
International Journal of Epidemiology 2002;31:422–429

Although one goal of aetiologic epidemiology is to estimate ‘the
true effect’ of an exposure on disease occurrence, epidemio-
logists usually do not precisely specify what ‘true effect’ they
want to estimate. We describe how the counterfactual theory of
causation, originally developed in philosophy and statistics, can
be adapted to epidemiological studies to provide precise answers
to the questions ‘What is a cause?’, ‘How should we measure
effects?’ and ‘What effect measure should epidemiologists
estimate in aetiologic studies?’ We also show that the theory of
counterfactuals (1) provides a general framework for designing
and analysing aetiologic studies; (2) shows that we must always
depend on a substitution step when estimating effects, and
therefore the validity of our estimate will always depend on the
validity of the substitution; (3) leads to precise definitions of
effect measure, confounding, confounder, and effect-measure
modification; and (4) shows why effect measures should be
expected to vary across populations whenever the distribution
of causal factors varies across the populations.

Introduction
Imagine that the creator of the universe appears to you in a
dream and grants you the answer to one public-health question.
The conversation might go as follows:

You: What is the true effect of (your exposure here, denoted 
by E) on the occurrence of (your disease here, denoted by D)?

Creator: What do you mean by ‘the true effect’? The true value
of what parameter?

You: The true relative risk.

Creator: Epidemiologists use the term relative risk for several
different parameters. Which do you mean?

You: The ratio of average risk with and without exposure—what
some call the risk ratio1 and others call the incidence proportion
ratio.2

Creator: Which incidence proportion ratio?

You: Pardon?

Creator: Do you want a ratio of average disease risk in two
different groups of people with different exposure levels?

You: Yes.

Creator: So you want a descriptive incidence proportion ratio?

You: No, not descriptive. Causal. An incidence proportion ratio
that isolates the effect of E on D from all other causal factors.

Creator: By ‘isolate’, you mean a measure that applies to a
single population under different possible exposure scenarios?

You: Yes, that’s what I mean.

Creator: OK. Which causal incidence proportion ratio?

You: Pardon?

Creator: For what population, and for what time period? The
true value of a causal incidence proportion ratio can be different
for different groups of people and for different time periods. It’s
not necessarily a biological constant, you know.

You: Yes, of course. For population (your population here,
denoted by P) between the years (your study time period here,
denoted by t0 to t1).

Creator: By population P, do you mean: (1) everyone in popu-
lation P, or (2) the people in population P who have a specific
set of characteristics?

You: Pardon?

Creator: As I just said, the true value of a causal incidence
proportion ratio is not necessarily a biological constant. It can 
be different for subgroups of a population.

You: Of course. Everyone in population P.

Creator: OK. Comparing what two exposure levels?

You: Exposed and unexposed.

Creator: What do you mean by exposed and unexposed? Exposed
for how long, to how much, and during what time period?
There are many different ways you could define exposed and
unexposed, and each of the corresponding possible ratios can
have a different true value, you know.

You: Of course. Ever exposed to any amount of E versus never
exposed to E.

Creator: The incidence proportion ratio for the causal effect 
on D of ever E compared to never E in population P during the
study time period t0 to t1 is (your causal incidence-proportion-
ratio parameter value here).

The point of the above is that, while one goal of etiologic
epidemiology is to estimate ‘the true effect’ of an exposure on
disease frequency, we usually do not precisely specify what
‘true effect’ we want to estimate. We may not be able to do so.
For example, before reading this paper would you have required
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less prompting than in the dialog above? How many published
papers explicitly state what the authors mean by ‘true’ rela-
tive risk or odds ratio, or whether the estimated measure of
association is intended to have a descriptive or causal inter-
pretation? How many papers explicitly define the population or
time period of interest? How many etiologic papers over-
emphasize results that cannot be given a causal interpretation,
such as significance tests, P-values, correlation coefficients, or
proportion of variance ‘explained’?

In this paper we discuss the questions ‘What is a cause?’,
‘How should we measure effects?’ and ‘What effect measure
should epidemiologists estimate in etiologic studies?’ We begin
by adapting the counterfactual approach to causation, originally
developed in philosophy and in statistics,3,4 to epidemiological
studies. In the process, we give precise answers to these ques-
tions, and we describe how these answers have important
implications for etiologic research: (1) Under the counterfactual
approach, the measure we term a ‘causal contrast’ is the only
meaningful effect measure for etiologic studies. (2) The counter-
factual approach provides a general framework for designing
and analysing epidemiological studies. (3) The counterfactual
definition of causal effect shows why direct measurement of an
effect size is impossible: We must always depend on a sub-
stitution step when estimating effects, and the validity of our
estimate will thus always depend on the validity of the sub-
stitution.3,5–7 (4) The counterfactual approach makes clear that
a critical step in study interpretation is the formal quantification
of bias in study results. (5) The counterfactual approach leads to
precise definitions of effect measure, confounding, confounder,
and to precise criteria for effect-measure modification.

In the discussion that follows, we assume that the study
outcome is a disease (e.g. lung cancer); this discussion can be
readily extended to any outcome (e.g. a health behaviour such
as cigarette smoking). We also assume for simplicity that disease
occurrence is deterministic; under a stochastic model, the
quantities we discuss are probabilities or expected values.6,7

The counterfactual approach
History

In 1748, the renowned Scottish philosopher David Hume wrote
‘we may define a cause to be an object followed by another …
where, if the first object had not been, the second never had
existed.’3,8 A key innovation of this definition was that it
pivoted on a clause of the form ‘if C had not occurred, D would
not have either’, where C and D are what actually occurred.
Such a clause, which hypothesizes what would have happened
under conditions contrary to actual conditions, is called a
counterfactual conditional. Despite its early appearance, this
counterfactual concept of causation received no formal basis
until 1923 when the statistician Jerzy Neyman presented a
quantitative conceptual model for causal analysis.9 This model
was originally known as the ‘randomization model’10 and was
later called the ‘potential-outcomes model’ (or, inaccurately,
‘Rubin’s model’) when extended to observational studies.11

The model has since been widely (though not universally12)
adopted by statisticians and others seeking a logical foundation
for statistical analysis of causation.4,10,13–16 These developments
were paralleled by more extensive analysis of counterfactual
reasoning by philosophers.17–20 A comprehensive review 

of causality theory is provided by Pearl,15 who shows how
structural-equation models and graphical causal models (causal
diagrams) translate directly to counterfactual models, shedding
light on all three approaches. A brief review of these con-
nections is given by Greenland,21 and Greenland et al.22 provide
a more extensive review of graphical causal modelling for
epidemiological research.

Target

We will use the term target population for the group of people
about which our scientific or public-health question asks, and there-
fore for which we want to estimate the causal effect of an exposure.
The target population could be composed of one group of
people (as in most epidemiological studies), several groups of
people (as in an intervention study in several communities), or
one person. For simplicity, in the rest of this discussion we
assume that the target population is one group of people.

Let the etiologic time period be the time period about which 
our scientific or public-health question asks. The beginning and 
end of this time period is specified by the study question. For
example, in a study of the effectiveness of a back-injury pre-
vention programme in a workplace, the etiologic time period
could be any time period after the implementation of the
programme. Note that this period may vary among individuals
(e.g. the etiologic time period for a study of weight gain during
pregnancy and pre-eclampsia spans only pregnancy), and not
all of the period need be time at risk. For example, the etiologic
time period for a study of intrauterine diethylstilbesterol ex-
posure and subsequent fertility problems could include child-
hood, a time at no risk of such problems but during which
etiologically relevant events (e.g. puberty) occur.

