Alex and Morgan were asked to solve $8-4(x-3)=40$

[^0]Alex and Morgan were asked to solve $8-4(x-3)=40$

1a How did Alex solve the equation?
1b How did Morgan solve the equation? \square

2 Describe two ways that Alex's and Morgan's ways are similar.

3 Describe two ways that Alex's and Morgan's ways are different.

4 On a timed test, would you rather use Alex's way or Morgan's way for this problem?

Alex and Morgan were asked to solve $\frac{x}{4}-\frac{x}{5}=-2$

Alex's "eliminate the fractions" way

Morgan's "find common denominators" way

First I multiplied
both sides of the
equation by the
least common
multiple of the
denominators,
which is 20.

Then I simplified
both sides of the
equation.

Then I combined
like terms to get
thenswer.

[^1]Which is better?
Alex and Morgan were asked to solve $\frac{x}{4}-\frac{x}{5}=-2$

$1 a$	Why did Alex multiply each term by 20 as a
first step?	

1b Why did Morgan find a common denominator as a first step?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Which way is easier, Alex's way or Morgan's way? Why?

Alex and Morgan were asked to solve $5(x+3)=20$

* How did Alex solve the equation? How did Morgan solve the equation?
* Whose answer is correct, Alex's or Morgan's? How do you know?
* What are some similarities and differences between Alex's and Morgan's ways?
* Alex and Morgan both performed the same operations on both sides of the equation, yet one of them got the wrong answer. Why? Where was the mistake?

Which is correct?
Alex and Morgan were asked to solve $5(x+3)=20$

1a How did Alex solve the equation?
1b How did Morgan solve the equation?

2 Whose answer is correct, Alex's or Morgan's? How do you know?

3 What are some similarities and differences between Alex's and Morgan's ways?

4 Alex and Morgan both performed the same operations on both sides of the equation, yet one of them got the wrong answer. Why? Where was the mistake?

Which is better?

Alex and Morgan were asked to solve $\frac{t}{3}-1=12$

Which is better?
Alex and Morgan were asked to solve $\frac{t}{3}-1=12$

3 What are some advantages of Alex's way?

4 What are some advantages of Morgan's way?

Why does it work?

$$
\text { Alex and Morgan were asked to solve } \frac{x}{5}=20
$$

Morgan's "multiply on both sides first" way

[^2]Why does it work?

Alex and Morgan were asked to solve $\frac{x}{5}=20$

3 Even though Alex and Morgan used different steps, they both got the same answer. Why?

Alex and Morgan were asked to solve $3(x+2)=15$

```
Alex's "distribute first" way
```

Morgan's "divide first" way

[^3]Alex and Morgan were asked to solve

$$
3(x+2)=15
$$

> Morgan's "divide first" way

* What are some similarities and differences between Alex's and Morgan's ways?
* On a timed test, would you rather use Alex's way or Morgan's way? Why?
* If the problem were changed to $3(x+2)=17$, would Alex's way or Morgan's way be better? Why?

1a How did Alex solve the equation?
1b How did Morgan solve the equation?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 On a timed test, would you rather use Alex's way or Morgan's way? Why?

4 If the problem were changed to $3(x+2)=17$, would Alex's way or Morgan's way be better? Why?

Alex and Morgan were asked to solve $\frac{1}{4}(x+3)=2$
Alex's "distribute first" way
Morgan's "multiply first" way

[^4]Alex and Morgan were asked to solve $\frac{1}{4}(x+3)=2$
Alex's "distribute first" way
Morgan's "multiply first" way

* What are some similarities and differences between Alex's and Morgan's ways?
* Which way do you think is easier for this problem, Alex's way or Morgan's way? Why?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Which way do you think is easier for this problem, Alex's way or Morgan's way? Why?

