > 0 maximizing the proba-

ility that d i < δ for all surfaces S i from class “A” and d i > δ for all

urfaces S i from class “B”. This gives a classification model, that

henever a new surface S new 

is given, by computing the corre-

ponding ˆ c new 

and hence d new 

following the above pipelines, S new 

an be automatically classified as group “A” if d new 

< δ, or as group

B” if d new 

> δ. Readers are referred to [14] for more details of the

lassification model. 

Now, given a set of shapes and a binary classification crite-

ion (e.g. classifying all tooth shapes into two ancestral/gender

roups), we determine the optimal shape index parameters ( α,

, γ ) and the optimal threshold parameter p cut that yield the

ighest classification accuracy. To search for the optimal ( α, β , γ ),

he following spherical marching scheme (SMS) is utilized. Since

e assume that α2 + β2 + γ 2 = 1 , the space of the shape index

arameters { (α, β, γ ) ∈ R 

3 : α2 + β2 + γ 2 = 1 } can be regarded

s the unit sphere S 2 . Then, in order to search for the best set of

arameters ( α, β , γ ) over S 2 to maximize the classification accu-

acy in a timely manner, we parameterize S 2 using the spherical

oordinates 

 

2 = { ( sin (θ ) cos (ϕ) , sin (θ ) sin (ϕ) , cos (θ )) 

∈ R 

2 : θ ∈ [0 , π ] , ϕ ∈ [0 , 2 π) } . (11)
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ow, we discretize the parameter domain [0, π ] × [0, 2 π ) using

egular gridding with density ρ > 0, i.e. 

[0 , π ] × [0 , 2 π) ≈ 

= 

{ 

(nρ, mρ) ∈ R 

2 : n = 0 , 1 , . . . , 
π

ρ
, m = 0 , 1 , . . . , 

2 π

ρ

} 

. (12) 

hen, for each n, m , ( n ρ , m ρ) corresponds to a set of parameters 

(α, β, γ ) n,m 

= ( sin (nρ) cos (mρ) , sin (nρ) sin (mρ) , cos (nρ)) 

(13) 

n S 
2 , and hence we can compute the classification accuracy of

he proposed model using this set of parameters ( α, β , γ ) n,m 

.

herefore, the optimal ( α, β , γ ) can be chosen as the set of

 α, β , γ ) n,m 

that gives the highest classification accuracy among

ll n, m . In practice, the density parameter ρ is chosen within

0.01 π , 0.03 π ]. The optimal threshold parameter p cut for the ex-

raction of statistically significant regions is determined by testing

mong different magnitudes of 10 k , with k = 0 , −1 , −2 , −3 , −4 .

he quasi-conformal shape classification algorithm is summarized

n Algorithm 2 (see also Fig. 4 ). 

Algorithm 2: Quasi-conformal shape classification. 

Input : A set of simply-connected open surfaces { S i } N i =1 
with 

prescribed landmarks, and a classification criterion. 

Output : The classification result and the optimal parameters 

α, β, γ , p cut . 

1 Compute the mean surface S of { S i } N i =1 
; 

2 Compute the landmark-matching Teichmüller map f i : S i → S 

and the Teichmüller distance d i for all i ; 

3 For all i and for all k , evaluate the mean curvature difference 

| H i (v k ) − H( f i (v k )) | and the Gaussian curvature difference 

| K i (v k ) − K( f i (v k )) | ; 
4 Search for the optimal parameters α, β, γ , p cut such that the 

shape index E shape and the statistically significant vertices 

together give the best classification result; 

It is noteworthy that the optimal shape index parameters ( α, β ,

) determined by our model do not only maximize the classifica-

ion accuracy with respect to a given criterion but also help us an-

lyze the shape difference between the surfaces. More specifically,

ote that the mean and Gaussian curvatures uniquely determine

 surface up to rigid motions, while the Teichmüller distance en-

odes the local geometric distortion. By changing the shape index

arameters ( α, β , γ ) and comparing the corresponding classifica-

ion accuracies, we can study the importance of each component

the mean curvature difference, the Gaussian curvature difference

nd the Teichmüller distance) for the classification and determine

he major factor that distinguishes the surfaces. 

The MATLAB codes of the two proposed algorithms are available

t [37] . 