Let A be the number of new cases of the study disease in the
target population during the etiologic time period. Let B be 
the denominator for computing disease frequency in the target
population during the etiologic time period. If B is the number
of people at risk at the beginning of the period and all indi-
viduals are followed throughout the etiologic time period, the
disease-frequency parameter

R = A
B

is the proportion getting disease over the period (incidence
proportion, average risk). If B is the amount of person-time at
risk during the period, R is the person-time incidence rate. If 
B is the number of people who do not get disease by the end of
the period, R is the incidence odds.

Let target refer to the target population during the etiologic
time period.

Causal effect

Consider one target population during one etiologic time period,
but under two different exposure distributions, as illustrated
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below. Let the subscript 1 denote one exposure distribution, and
let the subscript 0 denote the other. These distributions represent
different possible mixtures of individual exposure conditions.
With, say, smoking as the exposure, distribution 0 could represent
conditions under which 20% of the target population regularly
smoked cigarettes during a given time period, whereas distribu-
tion 1 could represent conditions under which 40% (instead of
20%) of the population did so during that period.

Then R1 = A1/B1 is disease frequency if the target population
had experienced exposure distribution 1, and R0 = A0/B0 is
disease frequency if the same group of people during the same
time period had instead experienced exposure distribution 0.

Let a causal contrast be a contrast between R1 and R0. For
example, we define the ratio causal contrast as

where we allow RR to denote a risk ratio, rate ratio, or odds ratio.
Similarly, we define the difference causal contrast as

RDcausal = R1 – R0.

Synonyms for causal contrast are effect measure and causal par-
ameter.

A causal contrast compares disease frequency under two
exposure distributions, but in one target population during one
etiologic time period. This type of contrast has two important
consequences. First, the only possible reason for a difference
between R1 and R0 is the exposure difference. A causal contrast,
therefore, measures the causal effect of the difference between
exposure distributions 1 and 0 in the target population during
the etiologic time period.2,4–7,23

Second, a causal contrast cannot be observed directly, as we
explain below, and therefore a different type of measure must
be used as a substitute for it.

Counterfactuals

Why is it not possible to directly observe a causal contrast?
Because at least one of the disease-frequency parameters needed
for a causal contrast, R1 and R0, must be counterfactual and
therefore unobservable. A parameter (such as a disease
frequency) that describes events under actual conditions is said to
be actual (or factual); in contrast, a parameter that describes
events under a hypothetical alternative to actual conditions is said
to be counterfactual.2,3,7,17 Counterfactual parameters cannot
be observed because, by their very definition, they describe
consequences of conditions that did not exist—they describe
events following hypothetical alternatives to actual conditions,
not actual conditions. The entire collection of outcome

parameters for the target, actual and counterfactual (here, R1,
R0 and all Ri under all other exposure conditions), is sometimes
called the set of potential outcomes, to note that each is a
possibility before the exposure distribution becomes fixed.11,23

For a given R1 and R0, one and only one of the following
three scenarios may occur. (1) R1 is an actual disease frequency;
it occurs, and therefore it can be observed. R0, then, must be
counterfactual; as a hypothetical alternative to R1 it does not
occur, and therefore it cannot be observed (as illustrated below).

(2) R0 is an actual disease frequency; it occurs, and therefore
it can be observed. R1, then, must be counterfactual; as a hypo-
thetical alternative to R0 it does not occur, and therefore it
cannot be observed.

(3) Both R1 and R0 are counterfactual disease frequencies—
both are hypothetical alternatives to the actual disease frequency
that occurs under the actual exposure distribution (which is
neither exposure distribution 1 nor 0), and therefore neither 
R1 nor R0 can occur and be observed.

Substitutes

A causal contrast requires two quantities, at least one of which
must be counterfactual and therefore unobservable. How, 
then, can we estimate a causal contrast? By using substitutes
(illustrated below) for the counterfactual disease frequencies in
the target. As before, the subscript indicates the exposure
distribution.
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In a substitute under exposure distribution 1, let C1 be the
numerator of a disease-frequency measure, and let D1 be the
denominator (number of people or amount of person-time at
risk). Likewise, in a substitute under exposure distribution 0, 
let E0 be the numerator, and let F0 be the denominator.

In epidemiological practice, a substitute will usually be a
population other than the target population during the etiologic
time period. It may be the target population observed at a time
other than the etiologic time period, or a population other than
the target population. In theory, however, a substitute can be
any source of information about a counterfactual parameter.

Below we describe how these quantities are used to predict5–7

or impute11 the counterfactual quantities in the causal contrast
of interest.

Target experiences exposure distribution 1
If the target experiences exposure distribution 1, R1 = A1/B1
occurs and therefore can be observed directly, but we must sub-
stitute E0/F0 for the counterfactual disease-frequency
parameter R0 = A0/B0; hence, we must substitute the
association measure

for the causal contrast RRcausal. That is, we substitute what we
can observe (a contrast in two populations or two time periods)
for what we would like to observe directly, but cannot (a con-
trast in one population and one time period). In the diagrams
below, an arrow indicates a substitution of an actual frequency
for a counterfactual one.

Target experiences exposure distribution 0
If the target experiences exposure distribution 0, R0 = A0/B0
occurs and therefore can be observed directly, but we must
substitute C1/D1 for the counterfactual disease-frequency
parameter R1 = A1/B1; hence, we must substitute the
association measure

for the causal contrast RRcausal.

Target experiences neither exposure distribution 1 nor 0
If the target experiences neither exposure distribution 1 nor 0,
we must substitute C1/D1 for the counterfactual R1 = A1/B1, and
E0/F0 for the counterfactual R0 = A0/B0; hence, we substitute
the association measure

for the causal contrast RRcausal.

In this scenario, the exposed substitute is often the exposed
subset of the target population, and the unexposed substitute is
often the unexposed subset of the target population. That is, C1,
D1, E0, and F0 are often subsets of A1, B1, A0, and B0, respect-
ively. They may, however, have no overlap at all with the target
population; this is the case whenever we generalize from a
study to an external target population (see below).

Implications for aetiologic studies
The counterfactual approach and the concept of a causal con-
trast have important implications for designing, analysing, and
interpreting aetiologic studies.

Choice and interpretation of effect measure

Under the counterfactual approach, causal contrasts are the
only meaningful effect measures for aetiologic studies. Note that
many measures are not causal contrasts; for example, the 
following are not, because they cannot be expressed as 
contrasts of a target under two exposure distributions of
intrinsic interest: correlation coefficients, percent of variance
explained (R2), P-values, χ2 statistics, and standardized
regression coefficients.24

Causal contrasts can be given precise interpretations. RRcausal
can be interpreted as the net proportionate change in disease
frequency caused by the difference in exposure distributions 1
and 0 in the target population during the aetiologic time period.

RR
R

R

C D

E Fassociation = =
Substitute for

Substitute for
1

0

1 1

0 0

/

/

RR
R

R

C D

R

C D

A Bassociation = = =
Substitute for 1

0

1 1

0

1 1

0 0

/ /

/

RR
R

R

R

E F

A B

E Fassociation = = =1

0

1

0 0

1 1

0 0Substitute for /

/

/

422_990019  8/4/2002 4:01 pm  Page 425    (Black plate)



426 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

RDcausal can be similarly interpreted as the net absolute change
in disease frequency.2,5–7 Because a causal contrast is a contrast
in a target—not in a substitute or a ‘study base’—it should be
interpreted as a measure of causal effect in the target.

