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A DISTANCE MODEL FOR-SOCIOMETRIC STRUCTUREt

Christopher Winship

Harvard University N

The conceptual and mathematical framework of a general
model for ‘distance within sociometric structure is de-
scribed. The model characterizes "balance" in terms of
the triangle inequality, in which the distance between
two people (A and C) should be less than or egual to the
sum of the distances to a third person (B),; i.e., .
d(A,C) < d(A,B) + d(B,C). The notion of addition of dis-
tances is developed. Different ways of adding distances
result in different models of sociometric structure. Two
families of models for symmetric graphs are discussed.
The general model is extended to asymmetric graphs by
generalizing the notion of transitivity. The model's
potential for resolving a problem of the transitivity
model is then discussed. The general model provides a
means of examining the relationship between stratifica-
tion and clustering in the structure of groups.

During the past twenty years, a number of models have
been developed to describe the sociometric structure of small
groups. Some of the more successful models are those follow-
ing the work of Heider (1958), especially the structural bal-
ance model of Cartwright and Harary (1956), the clustering
model of Davis (1967), and the transitivity model of Holland
and Leinhardt (1971). All of these models and most models
in sociometry are restricted to the analysis of binary rela-
tions. Typically, this has meant that they have only consi-
dered whether people are friends or not, or whether they like
each other or not. These models do not consider differences
between being good friends or just friends, or between a lot
of liking or a little. This lack of refinement has been char-.
acterized as the problem of incorporating the notion of
strength of relationship into a model. A relationship is con-
sidered stronger than another if it represents a greater
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dégree of intensity of relationship, e.g., if it represents
&' greater degree of friendship or liking, or a greater degree
of enmity or disliking.

’ A number of models incorporating the notion of strength
have been proposed. (See Feather, 1967, and Taylor, 1970.)
One of the most sophisticated is a model proposed by Cartwright
and Harary (1970). All of these models are generalizations
of Cartwright and Harary's model of structural balance. None
incorporate either the clustering model of Davis (1967) or the
transitivity model of Holland and Leinhardt (1971).

Davis (1967, 1970) has argued that the clustering model
may be a more appropriate model for sociometric structure than
the Cartwright and Harary model of structural balance. An im-
portant difference between the two models is that whereas the
structural "balance model postulates that groups tend to frag-
ment into two cliques, the clustering modél postulates only
that groups tend to fragment into cliques, the number of which
is not specified. Formally, this difference amounts to the
prohibition or permissibility of the 003 triad within the soci~
ometric data (see Holland and Leéinhardt, 1970, for explanation
of this notation of triads). 'The 003 triad is the triad where
no one likes or.chooses the others. The Cartwright and Harary .
model prohibits this triad type, whereas the Davis model per-
mits it. In his analysis of 742 sociograms, Davis (1970) found
no evidence indicating that the 003 triad type tended to be
infrequent. When he coded the asymmetric relations as posi-
tive, he found the 003 triad to be infrequent in 41% of 649
matrices; when he coded the asymmetric ties as negative, he
found the 003 triad to be infrequent in only 39% of 722 ma-
trices. This evidence suggests that there is no empirical

. basis for believing that the Cartwright and Harary model is
descriptive of the sociometric structure of small groups. Em-
pirical evidence does support the Davis clustering model and
its generalization, the Holland and Leinhardt transitivity
model (Holland and Leinhardt, 1972). The model developed in
this paper is an extension of these models.

A DISTANCE MODEL

In this paper, a general model for the sociometric struc-
ture of affect in small closed groups is developed. These
groups and their relationships will be represented as complete,
directed graphs with positive weights attached to each directed
edge. The nodes represerit group members; lines between pairs
of nodes represent relationships between group members; and
the weights represent the strength of the relations. For most
of the discussion, we will assume that the graphs are either
undirected or symmetric. Sociologically, this is equivalent
to the assumption that pexrson A and person B have thé same type
of relationship ‘with or feeling toward one another.