. Data description 

.1. Study subjects 

Our study focuses on 140 subjects from two populations in

ustralia, namely the Indigenous group (subjects of Indigenous

ustralian ancestry) and the European group (subjects of Euro-

ean ancestry). The Indigenous group consists of 70 subjects (35

emales, 35 males) of the Walpiri people (a group of Indigenous

ustralians who speak the Warlpiri language) living at Yuendumu

n the Northern Territory of Australia [26] . The European group

onsists of 70 subjects (35 females, 35 males) with parents of

outhern or Western European origin obtained from the Australian
win study [27] , with one co-twin from each twin pair selected

andomly. The dental casts of the permanent dentitions of the

ubjects were obtained from the Yuendumu and Australian Twin

ollections housed in the Murray James Barrett Laboratory, Ade-

aide Dental School, The University of Adelaide. To overcome the

roblem of advanced tooth wear rate for Indigenous Australians

ue to hunter-gatherer dietary practices [38] in the Yuendumu

ollection, assessment was limited to subjects in their early teens,

ith recently erupted premolars. Mean ages of the subjects were

2 years and 5 months (Indigenous females), 13 years (Indigenous

ales), 14 years and 8 months (European females), and 15 years

nd 7 months (European males). Readers are referred to [25] for a

ore detailed description of the dataset. 

.2. Data acquisition and pre-processing 

The detailed procedure for the tooth data acquisition and the

andmark protocol were described in [25] . The dental casts of the

ubjects were scanned using a 3D scanner at the resolution of

0-μm point distance. The segmented.stl files were imported in

iewbox 4 software (dHAL software, Kifissia, Greece) for digitiza-

ion. The upper second premolar in the maxillary right quadrant

f each subject was extracted for this study. 

Fixed landmarks were assigned based on established pro-

ocols in hominin premolars [39,40] and curve and surface

emi-landmarks followed the procedures by Polychronis et al. [24] .

etailed steps of the landmarking protocol are provided in [25] ,

ut essential steps are highlighted in here. The first major step

s to create a template before applying the established landmark

emplate on remaining specimens. An upper second premolar

ooth was randomly selected and four fixed landmarks were

laced on it (two on the buccal and lingual cusp tips, and two in

he pits of the mesial and distal fossae). Fixed landmarks provide

table and repeatable landmarks as they are easily definable in

ach specimen. Following this, eighteen semi-landmarks were

laced along the major ridges of each tooth to delineate the

cclusal circumference. A curve was drawn over the mesial and

istal ridges respectively, connecting the buccal and lingual cusp

ips. Nine equidistant semi-landmarks were placed on each curve.

inally, surface semi-landmarks were added to the occlusal surface

y using the highlighting tool on Viewbox 4, so that they are

ot superimposed on placed fixed landmarks and curve semi-

andmarks. The landmark template was applied to the remaining

pecimens. Fixed landmarks and curve semi-landmarks were

laced manually on each specimen. Subsequently, surface semi-

andmarks were transposed using thin plate spline transformation

11] . The curved and surface semi-landmarks were allowed to slide

o minimize bending energy between each premolar configura-

ion and the reference specimen. Following this, re-projection of

emi-landmarks on respective curves and surfaces was repeated

ix times to ensure convergence. This resulted in 4 landmarks and

8 curve and surface semi-landmarks for each tooth. 

For our surface-based morphometric approach, it is desirable to

epresent the occlusal surfaces using triangle meshes. To achieve

he triangle mesh representation, we first triangulated the land-

arks and semi-landmarks of the occlusal surfaces. We then en-

anced the mesh quality and resolution by surface remeshing [41] ,

hereby obtaining smooth, high-quality triangle meshes for our

ubsequent surface morphometry. Each remeshed occlusal surface

onsists of 1217 vertices. 

For each remeshed occlusal surface S i , denote the four land-

arks of the buccal cusp, lingual cusp, mesial fossa pit and distal

ossa pit by l 1 
i 
, l 2 

i 
, l 3 

i 
, l 4 

i 
respectively. Note that above-mentioned

ectangular conformal parameterization procedure involves spec- 

fying four vertices on each occlusal surface to be mapped to

he four corners of the corresponding rectangular domain. It is
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Fig. 2. An illustration of the computation of the landmark-matching Teichmüller map f ij between two occlusal surfaces S i and S j (landmarks highlighted in red). The two 

surfaces are first flattened onto the plane by two rectangular conformal parameterizations g i and g j . The landmark-matching Teichmüller map h ij between the two rectangles 

is then computed. Finally, the landmark-matching Teichmüller map f ij between the surfaces is given by the composition g −1 
j 

◦ h i j ◦ g i . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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natural to consider the two crest landmarks l 1 
i 
, l 2 

i 
on the boundary

of the tooth surface as two corners, and the two other points

on the boundary closest to the pit landmarks l 3 
i 
, l 4 

i 
as the other

two corners (see the bottom part of Fig. 2 for an illustration).