We caution that not all population causal contrasts can be
interpreted as averages of individual causal effects of exposure,
or as averages of effects on subpopulations. This limitation arises
when the denominators (Bi) of the disease-frequency measures
are affected by exposure, as when the Bi represent non-cases or
person-years, so that the Ri represent odds or incidence rates.2,6,25

For example, if the Bi represent person-years, so that RRcausal
and RDcausal are the causal rate ratio and rate difference, and
exposure, age, and sex all affect the rate, then RRcausal will not
equal the average rate ratio across age and sex groups and
RDcausal will not equal the average rate difference across these
groups. For explanations of such problems, see refs2,6,7,25.

General framework for design and analysis 
of aetiologic studies

The counterfactual approach leads to a general framework for
designing and analysing aetiologic studies. Because all aetiologic
designs should estimate causal contrasts, different designs can
be viewed simply as different ways of (1) choosing a target 
that corresponds to the study question, and (2) choosing
substitutes and sampling subjects from target and substitutes
into the study to balance tradeoffs among bias, variance, study
costs and study time. This approach works for all etiologic
studies.26 Beginning with Fisher and Neyman’s work on
permutation tests,16 careful study of counterfactual models has
also led to the invention of new analysis methods and new
study designs.11,27–29

The above framework applies to randomized trials as well as
observational studies. In fact, it was invented for the analysis of
randomized trials, and only later extended to non-experimental
studies.3,4,16,17 A typical randomized trial is an example of 
the scenario discussed above in which the target experiences
neither exposure distribution 1 nor 0. Here the treatment arms
are substitutes for the target under different treatments. For
example, when a drug is approved for treatment of a particular
disease, a generalization is being made from the clinical trials on
which the approval was based to some external (target) popu-
lation of patients with that disease. In effect, the treatment and
placebo arms in those trials serve as substitutes for the target
under different treatment scenarios.

Definition of confounding and confounder

The concept of a causal contrast facilitates precise and general
definitions of confounding and confounder. Confounding is present
if our substitute imperfectly represents what our target would
have been like under the counterfactual condition. An asso-
ciation measure is confounded (or biased due to confounding) for
a causal contrast if it does not equal that causal contrast because
of such an imperfect substitution.2,5–7,30

Under scenario 1, in which the target experiences exposure
distribution 1, confounding occurs if E0/F0 ≠ A0/B0. The bias 
due to confounding in the ratio and difference associations may
be measured by

which for this scenario equal

Under scenario 2, in which the target experiences exposure
distribution 0, confounding occurs if C1/D1 ≠ A1/B1. The bias 
due to confounding in the ratio and difference associations may 
be measured by

Finally, under scenario 3, confounding may occur if E0/F0 ≠
A0/B0 or C1/D1 ≠ A1/B1. The bias due to confounding in the ratio
and difference associations are

which is just the product or sum of the confounding factors
under scenarios 1 and 2. Thus, RRassociation will be biased for
RRcausal unless the product of its two confounding factors is 1,
and RDassociation will be biased for RDcausal unless the sum of 
its two bias factors is zero. Note that, if confounding is 
present, at least one (and usually both) of the measures will be
biased.

Roughly speaking, a confounder is a variable that at least partly
explains why confounding is present. Many authors attempt 
to define a confounder more precisely as a variable that is a 
risk factor for disease and is associated with exposure but not
affected by exposure. This definition has several limitations.
One is that it applies only to the classical condition in which
there is just one variable to consider. That variable may be a
compound of several variables, such as an age-sex-race strati-
fication used for standardization or Mantel-Haenszel analysis.
Often, however, we must consider several variables at once
while keeping them distinct, as when some have been measured
and others have not. In that case, the status of a variable as a
confounder, as well as the degree and direction of confounding,
can change drastically according to which variables are con-
trolled.5,7,22,31,32 One consequence is that control of a
variable that meets the above definition can at times introduce
more confounding than it removes.5,7,22,32 This happens, for

RR

RR

C D

E F

A B

A B

A B

E F

C D

A B

RR RD
C

D

E

F

A

B

A

B

C

D

A

B

A

B

E

F

association

causal

association causal

= = •

=












=






+





1 1

0 0

1 1

0 0

0 0

0 0

1 1

1

1

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0

/

/

/

/

/

/

/

/

– – – –

– –

1
and


,

RR

RR

C D

A B

A B

A B

C D

A B

RR RD
C

D

A

B

A

B

A

B

C

D

A

B

association

causal

association causal

= =

=












=

1 1

0 0

1 1

0 0

1 1

1 1

1

1

0

0

1

1

0

0

1

1

1

1

/

/

/

/

/

/

– – – – – .

and

A B

E F A B

E F

A

B

E

F

A

B

A

B

A

B

E

FA B

A B

1 1

0 0 0 0

0 0

1

1

0

0

1

1

0

0

0

0

0

01 1

0 0

/

/ /

/
– – – – .

/

/

=












=and

RR

RR
RD RDassociation

causal
association causaland – ,

422_990019  8/4/2002 4:01 pm  Page 426    (Black plate)



ESTIMATING CAUSAL EFFECTS 427

example, when there is little or no confounding to explain; in
that case we may still find many variables that satisfy the above
definition, but whose confounding effects have balanced out.
When this happens, control of one but not the others can
increase confounding; see ref.5 for an illustration.

More generally, the fundamental equalities that must be met
to control confounding are E0/F0 = A0/B0 in scenario 1 and
C1/D1 = A1/B1 in scenario 2; in scenario 3, both equalities 
are needed except in the special case discussed above. Both these
‘no-confounding’ equalities, however, represent summary re-
lations, and place no constraints on particular covariates or their
effects.5,7 Control of confounding thus depends on creating
strata within which these equalities are satisfied, rather than 
on the particular variables used to create the strata.2,5,7,15,22,32

Methods to aid in identifying sufficient sets of variables for
control have been developed using counterfactual and graphical
causal models.7,15,22,32

Properties of effect-measure modifiers

The size of a causal effect for a given pair of exposure distribu-
tions can be different for different targets. To see this, let Pdoomed
be the proportion of individuals in the target population who
would get disease during the etiologic time period regardless 
of their exposure status (‘doomed’ with respect to the study
exposure), Pcausative the proportion in the target population who
would get disease during the etiologic time period if and only if
exposed, and Ppreventive the proportion in the target population
who would get disease during the etiologic time period if and
only if not exposed. The proportion of individuals in the target
who would get disease if exposed is Pdoomed + Pcausative; the propor-
tion who would get disease if not exposed is Pdoomed + Ppreventive.
Then, we can write a causal risk ratio as the ratio of these
proportions:2,5

RRcausal =
Pdoomed + Pcausative .
Pdoomed + Ppreventive

This formula shows that the size of a causal risk ratio not only
tends to vary with the proportion of individuals in the target
population whose outcome is altered by exposure (who are
counted in Pcausative and Ppreventive), but also tends to vary with
the proportion of individuals in the target population for whom
disease is inevitable by the end of the etiologic time period (who
are counted in Pdoomed).2

The causal risk difference does not depend on Pdoomed.2,5 To
see this, we can write a causal risk difference as follows:

RDcausal = (Pdoomed + Pcausative) – (Pdoomed + Ppreventive) 
= Pcausative – Ppreventive.