The model assumes that relationships between members can
be specified and linearly ordered in terms of strength. For
example, it should be possible to specify whether people are
good friends, friends,:'acduaintances, or enemies. Alterna-
tively, it should be possible to specify whether people like
each other very much, like each other somewhat, feel neutral
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toward each other, dislike each other somewhat, or dislike
each other very much. The main assumption of this paper is
that this linear order of relationships (whether the relation-
ships are degrees of friendship or degrees of liking) should
be conceptualized in terms .of distance. Two people will be
considered closer together, or the distance between them smaller,
if there is a greater degree of friendship or liking between
them than between two-other people. Conversely, two people
will be considered farther apart, or at a greater distance from
each other, if they dislike each other more or do not like each
other as much as two other people. Strength or distance is
assumed to be a positive quantity.

Mathematically, the concept of distance can be defined
as follows:

Definition: (X,Y,d,<)

X .is an unordered set of points that represents the
people in the group: X = {A,B,C,....}.

Y is an ordered set of all the distances between the
points in X: Y = {a,b,es.c..}.

d is a function that assigns a distance to all ordered
pairs (A,B) in X x X for A # B: d:X x X + Y.

< is a relation that defines the linear ordering of Y¥:

for all a,b,ec, elements of ¥ (a,b,ceY) either a < b or
b <a, and if ¢ <-b and b < ¢ then a < ¢.

When we use this mathematical notation, the expression
d(A,B) = m means that the distance from A to B, or, equiva-
lently, the degree to which A likes B, is m. Since we are
assuming here that B has the same type of relationship with
A that A has with B, i.e., d4(B,A) = d(A,B), we can say that
the distance or the degree of liking between A and B is m.

The notation a £ b means that the distance g expresses
a greater or equal degree of closeness than the distance b.

I assume that the order of the alphabet represents the order

of ¥ under <; thus, a < b, e < f, and so on; that each letter
represents a different distance, unless otherwise indicated;

and that >, > and < have their usual meaning.

Common to the class of models associated with balance
theory is the notion that there are certain constraints on
the way in which social relationships interconnect. Graphs
of groups that are consistent with these constraints are
termed balanced (Cartwright & Harary, 1956), clustered (Davis,
1967), or transitive (Holland & Leinhardt, 1971). Groups that
are not constrained in the hypothesized fashion are termed,
respectively, unbalanced, unclustered, or intransitive. Un-
constrained groups are assumed to have both an unstable social
structure and to be characterized by tension between group
members. .

" The term "d-balance" will be used to refer to groups that
are constrained by the distance model. (The use of the term
"balance" is not meant to imply any direct connection with
Cartwright and Harary's notion of "structural balance.") This
notion is developed by introducing a concept of addition @
which is not identical with, but is closely related to the
usual concept of addition.
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fijcommon. axiom for any mathematical structure that in-
Qrates the idea of distance is the triangle inequality.
S :lnequality states that the dis
cannot.be longer .than the sum of the distances from each of
:tyo‘p01nts'to any intermediary -point. 1In mathematical nota-
-«tlon, the idea is expressed as follows:
2
For any three points A,B,C and a distance function 4,
d(A.C) < a(a,B) + 4(B,C).

The triangle inequality characterizes the notion of balance
If a structure satisfies the trian
said to be balanced; if it does no
imbalanced.

This notion of d-balance can be best understood if we
look at a physical analogy. For the moment, let us assume
‘that the physical distance that separates two people is a -
measure of their degree of liking. Thus, if they stand very
close to each other, this indicates that they like each other
very much; if they stand very far apart, this suggests that
thgy dislike each other very much. Let us know think about
triads. On the one hand we could imagine a triad in which
everyone could stand the distance they wanted to from each
other. This would be a balanced triad. On, the other hand,
we could imagine a triad in which it is impossible for every-
one to stand the distance he would like to stand from the
chers. This would be an imbalanced triad. Figures 1 and 2
illustrate. 1In Figure 1, A and B stand 3 feet apart, A and
C stand 2 feet apart, and B and C stand 6 feet apart. Since

gle inequality, it will be
t, it will be said to be

A
3 ft. 2 ft. Figure 1. 1Imbalanced triad.
B 6ft. C
A
5 ft. 2 ft. Figure 2. Balanced triad.
B 4 ft C

the distance between B and C is greater than the sum of the
distances between the other two points (6 >3+ 2), spmeone
must stand closer or farther apart than he wants to. Presum-

ably, this situation would create "tension," the principle
idea behind the work of Heider (1958). 1In Figure 2, everyone
can stand the distance he wants to from the others since the
triangle inequality is satisfied (5 <4 + 2, 4 <5 + 2,