This ensures an accurate correspondence between the rectangular

domains for different tooth surfaces. 

5. Results 

5.1. Landmark-matching Teichmüller map of occlusal surfaces 

As for a demonstration of our proposed method, we compute

the landmark-matching Teichmüller map f ij between the occlusal

surfaces S i and S j shown in Fig. 2 . We remark that S i is an In-

digenous male sample and S j is an European female sample. Fig. 5

shows the mapping result and the curvature differences between

the two surfaces. Comparing the mapping result in Fig. 5 and the

original surfaces shown in Fig. 2 , it can be observed that S i is com-

pletely mapped onto S j under the mapping f ij , with the landmarks

exactly matched. The histogram of the norm of the Beltrami coeffi-

cients | μ f i j 
| is highly concentrated at one value, indicating that the

mapping is Teichmüller. Also, using the landmark-matching Teich-

müller map, we can easily evaluate the mean and Gaussian curva-

ture differences between the two surfaces, thereby quantifying the

shape difference between them. It is noteworthy that the major

difference in Gaussian curvature is located at the fossa pits, while

the difference in mean curvature is relatively widespread over the

surfaces. 

5.2. Classification of the 140 upper second premolars with respect to 

ancestry and gender 

After demonstrating the effectiveness of the landmark-matching

Teichmüller map for quantifying tooth shape difference, we deploy

the mapping algorithm and the quasi-conformal statistical shape

analysis model on the 140 upper second premolars in the dataset. 
.2.1. The classification accuracy 

We first perform the classifications of all 140 occlusal surfaces

n the dataset with respect to ancestry and gender using our pro-

osed model. For comparison, we evaluate the classification ac-

uracy achieved by our model as well as that achieved by two

ther classification methods respectively based on traditional mor-

hometrics and landmark-based geometric morphometrics. More

pecifically, we consider the area-based classification [42,43] (note

hat the method in [42,43] was originally volume-based for genus-

 surfaces, and so its analogue for simply-connected open surfaces

s area-based) and the Procrustes-based classification [25] . 

Table 1 summarizes the classification results obtained by the

wo previous methods and our proposed method. It can be ob-

erved that the area-based method results in low classification ac-

uracy for both classification tasks, which suggests that the tradi-

ional morphometric methods are incapable of capturing the tooth

hape variation. The Procrustes-based method gives a satisfactory

esult for the classification with respect to ancestry but not gen-

er. This implies that while earlier methods in landmark-based

eometric morphometrics are more capable than the traditional

orphometric methods, they are still insufficient for detecting cer-

ain kinds of tooth shape variation. In contrast to the two previ-

us methods, our proposed method achieves 98.57% accuracy (138

orrect assignments out of 140 subjects) for the classification with

espect to ancestry, and 97.14% accuracy (136 correct assignments

ut of 140 subjects) for the classification with respect to gender. In

oth tasks, our method outperforms the existing methods. In par-

icular, for the classification with respect to gender, the accuracy

f our method is higher than the existing methods by around 30%.

his demonstrates the effectiveness of our proposed framework for

ooth shape analysis. 

.2.2. The optimal parameters obtained by our model and their 

mplications 

To have a better understanding, we analyze the optimal pa-

ameters obtained by our model for the two classification tasks.
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Fig. 3. Quantifying tooth geometry using mean and Gaussian curvatures. Top row: The mean curvature H of two occlusal surfaces. Bottom row: The Gaussian curvature K of 

them. An accurate comparison between the curvatures of different occlusal surfaces is made possible using landmark-matching Teichmüller maps. 

Fig. 4. An illustration of the quasi-conformal shape classification algorithm. 
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Fig. 5. The landmark-matching Teichmüller map between the two occlusal surfaces S i , S j shown in Fig. 2 . Top left: The landmark-matching Teichmüller mapping result f ij ( S i ). 