This formula shows that the size of the causal risk difference will
tend to vary only with the proportion of individuals in the
target population whose outcome is altered by exposure.

It follows that a factor that affects Pcausative or Ppreventive can
modify the size of a ratio or difference effect measure, and 
can modify the size of a ratio effect measure even if it affects
only Pdoomed.2,5 Thus, one should not be surprised if an effect
measure varies from one population to another or from one
time period to another unless one expects other causal 
factors to have similar distributions across the populations or
periods.

Implications for consistency criteria and 
meta-analysis

Because variations in the distribution of other factors can easily
produce variations in effect measures, the consistency of an
association measure across populations should not be viewed as
a necessary causal ‘criterion’. Conversely, if one expects other
causal factors to have similar distributions across a set of popu-
lations, one should in particular expect consistency in the
distribution of uncontrolled confounders across the populations
and hence similar amounts of confounding in the association
measures; thus, consistency (homogeneity) of an association
measure does not in itself provide logical support for causality,
even if the distribution of all other factors is consistent across
the populations.

These deductions from the counterfactual formulation pro-
vide a logical basis for earlier reservations about the consistency
criterion:

A pertinent question is on what grounds consistency is to be
decided. To ask for the same risk ratios to recur under many
diverse circumstances is to ask for homogeneity, which is
certainly to ask too much.33

In other words, the consistency criterion has general applic-
ability only as a qualitative criterion rather than a quantitative
one, and then only on the (often reasonable) assumption that
either Pcausative or Ppreventive is negligible. The same deduction
adds force to arguments that meta-analyses are better con-
ducted as a search for sources of systematic variation among
study results, rather than as an exercise in estimating a fictional
common effect.34,35

The amount of bias in effect measures 
should be quantified

We must always use measures of association as surrogates for
causal measures. This gives rise to the question, ‘How different
are measures of association from causal measures?’ In other
words, how much bias is inherent in the measures of asso-
ciation that we estimate? In practice, these questions are usually
answered informally—that is, it is a matter of ‘judgement’. The
magnitude of bias, however, is a complicated function of many
parameters, and informal evaluation may be inadequate.27,29,36–38

Many authors hence recommend that formal methods, such 
as sensitivity analysis27,29,36–38 and validation substudies,36 be
used to quantify the magnitude of bias.

Formal evaluation of bias requires formulas that describe 
the magnitude of bias as a function of relevant parameters. The
counterfactual approach can help here. For example, it can 
be used to show that in special cases the approximate expected
value of a relative risk estimate equals the causal relative risk
times a bias factor for confounding, times a bias factor for losses
to follow-up, times a bias factor for subject sampling, times a
bias factor for subject non-response, times a bias factor for sub-
jects excluded from analysis, times a bias factor for information
bias.39 This result can be used in a sensitivity analysis to
evaluate bias under different plausible scenarios.

Discussion
By their very definition, counterfactuals cannot be observed.
Some people find this property disconcerting and reject
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counterfactuals as a foundation for causal inference, even
though they may use statistical methods that require
hypothetical (and hence unobserved) study repetitions for
proper interpretation. One reason for their discomfort is that
the counterfactual definition of effect seems to contradict the
common-sense notion that we can observe effects. This seeming
contradiction arises because of the unfortunate tendency to use
the word ‘effect’ for different concepts. Sometimes ‘effect’ refers
to an observed (actual) outcome event, such as ‘John Smith’s
lung cancer was an effect of his smoking’. Often, however,
‘effect’ refers to an effect measure such as RRcausal, which has at
least one counterfactual (and hence unobservable) component.
Although we observe the effects of a cause, we can only infer
the cause of an effect, because our inferences will always
depend on substitutions that may be called into question.

Causal inference is possible because we can make logically
sound conditional inferences about counterfactuals, despite the
fact that we do not observe them. Indeed, following earlier
writings2–7,11,16,17,23,27–29 we have shown how basic prob-
lems of causal inference can be made logically precise (and hence
subject to logical analysis) by translating them into problems of
inference about counterfactuals. Two other well-developed sys-
tems of reasoning about cause and effect, structural-equations
models and causal diagrams, turn out to yield results equivalent
to those obtained using counterfactuals.15,22,32 This equivalence
points to a basic unity among logically sound methods for causal
inference.

The physicist Richard Feynman considered science to be ‘con-
fusion and doubt, … a march through fog’.40,p.380 As it does in
physics,41,42 counterfactual analysis can cut through some of
the ‘fog’ in epidemiology, for it leads to a general framework for
designing, analysing, and interpreting etiologic studies. It has
already led to a number of analysis innovations,11,16,27–29,32

and we have found it an excellent teaching tool. We hope that
this paper will prove useful in enabling epidemiologists to view
problems from the counterfactual perspective.
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I welcome this attempt to clarify some of the often perplexing
issues, both definitional and philosophical, underlying the
formulation and estimation of causal quantities of interest. At
the same time I am a little disappointed that the authors’ case1

has not been made with deeper analysis and greater clarity. 
In particular, I believe that their emphasis on a counterfactual
understanding of causality is mostly superfluous and, at some
points, misleading. See Dawid2—henceforth CIWC—for a
detailed account of this position, as well as some dissenting views.
In the terminology of their paper, Maldonado and Greenland
are considering, as their experimental unit u, a specified popu-
lation, in given circumstances, studied over a given etiologic
time period (§1 of CIWC echoes the authors’ valuable emphasis
on the need for absolute clarity in the definitions and external
referents of the theoretical terms employed). Their treatment t is
the ‘exposure distribution’ applied to the population. Although
Maldonado and Greenland insist on a clear definition of
exposure at the individual level, at the desired population level
this is less precisely specified (e.g. 20% of the population
smoke); this could, and ideally should, be described in greater
detail (exactly who smoked, and for how long). However, it
appears implicit in the authors’ account that populations may
be regarded as sufficiently large and homogeneous that such
individual level detail can be ‘averaged out’ over the popu-
lation, so that we can neglect the effect, on the observed overall
proportion, of sampling variability and other such phenomena.
Such a ‘large population’ assumption must also underlie their

working assumption that ‘response’, as measured by population
proportion affected, is ‘deterministic’. It is not clear to me
exactly what else is intended by this description. In particular,
does it imply that, were we to study two different populations,
we would expect to observe identical responses to the same
exposure distribution?—the property termed ‘uniformity’ in
CIWC. This property is a very strong one that I would not
normally expect to hold, but it is at least empirically testable.
When it does hold, we can find a perfect substitute population u0
for a given population u1. On applying, say, exposure distribu-
tion 1 to u1 and exposure distribution 0 to u0, we could then
observe, in effect, both R1 and R0 (where, as in the paper, Ri, or
more fully Ri(u1), denotes the disease frequency, if the target
population u1 had experienced exposure distribution i)—and
thus directly measure any causal contrast. So, when the above
uniformity property can be taken to hold, ‘counterfactuals’
become observable and unproblematic.

