Population density and educational inequality: the role of public school choice and accountability¹ Carlos X. Lastra-Anadón

Abstract

This paper examines the differences in performance in test scores across different areas of the United States and relates these scores to the levels of population agglomeration. Areas of the country with denser population levels have higher average levels and also higher inequality in test outcomes. I establish that being in a denser area is associated with an increase in the socioeconomic gap in test scores of about 1 percent for each 10 percent increase in density levels. This relation is robust to the use of a geographic regression discontinuity design that leverages changes in density across neighboring commuting zones. It is also robust to a number of instruments that exploit the relation of contemporary density levels to the fertility of the terrain and to historic density levels. These findings are consistent with a theory where, in denser areas, there is greater school segregation by socioeconomic status (exit mechanism) and where poorer families do not hold the schools they go to more accountable (voice mechanism). Using census data, I find that there is in fact more school segregation in denser areas, and I use a proprietary survey to show that the gap in involvement in schools between richer and poorer parents is not smaller in denser areas. These findings underscore the unintended consequences that public school choice enabled by district fragmentation may have for increasing inequality across groups and so, has implications for jurisdictional design and the allocation of resources in urban areas.

¹ Previously circulated as Agglomeration and inequality in educational outcomes: evidence from the United States. I thank Paul Peterson, Alberto Abadie, Emmerich Davies, David Deming, Leslie Finger, Thomas Gift, Jeff Frieden, Jennifer Hochschild, Torben Iversen, Sandy Jencks, Jonathan Rodden, Beth Schueler, James Snyder, , Dustin Tingley, Katharina Werner, Martin West, Ismael Sanz Labrador, Rocio Titiunik and participants at Harvard's American Politics Research Workshop, Graduate Political Economy Lunch, Political Economy Workshop, Politics of Education Reading group and audiences at the American Political Science Association, Hawaii International Conference on Education, the Spanish Economics of Education Association meeting for comments on drafts of this paper and the larger research project. I thank the Center for Geographic Analysis at Harvard for support with the geo-coded data, Fundación Ramón Areces, the Tobin Project and the Harvard Graduate Student Council for financial support. I also thank the Program on Education Policy and Governance for hosting me while undertaking this project.

Introduction

We know a great deal about the effect of socioeconomic characteristics in explaining variations in student performance in K-12 education. In addition, a wide literature in educational policies analyzes the role of school inputs such as teacher quality, class size, or the mode of delivery of instruction. In addition, schooling interacts with the social context, such as the socioeconomic characteristics of students and their families. We know less about the systematic differences across regions and between areas within regions. However, in the United States, if two students attend school in areas of the country, this location alone can explain up to 50% of the difference between their educational outcomes in addition to all their differences explained by their individual socioeconomic characteristics (shown by the difference in explanatory power between models with geographic fixed effects and those with individual fixed effects in Table 1). Table 2 shows that an area in the top quartile by performance in the United States differs from one in the bottom quartile by 0.26 standard deviations in standardized test scores. This is, more than twice as large as the effect of having a highly effective teacher compared to an average teacher.² Panel A of Figure 1 maps the geographic distribution of the commuting zones by average performance and suggests that there is no obvious characteristic that explains high performance. The first of two puzzles this paper seeks to answer is: what explains persistent differences in average levels of performance across different areas of the country not fully explained by differences student characteristics? Given the increased importance of a knowledge economy in the United States, the growing role of the Federal Government in education and the relatively high mobility across areas of graduates but also teachers and information on education "best practices", we may expect convergence on high levels of educational quality throughout the country. After all, plenty of initiatives have been rolled out to ensure all students receive high quality education to compete in the national and international economy is the impetus for initiatives such as the federal "Every Student Succeeds Act" or others such as the national Common Core Standards, whose goal is to bridge these differences.

 $^{^{2}}$ Teacher ability is an example of an educational variable widely agreed to be important. Indeed, in a large city in the United States, Chetty et al. (2014) found that the average effect of 1 standard deviation higher performance of the teachers on the test scores is .080 standard deviations in English and .116 in Math.

The second puzzle this paper seeks to explain is the variation within an even smaller geographic area (the commuting zone), which typically shares institutions, labor markets and importantly people: why are there great differences in the inequality between in student performances throughout the country, and why is it that denser or more urban areas see more variation among students? Figure 1 (panel B) maps this within-commuting zone variation in student performance.

To answer both puzzles, I explore the hypothesis that part of the variation in student performance between and within areas of the country is related to the concentration of the population in space. It is known that cities and higher density areas have been shown to have agglomeration advantages that present them with opportunity, by making them more productive and even healthier on average (Glaeser and Gottlieb, 2009). In the case of schools (and potentially other locally provided services), I argue the main mechanism whereby agglomeration affects outcomes is through the increased opportunities for public school choice, which brings with it segregation across groups through residential sorting on economic grounds.

I find that denser areas have higher levels of student outcomes on average, but also greater levels of inequality. The gap is driven by lower performance of poorer students and a higher performance of richer ones. Results are consistent across a number of indicators of socioeconomic status (SES), such as being a free or reduced lunch recipient, having parents with no college education, being black or Hispanic and an index of SES. Establishing this descriptive relation is novel and of interest on its own but, in addition, I use a geographic discontinuity design to establish a causal link and find results in the same direction when I look at the effect of changes in density across neighboring commuting zones for test-takers that are close to commuting zone boundaries. I also find similar results when I instrument contemporary density levels using historic density levels and the ruggedness of the terrain. These argument and findings highlight an underemphasized type of inequality in educational outcomes that stands in between individual drivers, neighborhood effects and cross-country differences. While we increasingly know that there are differences in inequality levels across areas, this research begins to explain the drivers of such differences and finds that the geographical agglomeration of the population is an important part of the story. If this is the case and little changes, the relevance of this density gradient on

inequality will only increase, as the United Nations (2014) predicts that 85% of the population in the United States will be urban by 2050, compared to 50% in 1950.

Through the exploration of these mechanisms that relate density and education outcomes, I also build on the classic framework of exit and voice of Hirschmann (1970). I am able to establish the relative importance of each of the two mechanisms by comparing denser areas to others. I find that, in denser areas, the greater segregation of students across schools and school districts dominates any effects of increasing accountability or school activism that we may find in those areas. The net effect on inequality is that, since only richer families benefit from this residential choice, denser areas are more unequal than others. It constitutes, to my knowledge, one of the first empirical explorations of Hirschman's theses of the negative relation between the presence of exit and voice mechanism in the context of schooling. The findings suggest that the detrimental effects of increased exit through traditional residential sorting warrant policy interventions by governments in providing opportunities for choice for poorer families in urban areas such as through charters or school voucher programs.

The rest of the paper is divided as follows. First, I review the literatures that this paper seeks to contribute to and the gaps it fills. Second, I lay out the theory and hypotheses I seek to test. Third, I describe the setting, data and empirical strategies I use. Fourth, I show the results of the relation in reduced form between performance levels, inequality and density, both descriptively, using a geographic regression discontinuity design and an instrumental variable approach. Fifth, I explore how the mechanisms of exit and voice may explain the relation I find and test directly for the relevance of those mechanisms. Sixth, I provide some tentative policy implications, discuss limitations and directions for future work and I conclude.

Connections with the literature

This work speaks to four literatures most directly. The first of these studies denser places to establish the effect of agglomeration economies. It has found that agglomeration and spatial distribution can have a positive effect levels of economic growth, subjective wellbeing, entrepreneurship levels or the quality of hospital care (Glaeser and Gottlieb, 2009 and Glaeser, 2010). The reduction of transportation and information costs (agglomeration economies) that these studies document has a positive impact on the broader economy. However its effect on the delivery of government services and, in particular, education has not been studied. The inequality that such agglomeration may bring is also not typically studied.

The second literature is about the geographic variation in performance and inequality levels in education. This has begun to be documented by Reardon et al. (2016). They leverage the data available from state test scores to measure intra-district and inter-district racial achievement gaps. Their findings suggest that a large portion of the variation in racial achievement gaps between districts and metropolitan areas is correlated with levels of inter-district racial and economic segregation as well as differences in the size of the income gap between races in different areas. Beyond that variation in socioeconomic gradients within commuting zones, Gingrich and Ansell (2014) begin to identify more unequal areas and document the presence of greater variation in individual outcomes in more affluent districts. In their analysis of UK educational outcome data, they show that these areas with more affluent districts have greater disparities in educational performance through sorting into schools within the district. They conclude that even in a context such as the UK where there may not be obvious drivers of inequality, such as differences in funding across districts and schools, there are still be dramatic differences in outcome levels. The findings from this emerging literature lead themselves to a more systematic exploration of the determinants of this inequality across geographical areas I provide here and should ultimately be tied to studies of geographic variation in labor market inequalities and of social mobility, such as of Chetty et al. (2014).

The framework of Hirschman's (1970) insight on the role of consumers exit and voice has had extensive echoes in the social sciences. Despite the extensive repercussion of this framework, the relation between the exit of more involved families, the overall levels of voice and the resulting quality levels that less involved families would experience has not been widely studied empirically. I aim to study it in a context where both mechanisms are clearly possible, such as school districts in the United Status and providing a bridge between literatures that consider versions of exit and voice in schools separately is a goal of this paper. The third literature this study relates to is thus on the effect of exit opportunities in the form of school choice of different types. It is reviewed in Urquiola (2016). The present study, in so far as it posits a mechanism about residential public school choice, relates to Tiebout competition (see for instance, (Oates 1972 and Tiebout 1956) as a way for citizens to increase their welfare through moving their residence to districts that match their preferences for schooling. The most important study that uses quasi-experimental variation in order to assess the effects of variations in the degree of public school choice throughout the nation continues to be Hoxby (2000). Using terrain characteristics as a source of variation in the levels of public school choice, Hoxby finds positive effects of having greater public school choice in metropolitan areas on student achievement and on the productivity of the education system, although she finds little evidence of effects on the socioeconomic gradient.

A key part of the present study is that the effect of choice is importantly determined by income segregation. Increases in income inequality have been shown by Reardon and Bischoff (2011) to relate to increased segregation of families by income in their residential location, which in the United States is bound to be closely linked to school segregation – although this has not been studied systematically. These (expected) increases in income segregation across schools would affect performance most directly if peer effects are strong, which would be consistent with current research (Lavy et al. (2012) reviews the literature).

The fourth literature is on the importance of voice. The evidence on the effect of any form of voice on schooling outcomes is very limited. Berry and Howell (2007) and Barrows (2015) provide indirect evidence of voice in the form of voting being related to education performance. They both show that re-election in school board elections is linked to the performance of schools prior to the election. This suggests importance of voice accountability as a way of influencing education policy, at least in coarse form.³ Beyond

³ There is a separate literature that relates wider geographic characteristics beyond density with various outcomes. In particular, size of jurisdictions has been shown to matter. First, on their endogenous formation, Alesina and Spolaore (2003) and Alesina et al. (2004) look at school districts in particular, who face a tradeoff in determining their optimal size with two opposing forces: economies of scale (leading to larger jurisdictions) and racial or class heterogeneity (pressing for smaller, more homogeneous). The consequences this may have for the quality of services such as education are not explored. Lassen and Serritzlew (2011) find a stark negative relation between size of jurisdictions and individual citizens' beliefs that they are competent to understand and take part in politics in an experimental setup in Denmark. In later work, (Lassen et al. 2016) they find that consolidations do not lead to additional savings for the public purse either.

education, a long literature connects density and forms of voice, such as political activity and the forms it takes and even more broadly, how density in space may shape attitudes. Recent evidence such as Hopkins and Williamson (2012) finds that denser areas have greater levels political participation. Analytically, a classic view explains this through conceives urban politics as unusually rich, as it has more reasons to attract citizens attention including more disputes over common resources and space across disparate groups (Dahl 1967, Deutsch, 1961 and more recently Oliver, 2001), but there is an argument also that thicker media markets that stimulate interest (Milbrath and Goel 1982, Campante and Do, 2014), that there may be greater levels of political competition (Dahl and Tufte 1973) and more activist left politics as a historic legacy of industrialization (Rodden forthcoming).

In summary, there are a group of four open debates along each of these literatures that I will speak to. The first is whether the largely positive effects of agglomeration enabled by the reduction of many costs of delivery extend to the delivery of local public services and, in particular, education. The key question in this paper is whether education benefits from positive consequences of agglomeration and whether all groups benefit homogeneously. Second, whether some of the variation in educational outcomes and in inequality that has begun to be documented across different areas of the country can be explained in any systematic way –and whether geographic density may be part of that explanation. Third, there is a need to continue to explore the effects of public school choice for different groups in a literature that has made relatively little progress since the early 2000s and has not been leveraged to explain inequality patterns. Fourth, we need to know more about the effects of voice in the quality of schools and, in order to test the relative importance of the plausible mechanisms that Hirschmann (1970) posits and their joint effects, we need richer frameworks where the interaction of choice is and voice and their effect on outcomes of interest is modeled empirically.

Theory and predictions

Quality levels and differences across schools and districts are linked to the extent to which families are able to exercise pressure on them to be of high quality. Families are able to

keep schools and districts close to their full potential through the "exit" and "voice" mechanisms described first by Albert Hirschman (1970). His contention is that these two are the main ways users have of communicating the failings in performance of an organization and so, of exercising accountability. In a general context of firms providing a product of service to its customers, dissatisfied customers can either shift their patronage to a different firm or, alternatively, they can express their unfavorable views of the firm and, certainly in the context of schools or school districts work directly to change it through the management (principals) and front-line workers (teachers).

A key portion of the argument is that the availability of both of these mechanisms is greater in denser areas. Within a given geographic area or education market, if the concentration of the population is greater, there will be more schools and it is also to be expected that more school districts will be supported by the population levels. In terms of the voice mechanism, denser areas are also more likely, other things being equal, to have more politically active citizens and more organized political groups, as it is easier to organize interest groups and to find critical masses of people to advocate for any given interest. This resonates with classics observation about the greater intensity of urban politics (Dahl 1967, Deutsch 1961). If these mechanisms are effective, taking these density gradients on each of the mechanisms together, we should expect denser areas to have greater average performance levels.

