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Causal Inference in
Sociological Studies

CHRISTOPHER WINSHIP AND MICHAEL SOBEL

thout human history, causal knowledge
:n highly valued by laymen and scien-
ke. To be sure, both the nature of the
relation and the conditions under
a relationship can be deemed causal
:en vigorously disputed. A number of
tial thinkers have even argued that the
causation is not scientifically useful
sssell, 1913). Others have argued that
f determination other than causation
gure more prominently in scientific
tions (Bunge, 1979). Nevertheless,
wodern scientists seek to make causal
‘es, arguing either that the fundamen-
of science is to-discover the causal
isms that govern the behavior of the
nd/or that causal knowledge enables
deings to control and hence construct
world.
ttest round of interest in causation in
al and behavioral sciences is recent:
al explanations dominated sociologi-
ing before path analysis (Duncan,
inchcombe, 1968) stole center stage
ate 1960s. These developments, in
ion with the newly emerging litera-
he decomposition of effects in struc-
1ation (causal) models, encouraged
sts to think about and empirically
chains of causes and effects, with
result that virtually all regression
1ts came to be interpreted as effects,
{ modeling became a major industry

ng the empirical literature. Further

methodological developments in the 1970s
and the dissemination of easy-to-use com-
puter programs for causal modeling in the
1980s solidified the new base. This resulted
in the merger of structural equation models
with factor analysis (Jéreskog, 1977), allow-
ing sociologists to purportedly model the
effects of latent causes on both observed and
latent variables. T
Although the use of structural equation
models per se in sociology has attenuated, a
quick perusal of the journals indicates that
most quantitative empirical research is still
devoted to the task of causal inference, with
regression coefficients (or coefficients in
logistic regression models, generalized linear
models, etc.) routinely being understood as
estimates of causal effects. Sociologists now
study everything from the effects of job com-
plexity on substance abuse (Oldham and
Gordon, 1999) to the joint effects of vari-
ables ranging from per capita gross domestic
product to the female labor force participa-
tion rate on cross-national and intertemporal

income inequality (Gustafsson  and
Johansson, 1999), to cite but tiwo recent
examples.

While the causal revolution in sociology
encouraged sociologists to think more seri-
ously about the way things work and fostered
a more scientific approach to the evaluation
of evidence than was possible using function-
alist types of arguments, there have also been
negative side effects. First, even though
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knowledge of causes and consequences is
clearly of great importance, many social
scientists now seem to think that explanation
is synonymous with causal explanation. Of
course, to the contrary, we may know that
manipulating a certain factor ‘causes’ an out-
come to occur without having any under-
standing of the mechanism involved. Second,
researchers also sometimes act as if the only
type of knowledge worth seeking is knowl-
edge about causes. Such ‘causalism’ is mis-
directed, and although this chapter focuses on
the topic of causal inference, it is important
to note that a number of important concerns
that social scientists address do not require

recourse to causal language and/or concepts. -

Consider two types of examples.

Demographers are often interested in pre-
dicting the size and composition of future
populations, and there is a large literature on
how to make such projections. These predic-
tions may then be used to aid policy-makers to
plan for the future, for example, to assess how
much revenue is needed to support Social

- Security and Medicare. In making these pro-
jections, demographers make various assump-
tions about future rates of fertility, migration,
and mortality. While these rates are certainly
affected by causes (such as a major war), when
making projections, interest only resides in
using a given set of rates to extrapolate to the
future. (Similarly, economists perform cost—
benefit analyses and predict firms’ future prof-
its; as above, causal processes may be involved
here, but the economist is not directly inter-
ested in this. In the foregoing cases, prediction
per se is the objective and causal inference is
only potentially indirectly relevant.)

Second, a researcher might be interested in
rendering an accurate depiction of a structure
or process. For example, an ethnographer
might wish to describe a tribal ceremony,
a psychologist might wish to describe the
process of development of children of a
certain age, or a sociologist might wish to
describe the economic structures that have
emerged in Eastern Europe following the col-
lapse of communism (Stark and Bruszt,
1998). To be sure, some scholars believe that
description is only a first step on the road to
causal explanation, but this view is not held
universally. Many historians have argued that
their job is solely to accurately chronicle the
past, rather than attempting to locate causes
of historical events or delineate some grand
plan by which history is presumed to unfold
(see Ferguson, 1997, for a brief review).

NEW DEVELOPMENTS IN MODELING

Although the meaning of the term ‘causal
effect’ when used in regression models is not
explicated in most articles, econometricians
and sociological methodologists (e.g., Alwin
and Hauser, 1975) who use this language typ-
ically interpret the coefficients as indicating
how much the dependent variable would
increase or decrease (either for each case or
on average) under a hypothetical intervention
in which the value of a particular independent
variable is changed by one unit while the
values of the other independent variables are
held constant. Sobel (1990) provides addj-
tional discussion of is issue. While
researchers acknowledge that the foregoing
interpretation is not always valid, it is often
held that such an interpretation is warranted
when the variables in the model are correctly
ordered and combined with a properly spedi-
fied model derived from a valid substantive
theory. Thus, 2 regression coefficient is
dubbed an effect when the researcher believes
that various extra-statistical and typically
unexplicated considerations are satisfied.

During the 1970s and 1980s, while sociol-
ogists and psychometricians were busy refin-
ing structural equation models and
econometricians were actively extending the
usual notions of spuriousness to the temporal
domain (Granger, 1969; Geweke, 1984), sta-
tisticians working on the estimation of effects
developed an explicit model of causal infer-
ence, sometimes called the Rubin causal
model, based on a counterfactual account of
the causal relation (Holland, 1986, 1988;
Holland and Rubin, 1983; Rosenbaum,
1984a, 1984b, 1986, 1987, 1992; Rosenbaum
and Rubin, 1983; Rubin, 1974, 1977, 1978,
1980, 1990). Influential work has also been
done by several econometricians (eg,
Heckman, 1978; Heckman and Hotz, 1989
Heckman et al.,, 1998; Manski 1995, 1997,
Manski and Nagin, 1998). Fundamental to
this work has been the metaphor of an exper-
iment and the goal of estimating the effect of
a particular ‘treatment’. In important respects
this work can be thought of as involving 2
careful and precise extension of the concep-
tual apparatus of randomized experiments to
the analysis of nonexperimental data.
line of research yields a precise definition ozl a
(treatment) effect and allows for the de‘:i -

opment of mathematical conditions undel g

which estimates can or cannot be interpr:&
as causal effects; see Pratt and S et
(1988) for the case of regressi
Holland (1988) and Sobel (1998) o

on coefficients :
n the case -
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of recursive structural equation models with
observed variables, and Sobel (1994) on the
case of structural equation models with
observed and latent variables.

Using the conditions discussed in the lLiter-
ature cited above, it is clear that many of the
‘effects’ reported in the social sciences should
not be interpreted as anything more than
sophisticated partial associations. However,
the encouraging news is that these conditions
can also be used to inform the design of new
studies and/or develop strategies to more
plausibly estimate selected causal effects of
interest. In this chapter, our primary purposes
are to introduce sociologists to the literature
that uses a counterfactual notion of causality
and to illustrate some strategies for obtaining
more credible estimates of causal effects. In
addition (and perhaps more importantly), we
believe that widespread understanding of this
literature should result in important changes
in the way that virtually all empirical work in
sociology is conducted.

We proceed as follows: In the next section
we briefly introduce different notions of the
causal relation found primarily in the philo-
sophical literature. We then present a model
for causal inference based on the premise
that a causal relation should sustain a coun-
terfactual conditional. After introducing this
model, we carefully define the estimands of
interest and give conditions under which the
parameters estimated in sociological studies
with nonexperimental data are identical to
these estimands. From there we turn to a dis-
cussion of the problem of estimating effects
from nonexperimental data. We start by
examining the conditions under which what
we call the standard estimator — the differ-
ence in the mean outcome between the treat-
ment and control group — is a consistent
estimate of what is defined as the average
causal effect. We then discuss the sources of
blfls in this estimator. Following this, we
briefly examine randomized experiments. We

en focus on situations where assignment to
the ‘treatment’ is nonrandom: we discuss the
concept of ignorability in the context of the
countel"factual causal model; and we examine
ge assignment equation and define what is

OWn as a propensity score. We then provide
a brief examination of different methods for
f-‘mm?tmg causal effects. Specifically, we
£ &Xamine matchin, jon, instrumental

Yariab] < g regression, enta
data V(:Is’ and methods using longitudinal
T We conclude by suggesting that the
=erature on counterfactual causal analysis
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provides important insights as to when it is
valid to interpret estimates as causal effects
and directs our attention to the likely threats
to the validity of such an interpretation in
specific cases.

PHILOSOPHICAL THEORIES OF CAUSALITY

Hume and regularity theories

Philosophical thinking about causality goes
back to Aristotle and before. It is, however,
generally agreed that modern thinking on the
subject starts with Hume. Hume equated
causation with temporal priority (a cause
must precede an effect), spatiotemporal con-
tiguity, and constant conjunction (the cause is
sufficient for the effect or ‘same cause, same
effect’). Subsequent writers have argued for
simultaneity of cause and effect. Those who
take such a position are compelled to argue
either that the causal priority of the cause
relative to the effect is nontemporal or allow
that it is meaningful to speak of some form of
‘reciprocal’ causation (Mackie, 1974). In that
vein, to the best of our knowledge, every seri-
ous philosopher of causation maintains that
an asymmetry between cause and effect is an
essential ingredient of the causal relationship.
That is, no one has seriously argued for the
notion of ‘reciprocal’ causality, sometimes
found in empirical articles in the social
sciences, that uses simultaneous equation
models and cross-sectional data. The contigu-
ity criterion has also been criticized by those
who advocate action at a distance.