2 < 4 4 5y,

The definition of d-balance is:

tance between any two pointsf
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Definition: A structure is d-balanced if and only if
for all A,B,CeXt

d(a,c) < 4(a,B) © 4(B,C)

What does the notion of d-balance mean in terms of social
structure? For the moment, assume that the dist;nce "a" be-
tween two people indicates that they are good_frlendsﬂ Ehe
distance "p" that they are friends, and the distance "¢" that
they are enemies. One might assume here that there is some
social-psychological principle such that all ggod frlend§ of
good friends should be good friends. Mathematically, this is
equivalent to saying that a @ a = a. If A and B are good
friends [d(A,B) = a], B and C are good friends [d(B,C) = a],.
and A and C are also good friends [d(A,C) = ql, then this triad
is 'd~balanced. ‘Formally, this is because d(A,B) < d(A,C) @

‘d(s,c), d4(a,C) < a(a,B) ®d(B,C), and d(B,C) < d(A,B) ®d(A,C).

These inequalities all follow from the fact that a > a @ a.
If, howevgr, B and C are only friends [d(B,C) = b], the A,B,C
triad fails to satisfy the principle that all ggod fr%ends

of good friends should be good frignd§. IFs failure is for-
mally equivalent to the fact that it is d-imbalanced. The )
triad is d~imbalanced, as 4(B,C) > 4(A,B) ® d(A,C), or, eguiv-
alently, b > a ® a, which follows from b > a = a ® a.

When different degrees of a relationsh%p can occur, a
number of interrelationships must be specified anq there are
a number of different ways that they could be defined. Egquiv-
aléntly, within the graph of a group where there are a number
of different distances, there are a number of sums that need
to be specified and a number of things that these sums could
equal. .

TABLE 1
qurator Table for Propositions 1-9

® |'a b e

a b e
b b e
e e e c

\

The easiest way to see how distances should be added is
to use an operator. table. Table 1 is an example. It speci-
fies that a @ a = a, a@®b =b, and b® b = b, etc. Assuming
d-balance, the nine entries in the table are equivalent to
nine propositions-~about social structure.

i - i for incomplete
tAlternatively, d-balance may be deflneq
graphs in terms of éaths. A graph may be said to be d-balanced
if d@a,c) < d(A,X1) ® a(X1,X2) ® ....d(Xn,C) for all A,Chapd
Xi. It can be shown that the two definitions are mathemati-
cally equivalent for complete graphs.
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(a@®a a) is equivalent to a good friend of a good
friend should be a good friend, but not

a friend or an enemy.
(2) (a@® b = b) is equivalent to a good friend of a friend

should be either a good friend or a friend,i

but not an enemy.

(3) (a@® ¢ = ¢) is equivalent to a good friend of an enemy .
may be either a good friend, a friend or
an enemy.

(4) (b ® a = b) is equivalent to a friend of a good friend
should be either a good friend or a friend,
but not an enemy.

(5) (@b = b) is equivalent to a friend of a friend
should be either a good friend or a friend,
but not an enemy. :

(6) (b ®ec = e) is equivalent to a friend of an enemy may
be either a good friend, a friend, or an
enemy.

(7) (e® a = e) is equivalent to ankenemy of a good friend
may be either a good friend, a friend, or
an enemy.

(8) (e ®Db = ¢) is eguivalent to an enemy of a friend may
be either a good friend, a friend, or an
enemy. .

(9) (¢ ®c = ¢) is equivalent to an enemy of an enemy may
be either a good friend, a friend, or an
enemy.

It is clear from the above nine propositions that an op-
erator table specifies which triad types are allowed within
the graph of a d-balanced group and which are not. Figure 3
shows the dichotomization for operator Table 1.