However, not all families may benefit uniformly from this greater possibility of exit and voice in denser areas, since they may not be able to exercise either of these forms of participation regardless of the more propitious circumstances warranted by greater density. Exit in denser areas is a possibility for the most committed parents since they have more schools and districts to choose from with little disruption to their work or community life from a move to a different school or district. By contrast, committed parents in less populous areas have no option but to push for improvements in the only schools that their children are able to attend, since there are no alternatives, so they become more involved in school life and are more "vociferous". This parental "commitment" to education will track closely socioeconomic status: the pre-requisite for exercising either of the mechanisms is to have sufficient resources. In the case of exit, physical resources (such as being relatively

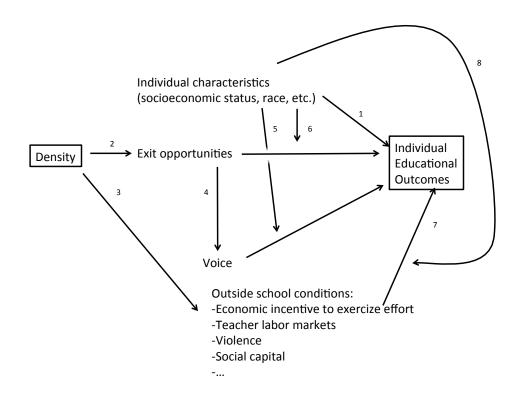
price insensitive for moving to a more expensive neighborhood) and time and sophistication necessary to navigate information on the quality of schools. For the voice mechanism, like all kinds of political participation (Brady et al. 1995), the kind of voice that we expect citizens to exercise to improve schools may be inaccessible to poorer families due to factors such as scarcity of time and lack of information as well as a lack of assertiveness in relation to the state. This has implications for the way different groups benefit from the greater exit and voice in denser areas. For less committed-poorer parents the implication is that in the less populous areas, they are more likely to benefit from having people around them who push for the improvement of their schools. In denser ones, exit will have a clear effect on inequality: more and less involved families attend different schools through the greater availability of residential sorting, mediated by house prices (and differences in information access). Since the degree of involvement in education and vociferousness is correlated with socioeconomic status, greater availability of exit options lead to increases in the inequality of educational outcomes across socioeconomic groups. This segregation will be the dominant dynamic and result in greater socioeconomic inequality in denser areas. The effect for the voice is less clear theoretically: density should enable the exchange of information and political organization for all groups. One can conceive certain circumstances where density will benefit the exercise of voice differentially for poorer families: there may be ceiling effects for richer families if they are involved in school politics no matter how favorable the circumstances are and in that case the benefits of density would accrue only to poorer families and enable them to compensate for the greater exit levels of richer ones. Although the main prediction is that the inequality increasing segregation would be strong, this may be tempered by an increased activism of poorer families.

If this is right, it would constitute an instance of Hirschman's concern that when exit is the primary mechanism, only certain customers will exit and so it would lead to changes in the composition of the failing organizations' clientele resulting in an unraveling of the quality of that organization: "those customers who care the most about the quality of the product and who, therefore, are those who would be the most active, reliable, and creative agents of voice are for that very reason also those who [...] exit first in case of deterioration". This paper effectively explores this contention in the context of schools by using density as a

source of variation in the availability of exit and of voice. I expect that the consequences of the substitution of voice for exit and consequent segregation along socioeconomic characteristics will increase inequality across socioeconomic groups.

In essence, I argue that in more populous areas, exit is a possibility for the richest parents since they can find and change schools and school districts with little disruption to their work or community life. By contrast, these parents in less populous areas have no option but to push for improvements in the only schools that their children are able to attend, since there are no alternatives, so they become more involved in school life and are more "vociferous". In less dense areas, poorer parents are more likely to benefit from having people around them who push for the improvement of their schools. In denser ones, these families attend other schools. In short, in less dense-low exit areas, poor students are more likely to be pooled with wealthier families. However, in denser-high exit areas, lower socioeconomic status families are no longer able to benefit as much from the presence in their schools and districts of more vociferous families.

I argue that these dynamics of exit and voice are the dominant forces in explaining differences in educational gradients across schools at different levels of density and that their net result depends on the relative magnitudes of the two effects of density:


-The effect of density on the exit of richer families

-A possible (countervailing) effect of density on the exercise of voice of poorer families

Exit and voice are over-arching mechanism affecting the quality of schools but they will have to express themselves through tangible differences in what average schools and the schools that the different groups attend look like. From the perspective of these levers, the question I investigate is what is different in the average *schools* in denser areas that may affect educational outcomes and what is different, in those areas, between the schools richer and poorer families attend? Resources, teachers, buildings, the relation between teachers and parents, management of the school, etc. may be different in dense urban areas since, for instance, we know labor markets are thicker due to agglomeration economies. Additionally, within each of these areas, there may be inequality in their distribution across dense and less denser areas: if the best teachers are attracted to metropolitan areas but then teach in schools in the suburbs of cities, this may affect the variation across districts in

metropolitan areas. There are many other differences I would want to hold constant in order to make meaningful statements about differences in schools and inequality across areas in schools. At the individual level, the people living in denser areas may be different. Denser areas may attract more immigrants and possibly more ambitious people in search for opportunities. But also in knowledge-intensive local economies, the incentives for students and family to raise achievement levels may be different at different level, which may affect inequality levels.

The following diagram and subsequent explanation synthesize a comprehensive model of how density may relate to individual outcomes, through exit and voice as well as other channels that may interact with them:

A primary direct driver (arrow labeled 1) of individual outcomes and inequality are individual and family characteristics, such as the socioeconomic status itself. Density has two primary channels to educational outcomes. First, and our focus its relation with exit opportunities, the number of public schools and school districts that a family can send their children to without altering other aspects of their lives (2). Second, under "outside school

conditions" a bundle of economic and social differences that agglomeration leads to (3). These have an effect on educational outcomes since they may alter, e.g. the availability of teachers, the economic incentives at different positions in the distribution to exercise effort in school and possibly others. Examples include greater differences in more urban areas in neighborhood and home environments between socioeconomic groups, including nutrition, family composition and dynamics, (e.g. substance abuse).

Focusing on the effect of exit opportunities, Hirschman contends in the passage above that higher exit levels would result in lower voice, since those who exit are the same as those who would exercise pressure or voice for improvements (4). The presence of the relations 5 and 6, where exit and voice are moderated by socioeconomic status are the principal reason why we would expect density to affect the degree of inequality levels in outcomes across dense and less dense areas: while density affects the *availability* of exit and of voice, the *practice* of exit and voice is highly conditional on socioeconomic status. Lastly, 7 indicates the direct effect that outside school characteristics have on educational outcomes, which in turn is most likely moderated by socioeconomic characteristics of the individual (8), impacting inequality levels.⁴ Notice that there is no direct arrow between density and voice since I shall argue that despite differences in political norms, media, etc., if this exists this is a relation of much less significance compared with the other ones. Since this is ultimately an empirical question, I will show what the magnitude of this relation is in the results below.

Predictions and hypotheses to test

If density relates to educational outcomes substantially through the framework of exit and voice and is moderated by subgroup characteristics, a number of predictions follow.

Reduced form effects: the key empirical predictions are that

1) Higher area density levels are associated with higher average outcomes

⁴ An additional moderating factor on the magnitude of the effect of exit opportunities on outcomes stems from what Hirschmann calls "loyalty". It is likely related to the degree of social capital or integration across different socioeconomic communities present in one place. This factor is harder to measure in a static context and, in order to simplify the theory tested and its presentation, I did not include it in the diagram.

 There is a positive relation between density and outcome inequality between rich and poor students

Mechanisms: I will look at whether the reduced form relation is driven by the mechanisms described above. First, in terms of the **exit** mechanism, the theory predicts:

- There are more schools and more school districts in denser areas (providing greater exit opportunities)
- 4) There is greater inequality in correlates of educational outcomes such as income and race, as well as in school inputs, across school districts in denser areas. Meanwhile, within-school district demographics are more homogeneous in denser areas, as there is less pooling of groups inside districts.

In terms of the **voice** mechanism:

5) Low SES families exercise less voice on average, and exercise no more voice in denser areas, so there is no countervailing force for the negative density effect from the exit mechanism.

Empirical setting, data and strategy

Locally provided services and K-12 education in the United States is an ideal setting where to test the relation between density and agency in voice and exit since there is a direct link between neighborhood selection and the quality of schools and schools have well-established channels for the exercise of voice through school districts, PTAs and other bodies and offices at the state level, often directly elected.

I will compare areas that are education markets. They are the context where the choice of school or district, through change of residence is most salient and less costly: it is feasible to change districts or schools within a commuting zone without having to change jobs, break from regular contacts with existing networks or otherwise have the livelihoods severely disrupted. We know that most of the relevant forces of residential sorting that are relevant to inequality of income occur within metropolitan areas and not through migration of different types of people between metropolitan areas, particularly across school districts

(Cutler and Glaeser, 1997 and Owens, 2016). As the closest approximation to these elusive education markets, I use the commuting zones (CZs) introduced by Tolbert and Sizer (1996). They partition the entire US mainland into 741 clusters of counties, and are defined in accordance with self-reported commuting patterns from the 1990 census. They are characterized by intense commuting patterns within CZs and weak commuting patterns across CZs. The size of these commuting zones mean that I contrast relatively large areas by their level of density and so compare areas that include large metropolis, their suburbs and exurbs; smaller cities an d towns and their surrounding areas; and rural area with no clear focus. Any such large areas include substantial population and several school districts and schools and the difference will be in how numerous they are.

Data sources

For educational outcome data, I use a cross-section of the bi-annual federal National Assessment of Educational Progress studies in reading and math (NAEP). Their restricted micro-data contains some 150,000 observations per subject (each of reading and math), which are meant to be representative at the state level. This is relatively little used data is representative nationally and at the state level for public schools. It has been exploited for the study of state level distributions of achievement between districts within commuter zones, for instance by Lafortune et al. (2016). In this paper I present results for Reading and Math in the 2007 testing cycle for 8th grade, the last cycle with micro-data available at the time of writing. In the Appendix, I complement these results with those obtained by using average outcomes at the school district level (in state exams), as related to the average district income and its interaction with density levels, using data that is standardized to a common scale by Reardon et al. (2016).

Individual demographic variables will be used as controls and to elicit differences in the effect of density by demographic groups are obtained from the school and student survey that is a companion to the NAEP micro-data, complemented with aggregate area data from the National Center for Education Statistics Common Core of Data. The individual data on socioeconomic status used in most analyses includes race and ethnicity, free and reduced lunch status, individual learning programs (as a marker for disability), English learner status, and whether parents graduated from college, as well as an SES index constructed by

these variables. From the same source, we also have some information about the educational behavior of students and access to books, newspapers and the characteristics of the teachers they have.

I use a simple measure of density: the area level density of enrollment within commuting zones, i.e the enrolled K-12 students per square kilometer. This data comes from the National Center for Education Statistics matched with the US Census' TIGER mapping data, geographically matched by the zipcode of residence of the student. At the level of commuting zone, this measure is unlikely to be unaffected by the problems that an analogous measure would have when looking at smaller units: measurement error due to the recorded density between residential and industrial areas or areas with large open spaces, for example is less relevant if they are all subsumed within larger economic areas.

In analyzing the socioeconomic segregation in denser and less denser areas, I use aggregate data on income and racial mixes and its distribution at the district level is obtained from the American Community Survey (compiled by Reardon et al. 2016).⁵ Additional aggregate data for commuter zones on income and racial segregation, crime data and levels of social capital comes from Chetty et al. (2014) and data on the commuter zone economy, such as the share in routine jobs comes from Autor and Dorn (2013).

To establish measures of "voice", I use a nationally representative survey on issues of education, with oversamples for teachers and parents and done via computer (the EdNext survey), with data for each year in 2007-2015. It contains an average of 100 observations by commuter zone-year. While the majority of the questions change year to year, there are a few recurring questions that I exploit to form samples of up to 34,459 observations in the period on the involvement in school system politics. They are the perception of school quality, attention paid to education, voting in school board elections and policy preferences for education reform.

Empirical strategy

⁵ This is complemented with county level data obtained from Chetty et al. (2014), who compile it from individual tax returns (and I use in the Appendix) that should reflect the entire population of taxpayers, rather than a sample.

The descriptive empirics of the paper proceeds as follows. I first document descriptively the average relation between density and student outcomes and how this varies along the distribution of test scores. For this task, I use quantile regression, which allows me to estimate the effect of commuter zone density for observations at different deciles of the distribution of scores. In essence, the quantile regression estimator weighs the observations centered around the specified quantile in a regression framework and linearly decreasing away from the center (it was introduced by Koenker and Bassett (1978)).

In regression form, the link between student density in enrollment and outcomes is established by running a series of regressions of the form:

$$Y_{\theta ics} = \alpha \log d_c + \beta X_{ics} + State_s + \varepsilon_{ics}$$

For a subject *i* in commuter zone *c* in state *s*, d_{ics} is the enrollment density variable and indicates enrollment in K-12 education per square kilometer in the commuter zone, X_i are student level controls (not included in the main model), which include indicators for exact age in months, gender, race, disability status, English learner status and Free and reduced lunch status and whether the student received extra time in the exam. State_s are state fixed effects. I run these individual-level regressions for the cross-section of student outcomes as well as survey results (the Y_i), with regressions weighted by the sample weights to achieve state representative samples. Standard errors ε are clustered at the commuter zone level. θ is the quantile level of performance, and for the average effect, the θ parameter should be ignored.

In order to test the relationship of density with an inequality gradient more systematically I look at disadvantaged students by running a series of mean (non-quantile) regressions which interact indicators of socioeconomic status (SES) with density, of the form:

$$Y_{ics} = \alpha \log d_c + \gamma \log d_c \times SES_i + \delta SES_i + \beta X_{ics} + State_s + \varepsilon_{ics}$$

 γ is here the coefficient of interest that indicates differences in the effect of inequality for different socioeconomic groups.

Causality: geographic discontinuity design and instrumental variable specifications

In order to test these predictions, the ideal experiment would be to have students with exactly the same individual characteristics randomly assigned to areas that differ in terms of their density levels alone. This ideal setting is not available and denser places differ in many economic, social, demographic and other ways outside schools that should be accounted for in order to establish causal relations. Another concern is that there may be unobserved individual characteristics correlated with our socioeconomic status markers. In general, these will bias average level regressions more so than the ones trying to capture inequalities. Density-inequality gradients (γ in the specification above) will only be biased if density is related to socioeconomic groups in different ways: if the effect of density is biased in the same direction for poor and rich subgroups, the relation between density and inequality across groups will not be biased. Certain outside school characteristics, however, may be correlated with density and inequality in the outcomes for the rich and the poor. For instance, the educational success of certain areas may attract people to those areas and drive their density up. If places that have more successful economies tend to have or attract families at extreme ends of the socioeconomic distribution, such as workers in finance or recent immigrants we may expect that, given correlations between socioeconomic status and educational outcomes, the density-inequality gradient would be greater without any need for differences in schools they attend.