Top right: The histogram of | μ f i j 
| . Bottom left: The mean curvature difference | H i (v ) − H j ( f i j (v )) | between the two occlusal surfaces. Bottom right: The Gaussian curvature 

difference | K i (v ) − K j ( f i j (v )) | between the two occlusal surfaces. 

Table 1 

Classification accuracy for all the 140 upper second premolars with respect to ancestry and gender obtained by the area-based method [42,43] , the 

Procrustes-based method [25] and our method. 

Classification Criterion Overall Accuracy (Area-based [42,43] ) Overall Accuracy (Procrustes-based [25] ) Overall Accuracy (Our Method) 

Ancestry 67.14% 91.43% 98.57% 

Gender 51.43% 68.57% 97.14% 
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As shown in Table 2 , the optimal parameters for achieving the

maximum classification accuracy with respect to ancestry are

(α, β, γ ) = (0 . 1910 , 0 . 2034 , 0 . 9603) , with p cut = 0 . 1 . From the val-

ues of α, β , γ , it can be observed that the Teichmüller distance

plays the most significant role in the classification with respect to

ancestry. To study whether all the three terms (mean curvature dif-

ference, Gaussian curvature difference, Teichmüller distance) in the

shape index are necessary for yielding an accurate classification,

we consider setting one of α, β , γ to be 0 and evaluating the ac-

curacy. We observe that dropping any of these terms will lead to

a significant decrease in the accuracy. This implies that while the

optimal α and β are much smaller than γ , all the three terms are

in fact important for the classification with respect to ancestry. In

other words, the shape difference between the teeth from differ-

ent ancestries is captured by the conformal (i.e. local geometric)

distortion as well as the curvature differences. 

Next, we consider varying the threshold parameter p cut and ob-

taining the best parameters ( α, β , γ ) that maximize the classi-
cation accuracy for different p cut . In general, a larger p cut leads

o a larger number of vertices identified as statistically significant

y our model, and p cut = 1 treats all vertices as statistically sig-

ificant. Among several choices of p cut , we observe that p cut = 0 . 1

ives the highest classification accuracy. This suggests that using

he entire surfaces does not necessarily lead to the best classifica-

ion. Instead, it is important to extract certain regions on the sur-

aces which capture the shape difference between the Indigenous

eeth and European teeth. 

A similar analysis on the choices of the parameters can be

erformed for the classification with respect to gender ( Table 3 ).

he optimal parameters for achieving the maximum accuracy are

(α, β, γ ) = (0 . 2330 , 0 . 0147 , 0 . 9724) , with p cut = 0 . 001 . This time,

t can be observed that the Teichmüller distance term is dominant

n the shape index, while the Gaussian curvature difference term

s with an extremely small weight. By setting one of α, β , γ to

e zero, we can see that dropping the mean curvature difference

erm or the Gaussian curvature difference term in the shape index
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Table 2 

Classification results for all the 140 upper second premolars with respect to ancestry for various choices of the shape index parameters α, 

β , γ and the threshold parameter p cut . Here, # v is the number of statistically significant vertices extracted by our model under the param- 

eter settings. The correct Indigenous rate is calculated by # of Indigenous subjects being classified as Indigenous 
Total # of Indigenous subjects (i.e. 70) 

, the corr ect Eur opean rate is calculated by 
# of European subjects being classified as European 

Total # of European subjects (i.e. 70) 
, and the overall accuracy is evaluated over all the 140 subjects. 

Parameters Classification Result w.r.t. Ancestry 

Description α β γ p cut # v Correct Indigenous Rate Correct European Rate Overall Accuracy 

Optimal 0.1910 0.2034 0.9603 0.1 288 0.9857 0.9857 0.9857 

No H term 0 0.2034 0.9603 0.1 129 0.0286 0.9286 0.4786 

No K term 0.1910 0 0.9603 108 0.6857 0.4571 0.5714 

No d term 0.1910 0.2034 0 535 0.5429 0.8143 0.6786 

Varying 

p cut 

0.0922 0.9749 0.2028 0.0001 54 0.8286 0.8286 0.8286 

0.2761 0.6974 0.6613 0.001 79 0.8429 0.8000 0.8214 

0.1421 0.7449 0.6518 0.01 211 0.9714 0.9857 0.9786 

0.1910 0.2034 0.9603 0.1 288 0.9857 0.9857 0.9857 

0.6956 0.1786 0.6959 1 1217 0.6571 0.7143 0.6857 

Table 3 

Classification result for all the 140 upper second premolars with respect to gender for various choices of the shape index parameters 

α, β , γ and the threshold parameter p cut . Refer to Table 2 for the description of the terms. 