Most of the criticism of Hume, however,
has focused on the criterion of constant con-
junction. Mill (1973) pointed out there might
be a plurality of causes and that, as such, an
effect might occur in the absence of any par-
ticular cause. He also pointed out that a cause
could be a conjunction of events. Neither of
these observations vitiates Hume’s analysis,
however, since Hume was arguing for a con-
cept of causality based on the idea of suffi-
ciency. Mill, though, clearly wants to argue
that the cause (or what has come to be known
as the full cause or philosophical cause) is a
disjunction of conjunctions constituting neces-
sary and sufficient conditions for the effect.
See also Mackie (1974) on the idea of a cause
as a necessary condition for the effect.

It is also worth noting that the constant
conjunction criterion applies to a class of
cases deemed sufficiently similar (to produce
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the same effect). The problem here is that if
the effect does not occur in some instance,
one can always argue after the fact that this
case does not belong in the class. This can cre-
ate problems at the epistemological level.

A different sort of criticism (primarily) of
the constant conjunction criterion has also
been made. Hume argued not only that the
causal relation consisted of the three ingredi-
ents identified above, but also that these alone
constituted the causal relation (as it exists in
the real world as opposed to our minds). By
denying that there could be something more
to the causal relation, Hume essentially
equated causation with universal predictabil-
ity. Many subsequent writers have found this
argument to be the most objectionable aspect
of Hume’s analysis since sequences satisfying
the foregoing criteria — for example, waking
up then going to sleep - would be deemed
causal. However, no one seems to have suc-
ceeded in specifying the ingredient that
would unambiguously allow us to distinguish
those predictable sequences that are causal
from those that are not (Mackie, 1974).

An important line of inquiry with ancient-

roots (e.g., Aristotle’s efficient cause) that
attempts to supply the missing link argues
that the causal relationship is generative, that
is, instead of the effect being merely that
which inevitably follows the cause, the cause
actually has the power to bring about the
effect (Bunge, 1979; Harré, 1972; Harré and
Madden, 1975). This occurs because proper-
ties of the objects and/or events constituting
the cause and the effect are linked by one or
more causal mechanisms. Such a way of
thinking is commonplace in modern sociol-
ogy, with many arguing that the central task
of the discipline is to discover the causal
mechanisms accounting for the phenomenon
under investigation. However, neither sociol-
ogists nor philosophers seem to have success-
fully explicated such notions as yet. It is not
enough to say, as Harré does, that a mecha-
nism is a description of the way in which an
object or event brings into being another, for
this is obviously circular. For other attempts,
see Simon (1952) and Mackie (1974).
Although Mill replaced the constant con-
junction criterion with the notion that the full
(or philosophical) cause should be necessary
and sufficient for the effect, he also recognized
that such an analysis did not address the objec-
tion that the causal relationship could not be
reduced to a form of universal predictability.
In that regard, he also argued that the cause

NEW DEVELOPMENTS IN MODELING

should also be the invariable antecedent of the
effect; in modern parlance, he is arguing the
view, now widely espoused, that causal rela-
tionships sustain counterfactual conditional
st:ltements. This idea is developed more fully
below.

Manipulability theories

Mill was also perhaps the first writer to dis-
tinguish between the causes of effects (what

are known as regularity theories, i.e., the neces- -

sary and sufficient conditions for an effect to
occur) and the effects of causes. In manipula-
bility theories (Collingwood, 1998), the

cause is a state that an agent induces that is

followed by an effect (the effect of a cause)..

In this account, there is no attempt to ascer-
tain the full cause, as in regularity theories,
Manipulability theories are not at odds with
regularity theories, but the goal is less ambj-
tious, and whether or not the putative cause is
deemed causal can depend on other events
that are not under current consideration as
causes; these events constitute the causal field
(Anderson, 1938) or background in which the
particular cause of interest is operating, By
way of contrast, in a regularity theory, these
events would be considered part of the full
cause ~ the set of necessary and/or sufficient
conditions. For example, suppose that the
putative cause is driving 20 or more miles per
hour over the speed limit on a deserted curvy
road, and the effect is driving off the side of
the road. Suppose also that the effect occurs
if either the driver exceeds the speed limit by

more than 30 mph, or the driver exceeds the -
- speed limit by between 20 and 30 mph, the

road surface is wet, and the tires have less
than some prespecified amount of tread. Then
driving in excess of the speed limit causes dri-
ving off the road, but in the second case the
effect occurs only under the two additional
standing conditions. In some other context,
the excess speed and the road surface might
be regarded as standing conditions and the
condition of the tire tread the cause. .
Manipulability theories have been criticized
by philosophers who find the notion of an
agent anthropomorphic. They would argueé
for example, that it is meaningful to talk
about the gravitational pull of the moon caus-
ing tides, though the moon’s gravitational p
is not manipulable. Others, however, ha;lﬁ
questioned whether it is meaningfu_l to SPZ&
of causation when the manipulation un
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consideration cannot actually be induced - for
example, raising the world’s temperature by
10 degrees Fahrenheit (Holland, 1986).

Singular theories

Regularity theories of the causal relationship
are deterministic, holding in all relevant
instances. Notwithstanding the theoretical
merits of such notions, our own knowledge of
the world does not allow us to apply such
stringent conditions. Consequently, a large
literature on probabilistic causation has
emerged (see Sobel, 1995, for a review), the
majority of which is concerned with the
problem (now formulated probabilistically) of
distinguishing between causal and noncausal
(or spurious) relationships. Unlike the deter-
ministic literature on this subject, which
attempts to explicate what it is that differen-
tiates universal predictability from causation,
most of this literature jumps directly to the
problem of inference, offering operational,
and seemingly appealing, criteria for deciding
whether or not probabilistic relationships are
genuine or spurious. In our opinion, the fail-
ure in much of this work to first define what
is meant by causality has been a major
problem. Pearl (2000) represents the most
recent and sophisticated work stemming
from this tradition.

With minor variants, most of the literature
states that a variable X does not cause a vari-
able Y if the association between these two
variables vanishes after introducing a third
variable Z, which is temporally prior to both
X and Y; that is, X and Y are conditionally
ndependent given Z. It bears noting that the
Iterature on path analysis and the more gen-
xral literature on structural equation models
ise essentially the same type of criteria to

er the presence of a causal relationship. For
Xample, in a three-variable path model with

&ponse Y, if X and Y are conditionally inde-

‘endent given Z, then, in the regression of Y

1 X and Z, the coefficient on X (X’s direct
ffect) is 0.

In singular theories of the causal relation, it
‘Meaningful to speak of causation in specific
stances  without needing to fit these
'Stances into a broader class, as in regularity
1¢ories  (Ducasse, 1975). Thus, in some
>Pulation of interest it would be possible for
e eﬂ:eCt to occur in half the cases where the
s is present and it would still be mean-

to speak of causation. Notice how

485

probability emerges here, but without arguing
that the causal relationship is probabilistic.
Singular theories also dovetail well with
accounts of causation that require the causal
relationship to sustain a counterfactual con-
ditional. Thus, using such accounts, one might
say that taking the drug caused John to get
well, meaning that John took the drug and
got better — and that had John not taken the
drug, he would not have gotten better.
However, taking the drug did not cause Jill to
get better means either that Jill took the drug
and did not get better or that Jill took the
drug and got better, but she would have got-
ten better even if she had not taken the drug.
Of course, it is not possible to verify that tak-
ing the drug caused John to get better or if Jill
takes the drug and gets better that it in fact
either did or did not cause Jill to get better.
But (as we shall see below), it is possible to
make a statement about whether or not the
drug helps on average in some group of inter-
est. In experimental studies, we are typically
interested in questions of this form. However,
as noted previously, social scientists who do
not use experimental data and who speak of
‘effects’ in statistical models also make
(explicitly or implicitly) statements of this
e.
tpre now turn to the subject of causal infer-
ence, that is, making inferences about the
causal relation. As noted earlier, the appropri-
ateness of a particular inferential procedure
will depend on the notion of causation
espoused if it is espoused, explicitly or
implicitly, at all. For example, under Hume's
account, a relationship between a putative
cause and an effect is not causal if there js
even a single instance in which the effect
does not occur in the presence of the cause,
Thus, statistical methods, which estimate the
relative frequency of cases in which the out-
come follows in the presence of the pur-
ported cause, should not be used to make an
inference about the causal relationship as
understood by Hume. Similar remarks typi-

 cally apply to the use of statistical methods to

make causal inferences under other regularity
theories of causation.