To deal with such concerns, I undertake a geographic regression discontinuity design that exploits boundaries between commuting zones and three instrumental variable strategies, described below.

Geographic discontinuity design

The contrasts in density levels in neighboring commuting zones allow us to consider a specification that exploits potential discontinuities in the boundary through a geographic regression discontinuity design. Intuitively, the rationale for using such a design is that for people living close to the commuting zone boundaries, their living on one side of the boundary or the other is as good as randomly assigned, since both sides are close in many other characteristics but may influence the education market they belong the respondents are in discontinuously.

Regression discontinuities (RD) have been increasingly used in the social sciences in recent times. A particularly popular strategy has been to exploit election cutoffs, by looking at candidates who either get elected or fail to by looking at either side of the required vote share, 50% in two-way races (see Cattaneo et al. 2015). Candidates who get just above 50% of the vote get elected while those who get just under 50% do not, but otherwise those candidates and elections are essentially similar. The same idea of cutoffs in a continuous variable with different treatments on either side of the cutoff can be applied to geographic boundaries. Dell (2010), for instance has done this by look at historic and no longer applicable colonial administrative boundaries in South America and Keele and Titiunik (2015) exploit media market boundaries. At its basic, the idea is to find a boundary that divides areas in an "as-if random" fashion, i.e. one that is only related to the outcomes through a change in the mechanism postulated. In the example, historical processes of segregation or the media that citizens are exposed to change abruptly at the boundary, while other variables from economic conditions to education levels does not. I implement a RD design where I exploit test-takers who live close boundaries between commuting zones of different densities. I select the subset of boundaries where there is a substantial drop in commuting zone density levels, higher than 5% of the average density level (equivalent to 3.5 students per square km). For a test-taker, the treatment indicator takes the value 0 if the commuting zone it is in has a higher density than the nearest neighboring commuting zone. The treatment takes value 1 if the density of the commuting zone it is in is lower than that of its nearest neighbor.⁶ The associated continuous forcing variable is then distance of the residence of the test-taker to the boundary in meters: a negative distance if the student observation's zipcode is in the higher density commuting zone of the pair and a distance greater than zero if it is in the lower density one, so the sign of the forcing variable fully determines treatment (a sharp RD design).

Even though quality of schools are strong predictors of residential choices, the advantage of using commuting zones (similar to media markets or historic borders no longer in place)

⁶ Ideally, the treatment would be sensitive to its dosage, that is, the size of the drop in density at the boundary. However, current regression discontinuity models only handle binary treatments rather than continuous or even factor treatments. This is a clear avenue for extensions of those methods and for the implementation of the model.

is that they do no correspond to hard boundaries that are physical, demographic or administrative discontinuities. Developed by census researchers, they are arbitrary lines with no administrative consequences that reflect commuting patterns. There is no hard limits that commuting zone boundaries impose that would stop participation in neighboring school markets. One way of understanding the role of the boundary is that it nudges people that fall on each side to participate in particular school choice markets through neighbor relations, small differences in commuting lengths, etc. Therefore there is, in principle, no reason to believe that there should be systematic strategic choice of residence on either side of the boundary and the assumption of random assignment of commuting zone around the boundary appears warranted. Below, we also provide some evidence that it is unlikely not to hold in this case.

Moving to the implementation of the design, I base the residence of test-takers on their zipcode, a fairly precise estimation of their location as there are 43,000 zipcodes, so each covers an average of 178 square km or a radius of 7 km. I use a nonparametric approach (Cattaneo et al. 2017, 47) where the global function that relates the running variable and the outcome are left unspecified and simply is approximated locally around the boundary with a linear model. The estimation of a treatment effect of the drop in density at the boundary is based on the difference between the predicted test score levels as the distance to the boundary approaches zero from values lower than zero (in the higher density commuting zone) and the predicted values of the outcome as distance approaches zero from positive values (in the lower density commuting zone). In short, I predict these limit values through estimation of separate local regressions on either side of the boundary and comparing the point-estimates at the limit.

These estimations can be affected by choices about the local estimation procedure. Following common contemporary practice (see Cattaneo et al. 2017, 80) I use a local linear polynomial with a uniform kernel (which weighs all observations within the bandwidth equally) to predict values at the boundary when approximated by either side. The decision on the bandwidth to use determines the range of observations that are considered close enough to the boundary for estimating the local discontinuity. Rather than using an ad hoc bandwidth, I use mean square error (MSE)-optimal bandwidth. This finds the optimal value for the bandwidth that minimizes the tradeoff between the bias driven by using observations far from the boundary and the variance driven by using too few observations.

Instrumental variable strategy

Next, I turn to an alternative and complementary empirical strategy. I use a series of instrumental variables specifications in order to assuage concerns about reverse causality or omitted variable biases that may cast doubt on the estimates. As is common in the literature on agglomeration economics, (see for example Combes et al. 2010 or Nunn and Puga, 2012), I first focus on the nature of the terrain and its role in enabling the settlement of different population levels. A plausible instrument is then the fertility of the land along with closeness to sea, in so far as it conditioned the capacity to feed large numbers of people in an agricultural economy. This provides a historical determinant of contemporary density levels that cannot be due to the quality of education system. Since these physical determinants of density have little immediate relation with the structure of the economy today and possible differences across groups, and in particular with the importance of human capital in economy, reverse causality is less of a concern.

A second instrument is suggested by a separate argument that seeks to explain presence of greater public school choice in denser areas is made by Fischel (2009) to the effect that school districts were by and large fixed during the high school movement (1910-1940) to be of sufficient size to be able to sustain a high school. This meant that the geographical size of districts today is heavily influenced by their density during that period (in turn related to geographical determinants). Density in the 1930s thus influences the geographical size of districts today and so, the availability of commutable districts in a given area.

This narrow effect of density on these institutions also means it is unlikely to have effects on other predictors that may drive the divergence across groups in education outcomes. Probing it further, the main concern about the use of this instrument is that these longstanding determinants set agglomeration processes in motion in a way that even if the relationship has originally little to do with education, denser places over time become different places in ways that may be related with education outcomes. It may be that they attract people from more extreme parts of the distribution of skills (e.g. those who are innately higher achievers and relative low achievers), for instance, that historically denser areas are the first to have the critical mass to create schools and universities that benefit and attract higher socioeconomic status groups. Most of the potential biases for this instrument suggest its estimates may, if anything overstate the effect of density on the socioeconomic gradients in student outcomes.

A third instrument attempts to produce estimates free of the biases that these longstanding processes may generate. Instead, we use shorter term predictors of density of the student body: the local number of students by cohort 8 years before (population in 2000) combined with national fertility levels to predict student density in 2007.⁷ Predicted density of K-12 students at time *t* is then given by the (national) fertility rate at the start of the period *t-x* (x=8 in the base case) for each age cohort, multiplied by the density of the females in each age cohort-area.⁸ This latter number is given by the ageing by *x* years of the cohorts of females present in the district in time *t-x*. The predicted density would match density exactly if there was no migration from the areas, fertility rates remained the same in the x years in the period and, given that we use national rates, if there was no across-district variation in rates.

With this instrument, the variation used is the predicted part of contemporary density levels, discounting any short-term adjustments potentially due to the quality of the education system and also recent migration of people with different backgrounds and economic fluctuations that may affect the education system. The remaining variation that the use of predicted density will not take into account is thus the short-term changes in the attractiveness of areas or districts. Arguably, migration adjustments across commuting zones are driven in the short term by families seeking new job opportunities and so with high commitment levels to education. For that reason, I would expect the relation between predicted density and outcomes, rid of gradient-increasing short-term movements of people to understate the true causal relation between density and outcomes.

⁷ This is similar to Maestas et al.'s (2016) instrument for the ageing of the population and inspired by Bartik (1991)

⁸ Specifications using x=18, which use data from the 1990 census lead to similar results.

I use then three different, long- and short-term instruments which in principle may bias the coefficient of interest in different directions. They then provide bounds for the magnitude of the true effects.

Results

Descriptive Results

I briefly document the variation in average performance across different parts of the country before turning to establishing its relation with density levels. There are very substantial differences between the average performance levels across different parts of the country. These differences across commuting zones are reflected in the finding cited above and shown in column 5 of Table 1, that geographical areas are at least as explanatory as basic demographics, as shown in the doubling of the R^2 when, in addition to individual controls, we add commuting zone and district fixed effects. This high explanatory power of geographical area mean effects can be seen more directly: if we take the distribution of the commuting zones effects in the models with commuting zone fixed effects, the difference between the average effect of being in a commuting zone that performs at the 75th percentile and those at the 25th percentile is .26 standard deviations in student test scores, after the addition of demographic controls. The difference between the 90th and 10th percentile is half of a standard deviation in test scores. This is shown in panel A of Table 2. By contrast, the average white non-white gap in our sample is .32 SD. To give a tangible sense of what the commuting zones are and how they stack in terms of both density and performance, we also show the top 10 commuter zones in terms of density in Panel B of Table 2. They all feature in the top 20% of commuter zones by average student outcomes.

I turn from the description of the differences across commuting zones in outcomes of students, to the role that geographic agglomeration has in explaining these differences. I look first into whether there is a relation between density and average effects (prediction 1). Figure 2 plots individual level data in 30 bins along the log density axis without (top chart) and with demographic controls (bottom chart), which suggests a positive relation between log density and student outcomes, on average. In regression form, column 1 of Table 3 shows that before we add any individual controls, there is no clear pattern between density and average scores. As I add linear individual controls, and state fixed effects, a

stronger positive relation between density and outcomes emerges (α = .029 for reading and α = .025 for math in the fully specified model 4).

The second prediction is that average and relatively small in magnitude positive relation masks significant heterogeneity across the different socioeconomic groups. As a first approximation to the effects for different groups, we use quantile regression to break down the effects for the first 9 deciles of the distribution of outcomes (the 10th is too imprecisely estimated). Figure 3 shows that while the average effect of density may be positive, the effects actually differ substantially along the distribution of outcomes. While the point estimates are *negative* for those that are at or below the 30th percentile of the distribution of outcomes above that third decile. The positive effect of density is also larger the higher the decile. Denser commuting zones are therefore more unequal: along the distribution, low performers do worse and high performers do better.

So far I have not characterized the groups that behave differently and just used their position in the distribution of outcomes. Prediction 2 is, more specifically, that differences in test scores by socioeconomic status get exacerbated in denser areas. In Table 4, I show the results for both reading (panel A) and math (panel B). When I divide the sample by the available indicators of socioeconomic inequality the results match the prediction: poorer students do worse in denser areas, while richer students do better: for both outcomes, model 1 of Table 4 shows a negative and significant interaction effect of density with being a recipient of free and reduced lunch and, similarly, a positive and significant coefficient of the interaction between density and having parents who attended college (model 3). These are the preferred estimates since specifications that include demographic characteristics would attenuate results by socioeconomic status, as demographic controls are correlated with indicators of socioeconomic status. The results, however are directionally robust to the addition of individual demographics in models 2 and 4. These are relatively large differences: to take differences in reading (Panel A), from columns 1 to 4 we can see that whether we measure socioeconomic status by free or reduced lunch status (models 1 and 2) or parental college attendance (models 3 and 4), being in a 10% denser commuter zone is related to a .2-.4% SD increase in the outcome inequality across groups, or between 1-2% of the average gap in outcomes between groups. In each specification, this is driven by the

higher performance of those of high socioeconomic status coupled with the lower performance of those of low socioeconomic status: concretely, the effect of a 10% increase of density for those not on free and reduced lunches is a .2% standard deviations on reading (from model 1 of Table 4, α = .020), while for those on free and reduced lunches it is -.2% (in the same model, $\alpha + \gamma = -.024$).⁹

In Figure 4, we see graphically the pattern of differential effects of density on outcomes once we divide the sample by four binary demographic indicators. The pattern of diverging fortunes as density increases is clear by our main two indicators in charts A (free and reduced lunch) and B (parents who attended college) of Figure 4. By racial group, the advantaged group (whites and Asians) see their outcomes increase with density, while Blacks and Hispanics do not seem to have a density gradient in either direction (chart C). The two remaining indicators, being an English learner and having a disability are the least reliable indicators of socioeconomic status and do not lead to divergences between the groups along the density gradient (D and E). When taking just a summary measure of these measures of deprivation in an index with equal weight for each indicator in plot F, we observe the predicted pattern of divergence along the density axis of the groups with above median levels of deprivation compared to those with below median levels of deprivation.

Geographic continuity specification results

One of the advantages of any geographic regression discontinuity design is that it has a clear visual representation. Figure 5 displays the full support of the data (in 50 equally sized bins on each side of the boundary) and we can inspect visually the discontinuity of

⁹ I am able to replicate these results using data (compiled by Reardon et al., 2016) od all state exams results in the country through grades 3-8 in math and English, Language and Arts. This data contrasts with the NAEP sample but is only available in aggregate form for district. I am forced to use average income levels and average test scores in districts or commuting zones. The results from these district level regressions, however, are consistent with those found for the individual level ones. The model in Table A1 reproduces directionally the findings of Table 4. Taking model 2 (reading) at average levels of Free and Reduced Lunch students (42%), district density is positively associated with test outcomes. This relation is negative for districts above the 92th percentile of FRL (81%). In Table A2, I am able to use average district household income as a continuous proxy for socioeconomic status. In model 2, the relation is similarly positive at mean levels of average district household income (57,649) and above and is negative for districts below the 48th percentile of average household income (57,011). Although it need not be the case that average district scores bear the same relation with density as individual level scores it is likely that they are, gicen the sorting in districts by groups of similar income. It is reassuring therefore that the results are consistent across these datasets.

average student outcomes across the commuting zone density discontinuity. Analytically, the commuting zone boundaries I use look as follows. Of the 152,388 reading test-takers for whom there is zipcode information, 135,113 observations are such that the student density level difference between the commuting zone they are in and the nearest commuting zone is greater than 3.5 students per square kilometer. The average distance to a commuting zone boundary in our sample is 28 km for those in denser commuting zones and 22 for those in less dense commuting zones than their neighbors. The average drop in density across boundaries is a substantial 142 students per square km, higher than the mean density in our sample of 115 and about half of the density at the 90th percentile level (291 students per square km).