The relationship between the nine propositions and the 3

triads contains a certain subtlety. Some propositions specify
certain triad types as permissible, whereas others rule them
out. For example, proposition (7) specifies that an enemy of
a good friend may be a good friend. This is equivalent to
stating that triad (10) is permissible. This triad type is
not allowed, however, according to proposition (1), which
specifies that a good friend of a good friend cannot be an en-
emy. The subtlety is that a prxoposition specifies only what
is possible with respect to one ineguality, but this does not
rule out the possibility that another inequality may prohibit
the ‘specified trial., For instance, proposition (7) is eguiv-
ﬂmtthSmwmthtaic@a,bic@a,mdcic@a
all of which are true for triad (10). But proposition (1)
prohibits triad (10), as ¢ > a @ a. Thus, with each triad
A,B,C, there are three different inequalities ‘that must be
tested: d(a,B) < d(a,c) ® 4(8,C), 4(a,C) £ d(A,B) @ 4a(B,C),
and d(B,C) < d(a,B) ® d{A,C). If the triad satisfies all

three inequalities, then it is permitted, or d-balanced.
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For Table 1
d-balanced d -imbalanced
For Table 2
(1) (2)
a a a b
(3)
a b a b
(4) (5) Py
d~balanced - a/ c b b
c b (6)
(7) (8) °/ N\
[+ b c c Py
c ¢
) (9) (10),
d-imbalanced a a a a
b ¢
Figure 3

Different operator tables add distances in different ways.
Operator tables, thus, are specific models for sociometric
structure under the general model. Table 2 differs from Table
1. For example, Table 2 asserts that b ® b = ¢, where Table
1 asserts that b@®b = b. - Sociologically, Table 2 asserts
that a friend of a friend may be either a good friend, a friend,
or an enemy, whereas Table 1 asserts that a friend of a friend
should be either a good friend or a friend, but not an enemy.
Tables 1 and 2 make different assertions about sociometric
structure and different assertions about which triads are d-
imbalanced. Figure 3 indicates which triads are allowed rel-
ative to Table 2.
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TABLE 2
@] a b e
”
a e e
b e e
e e e e

Figure 3, shows that Table 2 allows all the triads that
Table 1 does, but that Table 1 prohibits triads permitted by
Table 2. In other words, the triads that Table 2 prohibits
are a subset of the triads that Table 1 prohibits. When this
is the case, then one table is more restrictive than the other.
For example, Table 1 is more restrictive than Table 2.

Mathematically, one table is more restrictive than another
table if each entry in that table is less than or equal to the
respective entry in the other table., Table 1 is more restric-
tive than Table 2 since in each entry where they are not equal,
the entry in Table 1 is less than the entry in Table 2.

TABLE 3
@| a b e
a b b
b b b
I e e e

It is not always the case that given two operator tabiles,
one is more restrictive than the other. For example, opera-
tor Table 2 prohibits some of the triad types that Table 3.
allows .and Table 2 allows some of the triad types that Table
3 prohibits. (The readet is invited to work out the details.)
The notion of restrictiveness produces a partial ordering of
operator tables. This means that given three Tables I, . II,
and III, if I is more restrictive than II, and II is more re-
strictive than III, then it follows that I is more restrictive
than III. This is because restrictiveness is simply a specifi
form of the notion of subset.

Figure 4 illustrates the partial ordering of all operator
tables that contain only three distances. C

Finding a specific model for social structure or for a
particular type of group involves choosing the imost restric-
tive model possible. If social structure was hypothesized to
conform to the model at the bottom of the hierarchy in Figure
4, the table with all c's, then social relations could inter-
relate in any which way. On the other hand, saying that socia
structure conforms to the model at the top of the structure
is equivalent. to saying that social structure has as many con-
straints as the general model will allow. Clearly, the more
restrictive the model, the better the nature of sociometric
structure has been specified.
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@ a b e
Most a a b ¢
Restrictive b j-b b <]
e e c
®| a . b e @ a ? e
a b e a b b e
bl b e e b | b b e
e a e e e e e
®| a b e @ a b e
a <] e a b b e
b <] e <] ’ b b e <]
c e e e e e e e
@ a b <]
a b e e
b <] e <]
< e e e
®|a b ¢
{
‘Least a c
- Restrictive
b e
e e e

Figure 4. Partial ordering of all three distance models.