A SINGULAR, MANIPULABLE, COUNTERFACTUAL
ACCOUNT OF CAUSALITY

The model for causal inference introduced in
this section is based upon a counterfactual
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notion of the causal relation in which singular
causal statements are meaningful. We shall
refer to this model as the counterfactual
model. This model provides a precise way of
defining causal effects and understanding the
conditions under which it is appropriate to
interpret parameter estimates as estimates of
causal effects. For simplicity, we shall focus
on the case where the cause is binary, refer-
ring to the two states as the treatment and
control conditions; the model is easily gener-
alized to the case where the cause takes on
multiple values. Under the model, each unit
(individual) has two responses, a response to
the treatment and a response in the absence
of treatment. Of course, in practice, a unit
cannot be subjected to both conditions,
which implies that only one of the two
responses can actually be observed. For a
unit, the response that is not observed is the
counterfactual response. :

Factual and counterfactual outcomes

For concreteness, consider again whether or
not taking a drug causes (or would cause)
John to get better. Suppose that it is possible
for John to be exposed to either condition.
Then there are four possible states:

1. John would get better if he took the
drug, and he would get better if he did
not take the drug.

2. John would not get better if he took the
drug, and he would not get better if he
did not take the drug.

3. John would get better if he took the
drug, but he would not get better if he
did not take the drug.

4. John would not get better if he took the
drug, but he would get better if he did
not take the drug. o

Consider, for example, case 3. Here it is
natural to conclude that the drug causes John
to get better (assuming he took the drug). For
if John took the drug, he would get better, but
if he did not take the drug, he would not get
better. Similarly, in case 4 one would conclude
that taking the drug causes John to get worse.
In cases 1 and 2 one would conclude that the
drug does not cause John to get better.

In the 1920s, Neyman (1990) first pro-
posed a notation for representing the types of
possibilities above that has proven indispens-
able; this notation is one of the two or three

most important contributions to the modern
literature on causal inference and without it
(or something comparable) it would not be-
possible for this literature to have developed.

To represent the four possible states above,
we denote a particular unit (John) from 1
population P of size N using the subscript 1.
Let lower case x be an indicator of a (poten-
tially) hypothetical treatment state indicator
with x = ¢ when the individual receives the
treatment and x = ¢ when they are in the con-
trol condition. Let ¥, denote the outcome for
case i under condition x, with Y, =1 if i gets
better and Y,, = 0 if i does not get better, Thus
the four states above can represented respec-
tively, as:

1. Y;=Y,= 1: John would get better if he
took the drug, and he would get better if
he did not take the drug.

2. Y,=Y_=0:John would not get better if
he took the drug, and he would not get
better if he did not take the drug. :

3. Y,=1,Y,=0:John would get better if he
took the drug, but he would not get bet-
ter if he did not take the drug.

4. Y,;=0, Y,=1: John would not get better
if he took the drug, but he would get bet-
ter if he did not take the drug.

Let Y,and Y, represent the column vectors
containing the values ‘of Y, and Y, respec-
tively, for all i. Any particular unit can only be
observed in one particular state. Either x = ¢
or x = ¢, where the state that does hold
defines the factual condition. As a result,
either Y, or Y, but not both, is observed. As
emphasized in a seminal paper by Rubin
(1978), counterfactual causal analysis is at its
core a missing-data problem. We can only
observe the outcome for a particular unit
under the treatment or the control condition,
but not both. In order to carry out a counter-
factual analysis it is necessary to make
assumptions about these ‘missing’ counter-
factual values. As we discuss below, different
assumptions with regard to the counterfac-
tual values will typically lead to different esti-
mates of the causal effect. .

The data we actually see are the pairs (¥,
X.), where X, = t if the unit actually regeléfs
the treatment, X, = ¢ otherwise, and Y is the
actual observed response for unit i. Thu:i
when X,=t, Y,= Y, since x = t is the factua
condition, and Y, is unobserved since x =hc 18
the counterfactual condition. Similarly, when
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X.=c¢, Y,=Y,since x = c is the factual condition
and Y, is unobserved since x = t is the coun-
terfactual condition.

Unit effects

We define the effect of the drug on John, or
what is known as the unit effect, as:

5,=Y,-Y, (21.1)

which equals 1 if the drug is beneficial, -1 if
it is harmful, and O otherwise. The unit effect
is what is meant by the causal effect of a
treatment for a particular individual in the
counterfactual model. The unit effects are
not averages or probabilities,

Clearly the unit effects are not observable
since only Y, or Y, is actually observed.
Inferences about these effects will only be as
valid as oiir assumptions about the value of
the response under the counterfactual condi-
tion. For example, most of us would accept

" the statement ‘Turning the key in the ignition
- caused the car to start’ (presuming we put
the key in the ignition and the car started),
because we believe that had the key not been
placed in the ignition and turned, the car
would not have started. We might also be
inclined to believe that a person's pretest
score on a reading comprehension test would
closely approximate the scoré they would
have obtained three months later in the
absence of a reading course, thereby allowing
us to equate the unit effect with the differ-
ence between the before and after scores.
However, we might not be as ready to believe
that a volunteer’s pretest weight is a good
proxy for what their weight would have been
six months later in the absence of some par-
ticular diet. '

Unfortunately, many of the most important
questions in human affairs concern the values
of unit effects. A typical cancer patient wants
to know whether or not chemotherapy will
be effective in his or her case, not that
chemotherapy is followed by remission in
some specified percentage of cases. In the
social and behavioral sciences, knowledge is
°ﬁ€1} crude and attempts to speculate about
Precise values or narrow ranges of the unit
effects would not be credible. But if interest
E;nters on well-defined aggregates of cases
valOpula’cxons), rather than specific cases,
Yalues of the unit effects are not of special

> Mterest. Nevertheless — and this is critical —
€ unit effects are the conceptual building
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blocks used to define so-called ‘average causal
effects’ (to be defined shortly), and it is these
averages of unit effects about which infer-
ences typically are desired.

It is important to recognize that values of
the unit effects (and hence their average)
depend on the way in which the exposure
status of units is manipulated (either actually
or hypothetically). While this may seem obvi-
ous, the substantive implications are worth
further discussion. To take a concrete and
sociologically important example, suppose
interest centers on estimating the effect of
gender on earnings in the population of
American adults. Holland (1986: 955) argued
that gender is an inherent attribute of units:
“The only way for an attribute to change its
value is for the unit to change in some way
and no longer be the same unit’ Hence
gender cannot be viewed as a potential cause.
By way of contrast, Sobel (1998) argued that
we can readily imagine the case where Jack
was born Jill or Jill was born Jack, hence gen-
der can be treated as 2 cause. Thus (as certain
technical conditions discussed later would be
satisfied in this case), the average effect of
gender can be consistently estimated, using
sample data, as the mean difference in male
and female earnings. One might object, how-
ever, that this is not the effect of interest, for
it combines a number of cumulative choices
and processes that lead to sex differences in
earnings, not all of which are of interest.

To be more concrete, suppose interest
centers on earnings differences within a parti-
cular employment position. The issue is the
earnings Jill would have were she male, net of
those processes that are not deemed of inter-
est. For example, suppose that Jill went to a
university and studied English literature, but
that had she been born as Jack, she would
have studied engineering. In all likelihood,
Jill, had she been Jack, would be working at a
different job, and the earnings in this coun-
terfactual job would be different from the
earnings of the counterfactual Jack, who
holds the same job as the real Jill. But if the
latter comparison is the one of interest, the
first counterfactual Jill (i.e., the engineer) is
not of interest since he differs in key ways
from Jill due to differences in gender that are
prior to the employment situation being
considered.

As for this second counterfactual Jill, i.e.,
Jack, who has the same job as the real Jill, one
might want to argue that he must at least
share all Jill's features and history (at least all
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that which is relevant to the earnings
determination in the current arrangement)
prior to some designated time at which the
process of interest begins (e.g., the first day of
work for the current employer). There seems
to be no general procedure for creating such a
counterpart. In specific cases, however, rea-
sonable procedures may exist. A situation that
has recently received attention is the contrast
between orchestras that do and do not use a
blind auditions process (Goldin, 1999). By
having the individual audition behind a
screen, knowledge of a candidate’s gender as
well as other physical characteristics is with-
held from the evaluation committee. Here the
manipulable treatment is not gender per se,
but knowledge of an individual’s gender and
its possible effects on the evaluation of per-
formers.! The development of ‘internet’ or
what are sometimes called remote organiza-
tions, where all communication between
employees is through email, may provide
similar possibilities for disguise (Davis, 2000).
The foregoing discussion forces attention
on the assumption that each unit could be
potentially exposed to the values of the cause
other than the value the unit actually takes.
In particular, the way in which a unit is
exposed to these other counterfactual states
may be critical for defining and understand-
ing the magnitude of an effect of interest. For
example, the efficacy of a drug may depend
on whether the drug is administered intra-
venously or orally. Similarly, the (contem-
plated) effect of gender on earnings may
depend on the manner in which gender is
hypothetically manipulated. This may be of
great importance for estimating the effect of
gender; for example, the difference between
the sample means in earnings of men and
women above estimates the effect of gender
under one counterfactual, but not necessarily
others. This suggests that sociologists who
want to use observational studies to estimate
effects (that are supposed to stand up to a
counterfactual conditional) need to carefully
consider the hypothetical manipulations
under which units are exposed to alternative
values of the cause. In some instances, such
reflection may suggest that the issue of cau-
sation is misdirected. In this case, questions
about the association (as opposed to the
causal effect) between one or more other
variables and a response are often easily
answered using standard statistical methods.
An additional critical point is that the
counterfactual model as presented above is

appropriate only if there is no interference or
interaction between units (Cox, 1958); using
the current example, John's value on the
response under either condition does not
depend on whether or not any other unit
receives the drug. Rubin (1980) calls the
assumption of no interference the stable unit
treatment value assumption. There are clearly
many situations of interest where such an
assumption will not be reasonable. For
example, the effect of a job training program
on participants’ earnings may well depend on
how large the program is relative to the local
labor market. To date, little work has been
done on such problems.