Visually, in Figure 5, it is clear that along with the drop in density across the boundary, there is a drop in quality. Zooming in closer to the boundary and looking at the inequality across different groups, in the two panels of Figure 6, I look separately at the effect of the drop in density treatment for test takers who receive free and reduced lunches and those who are not. As predicted, the effect of a drop in commuting zone density across the boundary is accompanied by an increase in scores for students on free and reduced Lunches but a drop for those who do not.

I turn to the numerical estimates of the effect of the drop in commuting zone density levels. For full transparency and simplicity of the specifications, rather than estimating models where density is interacted with indicators of low socioeconomic status, I run separate regressions for the disadvantaged and advantaged of these groups, and then take the difference between the value at which both local regressions intersect with the y axis, i.e. the difference between predicted $\hat{Y}(x=0)$ for each of the estimations, as $x \uparrow 0$ and $x \downarrow 0$.

The results are presented in Table 5. They collectively suggest that around the optimal bandwidth for each indicator of socioeconomic status, the effect of a drop in density across the boundary is negative for high socioeconomic status students, while it is positive for low socioeconomic status students. First, for students that are recipients of free and reduced lunches, being in a commuting zone that is less dense than the one the test-taker is in and closer than 2.3 km leads to an increase of .32 standard deviations in reading test scores -and this is highly statistically significant. The converse is true, for those that do not receive free or reduced lunches: there is a decrease in test performance across boundaries when there is

a drop of density of about .26 standard deviations. The effects on inequality across cleavages are smaller for differences in parental education: .12 SD for non-college educated parents and a not statistically significant -.01 for college-educated ones. For racial cleavages, the effects are larger and significant, .54 for blacks or Hispanics and -.27 for whites and Asians. For inequality around English learner status, we find a weak pattern in the opposite direction: -.01 for English learners and .06 for non-English learners. It is interesting that for the cleavage that may not intuitively reflect socioeconomic status, disability status, there is an effect for disabled students of a drop in density is negative (-.12), while it is positive if not significant for non-disabled students (.08). For the summary index of socioeconomic status that averages these measures, the effect on the cleavages around average values of that division conforms with the expectations: .21 SD effect for below median SES test-takers and -.07 effect for high SES, according to the index.¹⁰

I look at two main potential threats to the validity of the estimates for these geographic regression discontinuity estimates. The first are concerns of the strategic positioning of observations on either side of the boundary and I look at whether there is bunching on either side of the boundaries. If there were different numbers of observations across the boundaries, this would suggest strategic positioning on one of the sides and it would be harder to defend the idea that the positioning on either side is as good as random and so, that the respondents on either side of the boundaries. There is a slightly greater concentration of observations just inside of denser commuting zones, but the difference is small. A formal test of the equality of density above and below the cutoff reassuringly shows that I cannot reject the null hypothesis of equality of frequencies on both sides of the boundary (p-value of .31).

The second threat to the validity of any regression discontinuity design is the discontinuity in covariates that may be related to the outcomes, which may then confound the effect of the treatment. I look at individual-level covariates. No significant difference with the

¹⁰ Note that these estimates are, generally speaking, larger than the OLS estimates. Part of the explanation is that the average drop in our subsample of within bandwidth observations is very large. The estimated local average treatment effects in the RD specification therefore comes from a very specific set of observations, contrasting those in the edges between suburban or exurban observations and rural areas.

number of males (p-value of .71), free and reduced lunch status (.69), individualized education programs (.96), college parents (.99), although there are significant differences for English learners (.02), white or Asian (<.01). These differences are somehow reassuring, as many variables do not have a significant difference across the subset of boundaries. In all the specifications where they do not act as cleavages to be investigated, adding indicators for whites or Asian as well as English language learners as controls does not alter the results.

In conclusion, the local estimates of the effect of the drop in density around commuting zone boundaries are directionally consistent with the ordinary least square estimates for the whole sample of test-takers. Hence they provide support for the main empirical contention that density is related to greater levels of average test scores and socioeconomic inequality in test scores.

Instrumental variable specifications results

Table 6 presents results from instrumenting density with the three instruments described. They show, as expected, larger coefficients on the interaction term for density levels in the 1930s and the nature of the terrain (models 2 and 3), while they are about the same size as the OLS estimates when using as instrument for density short-term predictors of density using the sizes of previous cohorts (model 4). In panel A, I present the instrumental variable estimates with no further commuting zone controls. In panel B, I include commuting zone controls in order to block potential mechanisms that are different from those that are related to the channels of exit and voice and may be related to the instruments. These include economic characteristics, such as the share of the regional economy that is knowledge-based (measured by the share of routine jobs), as well as other social characteristics of the commuting zone, such as differences in social capital, violent crime and share of foreigners. For all models, the coefficients on log density are somewhere in between .02 and .07, close in magnitude to the OLS estimates and often larger. That the instrumented models chosen for their differently signed biases turns out not to change the magnitude or significance of the simple OLS estimates substantially should give confidence that true estimates across the support of the data should be in that region.

Exit and voice as explanatory mechanisms

The evidence suggests that in fact density seems to be associated with greater inequality of outcomes. I turn now to whether the data is consistent with the role I claim for exit and voice mechanisms.

Exit mechanism in denser districts

I explore first whether it is the case that the exercise of the exit mechanism is indeed "easier" in denser areas. According to prediction 3, denser areas should have more exit opportunities. In Table 7, I run regressions (aggregated at the commuting zone level) of the number of students the number of schools and districts on the density of the commuting zone. I find first that denser areas are in fact have more students in absolute levels, and that there is indeed a strong positive relation between the density of the commuting zone and the exit opportunities in them through a greater number of schools and districts.

The more substantial prediction 4 is about the patterns of segregation that those denser geographies are associated with. Concretely, the prediction is that the greater exit levels entails that there is less pooling of different types of people into the same schools. This means that there will be more homogeneous schools and districts as well as greater differences across schools and school districts in denser areas. While it is difficult to use good evidence about schools (for instance, no detailed data on family income at the school level is available), there is good evidence from school districts. Using income data distribution at the district level, in panel A of Table 8 I regress three indicators of inequality across districts within commuting zones. These are the ratios in income between districts within the commuting zone at the 90th and 10th percentile of average income (model 1), 90th and 50th percentile (model 2) and 50th and 10th percentile (model 3). Panel B does the same by looking at the same income ratios *within* districts, using the mean of these ratios in the commuting zone as dependent variables.

The positive and significant coefficients in panel A and negative and significant coefficients in panel B shows that while there are greater differentials in average district income within denser commuting zones (higher ratios across districts), there is more homogeneity within school districts (lower ratios within districts). This finding is

consistent with the prediction that higher density will lead to greater socioeconomic segregation across districts.¹¹

This socioeconomic segregation will have an impact on students if there are positive peer effects that poor students miss out on by not being in the same schools as richer students. But this impact will be exacerbated if it is matched by greater inequality in school characteristics in denser areas along socioeconomic divides. There is in fact some suggestive evidence that, in denser areas, the types of school inputs that students of varying socioeconomic status go to are more different. In panel A of Table 9 I regress positive characteristics of teachers serving poor and rich families by the density of their commuting zone: whether they have done Professional Development activities in the previous year, experience as a teacher and Master's or above degree. The positive coefficients on the interaction between density and free school lunches suggests that directionally at least that the density gradient in positive characteristics of teachers that students have differs for lowand high-SES students: in denser areas, the characteristics of the teachers are more different for rich and poor students. As for the scholarly characteristics and behaviors of students and their schools in areas of different densities, Panel B of Table 9 regresses student attributes in denser and less dense areas by socioeconomic status: the number of books they have at home, newspapers, whether they talk about studies at home and whether they talk about studies with friends. All but especially the last two measures will be a combination of student and school differences, as better schools would encourage parents to be involved in their children's studies and greater discussions and group work among peers. I find that while students with higher socioeconomic status seem to have more books, talk more about studies at home or with friends in denser areas, that is not the case of students on free or reduced lunches. In each case, this suggests that the gap in scholarly characteristics and behaviors between richer and poorer students is greater in denser areas.

Voice mechanism

¹¹ Alternatively, county-level data coming from tax returns has been made available by Chetty et al. (2014). This has the advantage of coming from administrative data and thus, includes all or most of the population, decreasing any biases there may be in the survey data. The results analogous to Table 8 for counties is in Appendix Table A3, indicating that similar dynamics result from other types of jurisdictional differences.

Turning to voice, in line with prediction 5, I expect that there is no compensating voice mechanism for poorer families to make up for the increased segregation they experience in denser areas. Table 10 relates nationally representative survey evidence on participation in and knowledge about school matters with density and socioeconomic status. In models analogous to the descriptive individual-level regressions for test scores above, the main relation between the two is in line with longstanding general findings about political engagement: there is a positive correlation of engagement with income and education (e.g. Brady et al. 1995), which implies lower levels of voice for poorer parents. Models 1 and 2 of panel A, show a positive and significant coefficient of being a college graduate on board election participation and attention paid to education: the more socioeconomically advantaged group pay more attention to education and tend to vote more in school board elections. This is despite not having a different assessment of the quality of their local or national schools (models 3 and 4).

Having established this pattern in line with socioeconomic gradients found for all types of political activity, I look at whether these differences across groups change in areas with greater density levels. In particular, I am interested to see if the detrimental effect of the exit mechanism for richer families is tempered through the increased use of the voice mechanism by poorer students (facilitated by the greater potential for organizing in denser areas)¹² The empirical models shows that density does not have a positive effect on lower socioeconomic status respondents (α in panel A, models 1 and 2) and so, they do not increase their participation –even though we have established test score performance is, on average, worse. Higher socioeconomic status families, however, seem to get *less* involved or exercise less voice in denser districts (α + γ is negative), although only by a small amount: a 10% increase in density places of about 1.6% (.0029/.18).

In panel B of Table 10, I look at other measures of activity and opinions that may conform to a broader definition of voice. For instance, greater involvement in school may be related to having stronger opinions in favor of policies that involve substantial departures with current practices. I exploit differences across groups in attitudes towards a number of very

¹² There are no obvious exogenous source of variation in the availability of voice such as variation in presence of school boards, since this typically vary, like many education policies, by state.

specific policies related to education reform such as advocating for more choice in the form of vouchers or charters and for an increased variable portion of teacher pay. The patterns are mixed: in panel B of Table 10 the support for measures of reform towards education are overall not very different between college graduates and those who are not, suggesting similar policy interests. We do observe that these reforms are more popular in denser areas, although these are not driven particularly by higher or lower socioeconomic status groups: pressures for reform are no different, in denser areas, for districts or schools attended by low socioeconomic status individuals (no significant interaction γ between density and SES indicators).¹³

In summary, there is no countervailing increase in voice for disadvantaged groups in responding to the lesser outcomes they experience in denser areas. The analyses suggests that for poorer families there is no density gradient in the exercise of voice, no different assessments of quality of schools and no different levels of support for education reform. Low socioeconomic status families do not do anything differently, despite their children doing worse in schools. By contrast, higher socioeconomic status individuals do use voice mechanisms less in denser areas. Given the patterns of school segregation we identified, in denser areas there will be less participation in worse performing poorer districts as more vociferous families exit and others do not increase their participation. But there will also be less participation in high performing richer districts, as families participate less. Taking these findings together the clear cleavage between the exercise of voice between groups with different socioeconomic status individuals exercise it a little less. There is no evidence that greater availability of information, media outlets, ease of organization and, ultimately, lesser quality of schooling, result in greater voice in denser areas for low SES groups.¹⁴

¹³ Although I focus on whether density generates any new cleavages between these groups, one hypothesis for why we may see people in denser areas be more supportive of education reform is that the likelihood of there being more information and policy entrepreneurs in denser areas. Two of these three policies (charters and vouchers) involve choice, which just like public school choice is more feasible in denser areas.

¹⁴ I provide an imperfect test of the general proposition, defended by Hirschmann, that exit and voice are to an extent substitutes and that there is an inverse relation between the two. If exit and voice were independent (no arrow 4 between exit and voice in the diagram above), there would be no question that density had a positive impact on educational inequality. In line with the prediction, I do find some suggestive evidence that there is on average an inverse relation between exit and voice, as Hirschman postulated. In Appendix Table A4 (panel A, models 1 and 2), we see that there is a negative relation between the number of districts (our

Testing directly the importance of mechanisms in explaining the relation between density and outcomes

So far I have provided evidence of how the specific mechanisms of interest, exit and voice are related to density and thus may explain some of the results. This is suggestive but gives no sense of their importance compared to that of other potential mechanisms, such as the economic characteristics (and hence incentives available) or the non-school or social characteristics that density may be related to. I do a simple test that includes in the main individual-level regressions (parents who attended college variables) ones that include proxies for the strength of those mechanisms. These proxy variables for each of the mechanisms are for choice number of schools and districts; for voice, average attention paid and board election participation; for economic characteristics, the share of routine jobs in the local economy (an indicator of inequality in the economy); for social characteristics, violent crime levels, a measure of social capital (essentially participation in voluntary associations and the church), racial and economic segregation levels.

If any of these were indeed a mechanism or mediator, when the corresponding variable was included in the regression analysis, the effect of density for either the high or low SES group (or both) would be significantly attenuated. The results are shown in Table 11. Starting with the basic OLS model 1 (replicating model 3 of panel A, Table 4), I add in each model successive variables related to mechanisms. We see that the density coefficient for low SES is attenuated as I add choice (model 2), voice (model 3) and social cohesion indicators (model 5), although not when I add difference on the typology of the economy in denser areas (model 4). This is also the case for the fully specified model 6, with all variables. Choice in particular seems to explain the bulk of the negative effect of being in denser areas on student outcomes for low socioeconomic status groups (the coefficient on log density goes from -.0159 to an insignificant .00884 when we include choice measures) with a smaller change for voice. The change in the coefficient when I include social

measure of exit) and the amount of voting in school board elections. Controlling for their opinion on the quality of the school, respondents seem to be more likely to participate in school board elections if there are fewer exit options in their district. This seems to be moderated by the level of racial segregation in the commuting zone (model 2) and income segregation (model 3). Given the differential benefits we observe of being in denser areas, it may be that this responsiveness of the exercise of voice to exit is very different for different groups.

characteristics such as violent crime, social capital and segregation measures is large too and signals that denser areas are very different from others in other ways not directly related to schools. However, throughout all specifications, including the fully specified model 6, where I add all variables, I do find that there is a strong positive and persistent effect of density on outcome inequality that our mechanisms do not fully explain.