GENERAL. NATURE OF OPERATOR TABLES

In the above treatment of operator tables and @, it may
be obvious that only a limited set of operator tables and prop-
ositions are dealt with. BAn axiomatic treatment of operator
tables is given in Appendix A. Most of the axioms are not of
sociological significance. They are incorporated into the
model to insure that distances are added together in a consis=~
tent manner. One axiom, however, is of sociological impor-
tance. It is examined next.
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For a,beY, the max (a,b) < a®b

The axiom states that for any distances a,b, the greater
of the two elements must be less than or equal to the sum of
the two. It rules out the possibility of having "negative"
distances - that is, a distance ¢, which when added to another
distance, d, sums to a distance smaller than 4. This axiom
has important sociological implications. Abstractly, it says
that people's relationships are constrained by the interrela~
tionship of their relations with other close people and by the
relations of those people with close others. They are not
constrained by the interrelationship of their relations with
those who are distant. This is implicit in Davis' work and
in his discussion of balance theory (Davis, 1967 and 1970).

It can be better understood by examining the following two
propositions. '

Aziom:

(L) (e ®a = a) a good friend of a good friend should be
a good friend.
(2) (¢ @ e = a) an enemy of an enemy should be a good

friend

Proposition (1) is an example of people's relations being
constrained by their relations with close others and relations
these others have with the people that they are close to.
Proposition (2), which is prohibited by the axiom [max
(e,e £ e ®e)], is an example of people constrained by rela-
tions with distant people and their relations ‘with other
distant people.

This issue is the central difference between Davis' clus-
tering model and the Cartwright and Harary model. For Davis,
liking of people (i.e., close people) constrains one's rela-
tionships. For Cartwright and Harary, one's relations can
constrain because of liking or disliking. This is a point of
substantive significance. The model in this paper adopts
Davis' point of view. .

CLIQUE MODELS

The preceding has examined the microstructure of the .dis-
tance model, i.e., the different types of triads that are per-
mitted by different .operator tablés. Now two different types
of specific models within the general model are examined:
clique models and proximity models. .

The notion of a clique is as old as sociometry. Within
the ‘class of models that has grown out of the work of Heider
(1958), the word clique has had a very specific meaning.
Cartwright and Harary (1956) define a clique as a set of peo-
ple such that everyone in the set likes everyone else and no
one likes anyone outside of the set. Cligue is defined here
analogously.

Definition: A clique is a set of points (Q) in X such

that the distance between any points [d(A,B)] in Q is
‘less than or equal to some element (g) of Y, and the dis-
tance between a point in Q and a point not in Q is al-
ways greater than g.
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Using the opefator table presented in Table 4 and asilgn-
ing the category "like" to distance "a" and the category dis-
like" to distance "b," the two definitions of cliques begomg
equivalent with respect to Table 4. All of Fhe peop%e“w1th1n
a clique will like one another (will be Qf d1§tapce a" from
each other), and between cliques, they will dislike one an-=
other (will be of distance "p" from each other). Because the
niodel allows f£or more than two distances, thereby allowlng
for cliques to form at more than one distance, the notion of
clique needs qualification.

TABLE 4
®| a b
a a b
b b

Definition: A g-clique, A, is a clique such that all
members of A are no more than a distance g from each
other, and there does not exist a f < g such that all
members of A are no more than a distance f from each
other. '

This definition implies that in the distance model there can
be cliques within cliques. Figure 5 illustrgtes. In Elgure
5, the set A,B,C is a b-clique, the set A{B is an a~clique,
and the whole .space X is the trivial c-clique.