Average effects

As noted above, the unit effect, although

unobservable, is the basic building block of

the counterfactual model. Typically social sci-

entists are interested in the average effect in

some population or group of individuals.
Throughout the paper we will use the expec-

tation operator, E[ ], to represent the mean of

a_quantity in the population. The average

effect is then :

§=E[Y,-Y]=) (Y- YN, (21.2)
ieP
where (as shown) the expectation operator is
taken with respect to the population P. This
is known as the average causal effect (Rubin
1974, 1977, 1978, 1980) within the
population P.

The average effect of an intervention may
depend on covariates, Z. An investigator may
wish to know this either because such infor-
mation is of inherent interest or because it is
possible to implement different treatment
policies within different covariate classes.
Thus, we define the average effect of X
within the subpopulation where Z =z as

5,=E[Y,-Y,Z=z]

= Y (Y,—-YJIN,
iePZ=z = -

(213)

where N, is the number of individuals in 'd;e
population for whom Z = z. Note that (21 )
involves a comparison of distinct levels of the
cause for different values of Z. Compaﬂi’:g_‘
of the difference in the size of the caus®:
effect in different subpopulations may 2150
of interest:
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5,-5,.=E[Y,~YIZ=2
~E[Y-Y,iZ=2. - (21.4)

1 is important to note that in the counterfac-
ual framework comparisons of this type are
lescriptive, not causal. It is possible that such
omparisons might suggest a causal role for
ne or more covariates, but in the context of
je question under consideration (the effect
f X), the subpopulations defined by Z only
snstitute different strata of the population.

INFERENCES ABOUT AVERAGE CAUSAL EFFECTS

ferences about population parameters are
ually made using sample data. In this
‘tion, we assume that a simple random
nple of size n has been taken from the popu-
ion of interest. We begin by considering the
e where interest centers on estimation of
: average causal effect within a population.

The standard estimator

E[Y] be the average value of Y, for all
ividuals in the population when they are
osed to the treatment, and et E[Y,] be
average value of Y, for all individuals
:m they are exposed to the control.
wse of the linearity of the expectation
-ator, the average treatment effect in the
alation is equal to

§=E[Y,-Y]=E[Y]-E[Y]. (2L5)

use Y, and Y_ are only partially obsery-
(or missing on mutually exclusive sub-
f the population,’ § cannot be calculated.
ever, it can be estimated consistently in
: circumstances,
nsider the most common estimator,
called the standard estimator, which we
® as S$*. Note that the averages or
ted values E[Y | X = t] and E[Y, | X = ¢]
respectively, from E[Y, ] and E[Y.]. The
T'two terms are averages with respect to
sjoint subgroups of the population for
Y;and Y, are observed, whereas E [Y,]
[YE] are each averages over the whole
ition, and, as noted earlier, are not
ible E[Y,| X = t] and E[Y,| X =] can
imated, respectively, by their sample
5, the mean of Y; for those actually in
3tment group, ¥, and the mean of Y, for
tually in the control group, Y. The
‘4 estimator for the average treatment
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effect is the difference between these two
estimated sample means:

=Y -7. (21.6)

Note that there are two differences between
equations (21.5) and (21.6). Equation (21.5)is
defined for the population as a whole, whereas
equation (21.6) represents an estimator that
can be applied to a sample drawn from the
population. Second, all individuals in the pop-
ulation contribute to both terms in equation
(21.5). However, each sampled individual is
only used once either in estimating Y, or ¥_ in
equation (21.6). As a result, the way in which
individuals are assigned (or assign themselves)
to the treatment and control groups will deter-
mine how well the standard estimator, $*, esti-
mates the true average treatment effect, §.

To understand when the standard estimator
consistently estimates the average treatment
effect for the population, let 7 equal the pro-
portion of the population in the treatment
group. Decompose the average treatment
effect in the population into a weighted aver-
age of the average treatment effect for those
in the treatment group and the average treat-
ment effect for those in the control group and
then decompose the resulting terms into

ifferences in average potential outcomes:

§=m8r+(1-7) 8¢

=7n (E[Y,| X=1]-E[Y,| X=1])
+(1-7) E[Y,| X =] ~E[Y, 1 X=c])
=(xE [YViX=t+(1 -m) E[Y, 1 X=¢])
=~ (E[Y X=1+ (1 - D)E[Y, | X=¢])
~E[¥] - E[Y] (21.7)
This is the same result we obtained in equation
(21.5). The quantities E[Y, | X = c] and E[Y, |
X = 1] that appear explicitly in the second and
third lines of equation (21.7) cannot be
directly estimated because they are based on
unobservable values of Y. and Y. If we assume
that E[Y,| X =] <E[Y,{ X = cf and E[Y | X =
t] = E[Y,] X = ], substitution into (21.7) gives:

S=(E[YIX=+(1-n)E[Y,] X=])
~ (@ E[Y,| X=1]+ (1 - 2)E[Y, | X =])
=@E[YIX=0+(1-m)E[Y,|X=1)
-(@E[YIX=c]+(1 -mE[Y, 1 X=c])
=E[Y,IX=1]-E[Y,|X=c]. (218
Thus, a sufficient condition for the standard

estimator to consistently estimate the true
average treatment effect in the population is
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that E[Y,| X =] =E[Y,| X = ] and E[Y|X =
t] =E[Y,| X = c]. (Note that a sufficient condi-
tion for this to hold is that treatment assign-
ment be random.) In this case, since E[Y,| X =1]
can be consistently estimated by its sample
analog, ¥, and E[Y,| X = ¢] can be consistently
estimated by its sample analog, Y, the average
treatment effect can be consistently estimated
by the difference in these two sample averages.

Sources of bias

‘Why might the standard estimator be a poor
(biased and inconsistent) estimate of the true
average causal effect? There are two possible
sources of bias in the standard estimator.
Define the ‘baseline difference’ between the
treatment and control groups as E[Y X = ¢] ~
E[Y X = ¢]. This quantity can be thought of
as the difference in outcomes between the
treatment and control groups in the absence
of treatment. With a little algebra, it can be
shown that the expected value of the stan-
dard estimator is equal to:

E[S*] = Average treatment effect
+ (Difference in baseline Y)
+ (1 — #) (Difference in average
treatment effect for the
treatment and control groups),

of, in mathematical notation,
E[S*]=E[Y,| X=t] ~E[Y.| X=¢]
=8+ (E[Y, I X=1t]-E[Y, I X=c])
+(1-7)(5,-6), (21.9)

where §, =E[Y, | X =] - E[Y,| X =1] is the
average treatment effect among those in
the treatment group and §=E[Y,| X = ¢] -
E[Y, | X = c] is the average treatment effect
among those in the control group. Equation
(21.9) shows the two possible sources of bias in
the standard estimator. The first source of bias
is the baseline difference, defined above. The
second source of bias, §, - §, is the difference
in the treatment effect for those in the treat-
ment and control groups. Often this is not
sonsidered, even though it is likely to be pre-
sent when there are recognized incentives for
ndividuals (or their agents) to select into the
reatment group. Instead, many researchers
‘or more accurately, the methods that they
1se) simply assume that the treatment effect
s constant in the population, even when
:ommon sense dictates that the assumption is
Jearly implausible (Heckman, 19972, 1997b;

Heckman et al., 1997; Heckman and Robb,
1985, 1986, 1988).

To clarify these issues consider a specific
example — the effects of a job training pro.
gram on individuals’ later earnings. Assume
that potential trainees consist of both
unskilled and skilled workers. Further assume
that the training program is aimed at upgrad-
ing the skills of unskilled workers who are in
fact the individuals who take the program,
Plausibly, in the absence of the training pro-
gram, the earnings of unskilled workers would
be lower on average than those of the skilled
workers. Thus a simple comparison of the
post-training earnings of the unskilled work-
ers to those of the skilled workers would
understate the effect of the program because
it fails to adjust for these preprogram differ-
ences. However, it might well be the case that
the training program raises the earnings of
unskilled workers, but would have no effect
on the earnings of skilled workers. In this case,
net of the preprogram differences in earnings,
the difference in the post-training earnings of
unskilled workers and those of skilled workers
would overstate the average effect of training
for the two groups as a whole.

Note, however, that in this example the
average treatment effect over the two groups
combined, §, is unlikely to be the quantity of
interest. In particular, what is likely to be of
interest is whether the unskilled workershave
benefitted from the program. Heckman
(1992, 1996, 1997a) and Heckman et al.
(1997) have argued that in a variety of policy
contexts, it is the average treatment effect for
the treated that is of substantive interest. The
essence of their argument is that in deciding
whether a policy is beneficial, our interest is
not whether on average the program is bene-
ficial for all individuals, but rather whether it
is beneficial for those individuals who would
either be assigned or assign themselves to the
treatment. This is fortunate from a statistical
perspective since most methods of adjust-
ment only attempt elimination of the baseline
difference. Few techniques are available to
adjust for the differential treatment effects
component of the bias. Often with nonexper-
imental data the best that we can do is to esti-
mate the effect of treatment on the treated

Randomized experiments

Since Fisher invented the concept °f,r andl?nz ‘y

ization, experimenters in many
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have argued that in a randomized experiment
inferences about the effect .of X could be
made using the standard estimator It is
important to note that although statisticians
had used Neyman’s notation to make this
argument, outside of statistics, where this
notation was not well known, the argument
was sustained largely by intuition, without
explicit consideration of the estimand (21.6).