A weaker form of uniformity, which we may term ‘conditional
uniformity’, might apply when there are covariates that affect
response. Conditional uniformity asserts that, if two different
populations have identical values for the covariates, and
identical exposure distributions, then they will deliver identical
responses—still a strong assumption, and again testable (for a
specified set of covariates). When this holds, it is once again, in
principle, possible to find a perfect substitute, by matching on 
all the relevant covariates. The authors appear to be mainly
concerned with the practical difficulty that the chosen substitute
u0 might not be perfectly matched, leading to R1(u0) ° R1(u1),
and so typically ‘biasing’ the substitute causal contrast. This
important point is well made and helpful, but its connection
with ‘confounding’ as usually understood is far from clear.
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Things becomes much murkier if no uniformity assumption
can be made, since then no perfect substitute exists. Even if two
populations u1 and u0 could be regarded as a priori exchange-
able, so that R0(u0) and R0(u1) initially have the same distribution,
R0(u0) may no longer be an appropriate (unbiased) substitute
for R0(u1) after exposing population 1 to exposure distribution 1
and observing R1(u1), since that observation might carry some
information about the level of immunity in population 1, 
so changing the distribution of R0(u1) but not that of R0(u0). As
pointed out in §11 of CIWC, such effects are highly sensitive 
to untestable assumptions made about the joint distribution of
[R1(u1), R0(u1)] (although bounds are available, which become
tighter as the situation approaches that of uniformity).

We can eliminate some of these difficulties by using data 
of the form R1(u1) and R0(u0) (for a number of distinct but
exchangeable populations) to estimate the marginal probability
distributions of each of R1(u*) and R0(u*) for some new, as 
yet unexposed, ‘test population’ u*, exchangeable with those
studied. (Analogues of the authors’ cautions against bias will
continue to apply if the populations u1, u0 and u* are not
perfectly exchangeable; but the analysis can then be modified
accordingly, so as to take into account differences in observed
[CIWC, §8] and/or unobserved [CIWC, §6] concomitant
variables.) I argued in CIWC that comparison of these estimated
marginal distributions for R1(u*) and R0(u*) is all that is required
for causal inference about the effects of switching between
treatments (exposure distributions) on the test population u*.
Note particularly that, in contrast to inference about a causal
contrast such as R1(u1)/R0(u1), such a comparison is not affected
by untestable assumptions about the joint distribution of
[R1(u1), R0(u1)]. So in this setting the assumption of coexisting
potential responses is unnecessary, and can indeed be positively
harmful. (The issue is not exactly that either response is
‘counterfactual’—before the exposure decision for u*, each of
R1(u*) and R0(u*) can in principle still be observed, and so is
‘hypothetical’ rather than counterfactual; rather, the point is
that, for any population u, we can never, even in principle,
observe both R1(u) and R0(u) together—they are ‘complementary’
—and so we can never learn about their dependence
structure.)

I do not find the authors’ treatment of ‘effect-measure
modifier’ helpful, since it is phrased in terms of quantities I find
I cannot meaningfully relate to. Their Pdoomed is very much 
a feature of the empirically unknowable joint distribution of
[R1(u1), R0(u1)], and as such I regard it as pointlessly meta-
physical. On purely commonsense grounds, at the individual
level, response to either exposure will normally be dependent
on a host of further stochastic factors, as well as on exposure, so
that I find it difficult to accept that this individual response
somehow already existed prior to its realization (an attitude I
dubbed ‘fatalism’ in §7 of CIWC). How then can I compare the
actual realized response with a counterfactual response under a
different exposure, which, even if allowed as a proper subject of
discourse, should still be regarded as stochastic? But if there is

no predetermined value of this comparison, there can be no
such thing as a ‘doomed’ patient—any more than there can be
a penny that, when tossed, will land tails up.

It is significant that Pdoomed disappears in the expression for
RDcausal, but not in that for RRcausal. This is a reflection of the
fact that, in the terminology of §9 of CIWC, RDcausal is a ‘sheep’,
having also a perfectly good non-counterfactual interpretation;
while RRcausal is a ‘goat’, and simply not an appropriate subject
of discourse.

In CIWC I emphasized the importance of the distinction
between inference about ‘Effects of Causes’, referring to pre-
dictions about a new population u* under various hypothetical
exposure distribution; and ‘Causes of Effects’, referring to a
comparison of an observed R1(u1), for a population u1 already
subjected to exposure distribution 1, with R0(u1), the purely
counterfactual response it would have displayed had it actually
been subjected to exposure distribution 0. An application of
inference about Causes of Effects might arise in a legal liability
suit, in which an ex-soldier sues the army for having caused his
leukaemia through exposing him to depleted uranium con-
tained in anti-tank shells. Epidemiological evidence about the
expected consequences of such exposure, and about the natural
incidence of leukaemia, would clearly be of relevance; but since
such evidence can only directly address the question of Effects
of Causes, its correct incorporation and analysis in this context
raises some very subtle issues—for example, how to allow for
the fact that some individuals might be more susceptible than
others, irrespective of exposure?

I argued in CIWC that inference about Effects of Causes is
reasonably straightforward, and does not require any recourse
to counterfactuals; while inference about Causes of Effects is
beset by ambiguities that are compounded, rather than being
resolved, by being set in a counterfactual framework. Although
it is not always clear from the way they are phrased, the
problems considered in the paper currently under discussion are
largely concerned with the simpler problem of Effects of Causes
—where I do not see a counterfactual analysis contributing
much beyond unnecessary complication of concepts and notation.
Moreover, there is a danger that readers may be misled into
thinking that the paper supplies tools for valid analysis of prob-
lems involving Causes of Effects. Caveat emptor!

In summary, while I value the authors’ emphasis on clarity of
definition and their discussion of the problem of bias, I do not
consider that they have proved their case that ‘counterfactual
analysis can cut through some of the fog in epidemiology’. In
my own view, such analysis is more likely to obscure the clarity
of the view.
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Maldonado and Greenland have provided a great service to our
field in crafting this broadly accessible and eminently readable
review of causal principles in epidemiological research.1

Attention to these issues yields substantial benefits in study
design, analysis, and interpretation, and this new elucidation
promises to raise the quality of epidemiological thought and
practice widely by introducing the concepts to a new generation
of researchers, and clarifying them further for the rest of us.
Indeed, it is fitting that this review should appear in this journal,
as Greenland and Robins’ seminal article on this topic appeared
in 1986 in these very pages.2 The authors have achieved an
admirable level of clarity and simplicity in their presentation.
Some of the devices for obtaining this conceptual simplicity,
however, succeed at the risk of obscuring other important
issues, and we comment on a few of these below. This is not 
to suggest that an alternative presentation may have been
preferred, but rather merely to briefly explore a few of the many
questions that are understandably avoided in the paper.

The authors organize their presentation around an aggregate
model, rather than the individual causal model that dominates
elsewhere.2,3 While this choice leads most directly to the
comprehension of epidemiological contrasts, it also circumvents
several considerations. To begin with, because causation ulti-
mately operates at the individual level, an elucidation at that
level, via potential response variables, helps to demystify the
‘black box’ causal behaviour of a total population. Potential-
response variables indicate, for each individual and for each
exposure level under consideration, the disease response of that
individual had it received that exposure. With this framework in
hand, one can attach a clearer meaning to the stated assumption
in the paper that ‘disease occurrence is deterministic’,1,p.1036 to
wit, individual potential responses are fixed rather than random
quantities. In other words, the characteristics identifying an
individual are sufficient to uniquely determine that individual’s
response to any given level of exposure.

