Why does it work?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}x+2 y=11 \\ -\mathbf{3 x} \boldsymbol{x}+\boldsymbol{y}=\mathbf{2}\end{array}\right.$

Alex's "substitute value of x into first equation" way
Morgan's "substitute value of x into second equation" way

* How did Alex solve the problem?
* How did Morgan solve the problem?
* What are some similarities and differences between Alex's and Morgan's ways?
* Alex and Morgan used different ways, yet they got the same answer. Why?
6.1.1

Why does it work?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}x+2 y=11 \\ -3 x+y=2\end{array}\right.$
\square Morgan's "substitute value of x into second equation" way

Student Worksheet 6.1.1

1a How did Alex solve the problem?
1b How did Morgan solve the problem?
(
2 What are some similarities and differences between Alex's and Morgan's ways?

3 Alex and Morgan used different ways, yet they got the same answer. Why?

Why does it work?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}x+3 y=2\end{array}\right.$
$5 x+y=-4$

* How did Alex solve the problem?
* How did Morgan solve the problem?
* What are some similarities and differences between Alex's and Morgan's ways?
* Alex and Morgan used different ways, yet they got the same answer. Why?
6.1.2

Why does it work?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}x+3 y=2 \\ 5 x+y=-4\end{array}\right.$

1a How did Alex solve the problem?
1b How did Morgan solve the problem? (

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Alex and Morgan used different ways, yet they got the same answer. Why?

Which is better?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}4 x+6 y=4 \\ x-2 y=-6\end{array}\right.$

* How did Alex solve the problem?
* How did Morgan solve the problem?
* What are some similarities and differences between Alex's and Morgan's ways?
* Alex and Morgan used different ways, yet they got the same answer. Why?
* Which way do you think is better, Alex's way or Morgan's way? Why?

Which is better?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}4 x+6 y=4 \\ x-2 y=-6\end{array}\right.$

Student Worksheet 6.1.3

1a How did Alex solve the problem?
1b How did Morgan solve the problem? \square

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Alex and Morgan used different ways, yet they got the same answer. Why?

4 Which way do you think is better, Alex's way or Morgan's way? Why?

Why does it work?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}-9 x+4 y=-17 \\ 9 x-6 y=3\end{array}\right.$
Alex's "substitute value of y into first equation" way

Morgan's "substitute value of y into second equation" way

[^0]Why does it work?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}-9 x+4 y=-17 \\ 9 x-6 y=3\end{array}\right.$

> | Alex's "substitute value of y into |
| :--- |
| first equation" way |

Morgan's "substitute value of y into second equation" way

1a How did Alex solve the problem?
1b How did Morgan solve the problem?
(
2 What are some similarities and differences between Alex's and Morgan's ways?

3 Alex and Morgan used different ways, yet they got the same answer. Why?

How do they differ?

Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}4 x+5 y=-1 \\ 3 x+2 y=1\end{array}\right.$
Alex's "multiply to eliminate the x terms" way

Morgan's "multiply to eliminate the
y terms" way y terms" way

* How did Alex solve the problem?
* How did Morgan solve the problem?
* What are some similarities and differences between Alex's and Morgan's ways?
* Alex and Morgan used different ways, yet they got the same answer. Why?

How do they differ?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}4 x+5 y=-1 \\ 3 x+2 y=1\end{array}\right.$
Alex's "multiply to eliminate the x terms" way

Morgan's "multiply to eliminate the y terms" way

1 How did Alex solve the problem?

2 How did Morgan solve the problem?

3 What are some similarities and differences between Alex's and Morgan's ways?

4 Even though Morgan and Alex used different ways, they arrived at the same answer. Why?

Which is correct?

Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
4 x+y=12 \\
3 x+y=10
\end{array}\right.
$$

* How did Alex solve the problem?
* How did Morgan solve the problem?
* Whose answer is correct, Alex's or Morgan's? How do you know?
* What are some similarities and differences between Alex's and Morgan's ways?
* Can you explain Alex's error to a new student in your class? How and when is elimination used to solve systems of linear equations?

Which is correct?
Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
4 x+y=12 \\
3 x+y=10
\end{array}\right.
$$

1a How did Alex solve the problem?
1b How did Morgan solve the problem?

2 Whose answer is correct, Alex's or Morgan's? How do you know?

3 What are some similarities and differences between Alex's and Morgan's ways?

4 Can you explain Alex's error to a new student in your class? How and when is elimination used to solve systems of linear equations?

Alex and Morgan were asked to solve

$$
\begin{aligned}
& 2 x+3 y=12 \\
& 5 x-3 y=9
\end{aligned}
$$

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Alex's "elimination" way}

\hline \& $$
\begin{gathered}
\downarrow \\
2 x+3 y=12 \\
5 x-3 y=9
\end{gathered}
$$

\hline \& $7 x=21$

\downarrow

\hline Then I solved for x . \& $$
\begin{aligned}
\frac{7 x}{7} & =\frac{21}{7} \\
x & =3
\end{aligned}
$$

\hline I substituted the value of x into the first equation to find the value of y \& $$
\begin{gathered}
\downarrow \\
2 x+3 y=12 \\
2(3)+3 y=12
\end{gathered}
$$

\hline \& $$
\begin{array}{r}
-6 \quad-6 \\
\hline \frac{3 y}{3 y}=\underline{6} \\
3 \\
y=2
\end{array}
$$

\hline Here is my answer. \& $$
(3,2)
$$

\hline
\end{tabular}

* How did Alex solve the system of equations?
* How did Morgan solve the system of equations?