To intuitively understand how randomiza-
tion works, note that in a randomized exper-
iment, the units for whom X = ¢ and the units
for whom X = ¢ are each random samples
from the population of interest. Hence, ¥, is an
unbiased and consistent estimate of E(Y}) and
Y, is an unbiased and consistent estimate of
E(Y). As a result,

E(Y,- V.]=E[ ¥.]-E[ ¥,]=E[Y] - E[Y]
=E[Y,-Y] =4 (21.10)

Of course in practice, randomized studies have
their difficulties as well. Not all subjects
will comply with their treatment protocol.
Treatment effects may be different for compli-
ers and noncompliers. Some statisticians argue
that the effect of interest in this case is §, while
sthers argue that the estimate of interest is the
werage causal effect in the subpopulation of
sompliers. (We discuss the technical aspects of
his issue further in the section below on instru-
nental variables; see also Angrist et al. (1996).)
ixperimental mortality is another well-known
hreat to inference (Campbell and Stanley,
.966). The usual approach to this problem is to
ssume that the only impact of experimental
nortality is to reduce the size of the experi-
nental groups, thereby increasing the standard
mors of estimates. This is tantamount to
ssuming that experimental mortality is inde-
endent of the potential responses Y,and Y, -

Ignorability

ociologists do not typically conduct ran-
omized studies. It might appear that the
'regoing results suggest that it is not possible
' make well-supported causal inferences
om observational studies. This is incorrect.
Tdom)afssigél(nl}ent is sufficient (but not
essary) tor E(Y, ) = E(Y, | X=1¢) and E(Y) =
Y.1X'=¢), (which is necessar;g for thgyfi)if-
rence between the sample means to be an
tbiased and consistent estimator of (21.1),
€ average causal effect).

more general sufficient condition for
¢ standard estimator to. be unbiased and
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consistent is what is known as ignorability.
Ignorability holds if

(Y, Y)LX (21.11)

where ‘1’ indicates that Y, and X are inde-
pendent, that is, Y,and Y, are independent of
X2 Note that ignorability does not imply that
X and the observed Y are independent. In
fact, in many situations they will be related
because there is a treatment effect and/or
because of systematic differences in who is
assigned to the treatment and control group.
Ignorability is a more general condition than
random assignment, since random assignment
insures that treatment assignment, X,, is inde-
pendent of all variables whereas ignorability
only requires that the potential outcomes, Y,
be independent of X,. _

To understand why ignorability is sufficient
for consistency of the standard estimator, con-
sider the well-known theorem from probabil-
ity theory that if two random vectors, Z and
W, are independent (Z L W), then the mean
of Z conditional on W is equal to the condi-
tional mean of Z, that is, E(Z | W) = E(Z).
Thus a sufficient condition that E(Y,) =
E(Y,| X=x)isfor Y,L X forx=t, c. In other
words, the potential responses Y, and Y, are
independent of X, the treatment assignment.

Now consider the case where interest
focuses on causal analysis within subgroups.
The sample data can be used to estimate
EV,|X=0,Z=2) and E(Y,| X=1,Z = z),
respectively. In the case where Z takes on a
small number of values, the sample means
within subgroups (provided there are cases in
the data) can be used to estimate these quan-
tities. Here Y, and Y, need to be independent
of X within the strata defined by the different
levels of Z. Arguing as before, when X = x, the
response Y that is observed is Y,; thus E[Y|
X=x,Z=2]=E[Y,| X=x Z=1z]. In order
that E[Y, | X=x,Z=2z)=E[ Y| Z=2z], it is
sufficient that

(Y,Y)1X1Z=z 21.12)

that is, treatment assignment must be ignor-
able within the strata defined by Z. When

this holds, it implies that

CE[Y,IX=t,Z=2]-E[Y,|X=c,Z=2]

=E[Y,|Z=2)-E(Y,|Z=2] =5, (21.13)

the average causal effect of X on Y at level
Z =z as defined by equation (21.2). Equation
(21.13) indicates that a key strategy for esti-
mating a causal effect is to find covariates Z
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such that, within the strata of Z ignorability
holds. This strategy is one manifestation of
the more general strategy of using some
method to control for Z so that, conditional
on Z, ignorability holds.

How might it be the case that E(Y, | X = )=
E(Y) and E(Y,1X = ¢) = E(Y) in either a
sample as a whole or within strata defined by
different values of Z? The analysis above indi-
cates that in a controlled but nonrandomized

- experiment, the assignment method will not
lead to bias in the standard estimator if assign-
ment (X) is independent of both Y,and Y, For
example, if students in a large section of an
introductory sociology course are divided into
two groups on the basis of which side of the
room they sit on and the two groups are then
taught using two competing texts, it rhight be
reasonable (unless one suspects that there was
a systematic seating pattern, as would be the
case if tardy students always sat on the left) to
proceed as if (21.4) holds.

While a great deal of causal knowledge has
been obtained without conducting randomized
experiments, it has also been well docu-
mented that analyzing data from nonrandom-

ized experiments and observational studies as -

if they were from randomized experiments
can yield misleading results. Examples include
many medical studies where physicians
assigned patients to treatment and overstated
the efficiency of treatment (Freedman et al,
1998); similar results have occurred in the
analysis of various social programs where pro-
gram administrators assign subjects to treat-
ment groups (LaLonde, 1986) or subjects
select their own treatments. Here, even sophis-
ticated attempts to adjust for the absence of
randomization may yield misleading and/or
inconclusive results. For example, Nye et al.
(1999) suggest that the many econometric
studies of the effect of small classroom size on
academic achievement based on observational
studies and nonrandomized experiments have
not yielded a set of consistent conclusions,
much less good estimates of the true effects,
By way of contrast, these authors demonstrate
that there are long-term beneficial effects of
small classroom size using data from a large
randomized experiment - Project Star.

Propensity scores and the
assignment equation

If we have a large sample and there is
good reason to believe that the Y, and X are
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independent within the strata that are
defined by some set of variables Z, then our
analysis task is conceptually straightforward,
We can simply use the standard estimator to
estimate average causal effects within strata.
If an estimate of the average effect for the
population as a whole is desired, stratum.
level average effects can be combined by
using a weighted average, where the weights
are proportionate to theé population propor-
tions within each stratum.

With small samples it can be either impos-
sible or undesirable to carry out analysis
within strata. What, then, are we to. do?
Suppose that treatment assignment is not
random but that the probabilities of assign-
ment to the treatment groups (X) are a
known function of measured variables Z (eg.
age, sex, education), that is,

Pr(X =t|Z=1) = P(Z). (21.14)

Equation (21.14) is what is known as the
assignment equation and P(Z) is what is
known at the propensity score. The propensity
score is simply the probability that a unit
with characteristics Z is assigned to the treat-
ment condition. In practice P(Z) might have
the form of a logit equation. If ignorability
conditional on Z holds, then

Pr(X=tlZ=g, Y,Y)
=Pr(X=t1Z=%). (21.15)

The condition expressed by equation (21.15)
is sometimes known as ‘selection on the
observables’ (Heckman and Robb, 1985).
Here the probability of being assigned to the
treatment condition is a function of the
observable variables Z and is conditionally
independent of the (only partially observ-
able) variables Y, and Y. Rosenbaum and
Rubin (1983) show that under these
conditions

(Y,Y) LXIPZ), (21.16)

that is, ignorability holds conditional on the
propensity score. _ )
Equations (21.15) and (21.16) prc?wdg 2
critical insight. They show that what is criti-
cal in estimating the causal effect of X is that
we condition on those variables that‘detgr-
mine assignment, that is, X;. This is quite dit-
ferent from the standard view in sociology,
where it is typically thought that what is
important is to take into account all the V::.
ables that are causes of Y. What the Cou}?atis
factual approach demonstrates is that Wi _
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critical is to condition on those Zs that result
in ignorability holding, that is Y, and Y, being
independent of X.

Rosenbaum and Rubin (1983) show that
over repeated samples there is nothing to be
gained by stratifying in a more refined way on
the variables in Z beyond the strata defined
by propensity score. The propensity score
contains all the information that is needed to
create what is known as a balanced design -
that is, a design where the treatment and con-
trol groups have identical distributions on the
covariates.

If our sample is sufficiently large that it is
possible to stratify on the propensity score,
P(Z), then as before we can use the standard
estimator within strata defined by P(Z). If
this is not the case, the propensity score can
still be a key ingredient in an analysis. We dis-
cuss this in the next section, where we exam-
ine matching estimators.

In general the propensity score is not
known. Typically, it is estimated using a logit
model. One, however, cannot actually know
that a particular Z includes all the relevant
variables; thus, biases arising from unmea-
sured variables may be present. Detecting
wch biases and assessing the uncertainty due
©0 potential biases is important; such issues
1ave received a great deal of attention in the
vork of Rosenbaum (for a summary, see
tosenbaum, 1995: Chapters 4-6).