In Table 12, the same analyses done at the aggregate district level suggests that the largest mechanism explaining the relation between density and the level of variation in district-level inequality in school outcomes is related to school choice, as the inclusion of school choice indicators is the only one that makes the coefficient on density insignificant (column 2). This may be partly explained accounted for by the difference between a density gradient on the binary indicator of socioeconomic differences (parental college graduation) being too coarse in capturing the type of inequality associated with density. The aggregate analysis in Table 12 does not impose a particular individual socioeconomic indicator and focuses on inequality alone.

Interpretation and policy implications

This paper has documented differences in the heterogeneity in student outcomes across local areas in the United States and tried to isolate the effects of variation in density within a theoretical framework that considers how socioeconomic groups benefit differentially from being in denser areas. In short, denser areas seem to increase average levels and inequality in outcomes and this appears to be mediated by the higher levels of choice available to families in these areas. This benefits many families but particularly richer ones and they harm poorer ones who, in less segregated areas benefit from attending the same schools. Geographic separation facilitates the divergence in the education that students of differences in school finances, types of teachers, the management and culture of the school or classroom practices that are subsumed in the variety of mechanisms included in the segregation explanation. With the limited data available, I have shown some limited evidence that there are in fact divergent inputs and experiences in schools in denser areas across socioeconomic grouops. The result is that at least in the case of public schools, a harmonious balance between exit and voice as mechanisms for ensuring high quality public

schools is not available to all and results in greater inequality in student outcomes. Greater exit in denser areas allows high socioeconomic status families to choose the best schools and districts, while both exit and voice break down for poorer families, who are unable to take advantage of exit or to exercise voice in an effective way –likely through a combination of barriers to exit through house prices and barriers to voice given by information, time commitment and other challenges, independent from density.

Concerns about inequality in school outcomes in denser areas such as the larger metropolitan areas should lead to policies that tackle these structural differences. The geodemographic mechanisms presented here result in stable, difficult to change economic segregation levels not traceable to pernicious school policies, which likely means there are no easy policy solutions. However, three types of policies may be able to contribute towards mitigating such dynamics. The first group of policies involves diminishing the impact of the increased opportunities for exit that richer families enjoy in denser areas. One way of achieving this would be to remove or weaken the jurisdictional barriers that enable and exacerbate the economic segregation of schools. Busing across areas of different socioeconomic levels and open enrollment within metropolitan areas ought to be considered. Given that residential segregation by economic status is an long-established and important part of American society and the political challenge of coordinating whole metropolitan areas with many jurisdictions, this may ultimately prove very hard to make progress on –although it should be noted a form of open enrollment limited to the core cities of certain metropolitan areas such as New York or Boston is already in place.

The second group of policies focuses on ensuring exit options for the poor are available, rather than suppressing opportunities for the rich. Private school choice in the form of charters or voucher programs could ensure that the jurisdictional barriers to public school choice are less important. Moreover, the introduction of such private choice programs has been shown to improve public schools (Figlio and Hart, 2014). By contrast, given the well-established differences across groups in the exercise of voice, any measure that tries to introduce a more effective exercise of voice through increased information or organizational support is likely not to be very effective. A third group of policies that does not try to mitigate the mechanisms described but instead tackles the consequences of those

mechanisms would be dedicated compensatory mechanisms for the schools that are more likely to be doing less well due to the inequality I have documented. In this sense, beyond compensatory spending should likely move the focus to creative policies that ensure that the inputs into different districts are of the same quality: e.g. that teachers are similarly qualified and experienced. An even less interventionist way of mitigating those differences that goes back to the heart of the puzzle of the lack of extension of high quality schooling across the country would be measures that ensure continuous collaboration sharing of practices, facilities or resources across nearby schools serving different communities may be beneficial.¹⁵ Lastly, we have seen that it is likely that there are differences in the families and social environments that disadvantaged students experience in denser areas, beyond the schools they attend. It is no surprise then that successful urban school models serving disadvantaged students such as the Harlem's Children Zone, provide all kinds of services from health, nutrition, guidance, after-school programs and others (Dobbie and Fryer, 2011). While disadvantaged students may benefit less from pooling with richer students in dense areas, the potential of efficient offerings of supplementary services in those areas given agglomeration economies could in principle be an opportunity.

Limitations and possible extensions

This research suggests naturally several extensions that would build on the limitations of the present study. First, deepening the study of mechanisms would require a focus on a wider range of differences across schools attended by different socioeconomic groups that perpetuate the gap that we observe in test scores. Rich local data on the functioning of urban and rural school systems attended by similar socioeconomic groups and ethnographic insights about the interactions between students and teachers in places where there is socioeconomic pooling and where there is greater socioeconomic segregation could illustrate the mechanisms I suggest are at play.

Second, the promise of density as a driver of greater exercise of voice by all groups failed to materialize in this study. For a closer look at the importance of the voice mechanism it

¹⁵ A scheme of sponsorship of academies in the UK whereby successful private schools (among other entities such as universities or businesses) can sponsor new academies has been running for almost two decades. There is emerging evidence of the success of such sponsorships in improving student performance (Eyles and Machin, 2015)

would be necessary to look at instances where they may be sharper and exogenous variation on the availability of "voice" across different areas, such as whether school boards are elected or appointed or integrated in multi-domain city governments or not, the types of elections in which they are elected, as well as differences in political traditions of facilitators of voice, such as the thickness of media markets or the introduction of new communications technologies. This should also help to establish more definitively whether policies to increase voice in school matters of low socioeconomic status groups are potentially useful in improving the quality of schools.

Lastly, education is the largest local service, but similar dynamics may arise in other contexts, both in terms of policies or where the intensity of school segregation mediated by residence is less acute. Many developed countries with no Anglo-American heritage are likely to have less local control of schools and more centralized funding as well as management of schools, and one may expect that this would limit the density gradient on inequality across groups. Similarly, even in the United States, we may expect that other policy domains such as healthcare provision, where residential sorting may be less intense and provision more concentrated. How representative K-12 education in the United States is of broader dynamics applicable to urban-rural divides in all domains and institutional context remains an open question. Understanding the differences between the context I have studied here and others would likely bear important insights into general propositions about the importance of the exit and voice dynamics. It should also inform jurisdictional and policy design, as the US and other countries urbanize.

Conclusion

I have presented a partial explanation for the differences in educational outcomes across commuting zones and of the extent of inequality across different economic groups in different areas. I document that density or agglomeration, a phenomenon that has been found to have almost unanimous positive consequences across different outcomes may have a positive average effect on education outcomes, but also may be a driver of greater inequality. I estimate these relations between density of outcomes using geographic regression discontinuity estimates and a series of instrumental variables and find support for a causal interpretation of these claims. While the average effect of density is indeed positive for educational outcomes, districts at the 90th percentile of performance gain from increases in density about twice as much as those at the 70th percentile and the pointestimates these effects of density are negative below the 30th percentile. Evidence presented of less fragmentation of school districts and income segregation results in less dense areas is consistent with the view that the availability of more public school choice is at least partially driving the results. I also present some direct evidence that school choice can explain part of the relation between density and negative outcomes for low socioeconomic students. My results would suggest that denser areas do not "lift all boats" equally but that children who are disadvantaged on observable characteristics do less well in denser areas, by no longer being pooled with more advantaged peers, or no longer being in the same boat as them.

At the same time, I also present some evidence that the greater exit mechanism in denser areas that benefits higher SES students is not compensated by greater assertiveness or "voice" by families with lower socioeconomic status in denser areas. In both dense and less dense areas participate less in activities that may contribute to improving school districts.

This paper constitutes the beginnings of a research agenda that roots education inequality on persistent institutional characteristics, such as the geographically-determined fragmentation of school catchment areas through differentiated school districts. It is, naturally, connected to the stark differences that different metropolitan areas experience in intergenerational mobility levels and that has been documented by Chetty et al. (2014) and will need further exploration. The expected increase in urbanization of the United States means these dynamics will become more important in the future. No easy policy solutions are available for what are in effect very long-established dynamics, as they are rooted in demographic and jurisdictional conditions that are difficult to change. Understanding these dynamics at a finer level and in different contexts, including beyond education and developing and testing creative policy solutions should become a high priority for scholars.

References

Alesina, A., Baqir, R., & Hoxby, C. (2004). Political Jurisdictions in Heterogeneous Communities. *Journal of Political Economy*, *112*(2), 348.

Alesina, A., Spolaore, E. (2003). The size of nations. MIT Press

Barrows, S. (2015). Performance Information and Retrospective Voting: Evidence from a School Accountability Regime. Harvard PEPG working paper 15-03.

Bartik, T. (1991). *Who Benefits from State and Local Economic Development Policies?*. W E Upjohn Institute.

Berry, C., Howell, W. (2007). Accountability and local elections: Rethinking retrospective voting. *Journal of Politics*, 69.3

Brady, H., Verba, S., Schlozman, K. (1995). "Beyond SES: A Resource Model of Political Participation" *American Political Science Review* 89.2.

Campante, F., Do, Q.-H. (2014): "Isolated Capital Cities, Accountability, and Corruption: Evidence from US States". *American Economic Review* 104.8.

Cattaneo, M. D., Frandsen, B., Titiunik, R. (2015). "Randomization inference in the regression discontinuity design: An application to party advantages in the U.S. senate". *Journal of Causal Inference*, 3.

Cattaneo, M. D., Idrobo, N., Titiunik, R. (2017). "A Practical Introduction to Regression Discontinuity Designs". Monograph prepared for Cambridge Elements: Quantitative and Computational Methods for Social Science. Cambridge University Press.

Chetty, R., Hendren, N., Kline, P., Saez, E. (2014). "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States". *The Quarterly Journal of Economics* 129.4.

Chetty, R., Hendren, N. (2016). The impacts of neighborhoods on intergenerational mobility: Childhood exposure effects and county-level estimates. *NBER* WP 23002.

Combes, P., Duranton, G., Gobillon, L., Roux, S. (2010). "Estimating agglomeration economies with history, geology and worker effects". In Glaeser, ed. (2010), *Agglomeration economies*"

Dahl, R. (1967). "The City in the Future of Democracy." *American Political Science Review* 61.

Deutsch, K. (1961). "Social Mobilization and Political Development" *American Political Science Review* 55.

Dell, M. (2010). "The persistent effect of Peru's mining Mita". Econometrica, 78.6

Epple, D., Romano, R. (1998). "Competition Between Private and Public Schools, Vouchers and Peer Group Effects". *American Economic Review* 88.1

Eyles, A. and Machin, S. (2015): "The Introduction of Academy Schools to England's Education". *Center for Economic Performance Working Paper* 1368.

Figlio, D., Hart, C. (2014). "Competitive Effects of Means-Tested School Vouchers". *American Economic Journal: Applied Economics*.

Fischel, W.A. (2009). *Making the grade: the economic evolution of American school districts*. University of Chicago Press.

Fryer R, Dobbie W. (2011). "Are High-Quality Schools Enough to Increase Achievement Among the Poor? Evidence from the Harlem Children's Zone". *American Economic Journal: Applied Economics* 3(3).

Gingrich, J., Ansell, B. (2014). "Sorting for schools: housing, education and inequality". *Socio-Economic Review* 12.

Glaeser, E., editor (2010): Agglomeration economics. University of Chicago Press

Glaeser, E., Gottlieb, J.D. (2009): "The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States," *Journal of Economic Literature*, 47:4.

Hirschman, A.O. (1970). *Exit, voice, and loyalty: Responses to decline in firms, organizations, and states*. Harvard University Press.

Hoxby, C. (2000). "Does Competition Among Public Schools Benefit Students and Taxpayers?" *American Economic Review* 90.5

Keele, L., Titiunik, R. (2015). "Geographic Boundaries as Regression Discontinuities". *Political Analysis*, 23.

Lafortune, J., Rothstein, J. and Schanzenbach, D.W. (2016). *School finance reform and the distribution of student achievement* National Bureau of Economic Research Working Paper (No. w22011).

Lassen, D. D., & Serritzlew, S. (2011). Jurisdiction size and local democracy: Evidence on internal political efficacy from large-scale municipal reform. *American Political Science Review*, *105*:2

Lavy, V., Silva, O., Weinhardt, F. (2012): "The Good, The Bad and The Average: Evidence on Ability Peer Effects in Schools", *Journal of Labor Economics*.

Murnane, R. (2013). "US High School Graduation Rates: Patterns and Explanations." *Journal of Economic Literature* 51:2.

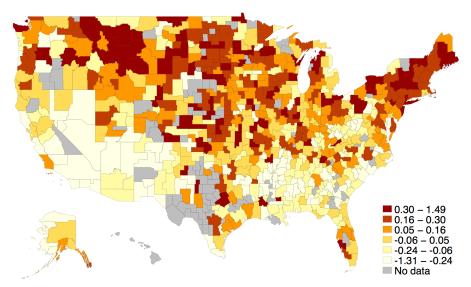
Oates, W. E. (1972). Fiscal Federalism. NY: Harcourt Brace Jovanovich.

Oliver, E. (2001). Democracy in suburbia. Princeton University Press.

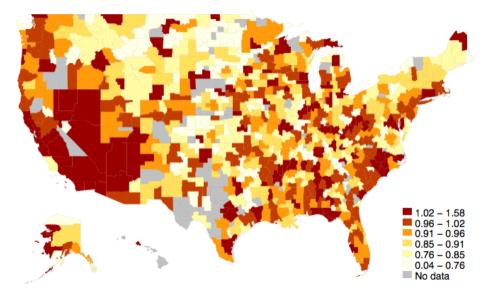
Nunn, N. and Puga, D. (2012). Ruggedness: The blessing of bad geography in Africa. *Review of Economics and Statistics*, 94:1.

Reardon, S. F., & Bischoff, K. (2011). Income inequality and income segregation. *American Journal of Sociology*, 116:4.

Reardon, S., Kalogrides, D., Ho, A., Shear, B, Shores, K., Fahle, E. (2016). *Stanford Education Data Archive*.