A ’ D

All pairs whose distance from each other
is not specified {e.g. A and E) are a
distance ¢ from one and other

Figure 5

Fundamental to the models that have -been deyelopgd grom
the work of Heider is the notion that cliques exist within a
group because of the type of constraints thgtAhave been put
on the relationships within the group. A glmllar @evelopment
can be provided for the distance model by 1§trgduc1ng the.no-
tion of an idempotent element. An element is 1dempotgnt 1f
its ‘sum with itself is itself (e.g., b ® b = b). Sociologi-
cally, an idempotent distance (e.g., b}, when taken togethgr
with the assumption of d-balance, requires that for any triad,
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two sides of which are that distance (e.g., d(A,B) = b and
. d(B,C) = b), the third side be no greater than the distance

fecg., d(A,C) < b]. The following theorem states this in
terms of cliques

Theorem: Given a d-balanced graph (X,Y,d,<,8), for each
idempotent element h there exists (an) h-clique(s).

Proof of the theorem is omitted. Descriptively, the theorem -
says that given a d-balanced graph and an idempotent element
%, the graph can be subdivided into subsets such that within
each subset all the people are distance h or less from each
other (i.e., they 'like each other at least %) and between sub-
sets people are more than a distance A4 from each other (i.e.,
they do not even like each other h).

A model is a clique model if it contains an idempotent
element in addition to the largest-element of Y. The axioms
for operator tables guarantee that the largest element of Y
is always idempotent. The Davis (1967) clustering model is
an example of a clique model. Table 4 is the appropriate op-
erator table. Davis defines a clustering of a graph as a par-
tition of a graph into subsets such that people within each
subset like each other and people between each subset dislike
each other (Davis, 1967). If distance g in Table 4 is taken
as like and distance » as.dislike, then the above theorem
guarantees that a graph d-balanced with respect to Table 4 is
clustered in Davis' sense. The equivalence between the two
models can also be seen by looking at triads.' Davis' theorem
2 states that a complete graph is clustered if it contains no
triads with exactly one negative relation (Davis, 1967). This
is precisely the triad that operator Table 4 prohibits
(b >a®a)l.

Table 5 contains an operator table that has three addi-
tional idempotent elements. It represents a structure which
is an example of a hierarchical tree, an idea common to the
taxonamic literature. Figure 6 represents the hierarchical
tree consistent with Table 5. Table 6 presents the matrix of
relations of the seven people in Figure . A hierarchical
tree is the extreme version of a clique model.

TABLE 5 : '
Example of a Hierarchical Tree

@D | a b e d

Q9 (S SN
a0 BoR
ST SRS R
a0 Q8
[SVRE S PR S I £ 9

A basic problem underlies the clique type of model. Such
a model suggests that groups tend to fragment into opposing
and unconnected cligues. Although each clique may have a great
deal of internal consistency, a group so fragmented is unlikely

5
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d-cliques

c-cligques

b-cliques

a-cliques

Figure 6
to be either Eypical, tension free, or desirable (see Davis,
1967; Granoveter, 1973; Killworth, 1974). Another type of
model may provide a solution. ' .
TABLE 6

Sociometric Data for Figure ¢

~

1 2 3 4 5 6

PUTEN - Y, B S VO R SR o
T N
Y nAx )
AR R R XS o
(s S T T -
Qo8 X oA A A
QX 8 o oA 8 R
X 8 A O oA a8,
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#PROXIMITY MODELS

A basic idea in sociometry is that the amount of inter-
action between two people is directly related to the degree
of liking between, them. Homans made this point in The Human
Group (1950), and it was later restated by Davis and Leinhardt
(1972) and by Granoveter (1973). Granoveter (1973) points out
that this relationship between interaction and liking provides
an important way of thinking about positive sentiment. Con-
sider the percentage of time that two people spend with each
other as a direct measure of their degree of liking for each
other. Assume that A and B spend 60% of their time together
and B and C spend 40% of their time together. A and C should
spend 24% of their time together. If A and C spend less time
together, then they would be avoiding each other, an indica-
tion of tension. If they spent more than 24% of their time
together, there would be no problem. (Granoveter, 1973, de-
velops a model similar to this, p. 1362.)

An important distinction between the interaction model
and the clique model is that in the former a triad is consi-
dered balanced even if the third side of a triad is less
friendly than either of the other two sides. Alternatively,
we can say that a good friend of a good friend should be at .
least a friend. With respect to the distance model, this idea
implies that we have a model which has no idempotent elements
axcept the largest one. When this is true for all distances
except the largest, the model is a proximity model.