ESTIMATION OF CAUSAL EFFECTS

or many readers the discussion to this point
13y bear little relation to what they learned
1 statistics courses as graduate students. As
oted at the beginning of this chapter, a prin-
ipal virtue of the counterfactual model is
1at it provides a framework within which to
isess whether estimators from various statis-
cal models can appropriately be interpreted
i estimating causal effects,
In this final section of the chapter, we wish
' briefly examine the properties of a few sta-
tical methods when they are considered
>m the perspective of the counterfactual
odel. In particular, we will examine match-
B regression, instrumental variables, and
ethods for longitudinal data. Space limita-
IS prevent us from considering these meth-
S in any depth. However, other chapters in
is handbook provide comprehensive intro-
Ctions to many of these methods.
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Matching

Matching is commonly used in biomedical
research. It is closely related to stratification.
In essence matching is equivalent to stratifi-
cation where each stratum has only two ele-
ments, with one element assigned to the
control condition and the other to the treat-
ment. Smith (1997) provides an excellent
introduction for sociologists. To match, one
identifies individuals in the treatment and
control groups with equivalent or at least
similar values of the covariates Z and matches
them, creating a new sample of matched
cases. The standard estimator is then applied
to the matched sample. By construction, the
treatment and control cases in the matched
sample have identical values of Z (or nearly
s0). Thus, matching eliminates the effect of
any potential differences in the distribution
of Z between the treatment and control
groups by equating the distribution of Z
across the two groups. o

Matching has several advantages. First, it
makes no assumption about the functional
form of the dependence between the outcome
of interest and Zs. As such, it is a type of non-
parametric estimator. Second, matching insures
that the Zs in the treatment group are similar
(matched) to those in the control group.® Thus,
matching prevents us from comparing units in
the treatment and control groups that are dis-

* similar We do not compare ‘apples’ and

‘oranges’. Third, since fewer parameters are
estimated than in a regression model, matching
may be more efficient. Efficiency can be
important with small samples.

A major problem with the traditional
matching approach, however, is that if there
are more than a few covariates in Z, it may be
difficult to find both treatment and control
cases that match unless an enormous sample
of data is available. Matching on the propen-
sity score is an attractive alternative to
attempting to match across all covariates in Z
since it involves matching on only a single
dimension. Nearest available matching on the
estimated propensity score is the most common
and one of the simplest methods (see
Rosenbaum and Rubin, 1985). First, the
propensity scores for all individuals are esti-
mated with a standard logit or probit model.
Individuals in the treatment group are then
listed in random order.* The first treatment
case is selected, and its propensity score is
noted. The case is then matched to the con-
trol case with the closest propensity score.



194 NEW DEVELOPMENTS IN MODELING

loth cases are then removed from their
espective lists, and the second treatment case
s matched to the remaining control case with
he closest propensity score. This procedure is
epeated until all the treatment cases are
aatched. Other matching techniques that use
ropensity scores are implemented by: using
ifferent methods and different sets of covari-
tes to estimate propensity scores; matching
n key covariates in Z that one wants to guar-
ntee balance on first, and then matching on
ropensity scores; defining the closeness of
ropensity scores and Zs in different ways;
ad/or matching multiple control cases to
ich treatment case (see Rosenbaum, 1995;
ubin and Thomas, 1996; Smith 1997).
Matching works because it amounts to
ditioning on the propensity score. Thus if
norability holds conditional on the propen-
ty score, the standard estimator on the
atched sample will be unbiased and consis-
nt. A couple of caveats, however, are in
der about matching. First, if there are treat-
ent cases where there are no matches, the
timated average causal effect only applies
cases of the sample of treated cases for
hich there are matches. Second, the consis-
ncy of the standard estimator on the
atched sample under ignorability holds
ly if cases are truly matched on a random
sis. Often for a particular treatment case
ere may be only one or two control cases
at are an appropriate match. In this case,
e matching process is clearly not random.
i a result, although the original sample may
balanced conditional on the propensity
»re, this may not be true of the matched
nple that has been derived from the over-
sample. Because of this, it is good practice
examine the means and variances of the
variates in Zs in the treatment and control
sups in the matched samples to insure that
ty are comparable. If one believes that
&’s outcomes are likely to be a function of
ther-order nonlinear terms or interactions
the covariates, then the two groups must
similar on these moments of Z also.’
An alternative approach that avoids the lat-
problem with matching is to use the orig-
| sample of treatment and control cases,
: to weight cases by the inverse of their
)pensity scores. As with matching, this
ates a balanced sample. One then com-
‘es the standard estimator on the weighted
1ple. As is the case with matching, this is a
m of nonparametric estimation. Thus, if
orability holds, the standard estimator will

provide an unbiased and consistent estimate
of the average causal effect. In general, how-
ever, one should probably exclude treatment
and control cases that do not have counter-
parts with similar propensity scores (Robins,
personal communication). One wants to
avoid the problem of comparing ‘apples’ to
‘oranges’. This means that one should first
omit from the sample those treatment and
control cases that do not have similar coun-
terparts in the other group and then re-
estimate the remaining cases’ propensity
scores. These re-estimated propensity scores
can then be used in an analysis of the inverse-
weighted sample. A second advantage of this
estimator is that it will generally use most of
the sample, whereas matching can involve
throwing out a considerable number of cases,
As far as we are aware, little work has been

" done that investigates this estimator.

Regression

Regression models (and various extensions
thereof, such as logistic regression) are fre-
quently used by quantitative social scientists,
Typically, such models are parametric, speci-
fying the functional form of the relationship
between independent variables and the
response. If the model is correctly specified,
‘matching, which provides a nonparametric
estimator, is inefficient relative to modeling,
as observations are discarded. However, if this
is not the case, inconsistent estimates of
effects will result when such models are used.

As noted above, it is standard to interpret
the coefficient for a particular variable in a
regression model as representing the causal
effect of that variable on the outcome ‘hold-
ing all other variables in the model constant’.
We hope by this point that we have con-
vinced the reader that this interpretation is
almost always unreasonable. The inferential
task is difficult enough when there is only 2
single variable X whose causal effect is of
interest. We view the all too common
attempt when one has nonexperimental data
to make causal inferences about a series of X5
within a single model as hazardous. The
threats to the validity of such claims are sim-
ply too great in most circumstances to m °
such inferences plausible. The relevant ques-
tion, then, is under what conditions in t=
context of the counterfactual model a regr%s_ej ;
sion estimate for a single variable can 0%
interpreted as a causal effect.
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Above we have treated X, as a dichotomous
variable taking on values ¢ and c. More gener-
ally, we may let X; be a numerical-valued
vatiable taking on many values; as before, X
is the observed (or factual) level of the treat-
ment. Consider the following standard
regression equation:

Y=g+ Xp+e, (21.17)

where & =Y, - (B, + X, 8), B = cov(Y,X)/var
(X), and B, =Y — X,B, the standard ordinary
least-squares estimators. Note that this equa-
tion only pertains to the one value of Y, and
X, that is observed for each individual in the
data. This equation could be augmented to
include a matrix of control variables Z, If g, is
assumed to be independent of X, (21.17)
implies” that

E[YIX]=g,+X6  (21.18)

Now consider the following equation as
part of a counterfactual model:

Y,=y+XS+e,  (21.19)

where Y, has a distinct value for every value
of X, factual and counterfactual, and e_, is an
error with mean 0. In equation (21.19), §
represents the average causal effect of X, on
Y, The critical question is under what condi-
tions =4, that is, estimation of g provides an
estimate of the average causal effect of X, 5.
As in the case of the standard estimator, a
sufficient condition is that the Y. and X (the
realized X)) be independent of each other,
that is, ignorability holds. This condition is
squivalent to each of the e, and X, being
independent. Note, however, that this is not
*quivalent to the condition that ¢, and X, be
ndependent, a condition that is sufficient for
»rdinary least squares to consistently estimate
he conditional expectation equation (21.18).
€ error, ¢, is associated with the realized
ralues of Y, Y;, and consists of a single value
or each individual, i, whereas e_, is defined for
'ach potential value of X;and its value Y. In
eneral, the independence of X, and ¢, does
ot imply ignorability. This is critical.
‘quation (21.18) provides a description of
e data - how the expected value of Y varies
ith X. Equation (21.19) defines a causal
E!aton between Y and X. In general these
be different.

Adopting a counterfactual perspective has
Jportant implications for how one does
gression analysis, The standard approach in
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regression analysis is to determine the set of
variables needed to predict a dependent variable
Y. Typically, the researcher enters variables
into a regression equation and uses ¢ tests and
F tests to determine whether the inclusion of
a variable or set of variables significantly
increases R?,

From a counterfactual perspective, the abil-
ity to predict Y and thus the standard t and F
tests are irrelevant. Rather the focus, at least
in the simplest cases, is on the estimation of
the causal effect of a single variable (what we
have called the treatment effect). The key
question is whether the regression equation
includes the appropriate set of covariates
such that ignorability holds (Pratt and
Schlaifer, 1988). To attempt to achieve this,
the researcher needs to stratify on, or enter as
controls, variables that determine the treat-
ment variable, X,. These variables may or may
not be significantly related to the dependent
variable Y, The criteria for deciding whether
a variable should be included in the equation
is not whether it is significant or not, but
rather whether our estimate of the treatment
effect and the confidence interval surround-
ing it is changed by the variable’s inclusion. In
particular, we need to include variables that
are likely to be highly correlated with X, since
their inclusion is likely to. change the infer-
ences we make about the likely size of Xs
effect even though these variables may well
not significantly increase R? precisely because
they are highly correlated with X. Strong can-
didates for controls in the regression equation
are variables that the researcher believes are
likely to determine X. In the particular case
where X is dichotomous, we can borrow the
strategy used in matching and condition on
the propensity score by entering it as a con-
trol variable. This approach may be particu-
larly attractive when there are few degrees of
freedom associated with the regression

model.