Parameters Classification Result w.r.t. Gender 

Description α β γ p cut # v Correct Male Rate Correct Female Rate Overall Accuracy 

Optimal 0.2330 0.0147 0.9724 0.001 468 0.9857 0.9857 0.9857 

No H term 0 0.0147 0.9724 0.01 1217 0.9429 0.9857 0.9643 

No K term 0.2330 0 0.9724 478 0.9857 0.9857 0.9857 

No d term 0.2330 0.0147 0 0 N/A N/A N/A 

Varying 

p cut 

0.187 0.0118 0.9823 0.0001 185 0.9857 0.9857 0.9857 

0.2330 0.0147 0.9724 0.001 468 0.9857 0.9857 0.9857 

0.0281 0.1093 0.9936 0.01 1188 0.9571 0.9857 0.9714 

0.0351 0.1841 0.9823 0.1 1198 0.9429 0.9857 0.9643 

0 0.9049 0.4258 1 1217 0.9714 0.9857 0.9786 
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o not affect the classification accuracy much. By contrast, drop-

ing the Teichmüller distance term will even lead to zero statis-

ically significant vertices and hence the classification cannot be

one. In other words, the shape difference between teeth from dif-

erent genders is mostly captured by the local geometric distortion

ut not the curvature differences. Again, by varying p cut and eval-

ating the accuracy based on the corresponding optimal parame-

ers, it can be observed that taking too many or too few vertices

ill lead to a sub-optimal result for the classification with respect

o gender. 

.2.3. The statistically significant regions on the occlusal surfaces for 

he two classification tasks 

We compare the statistically significant regions identified by

ur proposed model for the two classification criteria. As recorded

n Tables 2 and 3 , around 20% of the vertices (288 out of 1217

er surface) are statistically significant for the classification with

espect to ancestry, while around 40% (468 out of 1217 per sur-

ace) are statistically significant for the classification with respect

o gender. In other words, the classification with respect to gen-

er requires more global information. We visualize the regions by

ighlighting the relevant vertices in the mean surface of all teeth

see Fig. 6 ). It can be observed that the statistically significant re-

ions for the classification with respect to ancestry are primarily

round the fossa pits, while those for the classification with re-

pect to gender are primarily around the cusps. 

.2.4. Reliability of the model 

Note that in the model, ( α, β , γ ) is optimized to maximize the

lassification accuracy. To check with the overfitting issue, we per-

orm the following test. Recall that we have altogether 140 sub-

ects in the dataset. With (α, β, γ ) = (0 . 1910 , 0 . 2034 , 0 . 9603) be-

ng fixed, we perform 140 classification experiments with respect

o ancestry. In the i th experiment, the i th subject is taken out from
he dataset. A leave-one-out test is then performed on the remain-

ng 139 subjects. Here we emphasize that the parameter setting is

xed to be (α, β, γ ) = (0 . 1910 , 0 . 2034 , 0 . 9603) , which may not be

he optimal parameters for the dataset of the remaining 139 sub-

ects. In this manner, altogether we have 140 leave-one-out tests

nder a constant parameter setting. Each test gives a classification

ccuracy, and the 95% confidence interval of these classification ac-

uracies is 97 . 73% − 98 . 84% . This suggests that our methodology

oes not lead to overfitting. 

.2.5. Possible explanation for the improvement achieved by our 

odel when compared to the existing methods 

It is natural to ask why our method is capable of achieving a

ignificant improvement in classification accuracy when compared

o the existing methods, especially for the classification with re-

pect to gender. In fact, this can possibly be explained by the op-

imal parameters obtained by our model for the two classification

asks. 