Following the authors, we consider the simplified case of only
two levels of exposure, ‘exposed’ and ‘not exposed’, and two
levels of response, ‘disease’ and ‘no disease’. If one were to
assume, further, that exposure distributions 1 and 0 are ‘every-
one exposed’ and ‘everyone not exposed’, respectively, then the
‘numbers of new cases’, A1 and A0, are easily seen to be the

numbers of individuals in the target population having potential
response ‘disease’, if ‘exposed’ and if ‘not exposed’, respectively.
The authors actually consider more general exposure distribu-
tions characterized by ‘per cent (or proportion) of population
subjected to each exposure level’ (allowing for possibly more
than two levels). This generalization may be problematic in 
that the proportions, alone, are insufficient to determine the
aggregate numbers A1 and A0 unless one makes the highly
unrealistic assumption that all individuals have the same
potential responses. There is, however, another way out of this
impasse, which is to assume that the different exposure levels in
a mixed exposure distribution are assigned by random partition
of the target population into subsets of the appropriate size. One
might consider such randomization to arise by design, as in
experimental studies,4 or by nature, as in observational studies.5

A consequence is that A1 and A0 are also random, and the
quantities of interest would then become their expected
values.1,p.1036

Another important source of variability is the sampling of 
the study population from the target population. The authors
clearly subsume this under the rubric of confounding, inasmuch
as bias in the estimation of the causal effect due to sampling
variability arises from use of a substitute population that does
not precisely correspond to the outcome experience (actual and
counterfactual) of the target population. While this approach
has many advantages, it also risks some confusion. Later in 
the paper the authors state that various epidemiological study
designs represent different ways of ‘choosing substitutes 
and sampling subjects from target and substitutes into the
study…’,1,p.1039 re-establishing a distinction between the two
concepts that they had just wed. Furthermore, many readers
may understandably be uncomfortable with the resulting de-
finition of a confounder as a variable that ‘partly explains why
confounding is present’,1,p.1039 since they may attribute ‘explan-
ation’ to causal confounders only. If we subsume sampling
variability under the general category of confounding, then we
find that we may indeed reduce confounding through condition-
ing on some covariates even when these covariates ‘explain’
nothing, in that they are causally irrelevant to the etiologic
process linking exposure of interest to disease.6 This discomfort
may be heightened by the apparent inconsistency of taking
expected values to deal with a stochastic potential response
model1,p.1036 or with random assignments in mixed exposure
distributions (as was noted above to be a necessary aspect of mixed
distributions), but not taking expected values when sampling
variability is involved. Finally, we must accept that many other
authors distinguish confounding from sampling variability.
Stone, for example, asserts that confounding pertains to distribu-
tions in the total population from which the sample was taken,
and that confounding is present only if there exist unmeasured
covariates which affect outcome, and are not independent of
exposure, conditional on the measured covariates.7 For the
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We congratulate Maldonado and Greenland1 (MG hence-
forward) on an interesting and provocative paper. Aiming at
epidemiological applications, MG identify the causal effect of
changing a distribution of exposures to a target population on

the population’s outcome distribution. Instead of applying a
particular treatment to an individual, MG apply a distribution of
treatments (the exposure distribution) to a population. By rais-
ing the unit of analysis from the individual to the population,
MG depart in important respects from the standard model of
counterfactual causal inference. Comparing MG’s model to the
standard model we make two points: First, MG’s conceptual-
ization of causal effects on the population level is valuable if the
stable unit-treatment assumption (SUTVA) does not hold at
lower levels, but the data requirements are steep. Second, as

time being at least, these conflicting approaches are sure to
generate continued confusion in our field, and in our inter-
actions with statisticians and social scientists.

As a final point, we note that the individual model of causation
reinforces an appreciation for implications of the choice of
exposures to study and the interpretation of their effect
estimates. Causal inference is contingent on the manipulability
of the exposure in order to provide some plausible basis for
accepting the substitute population as even remotely adequate
for the estimation of the counterfactual quantity of interest.
This is particularly relevant to social epidemiology, because
when the exposure is an individual attribute, such as race or
sex, then any choice of substitute population can generally be
rejected as grossly inadequate. For example, a team of epi-
demiologists recently claimed to have found evidence of racial
differences in ‘tumor virulence’ between black and white men
with prostate cancer, based on an observational study of mortality
in an ‘equal access medical care setting’.8 The choice to locate
the study in the ‘equal access’ setting was motivated by the
desire to have the conditional (i.e. covariate-adjusted) mortality
experience of white prostate cancer patients serve as a reason-
able substitute population for the counterfactual experience 
of black patients, had they been white. The assertion by the
authors that this study reveals some innate biological feature of
black race rests on this premise. The discussion by Maldonado
and Greenland helps to clarify exactly why we may be left
perplexed by such an assertion. It not only requires that we
imagine what it means for there to be a counterfactual out-
come distribution (i.e. the number of deaths that would have
occurred among blacks, had they been white), but also that this
quantity is reasonably estimated by the chosen substitute
population, a particular group of white men. The approach
appears to be quite problematic on both counts.9

In closing, we express our congratulations to Maldonado
and Greenland for this contribution to the literature.
Awareness of the foundations of causal inference in epi-
demiology has increased in recent years, and this is due in
large part to the diligent efforts of Sander Greenland, James
Robins, and their students. The present paper serves to
provoke further discussion and insight, and to instruct a wider
audience of epidemiologists. Through this ongoing process, we
benefit our understanding thereby improving our science, and
thus, our capacity to intervene upon and improve human
health.
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they mention, we emphasize that MG’s population level 
estimates generally cannot be interpreted as estimates of
average causal effects (ACE) in the standard individual-level
approach.

Individual-level causal effects
We remind the reader of the standard individual-level pre-
sentation of the counterfactual model of causal inference, also
known as the Rubin Model.2–4 Here, a particular treatment, t, is
applied to a unit of analysis, i, (e.g. a person). The causal effect
of t on i, δi, is defined as the difference between the outcome of
the unit under treatment, Yi(t), and the outcome of the same
unit under control, Yi(c),

(I) δi = Yi(t) – Yi(c).

The ‘fundamental problem of causal inference’2 is that Yi(t) and
Yi(c) cannot be directly observed together, because every unit
of analysis is placed either in treatment or in control condition,
but not in both at the same time. Therefore direct estimation of
causal effects is impossible. As in MG, the solution is to
substitute for the counterfactual observation another unit of
analysis, j, which resembles i in all causally relevant respects
other than treatment status.

Typically, we are not interested in the causal effect for a
specific individual, but rather the average causal effect, ACE, in
the study population:

(II) ACE =
n
∑
i =1

δi/n = Yi(t)
—––

– Yi(c)
—––

for i = 1, …, n.

In completely randomized experiments, the standard estimator
for this parameter subtracts the mean outcome of the units in
the treatment group from the mean outcome of the units in the
control group:

(III) AĈE = Yt(t)
——

– Yc(c)
——

This approach assumes that there is no interaction between
units and that all treated units in the study receive identical
treatments. Rubin terms this the ‘stable unit-treatment value
assumption’ (SUTVA).5,6

The key virtue of randomization is to create balanced treat-
ment and control groups that resemble each other across all
causally relevant variables except treatment status. Tech-
niques such as matching on propensity scores are available to
achieve balance even in non-randomized observational
studies.7,8

Population-level causal effects: 
utility and data requirements
MG’s framework applies exposure distributions to target popu-
lations. Consequently, their unit of analysis is the population.
This approach has merit, particularly when SUTVA does not
hold within the population. Such situations occur frequently,
e.g. in educational research where student test scores may 
be affected by tutoring their classmates received. Here one
would want to use classes for units of analysis, rather than
students.

Note, however, that the higher the unit of analysis, the more
challenging the data requirements due to comparability of units
of analysis, and identity of treatments.