Alex and Morgan were asked to solve $2 x-(2+3 x)=-4 x$

Alex's "subtract from both sides first" way
Morgan's "distribute first" way

[^5]Alex and Morgan were asked to solve $2 x-(2+3 x)=-4 x$

1 How did Alex solve the equation?

2 Why did Morgan distribute as a first step?

3 Describe two ways that Alex's and Morgan's ways are similar.

4 Describe two ways that Alex's and Morgan's ways are different.

5 What are some advantages of Alex's way? Of Morgan's way?

Alex and Morgan were asked to solve $45 y+90=60 y$

Alex's "combine like terms" way \quad Morgan's "combine like terms" way

[^6]* How did Morgan solve the equation?
* Why did Alex combine the terms on the left as a first step?
* Why did Morgan subtract 45y as a first step?
* Which way is correct, Alex's or Morgan's way? How do you know?
* Can you state a general rule about combining like terms that describes what you have learned from comparing Alex's and Morgan's ways of solving this type of problem?

Alex and Morgan were asked to solve $45 y+90=60 y$

1a How did Alex solve the equation?
1b How did Morgan solve the equation?

Why did Alex combine the terms on the left as a first step?

3 Why did Morgan subtract $45 y$ as a first step?

4 Which way is correct, Alex's or Morgan's way? How do you know?

5 Can you state a general rule about combining like terms that describes what you have learned from comparing Alex's and Morgan's ways of solving this type of problem?

Which is correct?

Alex and Morgan were asked to solve $2 x-5=5 x+7+3 x$

[^7]Alex and Morgan were asked to solve $2 x-5=5 x+7+3 x$

1 Describe Alex's way to a new student in your class.

2 Describe Morgan's way to a new student in your class.

3 What are some similarities and differences between Alex's and Morgan's ways?

4 Which answer is correct, Alex's or Morgan's? How do you know?

5 In thinking about the similarities and differences between Alex's and Morgan's ways, what conclusions can you draw about how to solve this type of problem?

Alex and Morgan were asked to solve $2(m+3)=-4(m+3)+12$
Morgan's "shortcut" way

[^8]Alex and Morgan were asked to solve $2(m+3)=-4(m+3)+5$

1 la	How did Alex solve the equation?

1b How did Morgan solve the equation?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 On a timed test, would you rather use Alex's way or Morgan's way? Why?

Which is better?

Alex and Morgan were asked to solve $2(g+3)=h$ for g

Alex's "divide first" way

Morgan's "distribute first" way

* How did Alex solve the equation?
* How did Morgan solve the equation?
* Describe two ways that Alex's and Morgan's ways are similar.
* Describe two ways that Alex's and Morgan's ways are different.
* What are some advantages of Alex's way? Of Morgan's way? Which way do you think is better for this problem?
* How would your answer change if particular values were substituted for \boldsymbol{h} ?

Alex and Morgan were asked to solve $2(g+3)=h$ for g

2 Describe two ways that Alex's and Morgan's ways are similar.

3 Describe two ways that Alex's and Morgan's ways are different.

4 What are some advantages of Alex's way? Of Morgan's way? Which way do you think is better for this problem? How would your answer change if particular values were substituted for h ?

Which is better?
Alex and Morgan were asked to solve $\frac{m}{n}=\frac{\boldsymbol{x}}{\boldsymbol{y}}$ for \boldsymbol{n}
Alex's "step by step" way
Morgan's "all at once" way

$\frac{m}{n}=\frac{x}{y}$

$m=\frac{x n}{y}$ \downarrow
$(y) m=\frac{x n}{y}(y)$

$$
\frac{m y}{x}=n
$$

$\frac{m y}{x}=n$

Then I multiplied both sides by y.

And then I simplified the equation.

Then I multiplied both sides by 1/x.

And then I simplified the equation, which is now solved for
And then I simplified the equation.
First I multiplied both sides by n.

* Describe Alex's way to a new student in your class. Describe Morgan's way to a new student in your class.
* What are some similarities and differences between Alex's and Morgan's ways?
* Why did Alex and Morgan get the same answer, even though they both did different steps?
* Which way is better, Alex's or Morgan's way?
* Can you think of another way to solve this problem correctly?