Note that the Procrustes-based method [25] aligns the teeth by

igid motions and studies their shape difference. Since the mean

nd Gaussian curvatures uniquely determine a surface up to rigid

otions, the shape information captured by the Procrustes ap-

roach can be considered as that captured by the two curvature

erms in our shape index. As we have analyzed above, the Teich-

üller distance is the only significant factor in the shape index for

he classification with respect to gender. Therefore, with the con-

ideration of the Teichmüller distance in our proposed model, it is

easonable that we can achieve a significant improvement in the

lassification accuracy with respect to gender. As for the classifica-

ion with respect to ancestry, we have pointed out above that both

he curvature differences and the Teichmüller distance are impor-

ant. Therefore, it is again reasonable that the Procrustes approach

25] achieves satisfactory accuracy, and our proposed model leads

o an even better result. 
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Fig. 6. The statistically significant regions (highlighted in red) extracted by our algorithm for the classifications with respect to ancestry (left) and gender (right), visualized 

on the mean surface of the 140 occlusal surfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

The optimal parameters α, β , γ , p cut and the accuracy of our proposed model for the classification with 

respect to ancestry within each gender group (each with size = 70). 

Gender Group (size = 70) α β γ p cut Ancestry Classification Accuracy 

Female 0.1950 0.0661 0.9786 0.01 0.9714 

Male 0.0912 0.0234 0.9956 0.01 0.9714 

Table 5 

The optimal parameters α, β , γ , p cut and the accuracy of our proposed model for the classification with 

respect to gender within each ancestral group (each with size = 70). 

Ancestral Group (size = 70) α β γ p cut Gender Classification Accuracy 

Indigenous 0.0940 0.0829 0.9921 0.01 0.9714 

European 0.1702 0.1813 0.9686 0.01 0.9714 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

t  

c  

m  

a  

o  

t  

d  

t  

o  

t  

r  

r  

i  

g  

r  

a  

m  

o  

w

 

s  

h  

p  

p  

o  

d  

a

D

5.3. Classifications over subgroups 

Besides performing the classifications over the entire set of

140 subjects, we consider the classifications over subgroups. More

specifically, we study whether the classification with respect to an-

cestry within each gender group and the classification with respect

to gender within each ancestral group are similar to the ones over

the entire set of 140 subjects. 

We first consider the classification with respect to ancestry

within each gender group (female/male, each with 70 subjects in

total). For each gender group, we compute a landmark-matching

Teichmüller map for each surface and repeat the classification pro-

cedure on the 70 mapping results for classifying the teeth with

respect to ancestry. As shown in Table 4 , our method achieves

over 97% classification accuracy for both gender groups. Also, in

the two sets of optimal shape index parameters, γ is much greater

than α and β . This suggests that our findings for the classification

with respect to ancestry over the entire dataset also hold when

we consider the classification among females and males separately.

In other words, the aforementioned shape difference between the

two ancestries can be found in both genders. 

We then consider the classification with respect to gender

within each ancestral group (Indigenous/European, each with 70

subjects in total). As shown in Table 5 , our method achieves over

97% classification accuracy for both ancestral groups. Similarly to

the above findings, the result suggests that the aforementioned

shape difference between the two genders can be found in both

ancestries. 

6. Conclusion 

In this work, we have developed a framework for tooth mor-

phometry using quasi-conformal theory. Landmark-matching Te-
chmüller maps are first used for finding a 1-1 correspondence and

he Teichmüller distance between tooth surfaces. Then, a quasi-

onformal statistical shape analysis model based on the Teich-

üller distance and curvature differences is developed for building

 classification scheme. We have deployed our method on a dataset

f Australian upper second premolars. Our method achieves bet-

er classification accuracy with respect to both ancestry and gen-

er when compared to the existing methods. Moreover, the op-

imal parameters and statistically significant regions obtained by

ur model for the classifications reveal the shape difference be-

ween teeth from different groups. Future studies could incorpo-

ate blinded assessment to further assess the classification accu-

acy of this method. Nonetheless, this study highlights the promis-

ng application of quasi-conformal theory for shape analysis and

roup discrimination. In terms of the landmarking scheme, the cur-

ent method is constrained by strict landmarking protocols, such

s landmark correspondence and the presence of identifiable land-

arks with associated low error rates. Therefore, the extension

f the method for landmark-free quasi-conformal morphometry

ould be worth exploring. 

For future work, we plan to perform a more comprehensive

hape analysis on dentition using our proposed method. Besides

uman teeth, it is also possible for us to use our method for com-

aring the geometry of teeth of different mammals, and to com-

ute Teichmüller mappings between specimens at different stages

f tooth wear, which will enable us to capture the major shape

ifference between teeth at different wear level. We also plan to

pply the framework for the study of other human organs. 
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