The counterfactual model relies on the comparison of units of
analysis that resemble each other in all causally relevant aspects
except treatment status. To continue our educational example
on the population (classroom) level, it would be necessary to find
comparable classes, rather than comparable students. If SUTVA
does not hold, this would not only involve comparable student
populations, but also comparable dependencies between stu-
dents within classes in order to ensure comparable peer effects.

The standard model further assumes that all units in the
treatment group receive identical treatments. (Note that in a
population level analogy to the standard individual-level model,
a treatment group contains multiple target populations as units
of analysis, each of which contains multiple individuals. Com-
paring a single target population to a single substitute would
amount to working with a sample of N = 2.) If the treatment in
question is an exposure distribution, as MG stipulate, identity of
treatments across units (i.e. target populations) becomes much
harder to assert. It depends on two aspects: (1) the exposure
distribution’s marginal distribution, which records the relative
frequency of exposure levels within a target population; and 
(2) the mapping of distinct exposures from the exposure distri-
bution onto individuals within a target population. If the popu-
lation is heterogeneous in its members, different mappings of
the same exposure distribution will induce different outcomes.
Thus, to assure identity of treatments, both the marginal expo-
sure distribution and its mapping have to be held constant
across target populations in the treatment group. Due to these
challenges, it seems advisable to choose the smallest unit for
which SUTVA still holds as unit of analysis.

Dissimilarity of population-level causal
contrasts and average causal effects
MG remark that ‘not all population causal contrasts can be
interpreted as averages of individual causal effects of exposure’
(p.1039 in their paper). We would like to go further and argue
that MG’s population-level estimates will hardly ever represent
average individual-level causal effects, because their approach
generally does not sustain the conditions of a standard
individual-level counterfactual analysis.

An example of the causal effect of smoking on lung cancer may
convey the guiding intuition. Consider a population of 1000 men. Of
these, 40% are highly susceptible to smoking-induced lung cancer
and smoke, and 60% are minimally susceptible to cancer and do
not smoke. The rate of lung cancer in this population is 40%. We
want to estimate the effect of a change in the exposure distribution
from 40% to 60% ever-smokers (similar to MG’s example on p.1039).
We identify a perfect substitute population of 1000 other men,
600 of whom smoke. However, all of these smokers are only min-
imally susceptible to lung cancer. In this population the cancer
rate is 1%. MG’s measure of causal contrast would indicate that
increasing the exposure to smoking has decreased the incidence
of lung cancer, even though each individual member would
suffer an increased risk of cancer by taking up smoking. The reason
is that different individuals smoke in the two populations.

This result makes sense in MG’s approach, because it accurately
identifies the population-level causal effect of having changed
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This article1 explains the counterfactual theory of causation,
avoiding details and technicalities but providing a clear
explanation of most of the terminology that is used when the
theory is applied to epidemiology. At the end of the article, the
authors mention that some people ‘reject counterfactuals as 
a foundation for casual inference’. The editor has asked me, as
one of those people, to explain the difficulties I see with the
counterfactual theory. I will try to do so at the same non-
technical level at which the article is written.

Although the authors begin their history of the counterfactual
approach with a quotation from David Hume,2 they would
probably agree that speculation about ‘what might have been’
is as old as the human ideas of blame and regret. No doubt the
objections to such speculation are equally as old. When your
mother tells you that you would have avoided your cold by
wearing a jacket, you may object that the result of wearing or
not wearing a jacket was not predictable and perhaps not in any
sense determined. If you could have acted differently in the
matter of the jacket, you and others could have acted differently
in other respects, many of which might also have impinged on
your health. Who is to say who would have done what had you
worn a jacket?

Epidemiologists are usually concerned with the effects of
public health risks on whole populations, and we might hope
that the average effect of an exposure on a population might be
well defined even when the effect on individuals is not, because
of the averaging-out of other unpredictable factors. However, as
the authors make clear, the counterfactual approach, as it has
been developed in the statistical and epidemiological literature

in recent decades, insists on the assumption that the effects on
individuals are well defined. In this article, for example, they
assume that it is determined whether a given individual will fall
ill regardless of exposure. So the argument between the advo-
cates of counterfactuals (such as the authors) and the dissenters
(such as myself) really does boil down to the ancient argument
between those who insist on always giving meaning to a might-
have-been and those who demur.

What is the alternative to the counterfactual approach? The
obvious alternative is a predictive approach. Using this approach,
we say that A causes B in a strong sense if we can predict, using
a method of prediction that proves consistently correct, that B
will happen if we do A and will not happen if we do not do A.
Weaker senses of causation can be expressed using probabilities;
we say that the action A is a probabilistic cause of B if it raises
the probability of B. This requires an objective concept of prob-
ability; it must be verified that B consistently happens more
often when A is performed than when it is not, regardless of
other factors.

As I explain in my 1996 book, The Art of Causal Conjecture,3 the
practical aspects of causal inference (different ways of defining
causal effects, ideas of confounding, etc.) can be handled by 
the predictive approach just as well as by the counterfactual
approach—and the predictive approach has a decisive philo-
sophical advantage: it makes clear that the concept of causality
has an empirical basis, independent of arbitrarily imagined
might-have-beens. I say more about this in my article ‘Causality
and responsibility’,4 and my recent book with Vladimir Vovk5

elaborates a foundation for probability theory that can be used
to support the predictive approach.

The reader might suspect that the predictive approach and the
counterfactual approach say the same thing in different ways.

both the exposure distribution’s marginal distribution and its
mapping onto the target population. In the individual-level
approach this result would be impossible, because the ACE can-
not be negative if all δi are positive. MG’s population level esti-
mates and the standard individual-level ACE are not equivalent.

References
1 Maldonado G, Greenland S. Estimating causal effects. Int J Epidemiol

2001;30:1035–42.
2 Holland P. Statistics and causal inference. J Am Statist Assoc 1986;81:

945–70.
3 Reiter J. Using statistics to determine causal relationships. American

Mathematical Monthly 2000;107:24–32.

4 Winship C, Morgan C. The estimation of causal effects from obser-
vational data. Annu Rev Sociol 1999;25:659–707.

5 Rubin DB. Bayesian inference for causal effects: the role of random-
ization. Ann Stat 1978;7:34–58.

6 Little RJ, Rubin DB. Causal effects in clinical and epidemiological
studies via potential outcomes: concepts and analytical approaches.
Annu Rev Public Health 2000;21:21–45.

7 Rosenbaum PR, Rubin DB. The central role of the propensity 
score in observational studies for causal effects. Biometrika 1983;70:
41–55.

8 Rubin DB, Thomas N. Combining propensity score matching with
additional adjustments for prognostic covariates. J Am Statist Assoc
2000;95:573–85.

© International Epidemiological Association 2002 Printed in Great Britain International Journal of Epidemiology 2002;31:434–435

Commentary: Estimating causal effects
Glenn Shafer

Graduate School of Management, Rutgers University, 180 University Avenue,
Newport, NJ 07102, USA. E-mail: gshafer@andromeda.rutgers.edu

422_990019  8/4/2002 4:01 pm  Page 434    (Black plate)



DEFINING CAUSAL EFFECTS 435

We thank Kaufman and Kaufman (K&K),1 Dawid,2 Elwert and
Winship,3 and Shafer4 for their commentaries on our paper
‘Estimating causal effects’.5 Here we hope to separate mis-
understandings from substantial disagreements; we believe the
latter arise only in the comments of Dawid2 and Shafer4 (and
are described in refs. 6–13).