The equal sign means that the quantities on either side have the same value. So $5 x-3 y$ has the same value as 9.

I can add the same value on both sides of an equation while maintaining the equality, so I added $5 x-3 y$ to one side of the first equation and 9 to the other side of the first equation.

Next I combined like terms to get $7 x=21$. Then I solved for x.

I substituted the value of x into the first equation to find the value of y.

Here is my answer.

* What are some similarities and differences between Alex's and Morgan's ways?
* Why does Alex's way work? Why can you "add" two equations together?

1b How did Morgan solve the system of equations?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Why does Alex's way work? Why can you "add" two equations together?
Which is better?
Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
3 x+2 y=8 \\
x-3 y=10
\end{array}\right.
$$

First, I solved the second equation for \mathbf{x}.

Then I substituted the resulting expression into the first equation.

I simplified the equation by distributing and combining like terms. I subtracted 30 from both sides of the equation and solved for y. This means that the y-coordinate of the solution is $\mathbf{- 2}$.

To find the x-coordinate, I plugged the y-value into the original second equation.

I simplified and solved this equation for x. This means that the x coordinate of the solution is 4 .

This gives me the coordinates of the solution to this system.
$x-3 y=10$
$x=3 y+10$

[^1]Which is better?
Alex and Morgan were asked to solve the linear system $\left\{\begin{array}{l}3 x+2 y=8 \\ x-3 y=10\end{array}\right.$

Student Worksheet 6.3.1

1a How did Alex solve the problem?
1b How did Morgan solve the problem? ?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 What are some advantages of Alex's way? Of Morgan's way?

Which is better?

Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
3 x+4 y=2 \\
y=-3 x-4
\end{array}\right.
$$

Then I multiplied the second equation by (-1) so that I could eliminate the x terms.

I then used the elimination method by adding the two equations together. This gave me an equation with only y. I solved to get the y-coordinate of the solution.

I substituted this value for y into the first equation so I could solve for x.

I got the solution.

Which is better?
Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
3 x+4 y=2 \\
y=-3 x-4
\end{array}\right.
$$

* Complete the statements: "I think it's bety to use substitution when \qquad ." "I think it's better to use elimination when \qquad ."

1a How did Alex solve the problem?
1b How did Morgan solve the problem?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Whose way is easier, Alex's or Morgan's? Why?

4 Complete the statements: "I think it's better to use substitution when \qquad $"$ "I think it's better to use elimination when \qquad ."

Which is better?
Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
2 x+4 y=3 \\
-6 x+4 y=7
\end{array}\right.
$$

Alex's"substitution" way

First, I solved the first equation for x.

I substituted this expression for x into the second equation and then solved for y. I got $y=1$.

I substituted this value of y into the first equation to solve for x.

Here is my answer.

$$
2 x+4 y=3
$$

$$
\begin{gathered}
-6 x+4 y=7 \\
\downarrow \\
2 x+4 y=3
\end{gathered}
$$

$$
2 x=3-4 y
$$

$$
x=\frac{3-4 y}{2}
$$

$$
-6\left(\frac{3-4 y}{2}\right)+4 \underset{y}{\downarrow}=7
$$

$$
\frac{-6(3-4 y)}{2}+4 y=7
$$

$$
\frac{-18+24 y}{2}+4 y=7
$$

$$
-9+12 y+4 y=7
$$

$$
-9+16 y=7
$$

$$
16 y=16
$$

$$
y=1
$$

$$
\downarrow
$$

$$
2 x+4 y=3
$$

$$
2 x+4(1)=3
$$

$$
2 x+4=3
$$

$$
2 x=-1
$$

$$
x=-\frac{1}{2}
$$

* How did Alex solve the problem?

First I multiplied the second equation by -1 .

Then I added this new equation to the first equation, to eliminate the y variables.
When I added the equations together, I got a new equation that only had x's in it. I solved this new equation for x.

I substituted this value of x into the first equation to solve for y.

Here is my answer.

* How did Morgan solve the problem?
* What are some similarities and differences between Alex's and Morgan's ways?
* Whose way is easier, Alex's or Morgan's? Why?
* Complete the statements: "I think it's better to use substitution when \qquad ." "I think it's better to use elimination when \qquad ."

Which is better?
Alex and Morgan were asked to solve the linear system

$$
\left\{\begin{array}{l}
2 x+4 y=3 \\
-6 x+4 y=7
\end{array}\right.
$$

1a How did Alex solve the problem?
1b How did Morgan solve the problem?

2 What are some similarities and differences between Alex's and Morgan's ways?

3 Whose way is easier, Alex's or Morgan's? Why?

4 Complete the statements: "I think it's better to use substitution when \qquad "I think it's better to use elimination when \qquad ."

[^0]: * How did Alex solve the problem?
 * How did Morgan solve the problem?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * Alex and Morgan used different ways, yet they got the same answer. Why?

[^1]: * How did Alex solve the problem?
 * How did Morgan solve the problem?
 * What are some similarities and differences between Alex's and Morgan's ways?
 * What are some advantages of Alex's way? Of Morgan's way?