Which is better?
Alex and Morgan were asked to solve $\frac{m}{n}=\frac{x}{y}$ for n

1 Describe Alex's way to a new student in your class.

2 Describe Morgan's way to a new student in your class.

3 What are some similarities and differences between Alex's and Morgan's ways?

4 Why did Alex and Morgan get the same answer, even though they both did different steps?

5 Which way is better, Alex's or Morgan's way?

6 Can you think of another way to solve this problem correctly?

Alex and Morgan were asked to solve $2 a+14=b$ for a

```
Alex's "subtract first" way
```

Morgan's "divide first" way

* How did Alex solve the equation?
* How did Morgan solve the equation?
* What are some similarities and differences between Alex's and Morgan's ways?
* Did Alex and Morgan get the same answer? If so, how do you know?
* When solving an equation, do we always get the same answer when we perform the same steps but in a different order? Why or why not?

Alex and Morgan were asked to solve $2 a+14=b$ for a

Student Worksheet 3.3.3

1a How did Alex solve the equation?
1b How did Morgan solve the equation?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Did Alex and Morgan get the same answer? If so, how do you know?

4 When solving an equation, do we always get the same answer when we perform the same steps but in a different order? Why or why not?

Alex and Morgan were asked to solve $\frac{3 x}{4}=\frac{16}{11}$

[^9]Alex and Morgan were asked to solve $\frac{3 x}{4}=\frac{16}{11}$

Student Worksheet 3.4.1

1b How did Morgan solve the equation?

2 Describe two ways that Alex's and Morgan's ways are similar.

3 Describe two ways that Alex's and Morgan's ways are different.

4 Even though Alex and Morgan did different first steps, why did they both get the same answer?

Which is better?
Alex and Morgan were asked to solve the proportion $\frac{\mathbf{4}}{\mathbf{5}}=\frac{\mathbf{2 4}}{\boldsymbol{n}}$

[^10]Which is better?
Alex and Morgan were asked to solve the proportion $\frac{\mathbf{4}}{\mathbf{5}}=\frac{\mathbf{2 4}}{n}$

Alex's "find equivalent fractions" way

Morgan's "cross-multiply" way

1a How did Alex solve the proportion?
1b How did Morgan solve the proportion?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Which way is easier for this problem, Alex's way or Morgan's way? Why?

4 If the problem were changed to $\frac{7}{5}=\frac{24}{n}$, would Alex's way or Morgan's way be easier?

5 Can you make up a general rule for when Alex's way is better and when Morgan's way is better?

Which is better?
Alex and Morgan were asked to solve the proportion $\frac{2}{24}=\frac{3}{n}$

Alex's "cross-multiply" way
 multiplied.
After rewriting 3
$\times 24$ as 72,1 then
divided by 2 on
After rewriting 3
$\times 24$ as 72,1 then
divided by 2 on
After rewriting 3
$\times 24$ as 72,1 then
divided by 2 on both sides. I got $n=36$.
$2 n=3 \cdot 24$

$$
2 n=72
$$

$$
\begin{array}{r}
\downarrow \\
n=36
\end{array}
$$

Morgan's "unit rate" way

$\mathbf{3} \cdot \mathbf{1 2}=\boldsymbol{n}$
\downarrow
$n=36$

* How did Alex solve the proportion? How did Morgan solve the proportion?
* What are some similarities and differences between Alex's and Morgan's ways?
* Which way is easier for this problem, Alex's way or Morgan's way? Why?
* If the problem were changed to $\frac{7}{5}=\frac{24}{n}$, would Alex's way or Morgan's way be easier?
* Can you make up a general rule for when Alex's way is better and when Morgan's way is better?

Which is better?
Alex and Morgan were asked to solve the proportion $\frac{\mathbf{2}}{\mathbf{2 4}}=\frac{\mathbf{3}}{n}$

Student Worksheet 3.4.3

1a How did Alex solve the proportion?
1b How did Morgan solve the proportion?

What are some similarities and differences between Alex's and Morgan's ways?