Table 7 is an example of such a model. Comparing Table
7 to Table 5, shows that the former is less restrictive than
the latter. Proximity models are always less restrictive than
clique models. The proximity model is important because it
Places restrictions on the way ‘in which relationships inter-
relate, but it does not suggest that groups tend to fragment
into cliques.

The proximity model provides an alternative to clique
nodels. It does not postulate that groups fragment into
sliques; however, it does not prohibit this. It postulates
that cliques, when they exist, exist because of random vari-
ations in the group and not because of any socio-psychological
sonstraints on the relationships in the group.

TABLE 7

Example of a Proximity Model

a b e da’
a b -] d d
5| e e d d
e d d d d
d d d d d
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ASYMMETRIC STRUCTURES

Until now, only symmetric structures, i.e., structures
in which 4(A,B) = d(B,A), have been discussed. Symmetry may
not, however, always be a reasonable assumption. Thus, A may
like B very much, but B may hot like A at all. Sociometric
structures with asymmetiic ties have been considered in the
literature. Perhaps one of the most coherent and certainly
the most relevant to the notions developed here is Holland and
Leinhardt's revival of the concept of transitivity as an or-
ganizing principle for sociometric structure (Holland and
Leinhardt, 1971). X

Holland and Leinhardt define a graph to be transitive if
(1) every person chooses themself; and if (2) person A chooses
person B and person B chooses person C, then A also chooses
person C. Holland and Leinhardt show that the notion of a
transitive graph leads to a partial ordering of cligques,.such

‘that within each clique everyone chooses everyone else and

everyone within a clique chooses everyone in the cliques above
it in the hierarchy. The clique at the top of the hierarchy’
contains the people who have been chosen the most and who are
considered to have the highest status. People in lower level
cliqgues have status intermediate between those in the cliques
above them and those in the cligues below them. Holland and
Leinhardt note that the model permits isolated cliques that

‘neither choose anyone else nor are chosen by anyone else.

These cliques have undetermined status.

In order to develop thé model presented here in terms of
asymmetric ‘structures, some of the concepts that have been
previously introduced need to be reexamined. What is meant
by d(A,B) and 4(B,A) must be specified. d(A,B) will represent
A's degree of liking for B and d{(B,A) will represent B's de- .
gree of liking for A. If d(A,B) < d(B,A), this would presum-
ably indicate that B was of higher status than A, since A liked
B more than B liked A. Next, the definition of d-balance must
be examined. A graph was defined as d-balanced if and only
if for all A,B,CeX, d(A,C) < &(A,B) ® 4d(B,C). What the defin-
ition of d-balance states is that each triplet as defined by
Davis, Holland and Leinhardt (1971) must satisfy the triangle
inequality. A triplet is the two directed relations from a
single point in a triad, plus one of the additional directed
relations going from the second point in the triad to the
third. Each triad has six triplets. T
) . Table 4 shows that the assumption of asymmetric d-~balance
is equivalent to Holland and Leinhardt's notion of transitiv-
ity. Assume that d(A,B) = g means that A likes or chooses B
and that d(A,B) = b means that A does not like or choose B.
Then a graph is d-balanced according to the table if when A
chooses B [d(A,B) = g ] and B chooses C [d(B,C) = a 1, then
A chooses C [d(A,C) = a ], the definition of transitivity
[d(a,C) < 4(A,B) @ a(B,C)].

What is the sociological importaﬁce of the proximity type
of operator table that we considered in the symmetric case?
One of the objections that can be raised about the transitiv-
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TABLE 8

Data for Figure 7
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ity model (White, 1973) is that it requires those at the bot-
tom of a hierarchy to choose everyone. The proximity models
offer a solution to this dilemma. Consider Table 7. Assume
that a partial ordering of people in terms of status exists.
Assume also that for every person A, the distance to the in-
dividuals in the next higher clique, the B's, is equal to a.
This might be interpreted as A likes every B very much. If
the model is to be d-balanced with respect to Table 7, how
much must A like the C's, the people in the higher cligue?