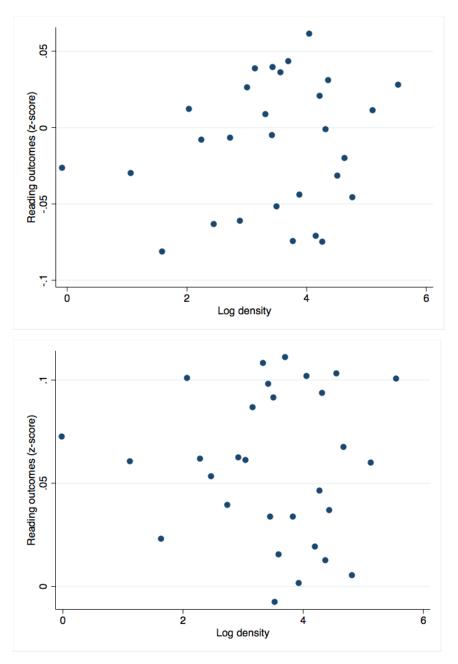

Rodden, J. (forthcoming): *The Long Shadow of the Industrial Revolution: Political Geography and the Representation of the Left.*

Tiebout, C. (1956). "A Pure Theory of Local Expenditures," *Journal of Political Economy* 64.

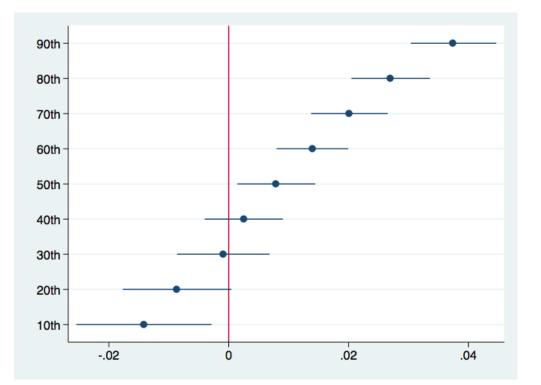

Tolbert, C. M., Sizer, M (1996). "U.S. Commuting Zones and Labor Market Areas: A 1990 Update." Economic Research Service Staff Paper 9614.

United Nations (2014). Revision of World Urbanization Prospects

Figures


Panel A: Average levels in commuting zone

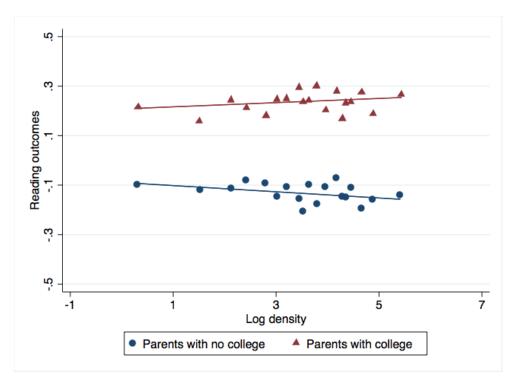
Panel B: Variation within commuting zone

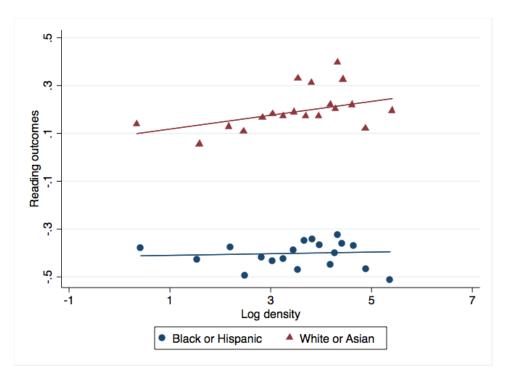

Figure 1: Average and variation of individual student outcomes within commuter zone.

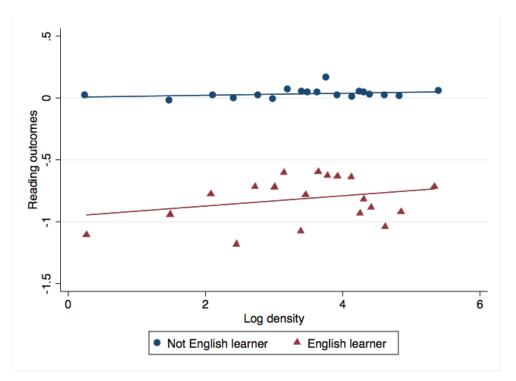

Darker colors signify greater variation within the area, measured by the standard deviation of z-scores in reading within each commuter zone. (N=159,304, 741 commuting zones)

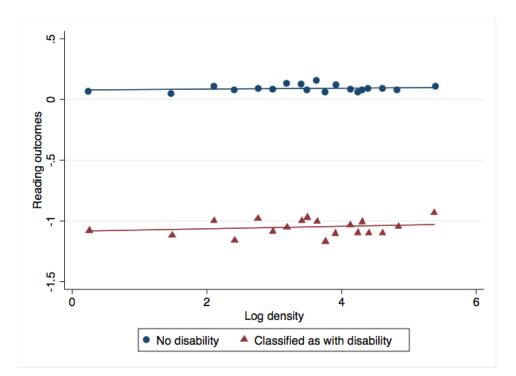


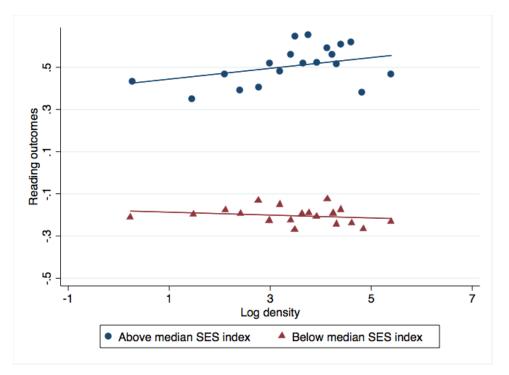
Plot of relation between log density of student enrollment and reading z-scores with state fixed effects and no demographic controls (top) and log density with state fixed effects and parents' college attendance as the sole demographic control (bottom). Each of the dots represents the average z-score of the observations in 30 each equally sized intervals of the variable in the x-axis. (N=159,304)



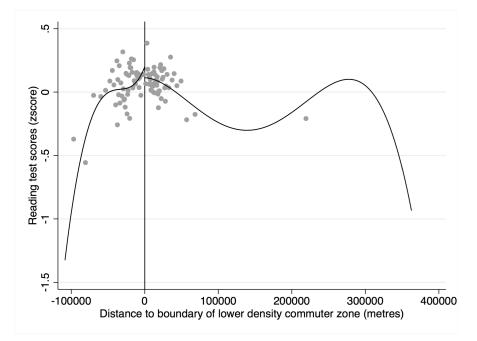

Plot of coefficients from a series of quantile regressions between reading zscores and district log density. Each dot represents the average effect of log density for that quantile. Includes state fixed effects, but not individual demographic controls. (N=159,304)


A: By Free and Reduced lunch status


B: By parents who have attended college

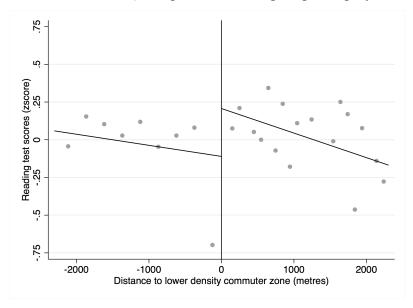

C: By racial group

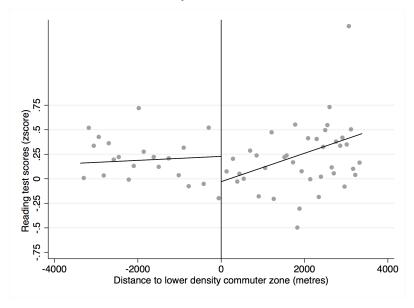
D: By English learner status


E: By disability status

F: By index of socioeconomic status

Figure 4: Relation between density and outcomes for students and four binary socioeconomic status indicators (Free and reduced lunch, parents who attended college, racial group, English learner status and disability status as well as an index of all five indicators.)

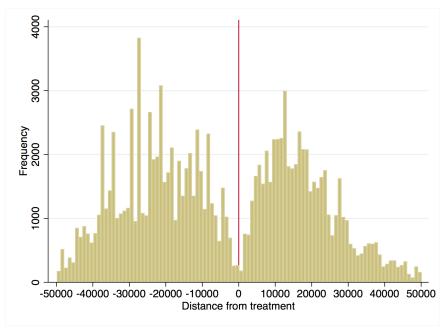

Plots reading outcomes and log density, with observations binned in 20 quintiles for each population subgroup. Plots binned residuals from regressions with no additional controls. For the index, the two groups divide commuting zones into those with below- and above-median number of ones on the other binary indicators. (N=159,304)


Figure 5: Distance to lower density neighboring commuting zone and reading test scores (zscore)

Negative values of the x-variable indicate observation is from test-taker in a higher density commuting zone that its neighboring commuting zone, positive values indicate that it is in

a lower density one. Includes 135,113 observations grouped in 100 equally sized bins (50 on each side of x=0) and plots two 4th degree global polynomial on either side of x=0.

A: Test-takers who receive free and reduced lunch



A: Test-takers who do not receive free and reduced lunch

Figure 6: Distance to lower density neighboring commuting zone and reading test scores by socioeconomic group (zscore)

Negative values of the x-variable indicate observation is from test-taker in a higher density commuting zone relative to its neighboring commuting zone, positive values indicate that it

is in a lower density one. Panel A includes 76,277 observations and Panel B includes 55,182 grouped in each case divided in 50 equally sized bins around the MSE-optimal bandwidth (25 on each side of x=0) and plots a local linear regression.

Figure 7: Histogram with frequency of observations by distance from the commuting zone boundary.

Negative values of the x-variable indicate observation is from test-taker in a higher density commuting zone that its neighboring commuting zone, positive values indicate that it is in a lower density one. N=135,113. Observations are grouped in 100 bins, one for each 1,000 meter interval.

Tables

Table 1: Relative explanatory power of outcome differentials by individual demographics and geographical areas

	(1)	(2)	(3)	(4)	(5)
Basic demographics	X				X
State FE		Х			
Commuting Zone FE			Х		Х
District FE				Х	Х
R^2	0.110	0.032	0.053	0.176	0.233

Results from models regressing z-scores of individual reading scores as a dependent variable and individual demographics and area dummies (as indicated) as independent variables. Source: NAEP microdata 2009
 Table 2: Descriptive differences across commuter zones of different levels of density

 Panel A: Differences in average performance by commuter zone

	Model without controls	Model with controls
Maximum CZ coefficient Minimum CZ coefficient Difference	2.30 -0.03 <i>2.33</i>	2.03 -0.78 2.80
Quartile 90 CZ coefficient Quartile 10 CZ coefficient <i>Difference</i>		0.58 0.06 <i>0.51</i>
Quartile 75 CZ coefficient Quartile 25 CZ coefficient <i>Difference</i>		0.47 0.20 <i>0.26</i>

Panel B: Top 10 commuter zones by student density levels and performance rank

	Average student	
CZname	density	Effect Rank
Chicago-Naperville-Joliet, IL	1,259	125
New York-Wayne-White Plains, NY-NJ	852	103
Philadelphia, PA Metropolitan Division	487	155
Phoenix-Mesa-Scottsdale, AZ	366	67
Washington-Arlington-Alexandria, DC-VA-MD-WV	311	53
Los Angeles-Long Beach-Glendale, CA	291	58
Houston-Baytown-Sugar Land, TX	274	159
Milwaukee-Waukesha-West Allis, WI	254	66
Dallas-Plano-Irving, TX	210	50
San Diego-Carlsbad-San Marcos, CA	206	133

Panel A: Coefficients on commuter zone dummies from regressions of student outcomes (624 commuter zones). Panel B: Effect rank is the rank of the coefficient dummies in regression of student outcomes with individual controls.

	55	0		
	(1)	(2)	(3)	(4)
CZ log density	0.00618	-0.000404	0.0100	0.0286***
	(0.0179)	(0.0122)	(0.00652)	(0.00415)
Free or reduced lunch		-0.680***		-0.478***
		(0.0168)		(0.0120)

White or Asian				0.435***
				(0.0145)
State FE			Х	Х
Observations	148950	148950	148950	148950
R^2	0.000	0.110	0.032	0.159
Pane	l B: Effect o	on math test s	scores	
	(1)	(2)	(3)	(4)
CZ log density	0.00992	0.00201	0.00497	0.0247***
	(0.0170)	(0.0119)	(0.00821)	(0.00535)
F 1 11 1		0.72.4***		0 500***
Free or reduced lunch		-0.724***		-0.508***
		(0.0188)		(0.0122)
White or Asian				0.477***
				(0.0146)
State FE			Х	X
Observations	141700	141700	141700	141700
R^2	0.000	0.126	0.040	0.190
Coefficients of OLS model r	arrassing z sa	rac of individu	l reading (Danel	A) and math

 Table 3: Effect of commuter zone density on the average performance in reading scores

 Panel A: Effect on reading test scores

Coefficients of OLS model regressing z-scores of individual reading (Panel A) and math (Panel B) in 8th grade NAEP test scores on commuter zone density levels. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

Pa	inei A: Keaaii	ig iesi scores		
	(1)	(2)	(3)	(4)
CZ log density	0.0204***	0.0360***	-0.0159*	0.0285***
- •	(0.00536)	(0.00605)	(0.00634)	(0.00534)
CZ Log density X	-0.0434***	-0.0134		
Free Reduced Lunch	(0.00790)	(0.00907)		
Free or reduced lunch	-0.471***	-0.397***		
	(0.0265)	(0.0289)		
CZ Log density X			0.0407***	0.0165*
Parent graduated college			(0.00758)	(0.00700)
Parent graduated ollege			0.242***	0.258***
			(0.0254)	(0.0236)
Individual demographics		Х		Х
Observations	136734	136716	119383	119365
R^2	0.127	0.196	0.074	0.175
1	Panel B: Math	n test scores		
	(1)	(2)	(3)	(4)
CZ log density	0.0240^{+}	0.0499***	-0.0121	0.0396***
	(0.0124)	(0.00987)	(0.0151)	(0.00888)
CZ Log density X	-0.0513***	-0.0272**		
Free Reduced Lunch	(0.00896)	(0.00978)		
Free or reduced lunch	-0.520***	-0.336***		
	(0.0300)	(0.0306)		
CZ Log density X			0.0525***	0.0277***
Parent graduated college			(0.00797)	(0.00691)
Parent graduated College			0.289***	0.248***
			(0.0248)	(0.0228)
Individual demographics		Х		Х
Observations	136734	136716	119383	119365
R^2	0.127	0.196	0.074	0.175