Instrumental variables

The counterfactual framework has provided
important insight into instrumental variable
estimators (Winship and Morgan, 1999). The
typical assumption in instrumental variables
is that the effect of treatment is constant
across the populations. In many situations,
however, this is unreasonable. What does an
instrumental variable estimator estimate
when the treatment effects vary? Recent
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rk by Imbens and Angrist (1994), Angrist
4 Imbens (1995), Angrist et al. (1996), and
bens and Rubin (1997) investigates this
ue by extending the potential outcome
mework discussed at the beginning of this
apter. This extension is accomplished by
suming that treatment received is a func-
1 of an exogenous instrument R; . R, might
. the treatment individuals are assigned to
«ngrist et al., 1996), an incentive to be in
ther the treatment or control group, or any
riable that directly affects the treatment
ceived, but not the treatment outcome.

For simplicity, assume that both the treat-

ent and the instrument are binary.
-catment is determined nonrandomly.
‘owever, an incentive to enroll in the treat-
lent program (e.g, a cash subsidy), R, is
signed randomly. R, is an instrument for
 that R, affects X,, but has no direct effect
n Y, When both the treatment and incen-
ve are binary, individuals eligible to receive
Je treatment can be divided into four mutu-
lly exclusive groups termed ‘compliers’,
lefiers’, ‘always takers’ and ‘never takers’.
Jdividuals who would enroll in the program
* offered the incentive and who would not
nroll in the program if not offered the incen-
ive are labeled ‘compliers’ (i.e., when R; = 1,
(i=tandwhenRi=O,Xi=c).Ukewise, indi-
iduals who would only enroll in the program
f not offered the incentive are ‘defiers’
je,whenR =1 X, =c¢ and when R; = 0,
¢, = f). Individuals who would always enroll
n the program, regardless of the incentive,
re ‘always takers’ (ie, whenR;=1,X;=t and
when R, = 0, X, = t). Finally, individuals who
would never enroll in the program, regardless
+f the incentive, are ‘never takers’ (i.e., when
R;= 1, X,=cand when R;= 0, .= ¢). Note
that the usage here is nonstandard in that the
terms ‘compliers’ and ‘defiers’ refer to how
an individual responds to the incentive, not
simply whether they comply or mot with
their treatment assignment in a traditional
experiment, the standard denotation of these
terms.

Based on the potential treatment assign-
ment function, Imbens and'Angrist (1994)
define a monotonicity condition. For all indi-
viduals, an increase in the incentive, R, must
either leave their treatment status the same,
or, among individuals who change, cause
them to switch in the same direction. For
example, the typical case would be that an
increase in the incentive would cause more
individuals to adopt the treatment condition,

but would not result in anyone refusing t
treatment condition who had previou
accepted it. The general assumption is th
there be either defiers or compliers but n
both in the population.®

When the treatment assignment proce
satisfies the monotonicity condition, the co
ventional instrumental variable estimate is :
estimate of what is defined as the local ave
age treatment effect (LATE), the avera
treatment effect for either compliers alone «
for defiers alone, depending on which grou
exists in the population.’ LATE is the averay
effect for that subset of the population whot
treatment status is changed by the instn
ment, that is, that set of individuals whos
treatment status can be potentially manipt
lated by the instrument. The individual-lew
treatment effects of always takers and neve
takers are not included in LATE.

Because of LATE’s nature, it has thre
problems: first, LATE is determined by th
instrument and thus different instrument
will give different average treatment effects
secondly, LATE is the average treatmen
offect for a subset of individuals that is unob
servable; and thirdly, LATE can sometimes b
hard to interpret when the instrumen
measures something other than an incentiv

to which individuals respond.

Longitudinal data’

Longitudinal data are often described as ¢
panacea for problems of causal inference
Nothing could be farther from the truth. As
in any causal analysis, the critical issue is what
assumptions the analysis makes about the
counterfactual values. As discussed below,
different methods of analysis make quite dif-
ferent assumptions. Unfortunately, these aré
often not even examined, much less tested.
Here we briefly discuss these issues (see
Winship and Morgan, 1999, who provide 2
more extensive discussion).

Let Y? equal the value of the observed Y for
person i at time s. Let Y: equal the value O
Y for individual i under either the fa_ctual of
counterfactual condition of receiving the
treatment. Let Y% equal the value of Y for
individual 1 under either the factual or cout”
terfactual condition of not receiving B¢
treatment. Let the treatment occtr atasinglé
point in time, §" We assume that for s <$, 2;“
Y: that is, the treatment has no effect on &%,

) o
individual’s response prior to the treatmed 4

4
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Below we discuss how a test of this assumption
provides an important method for detecting
model misspecification.

* A variety of methods are often used to ana-
lyze data of the above type. We discuss the
two most commonly used in sociology with
the aim of demonstrating the different
assumptions each makes about the value of ¥*
under the counterfactual condition. After
this, we briefly discuss the implications of the
counterfactual perspective for the analysis of
longitudinal data. _

The simplest case uses individuals as their
own control cases. Specifically, if we have
both test and pretest values on Y, Y¥ and Y¥
where s < 5’< s*, then Y"-Y? is an estimate of
the treatment effect for individual i. The
problem with this approach is that it assumes
that Y would be constant between s and s* in
the absence of treatment. Changes may occur

because of aging or changes in the environ-

ment. If one’s data contains longitudinal
information for a control group, however, the
assumption .of no systematic increase and
decrease with time in Y in the absence of
treatment can be tested. Preferably, the con-
trol group will consist of individuals who are
similar to those in the treatment group both
in terms of covariates Z and their initial
observations on Y. This might be accom-
plished, for example, using matching. The
simplest approach then would be to test
whether the mean or median of Y of the con-
trol group shifts between times s and s*. This
test, of course, is only useful if we are correct
in assuming that in the absence of treatment,
the responses of individuals in the treatment
and control group would change with time in

:  similar ways.
;S 'Y does systematically change over time in
 the absence of treatment, what is the
B researcher to do? Two very different choices
are available. One could analyze the post-test
observations using cross-sectional methods
such as matching or regression. Here the
presence of pretest data is a considerable
advantage Specifically, we can also analyze
€ pretest observations on the treatment and
control groups as if they were post-test obser-
VZSOHS, using the same cross-sectional meth-
, ‘i’ 5 (Hec.klnan and Hotz, 1989; Rosenbaum,
+ 1995). Since the treatment group has yet to
eceive the treatment, a finding of a treat-
ment eff,ect in the pretest data is evidence
t one's method inadequately adjusts for
> lerences between the treatment and con-
groups. A considerable advantage of having
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pretest and post-test data when one is either
using individuals as their own controls or using
cross-sectional methods to estimate a treat-
ment effect is that the availability of pretest
data allows the researcher to test whether the
particular cross-sectional model under consid-
eration is consistent with the data.

The other approach when one has longitud-
inal data is to use the fact that one has obser-
vations over time to adjust for possible
differences between the treatment and con-
trol groups. The two most common methods
used in sociology are change score analysis and
the analysis of covariance (Allison, 1990;
Winship and Morgan, 1999). Change score
analysis amounts to estimating the following

. regression equation:

Y- Y =Xp+u, (21.20)
where additional covariates Z could be
potentially added as controls. Alternatively,
analysis of covariance amounts to estimating
the equation

Y =Y+ XB+u (21.21)
or, equivalently,
Yi:’_aY‘;"=}(iﬁ+ uil (2122)

where, as before, covariates Z could be added
to the equation as controls. As we discuss
below, o will always be between zero and one.
Comparing equations {21.20) and (21.21) we
see that both methods involve adjusting the
post-test outcome Y} by subtracting out some
portion of the pretest outcome Y*. Change
score analysis amounts to setting the adjust-
ment factor, ¢, to one.

A large literature has debated the relative
merits of these two approaches (see Allison,
1990, for a discussion). From the counterfac-
tual perspective, the key observation is that
both methods make different assumptions
about how Y7 will change over time in the
absence of treatment. Change score analysis
assumes that in the absence of treatment, dif-
ferences, on average, between individuals
over time will remain constant. Returning to
our old convention that X =t or ¢, change
score analysis implies that

E[Y:| X=1t]-E[Y:| X =]
=E[YSIX=f]-E[YS[X=c], (21.23)

that is, the difference in the mean of Y,
for individuals in the treatment group and
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individuals in the control group will remain
constant between times s and s*. Alter-
natively, the analysis of covariance model
assumes that

E[Y;IX=1#]-E[Y:|X=]
= a(E[YS | X =1]
—E[YS X =), (21.24)

that is, the difference between the mean of Y.
for individuals in the treatment group an
those in the control group will shrink by a
factor a.

It is often argued that a distinct advantage
of the analysis of covariance model over the
change score model is that the adjustment
factor, a, is estimated. This is incorrect if
equation (21.20) is estimated by OLS, which
is the standard procedure.® In this case a, by
construction, will be equal to the intragroup
correlation between Y¢" and Y7, As a result, o
will be between zero and one, except in rare
cases where it is negative.