A must be distance b from the C's, and this might be inter=-
preted as A only likes the C's. The person next up in the
hierarchy only have to be a distance ¢ from A, which might be
called indifference. Proximity models, then are a much more
appropriate way to look at groups in that they maintain con-
straints on people's choices, but they do not force those on
the bottom to choose or like everyone of higher status.

There is at least one more substantive issue that the
distance model is capable of elucidating. This is the rela-
tionship between hierarchical structure and cliquing struc-
tures. In their paper on transitivity, Holland and Leinhardt
(1971) argue that they have found a single mechanism to )
explain stratification and clustering in sociometric struc-
tures. They contend that it is the transitivity of the mutuals
that forms cligues and the transitivity of the asymmetrics
that forms hierarchical aspects of the structure. They argue
that previously these two properties of sociometric structure
have been treated differently (see Homans, 1950; Brown, 1965) .
But, Holland and Leinhardt's claim seems tautological. Since
transitivity is a necessary condition for the existence of both
cliques and hierarchies, there is no logical way to separate
the two notions in their model. This is not the case in the
distance model. Here there is no reason at all why the sym-
metrical structure of groups might be constrained in a way dif-
ferent from the hierarchical structure. The different ways
that the interrelationship between these two types of struc-
ture might be/considered are endless. One example,of how the

¢ two types of structures might differ is considered below.

-
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Figure 7

Cogsider the case in which there are seven people. Table
8 contains the raw distances between each of the individuals.
In this case, the symmetric distance between two people is de-
fined as the maximum of the two distances between them, i.e.,
symme?rlc distance = max [d(A,B), d(B,A)]. This is a tenable
p051t}on: If we have two people, one of whom would like to
be friends and one who would not, then it is plausible to as-
sumelthaF they will not be friends. Table 6 contains the sym-
metric distances. When the operator tables for both the raw
and the symmetric matrix are specified, the symmetric struc-
ture is qlustered (Table 5) and the hierarchical structure is
a ‘'proximity model (Table 7). Figures 6 and 7 illustrate the

‘symmetric and hierarchical structures of the group.

I am not maintaining that stratification and clustering
are two different processes.in the sociometric structure of
groups. What I want to suggest is that the distance model
prov1d§s a very strong way of deciding whether this is true.
In empirical data, if one operator table is found to be
sufficient for describing both symmetric and asymmetric struc-
ture,'t@en strong evidence exists that stratification and
clustering are the same type of process. If two different
opergtor tables "are required, then this is evidence that they
are in some sense two different types of processes.




38 C. WINSHIP
CONCLUSION

My aim has been to outline the basic components of a
model for sociometric structure that includes the notion of
strength of relationship, or distance. The model provides a
natural way to generalize the Davis (1967) clustering model
and Holland and Leinhardt's (1971) transitivity model and a
theorem is provided indicating the relationship between d-
balance and cliquing. Finally, it is shown that specific

models that are gqualitatively different from clustering and
transitivity models, can be formulated. It is argued that
these models provide potential solutions to some issues.

APPENDIX A: AXIOMS

The general distance model contains twelve axioms. Only
axiom 10 is of sociological relevance.

1. The set Y of distances is finite.

2. The set X of people is finite.

For any three elements, a,b,e, of the distance set Y:

N 3. Associativity: a® (3 ®@¢) = (a®b) @e
’ 4. Closure: if a,beY then a @ be¥ Semigroup
o
5. Commutativity: a®b =b®@a ¥1oms

(necessary only for symmetric structures)

6. Completeness: either a < b or b <a Linear

7. Reflexivity: a £ a Order
Axioms

8. Strictness: if a £ b and b £ a then b =a
9. Transitivity: if a < b and b L ¢ then a £ ¢

10. Positiveness: sum of two numbers if greater than
or equal to either number: max (a,b) <a@b
11. @ preserves order under <
if a < b then a @ c < b ®cand c®a < c@P

12. Existence: for all aeY {(X,Y)/d&(X,¥)
empty.

a}l is not
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