 Table 4: Relation between commuting zone density and the socio-economic gradient of performance in reading scores

 Panel A: Reading test scores

Coefficients of OLS model regressing z-scores of individual reading (Panel A) and math (Panel B) in NAEP 8th grade test scores on commuter zone density levels and socioeconomic status. Includes individual demographic controls as indicated and state fixed effects in all cases. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

	Low SES: es-	High SES: es-	Low	SES:	High	SES:	Low SES: N	High SES: N
	timate	timate	Bandwi	dth	Bandw	idth		
			(km)		(km)			
Free reduced lunch	0.318**	-0.258**	2,30	02	3,3	77	55,182	76,277
	(0.011)	(0.006)						
Parents who attended college	0.120**	-0.008	2,76	51	1,7	35	51,723	57,067
	(0.012)	(0.021)						
Race	0.536**	-0.269*	2,58	84	91	8	40,675	87,978
	(0.011)	(0.013)						
English learner	-0.006	0.056	6,35	50	74	0	9,377	123,108
	(0.075)	(0.075)						
Disability status	-0.119*	0.081	4,27	71	84	1	18,090	114,396
	(0.036)	(0.066)						
SES index	0.209***	-0.070**	1,57	75	4,2	36	97,310	35,181
	(0.004)	(0.011)						

Table 5: Geographic regression discontinuity estimates of effect of drop of commuting zone density on reading test scores, by low and high socioeconomic groups

Displays, for each indicator of socioeconomic status, the RD estimates of the effects of being in a lower density commuter zone than its nearest neighbor, by low and high socioeconomic status group. Standard errors are in parentheses. It also displays the MSE-optimal bandwidth and the number of observations included in the bandwidth, for each group. * p<0.05, ** p<0.01, *** p<0.001

Table 6: Instrumental variable estimates of effect of commuter zone density on the socio-economic gradient of performance
Panel A: Models including individual demographics and state controls alone

Panel A: N	Iodels including in	dividual demographie	cs and state controls	
	(1)	(2)	(3)	(4)
	OLS	IV 30s density	IV terrain	IV density pre-
				dicted by earlier
				cohorts
CZ log density	0.0285***	0.00853	0.0277	0.0214*
	(0.00534)	(0.0101)	(0.0174)	(0.00930)
CZ Log density X	0.0165*	0.0475***	0.0347*	0.0187^{+}
Parent graduated college	(0.00700)	(0.0138)	(0.0163)	(0.0104)
Parent graduated college	0.258***	0.129*	0.193**	0.249***
	(0.0236)	(0.0524)	(0.0598)	(0.0387)
Observations	119365	112952	104315	107941
R^2	0.175	0.178	0.167	0.176
Panel I	B: Models includin	g commuter zone cha	racteristics as contro	ols
	(1)	(2)	(3)	(4)
	OLS	IV 30s density	IV terrain	IV density pre- dicted by earlier
				cohorts
CZ log density	0.0439***	0.0687**	0.128*	0.0241
0	(0.0125)	(0.0231)	(0.0629)	(0.0232)
CZ Log density X	0.0164*	0.0528***	0.0325*	0.0184^{+}
Parents graduated college	(0.00641)	(0.0148)	(0.0152)	(0.0104)
Parent graduated college	0.257***	0.102^{+}	0.195***	0.251***
	(0.0223)	(0.0573)	(0.0582)	(0.0393)
Share routine jobs	-1.379*	-2.859**	-5.065+	-0.522
-	(0.636)	(1.014)	(2.652)	(0.968)
Social capital index	0.0569***	0.0576***	0.0569***	0.0437***
-	(0.00941)	(0.0105)	(0.0115)	(0.00932)
Violent crime rate	-35.81**	-36.89**	-33.05**	-43.80***
	(11.85)	(13.21)	(10.94)	(11.64)
Foreign-born rate	0.646***	0.284	-0.169	0.808***
	(0.173)	(0.212)	(0.555)	(0.235)
Observations	123858	107503	101842	102515
R^2	0.178	0.175	0.158	0.175

Coefficients of OLS and 2 stage least squares models regressing z-scores of individual reading test scores on commuter zone density levels and socioeconomic status. In the IV columns, commuter zone density is instrumented by the variables indicated at the top of the table (see text for how the variables are constructed). Individual demographics controls and state fixed effects are included in both panels. Panel B additionally includes the commuter zone demographic characteristics shown as well. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

Table 7: Relation between commuting zone density and measures of availability of exit mechanism

	(1)	(2)	(3)
	Log students	Log no. schools	Log no. districts
Log density	1.074***	1.223***	0.437***
	(0.0209)	(0.0407)	(0.0162)
Observations	625	625	625
R^2	0.905	0.756	0.793

Coefficients of commuting zone regression models regressing dependent variables (from Common Core of Data) on commuter zone density levels. Regressions include state fixed effects. Standard errors, clustered by commuter zone, in paren-

theses. * p<0.05, ** p<0.01, *** p<0.001

 Table 8: Relation between commuting zone density and economic inequality

 Panel A: Inequality of income across districts within commuter zones, and commuter zone density

	(1)	(2)	(3)
		()	(5)
	Ratio 90th-10th pc-	Ratio 90th-50th pc-	Ratio 50th-10th pc-
	tile income of dis-	tile income of dis-	tile income of dis-
	tricts within CZ	tricts within CZ	tricts within CZ
Log density	0.145***	0.0534***	0.0466***
	(0.0129)	(0.00558)	(0.00572)

Panel B: Inequality of income within districts and commuter zone density

	1		
	(1)	(2)	(3)
	Ratio 90th-10th pc-	Ratio 90th-50th pc-	Ratio 50th-10th pc-
	tile within district	tile within district	tile within district
Log density	-0.297***	-0.0314***	-0.0843***
	(0.0348)	(0.00435)	(0.0111)
Observations	306728	306728	306954

Coefficients of regression models regressing district income distribution measures (A) and commuting zone income distribution measures (B) on commuting zone density. In panel A, the dependent variables are ratios of the xth to the yth percentile of median district incomes in the commuting zone (cz regressions), while in Panel B they are ratios of the xth to the yth individual income percentile within a district (district level regressions). For each school district, there are 5x6 observations, one for each year 2009-2013 and each grade 3-8, in s from ACS on commuter zone density levels. Models include state and year fixed effects. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

1	unei A.	Teach	erci	iaracierisiic	<u>_s in (</u>	aenser ar	eus		
			(1)		(2)		(.	3)	
		PD a	ctivit	ies Years	Years as teacher		Above Bachelor's		5
CZ log density		0.1	21***	* -0	.552*	**	0.02	58***	
		(0.0	0340) (0.109))	(0.00)584)	
CZ Log density	v	0.0)389-	+ (0.015	8	0.0	0599	
Free Reduced L	unch	(0.0	0235) (0	0.0832	2)	(0.00)383)	
Observations		14	5480) 1	2025	5	120	063	
R^2		0.	.019	(0.020	.0 (121	
Panel B: Student characteristics in denser areas									
		(1)		(2)		(3)	(4	4)
	Books	5	at	Newspaper	r at	Talks	about	Talks	about
	home			home		studies	at	reading	s with
						home		friends	
CZ log density	0.00	621**	*	0.00375	5	0.011	0***	0.005	558**
	(0.0)	0123))	(0.00324	4)	(0.00	197)	(0.00	206)
CZ Log density X	-0.0	0762**	*	-0.0144*	*	-0.00	341	-0.00)134
Free Reduced Lunch		0242)		(0.00461		(0.00	-		285)
Observations	13	3448		133642	2	1332	260	131	043
R^2	0.	.046		0.020		0.0	0.008		03

 Table 9: Socioeconomic differentials in school inputs in denser commuter zones

 Panel A: Teacher characteristics in denser areas

Coefficients of regression models for individual students. Data on student habits comes from NAEP student stuent survey and on teacher characteristics comes from the NAEP teacher survey. Specifications includes state fixed effects. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T unet 11.	· ·			Junit				
election pationeducation cal schoolcal schoolnational schools national schoolsLog density (CZ) 0.000692 0.0216 -0.00103 0.00572 (0.00631) (0.0148) (0.00786) (0.00855) Log density X College (0.00904) -0.0292^{**} -0.0758^{***} 0.0157 0.00868 (0.00904) (0.0202) (0.0128) (0.0136) College graduate 0.187^{***} 0.708^{***} 0.00210 0.0236 (0.00904) (0.0202) (0.0617) (0.0642) Observations 11475 15983 24317 22864 R^2 0.269 0.040 0.081 0.025 College graduate (1) (2) (3) (4) Reform indexSupport for reform metsuresSupport for variable payLog density (CZ) 0.0310 0.0425^* 0.0325^* 0.0238^* (0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330^* 0.214^* -0.247^{**} (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864		(1	.)	× /		(3)			
pationLog density (CZ) 0.000692 0.0216 -0.00103 0.00572 (0.00631) (0.0148) (0.00786) (0.00855) Log density X College -0.0292^{**} -0.0758^{***} 0.0157 0.00868 (0.00904) (0.0202) (0.0128) (0.0136) (0.0128) (0.0136) (0.0202) (0.00904) College graduate 0.187^{***} 0.708^{***} 0.00210 0.0236 (0.0402) (0.0859) (0.0617) (0.0642) Observations 11475 15983 24317 22864 R^2 0.269 0.040 0.081 0.025 Panel B: Support for reform measuresInterstand support for Support for char- ter schoolsSupport for vari- able payLog density (CZ) 0.0310 0.0425^* 0.0325^* 0.0238^* (0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330^* 0.214^* -0.247^{**} (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864		School	board	Attention par	id to	Grade given to lo-	Grade given to		
Log density (CZ) 0.000692 (0.00631) 0.0216 (0.0148) -0.00103 (0.00786) 0.00572 (0.00855)Log density X College -0.0292^{**} (0.00904) -0.0758^{***} (0.0202) 0.0157 (0.0128) 0.00868 (0.0136)College graduate 0.187^{***} (0.0128) 0.00202 (0.0136) 0.00202 (0.00904) 0.0236 (0.00904)College graduate 0.187^{***} (0.0402) 0.708^{***} (0.0617) 0.00236 (0.06617) 0.0236 (0.0642)Observations 11475 (0.269) 15983 (0.040) 24317 (0.081) 22864 (4)College graduate(1)(2) (2)(3) (4)(1) Reform indexSupport for reform measuresLog density (CZ) 0.0310 (0.0158) 0.0425^* (0.0198) 0.0325^* (0.0126) 0.0238^* (0.0111)Log density X College -0.00557 (0.0263) 0.0384 (0.0275) -0.0249 (0.0178) 0.00420 (0.0190)College graduate -0.00180 (0.0263) -0.330^* (0.0275) 0.214^* (0.0178) -0.247^{**} (0.0190)College graduate -0.00180 (0.0126) -0.330^* (0.0127) 0.0864 Observations 11475 (0.112) 15983 (0.0130) 24317 (0.0864)		election	partici-	education		cal school	national schools		
(0.00631) (0.0148) (0.00786) (0.00855) Log density X College -0.0292^{**} -0.0758^{***} 0.0157 0.00868 (0.00904) (0.0202) (0.0128) (0.0136) (0.0128) College graduate 0.187^{***} 0.708^{***} 0.00210 0.0236 (0.0402) (0.0859) (0.0617) (0.0642) Observations 11475 15983 24317 22864 R^2 0.269 0.040 0.081 0.025 Panel B: Support for reform measures(1) (2) (3) (4) Support for support for char- vouchersSupport for char- ter schoolsSupport for vari- able payLog density (CZ) 0.0310 0.0425^* 0.0325^* 0.0238^* (0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330^* 0.214^* -0.247^{**} (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864		pation							
Log density X College -0.0292^{**} (0.00904) -0.0758^{***} (0.0202) 0.0157 (0.0128) 0.00868 (0.0136)College graduate 0.187^{***} (0.0402) 0.0202) (0.0128) (0.0202) (0.00904) College graduate 0.187^{***} (0.0402) 0.708^{***} (0.0859) 0.00210 (0.0617) 0.0236 (0.0642)Observations 11475 (0.269) 15983 (0.040) 24317 (0.081) 22864 (0.025)(1) Reform index (2) (3) (4) (4) Support for char- ter schoolsSupport for variable payLog density (CZ) 0.0310 (0.0158) 0.0425^* (0.0198) 0.0325^* (0.0126) 0.0238^* (0.0111)Log density X College -0.00557 (0.0263) 0.0384 (0.0275) -0.0249 (0.0178) 0.00420 (0.0190)College graduate -0.00180 (0.0126) -0.330^* (0.0130) 0.214^* (0.0178) -0.247^{**} (0.01864)Observations 11475 15983 (0.130) 24317 (0.0857) 22864	Log density (CZ)	0.000)692	0.0216		-0.00103	0.00572		
(0.00904) (0.0202) (0.0128) (0.0136) (0.0128) (0.0136) (0.0202) (0.00904) College graduate 0.187^{***} 0.708^{***} 0.00210 0.0236 (0.0402) (0.0859) (0.0617) (0.0642) Observations 11475 15983 24317 22864 R^2 0.269 0.040 0.081 0.025 Panel B: Support for reform measures(1) (2) (3) (4) Reform indexSupportforSupport for char- ter schoolsSupport for variable payLog density (CZ) 0.0310 0.0425^* 0.0325^* 0.0238^* (0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330^* 0.214^* -0.247^{**} (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864		(0.00	631)	(0.0148)		(0.00786)	(0.00855)		
	Log density X College	-0.02	92**	-0.0758**	*	0.0157	0.00868		
College graduate 0.187^{***} 0.708^{***} 0.00210 0.0236 (0.0402)(0.0859)(0.0617)(0.0642)Observations11475159832431722864 R^2 0.269 0.040 0.081 0.025 Panel B: Support for reform measures(1)(2)(3)(4)Reform indexSupportforSupport for char- ter schoolsSupport for variable payLog density (CZ) 0.0310 0.0425^* 0.0325^* 0.0238^* (0.0158)(0.0198)(0.0126)(0.0111)Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263)(0.0275)(0.0178)(0.0190)College graduate -0.00180 -0.330^* 0.214^* -0.247^{**} (0.112)(0.130)(0.0857)(0.0864)Observations11475159832431722864		(0.00	904)	(0.0202)		(0.0128)	(0.0136)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.01	128)	(0.0136)		(0.0202)	(0.00904)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	College graduate	0.18	7***	0.708***		0.00210	0.0236		
R^2 0.2690.0400.0810.025Panel B: Support for reform measures(1)(2)(3)(4)Reform indexSupportforSupport for char- ter schoolsSupport for vari- able payLog density (CZ)0.03100.0425*0.0325*0.0238* (0.0158)Log density X College-0.005570.0384-0.02490.00420 (0.0178)College graduate-0.00180-0.330*0.214*-0.247** (0.0857)Observations11475159832431722864	00	(0.04	402)	(0.0859)		(0.0617)	(0.0642)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Observations	114	75	15983		24317	22864		
(1) (2) (3) (4) Reform index Support vouchers for Support for char- ter schools Support for vari- able pay Log density (CZ) 0.0310 0.0425* 0.0325* 0.0238* (0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330* 0.214* -0.247** (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864	R^2	0.2	69	0.040		0.081	0.025		
Reform index Support vouchers for ter schools Support for char- able pay Support for vari- able pay Log density (CZ) 0.0310 (0.0158) 0.0425* (0.0198) 0.0325* (0.0126) 0.0238* (0.0111) Log density X College -0.00557 (0.0263) 0.0384 (0.0275) -0.0249 (0.0178) 0.00420 (0.0190) College graduate -0.00180 (0.112) -0.330* (0.130) 0.214* (0.0857) -0.247** (0.0864) Observations 11475 15983 24317 22864		ŀ	Panel B: S	upport for refo	rm me	asures			
Vouchers ter schools able pay Log density (CZ) 0.0310 0.0425* 0.0325* 0.0238* (0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330* 0.214* -0.247** (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864		(1)	(2)		(3)	(4)		
Log density (CZ) 0.0310 (0.0158) 0.0425^* (0.0198) 0.0325^* (0.0126) 0.0238^* (0.0111)Log density X College -0.00557 (0.0263) 0.0384 (0.0275) -0.0249 (0.0178) 0.00420 (0.0190)College graduate -0.00180 (0.112) -0.330^* (0.130) 0.214^* (0.0857) -0.247^{**} (0.0864)Observations 11475 15983 24317 22864		Reform in	ndex	Support	for	Support for char-	Support for vari-		
(0.0158) (0.0198) (0.0126) (0.0111) Log density X College -0.00557 0.0384 -0.0249 0.00420 (0.0263) (0.0275) (0.0178) (0.0190) College graduate -0.00180 -0.330* 0.214* -0.247** (0.112) (0.130) (0.0857) (0.0864) Observations 11475 15983 24317 22864				vouchers		ter schools	able pay		
Log density X College -0.00557 (0.0263) 0.0384 (0.0275) -0.0249 (0.0178) 0.00420 (0.0190) College graduate -0.00180 (0.112) -0.330* (0.130) 0.214* (0.0857) -0.247** (0.0864) Observations 11475 15983 24317 22864	Log density (CZ)	0.03	310	0.0425*		0.0325*	0.0238*		
(0.0263)(0.0275)(0.0178)(0.0190)College graduate-0.00180-0.330*0.214*-0.247**(0.112)(0.130)(0.0857)(0.0864)Observations11475159832431722864		(0.01	58)	(0.0198)		(0.0126)	(0.0111)		
(0.0263)(0.0275)(0.0178)(0.0190)College graduate-0.00180-0.330*0.214*-0.247**(0.112)(0.130)(0.0857)(0.0864)Observations11475159832431722864	Log density X College	-0.00	557	0.0384		-0.0249	0.00420		
(0.112)(0.130)(0.0857)(0.0864)Observations11475159832431722864		(0.02	263)	(0.0275)		(0.0178)	(0.0190)		
(0.112)(0.130)(0.0857)(0.0864)Observations11475159832431722864	College graduate	-0.00	180	-0.330*		-0.330*		0.214*	-0.247**
Observations 11475 15983 24317 22864		(0.1	12)			(0.0857)			
	Observations			15983		24317	22864		
		0.2	69	0.040		0.081	0.025		