3 Which way is easier for this problem, Alex's way or Morgan's way? Why?

4 If the problem were changed to $\frac{7}{5}=\frac{24}{n}$, would Alex's way or Morgan's way be easier?

5 Can you make up a general rule for when Alex's way is better and when Morgan's way is better?

Which is correct?

Alex and Morgan were asked to simplify $\frac{2 x}{5} \cdot \frac{8}{10}$

Alex's "cross-multiply" way First I crossmultiplied. (Then I divided on Then I divided
both sides.

$2 x(10)=8(5)$	$\frac{2 x \cdot 8}{5 \cdot 10}$
\downarrow	\downarrow
$20 x=40$	$\frac{16 x}{50}$

Morgan's "multiply the numerators and the denominators" way

* How did Alex simplify the expression?
* How did Morgan simplify the expression?
* Whose answer is correct, Alex's or Morgan's? How do you know?
* What are some similarities and differences between Alex's and Morgan's ways?
* Can you state a general rule that describes what you have learned from comparing Alex's and Morgan's ways of simplifying this expression?

$$
\text { Alex and Morgan were asked to simplify } \frac{2 x}{5} \cdot \frac{8}{10}
$$

1a How did Alex simplify the expression?
1b How did Morgan simplify the expression?

2 Whose answer is correct, Alex's or Morgan's? How do you know?

3 What are some similarities and differences between Alex's and Morgan's ways?

4 Can you state a general rule that describes what you have learned from comparing Alex's and Morgan's ways of simplifying this expression?

[^0]: * How did Alex solve the equation?
 * How did Morgan solve the equation?
 * Describe two ways that Alex's and Morgan's ways are similar.
 * Describe two ways that Alex's and Morgan's ways are different.
 * On a timed test, would you rather use Alex's way or Morgan's way for this problem?

[^1]: * Why did Alex multiply each term by 20 as a first step?
 * Why did Morgan find a common denominator as a first step?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * Which way is easier, Alex's way or Morgan's way? Why?

[^2]: * How did Alex solve the equation?
 * How did Morgan solve the equation?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * Even though Alex and Morgan used different steps, they both got the same answer. Why?

[^3]: * How did Alex solve the equation?
 * How did Morgan solve the equation?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * On a timed test, would you rather use Alex's way or Morgan's way? Why?
 * If the problem were changed to $3(x+2)=17$, would Alex's way or Morgan's way be better? Why?

[^4]: * How did Alex solve the equation?
 * How did Morgan solve the equation?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * Which way do you think is easier for this problem, Alex's way or Morgan's way? Why?

[^5]: * How did Alex solve the equation?
 * Why did Morgan distribute as a first step?
 * Describe two ways that Alex's and Morgan's ways are similar.
 * Describe two ways that Alex's and Morgan's ways are different.
 * What are some advantages of Alex's way? Of Morgan's way?

[^6]: * How did Alex solve the equation?

[^7]: * Describe Alex's way to a new student in your class. Describe Morgan's way to a new student in your class.
 * What are some similarities and differences between Alex's and Morgan's ways?
 * Which answer is correct, Alex's or Morgan's? How do you know?
 * In thinking about the similarities and differences between Alex's and Morgan's ways, what conclusions can you draw about how to solve this type of problem?

[^8]: * How did Alex solve the equation?
 * How did Morgan solve the equation?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * On a timed test, would you rather use Alex's way or Morgan's way? Why?

[^9]: * How did Alex solve the equation?
 * How did Morgan solve the equation?
 * Describe two ways that Alex's and Morgan's ways are similar.
 * Describe two ways that Alex's and Morgan's ways are different.
 * Even though Alex and Morgan did different first steps, why did they both get the same answer?

[^10]: * How did Alex solve the proportion? How did Morgan solve the proportion?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * Which way is easier for this problem, Alex's way or Morgan's way? Why?
 * If the problem were changed to $\frac{7}{5}=\frac{24}{n}$, would Alex's way or Morgan's way be easier?
 * Can you make up a general rule for when Alex's way is better and when Morgan's way is better?