Comparing equations (21.22) and (21.23)
shows that change score analysis and analysis
of covariance models make different assump-
tions about how the difference between
E[Y] for the treatment and control groups
changes with time, Change score analysis
assumes that this difference will remain con-
stant, whereas the analysis of covariance
assumes that it will shrink by a fixed factor «,
the within-group correlation between the
responses between time s and s*. Whether 8
in equation (21.20) or equation (21.21) con-
sistently estimates § will depend on which, if
either, of these assumptions is correct
(Holland and Rubin, 1983).

As Heckman and Hotz (1989) have
argued, with only a single pretest and post-
test, it is impossible to determine which
assumption is correct since there are not
* observations at a sufficient number of time
points to determine how the difference in
average outcome for the treatment and con-
trol groups changes over time in the absence
of treatment. In fact, the assumptions in the
change score and analysis of covariance
model may be simultaneously incorrect. The
difference between the outcomes for the
treatment and control groups may shrink by
a factor other than a, or the difference might
potentially increase, which would be inconsis-
tent with both models. A possible example of
the latter would be in the examination of the
effects of educational attainment on mental
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ability of children (Winship and Koren
1997). A plausible assumption in this ¢
that in the absence of additional educ
the difference in mental ability bet
higher- and lower-ability children w
grow with age.

Other more sophisticated methods
analyzing longitudinal data are avail
Economists are particularly intereste:
what is known as the difference-in-differ
model (e.g., Card and Krueger, 1
Ashenfelter and Card, 1985). This mod
similar to the change score model ex
that, instead of assuming that in the abs
of treatment the difference between j
viduals’ outcomes remains constant, it assy
that this difference changes at a fixed I;
rate. The change score model allows
intercept to vary across individuals.
difference-in-difference model, in addit
allows the coefficient on time/age to °
across individuals. Heckman and R
(1986, 1988) provide an extensive reviey
different methods.

Different methods make different assu
tions about what will occur in the absenc:
treatment - that is, they make diffes
assumptions about what will be true in
counterfactual condition. As a result, dif
ent methods are likely to provide differ
estimates of the treatment effect (LaLon
1986). Which‘method should a researc
use? In some cases, theoretical consideratic
may suggest that one method is more app
priate than another (Allison, 1990). In so
ology, however, our theories are oft
sufficiently weak or there may be competi
theories such that it is impossible with a
confidence to assume that one particu
model is the appropriate one for analysis.

Heckman and Hotz (1989) argue that it
critical that one have sufficient pretest (
post-test) observations so that it is possible
test one’s model against the data. As di
cussed earlier, one can treat one’s pretest da
as if they, or some portion of them, are pos
test data and then estimate whether there
evidence of a ‘treatment’ effect on the dat
One can also perform a similar analysis W}}G
one has multiple post-test values dividic
them into a ‘pretest’ and ‘post-test’ grouj
Lack of evidence for a treatment effect is ev
dence that the model being used has appr¢
priately adjusted for differences between -
treatment and control groups. Of cours
more than one model may be Conmte;
with the data and these different models m#
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produce different estimates of the treatment
effect. Unless there is a compelling reason to
choose one model over another, one should

ool one's ‘estimates of the effect across
models. Raftery (1995) discusses how this

can be done within a Bayesian framework.

CONCLUSION

The purpose of this chapter has been to pro-
vide an introduction to the counterfactual
model of causal inference and to briefly
examine its implications for the statistical
analysis of causal effects. In the introduction
we argued that the counterfactual model of
causal inference had the potential to change
the way that sociologists carried out empiri-
cal analyses. We summarize the chapter by
providing a list of what we believe are the
most important contributions and insights of
CMCI for empirical research:

1. Estimating the effect of a single variable
(treatment) on an outcome is quite diffi-
cult. Attempts to estimate the effects of
multiple variables simultaneously are
generally ill advised.

2. CMCI provides a general framework for
evaluating the conditions under which
specific estimators can be interpreted as
estimating a causal effect.

3. A particular strength of CMCI is its abil-
ity to make explicit the possibility that
the size of a treatment effect may vary
across individuals.

4. Often it is only possible to estimate the

size of the treatment effect for the

treated. However, under some circum-
stances this is precisely what is of interest.

Causal analysis is at core a missing-data

problem. The key question is what the

'\J‘

values of the outcome would have been °

under the counterfactual condition.
). Different assumptions about the coun-
terfactual values will typically result in
. different estimates of the causal effect.

. CM_CI asks the researcher to fully specify
the implicit manipulation or ‘experiment’
associated with the estimation of a causal
effe'ct. In some cases, such as when esti-
mating the effect of gender, what the
manipulation of interest is may be unclear.

effect may be inconsistently esti-
mated for two different reasons: failure
to control for differences between the

treatment and control group in the
absence of treatment; and failure to take
account of the fact that the size of the
treatment effect differs for individuals
in the treatment and control groups.

9. In order to consistently estimate a
causal effect, ignorability (or ignorabil-
ity given covariates) must hold, that is,
treatment received (X} must be inde-
pendent of the partially observed out-
come variables Y.

10. The key to consistently estimating a
causal effect is to control for those vari-
ables, either by matching, stratification,
or regression, that determine (or are
associated with) treatment status.

11. Matching provides a powerful nonpara-
metric alternative to regression for the
estimation of a causal effect that should
be more frequently used by sociologists.

12. The traditional logic in which one or
more variables are included in a regres-
sion model because they significantly
increase R? as judged by a t test or F test
is irrelevant to the assessment of the
causal effect of a particular variable (the
treatment).

13. Variables should be included as controls
if they substantially change the estimate
of the treatment effect. Often these will
be variables that are highly correlated
with the treatment variable and as such
may have insignificant coefficients.

14. Instrumental variable estimators onmly
estimate the effect of the treatment for
those individuals whose treatment
status is changed by varying the value of
the instrument. In general, it is impossi-
ble to identify who belongs to this
group.

15. Longitudinal data are not a panacea for
causal analysis. As with any causal analy-
sis, assumptions need to be made about
the values of the outcome under the
counterfactual condition. Different
models involve different assumptions
and as a result will generally give differ-
ent estimates.

16. With longitudinal data, as with any analy-
sis, it is important to test whether the
assumptions implicit in the model hold
by testing the model against the data.

The length of this list indicates that the
implications for empirical research of the
CMCI are considerable. We believe that as
sociologists come to better understand and
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appreciate the counterfactual model, the -

CMCI will change the way they do research.
Hopefully, the consequence of this will be
much clearer thinking about causality and
the problems in estimating specific causal
effects, resulting in better estimates of the
size of actual effects. :
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NOTES

1 We are grateful to Felix Elwert for bringing this
example to our attention, ;

2 More precisely, this is the definition of strong
ignorability. Weak ignorability requires that Y, and Y.
be individually independent of X, whereas strong
gnorability requires that they be jointly independent.
1 general, the distinction between strong and weak
gnorability is of no substantive consequence.

3 In two empirical papers, Heckman et al. (1997,
.998) show that the bias due to selection on the
mobservables, although significant and large relative
o the size of the treatment effect, is small relative to
he bias that results from having different ranges of Zs
or the treatment and control groups and different
istributions of the Zs across their common range.
fatching solves both of the latter problems, although
1e average effect is not for the total population, but
aly that portion of the population where the treat-
tent and control groups have common Z values,

4 In most empirical applications of matching tech-
‘ques, the treatment group is considerably smaller
1an the control group. This need not be the case in all
splications, and if the reverse is true, then the near-
t available matching scheme described here runs in

"e opposite direction. Treatment cases would be
atched to the smaller subset of control cases.

5 There is an important intellectual tension here,
1 attraction of the matching estimator is that in
eory it is nonparametric. This means that we do not
ed to know how our two outcome variables, Y, and

are functionally related to our Zs For this to

wually be the case, our matched data set needs to be
lanced on all the moments of Z. This, however, will
ly occur if the distribution of Z is exactly the same

“the treatment and control group. But then we are

%k to the problem of traditional matching where

¢ is trying to equate groups across a potentially

ze number of variables,
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6 In principle, the propensity score can also
entered as a control variable in a regression mox
Rubin and Rosenbaum have advocated match
since it implicitly deals with the problem of non
earity and uses fewer degrees of freedom, making
more efficient.

7 It is only necessary that the ¢, and X, be me:
independent, that is, E[¢,/X] = 0. In general, in
pendence is a more desirable property since it me;
that mean independence will hold under any transf.
mation of Y.

8 Note that when an instrument is valid, there m
be at least some compliers or some defiers, otherw
the sample would be composed of only always tak
and never takers. In this case, R, would not be a vq
instrument because it would have no effect on t
treatment received, and thus R, and treatme
received would be uncorrelated.

9 The exclusion restriction that defines LATE
stronger than the conventional exclusion restricti
that the instrument must be mean-independent of ¢
error term. Instead, Imbens and Angrist (199
require that the instrument be fully independent
the error term. Imbens and Rubin (1997) argue th
the strong independence restriction is more realist
because it continues to hold under transformations «
the outcome variable. An assumption about the distr
bution of the outcome is thereby avoided.

10 Equation (21.20) could be estimated by instn
mental variables. Then, however, the issues wit
instrumental variable estimators discussed in the pre

vious section arise. ’
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