 Table 10: Opinion about schools, density and participation in public schools and socioeconomic gradient.

 Panel A: Opinion about schools, density and participation in school elections

Coefficients of OLS models regressing individual survey responses, with demographic controls. Responses coded as follows: Panel A: 5 Highest opinion/participation; 1 Lowest opinion/participation. Panel B: 5 Highest Support; 1 Lowest support. Grade given to schools (Panel A) coded as a z-score centered on zero. Dependent variables data comes from pooled EdNext survey 2007-2015. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

	(1)	(2)	(3)	(4)	(5)	(6)
	No mecha-	Choice	Voice	Economic	Social charac-	Model with
	nisms			characteris-	teristics	all mecha-
				tics		nisms
CZ log density	-0.0159*	0.00884	-0.00971	-0.0315**	0.0254*	0.0137
	(0.00634)	(0.0149)	(0.00687)	(0.0108)	(0.0125)	(0.0175)
CZ Log density X	0.0407***	0.0397***	0.0410***	0.0411***	0.0416***	0.0409***
Parent graduated College	(0.00758)	(0.00765)	(0.00826)	(0.00764)	(0.00755)	(0.00826)
Parent graduated college	0.242***	0.246***	0.236***	0.240***	0.238***	0.236***
	(0.0254)	(0.0256)	(0.0285)	(0.0256)	(0.0256)	(0.0287)
Log no. districts		0.00651				0.0387*
		(0.0143)				(0.0151)
Log no. schools		-0.0192*				-0.0107
C		(0.00868)				(0.00743)
Attention paid average			-0.0390+			-00.0116
			(0.0196)			(0.0120)
Board election average			0.105*			0.0698^{+}
			(0.0461)			(0.0377)
Share of routine jobs				1.260^{+}		0.837
				(0.714)		(0.654)
Violent crime index					-40.60**	-41.37**
					(13.75)	(12.86)
Social capital					0.0783***	0.0683***
					(0.0143)	(0.0157)
Racial segregation					-0.393***	-0.474***
					(0.0957)	(0.101)
Income segregation					-0.497	-0.228
					(0.551)	(0.565)
Observations	119383	119383	104930	117025	113957	100029
R^2	0.074	0.074	0.073	0.074	0.080	0.080

Table 11: Simple tests of the importance of commuting zone mechanisms in the relation between density and education outcome inequality: DV is individual level outcomes

Coefficients of OLS model regressing z-scores of individual reading test scores on commuter zone density levels and socioeconomic status. Column 1 reproduces model from Table 2, Panel A, column 3, while the rest include in addition potential commuter zone level mechanisms. Choice variables come from Common Core of data. Voice variables from EdNext survey data 2007-2015, pooled. Economic characteristics variables come from Autor, Dorn (2013) and social characteristics data from Chetty et al. (2015). All models include state fixed effects. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

1 7				0		
		(1)	(2)	(3)	(4)	(5)
	No	mecha-	Choice	Voice	Economic	Social charac
	nism	s			characteris-	teristics
					tics	
Log density	0.0)230***	0.00379	0.0233***	0.0327***	0.0177*
	(0.	00458)	(0.00677)	(0.00478)	(0.00523)	(0.00712)
Number of districts			-0.000120			
			(0.000107)			
Log no. of schools			0.0251***			
			(0.00440)			
Board election voting average				0.0452^{+}		
				(0.0237)		
Share of routine jobs					-0.501^{+}	
in the economy					(0.303)	
Violent crime						10.75
						(7.434)
Social capital index						-0.0156**
1						(0.00550)
Segregation of income						0.203
						(1.098)
Segregation of poverty						0.0701
						(1.198)
Observations		656	656	505	641	616
R^2	(0.071	0.137	0.073	0.095	0.118

Table 12: Simple tests of the importance of commuting zone mechanisms in the relation between density and education outcome inequality: DV is variation in individual level outcomes in the commuting zone

Coefficients of OLS models regressing standard deviations in reading outcomes for commuter zones, as in panel A of Table 4. Additional variables are included as commuting zone aggregates. Choice variables come from Common Core of data. Voice variables from EdNext survey data 2007-2015, pooled. Economic characteristics variables come from Autor, Dorn (2013) and social characteristics data from Chetty et al. (2015). All models include state fixed effects. Standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001 Appendix tables

	(1)	(2)	(3)	(4)
	Reading	Reading	Math	Math
Log density	0.0317*	0.0626***	0.0239^+	0.0649***
	(0.0128)	(0.00971)	(0.0127)	(0.00994)
Log Density X	-0.0842**	-0.0764***	-0.0404^{+}	-0.0715***
Pct free and reduced lunch	(0.0294)	(0.0155)	(0.0225)	(0.0179)
Pct free and reduced lunch	-0.921***	-0.635***	-1.073***	-0.667***
	(0.127)	(0.126)	(0.102)	(0.125)
State dummies		Х		Х
District demographics		Х		Х
Observations	303785	278316	296852	273481
R^2	0.457	0.551	0.376	0.488

Table A1: Relation between average exam results in the district, commuter zone density and average district income

Coefficients of OLS models regressing district averages in exam outcomes in the subject indicated, grades 3-8, in years 2008-2009 through 2012-2013, in 4th and 8th grade. Unlike in the main model of Table 4, dependent variables are average levels in the district for the (standardized) state exams for all students (see Reardon et al. 2016). For reference, the average share of Free and reduced lunch students in the observations is .42. District-subject-grade-year observations are weighted by the number of students taking the test. Robust standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

	(1)	(2)	(3)	(4)
	Reading	Reading	Math	Math
Log density	-0.504***	-0.380***	-0.215+	-0.368***
	(0.121)	(0.0947)	(0.130)	(0.0912)
Log Density X Log Income	0.0430***	0.0347***	0.0178	0.0340***
	(0.0107)	(0.00867)	(0.0119)	(0.00829)
Log income	0.565***	0.468***	0.641***	0.470***
	(0.0456)	(0.0350)	(0.0541)	(0.0371)
Constant	-6.068***	-5.299***	-6.936***	-5.334***
	(0.498)	(0.379)	(0.584)	(0.392)
State dummies		Х		Х
District demographics		Х		Х
Observations	303785	278316	296852	273481
R^2	0.457	0.551	0.376	0.488

Table A2: Relation between average exam results in the district, commuter zone density and average district income

Coefficients of OLS models regressing district averages in exam outcomes in the subject indicated, grades 3-8, in years 2008-2009 through 2012-2013, in 4th and 8th grade. Unlike in the main model of Table 4, dependent variables are average levels in the district for the (standardized) state exams for all students (see Reardon et al. 2016). For reference, the average household log-income is 10.96 (\$57,526). District-subject-grade-year observations are weighted by the number of students taking the test. Robust standard errors, clustered by commuter zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

	(1)	(2)	(3)
Log No. districts CZ	-0.0152*	-0.0125	-0.00340
	(0.00709)	(0.0150)	(0.0219)
Grade given to local school	0.0211**	0.0212**	0.0213**
	(0.00690)	(0.00691)	(0.00688)
Log No. districts CZ X		-0.00513	
Racial segregation		(0.0510)	
Segregation of race		-0.0186	
		(0.220)	
Log No. districts CZ X			-0.105
Income segregation			(0.219)
Segregation of income			0.213
Observations	9576	9576	9576
R^2	0.289	0.289	0.289

Table A3: Relation between exit and voicePanel A: Number of districts and voice

Panel	R٠	Number	of	schools	and	voice
1 unei	р.	number	ΟJ	schools	unu	voice

Tuner D. Wumber of schools and voice					
	(1)	(2)	(3)		
Log No. schools CZ	0.00235	0.00684	0.0166**		
	(0.00343)	(0.00417)	(0.00515)		
Grade given to local school	0.0206**	0.0210**	0.0211**		
	(0.00690)	(0.00686)	(0.00686)		
Log No. schools CZ X		-0.0555*			
Racial segregation		(0.0249)			
Segregation of race		0.102			
		(0.166)			
Log No. schools CZ X			-0.125*		
Income segregation			(0.0612)		
Segregation of income			-0.710		
			(0.527)		
Observations	9576	9576	9576		
R^2	0.287	0.289	0.292		

Dependent variable is school board election participation (5: Highest participation; 1: Lowest participation), from pooled EdNext survey 2007-2015. Coefficients of OLS models regressing individual survey responses. Standard errors, clustered by commuting zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001

Panel A: Number of districts and voice					
	(1)	(2)	(3)		
Log No. schools CZ	0.0124				
	(0.0129)				
Log No. districts CZ		-0.104	-0.188**		
-		(0.0580)	(0.0669)		
Grade given to local school	0.0400	0.0357	0.0392		
C	(0.0269)	(0.0267)	(0.0266)		
Log No. districts CZ X		0.249			
Racial segregation		(0.257)			
Segregation of race		-0.550			
0 0		(1.072)			
Log No. districts CZ X			1.667*		
Income segregation			(0.707)		
Segregation of income			-5.104*		
			(2.550)		
Observations	9576	9576	9576		
R^2	0.289	0.289	0.289		

Table A5: Relation between exit and voice, parents only	/
Panel A: Number of districts and voice	

Panel B: Number of schools and voice					
	(1)	(2)	(3)		
Log No. schools CZ	0.0124	0.0153	0.0433*		
	(0.0129)	(0.0128)	(0.0176)		
Grade given to local school	0.0400	0.0391	0.0398		
	(0.0269)	(0.0267)	(0.0259)		
Log No. schools CZ X		-0.143			
Racial segregation		(0.122)			
Segregation of race		0.733			
		(0.662)			
Log No. schools CZ X			-0.119		
Income segregation			(0.279)		
Segregation of income			-2.311		
0 0			(2.094)		
Constant	-0.286	-0.339	-0.362*		
	(0.180)	(0.173)	(0.174)		
Observations	9576	9576	9576		
R^2	0.138	0.143	0.152		

Dependent variable is school board election participation (5: Highest participation; 1: Lowest participation). Coefficients of OLS models regressing individual survey responses. Standard errors, clustered by commuting zone, in parentheses. * p<0.05, ** p<0.01, *** p<0.001