Misunderstandings
According to K&K, ‘The authors organize their presentation
around an aggregate model, rather than the individual causal
model that dominates elsewhere’. This is not entirely true. We

organized our presentation around the target population as specified
by the study question. Our target population could comprise one
person, many people, or any collection of interest; our model of
effects is therefore aggregate when the study question asks
about a population of aggregates (e.g. all counties in California),
but it is a model for effects on individuals when the study
question asks about a group of individuals.

Kaufman and Kaufman then say ‘Following the authors, 
we consider the simplified case of only two levels of exposure,
“exposed” and “not exposed”’. But we did not use this simpli-
fication. We wrote that a causal contrast compares outcomes
under two exposure distributions that ‘represent different

The advocates of the counterfactual approach insist, however,
on points that cannot be reconciled with the predictive ap-
proach. They begin by insisting on the word counterfactual. The
very word places us in the situation where A has already been
performed and so not(A) is counter to the facts. The counter-
factual theory insists that there should be a well-defined answer,
in this situation, to the question of what would have happened
if A had not been performed. The predictive theory, on the
other hand, considers only what can be predicted before the
choice between A and not(A) is made. Later, this situation will
be in the past, but it will never be in the subjunctive. If no
definite prediction is possible about whether B will happen if A
is not performed—if only probabilities can be given or not even
that—and then A is performed, then there will be no answer as
to whether B would have happened had A not been performed.

At the end of their introduction, the authors indicate that
they are willing to consider probabilities: ‘under a stochastic
model, the quantities we discuss are probabilities or expected
values’. They then cite two articles by one of the authors, Sander
Greenland. They go out of their way, however, to deny causal
meaning to the consistency across populations that would be
needed to make probabilistic predictions meaningful. I have not
been able to understand how the articles by Greenland resolve
this contradiction.

Here are some comments that may broaden the picture
painted by the authors’ citations of literature on counterfactuals
outside statistics and epidemiology. David Hume’s counterfactual
definition was only one of several definitions of cause that he
formulated in An Enquiry Concerning Human Understanding.2

David Lewis, a philosopher at Princeton University, is cited as

developing the counterfactual definition of causality currently
used in the statistics literature, but in conversations with myself
and other statisticians Professor Lewis has repeatedly disavowed
this interpretation of his work, and during decades following
the 1973 book cited, he and his students have published numer-
ous articles devoted to developing an empirical understanding
of causality that would be consistent with the predictive ap-
proach I have sketched. The authors quite appropriately cite
two physicists who favour the counterfactual approach, but
their confident assertion that counterfactual analysis cuts
through the fog in physics, juxtaposed with the name of
Richard Feynman, should not be allowed to obscure the fact
that Feynman never advocated the counterfactual approach
and that many physicists explicitly oppose it; see for example
Layzer.6

References
1 Maldonado G, Greenland S. Estimating causal effects. Int J Epidemiol

2001;30:1035–42.
2 Hume D. An Enquiry Concerning Human Understanding. LaSalle: Open

Court Press, 1748.
3 Shafer G. The Art of Causal Conjecture. Cambridge, MA: MIT Press,

1996.
4 Shafer G. Causality and Responsibility. Cardozo Law Review 2001;

22(1):101–23.
5 Shafer G, Vovk V. Probability and Finance: It’s Only a Game. New York:

Wiley, 2001.
6 Layzer D. Cosmogenesis: The Growth of Order in the Universe. New York:

Oxford University Press, 1991.

© International Epidemiological Association 2002 Printed in Great Britain International Journal of Epidemiology 2002;31:435–438

Response: Defining and estimating 
causal effects
George Maldonado and Sander Greenland

422_990019  8/4/2002 4:01 pm  Page 435    (Black plate)



436 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

possible mixtures of individual exposure conditions’. We did not
imply that only two exposure distributions are possible. On the
contrary, our conceptualization allows for any exposure distribu-
tion (all possible combinations of exposure timings, exposure
metrics, people in the target, and exposure levels).

Kaufman and Kaufman also say ‘Another important source of
variability is the sampling of the study population from the
target population. The authors clearly subsume this under the
rubric of confounding.’ On the contrary, we do not assume any
sampling from the target, nor would we subsume such sampling
under confounding. Instead, we wrote ‘Confounding is present if
our substitute imperfectly represents what our target would
have been like under the counterfactual condition’. Thus, in 
our conceptualization, confounding results from an imperfect
choice of substitute, which could be—but need not be—a result
of sampling from the target to form the study population. For
example, in an occupational study, workers at plant 1 might 
be our target population, and plant 2 might be used as a sub-
stitute for the counterfactual experience of the workers at plant 1.
Here, the study population consists of everyone in the target plus
workers at plant 2. If the experience of the workers at plant 2 
is not a good substitute for the experience of plant 1 workers
under the counterfactual exposure distribution, then the result-
ing effect estimates will be confounded.

The study population need not be sampled from the target
population at all. Consider our scenario 3, in which the target
experiences neither exposure distribution 1 nor 0. Here the study
population would consist of two substitutes, because the target
did not experience either of the exposure distributions we want
to compare. Neither substitute is required to include any mem-
bers of the target. In theory, the only requirement for a valid
causal contrast is that a substitute is a good substitute for the
counterfactual experience of the target. It need not also be a good
substitute for the actual experience of the target; this is a stronger
condition than necessary. Thus, we would strike the word actual
in K&K’s parenthetical statement ‘(actual and counterfactual)’.

Three of the commentators1–3 misinterpreted our examples
of exposure distributions, in which 20% or 40% of the target
population regularly smoked cigarettes during a given time
period. We did not intend to imply that one does not know
individual exposures. In our conceptualization, individuals experi-
ence exposures (treatments), and a group of individuals has a
distribution that describes each individual’s exposure. Therefore,
in a study with data on individual exposures, neither Dawid’s
uniformity assumption nor K&K’s assumption of random allo-
cation of exposure is necessary for defining or estimating effects.
This point may be seen in definitions of generalized population
attributable fractions, in which exposure effects are allowed 
to vary across covariates (and hence across individuals).14

The assumptions imposed by K&K and Dawid are indeed made
by conventional statistical procedures for effect estimation, but
we avoid them because they have no justification in typical
observational studies.15

Elwert and Winship3 state ‘Instead of applying a particular
treatment to an individual, MG apply a distribution of treat-
ments (the exposure distribution) to a population’, and from
that they incorrectly concluded that our basic unit of analysis 
is the population rather than the individual. In reality, the 
ACE of the potential-outcomes model is a special case of our
causal-contrast measure. Both measures are derived from the

outcomes of individuals under different exposures or treatments.
In our conceptualization, individuals experience the causal effect
of the difference in exposure levels being compared, and the
individual outcomes are modelled, even when the average causal
effect on a group of individuals is of ultimate interest. Contrary
to what Elwert and Winship3 thought, we do employ ‘the
mapping of distinct exposures from the exposure distribution
onto individuals within a target population’. This mapping is
known in most aetiological studies, because exposure infor-
mation is typically collected on individuals (although not in
ecologic studies). We suspect that our simplified notation
obscured this important point. Of course, the ‘individuals’ in our
model may be aggregates, such as counties or states, but if so the
treatments and outcomes must then be variables defined
unambiguously on the aggregate (macro) level (such as laws,
expenditures, and mortality rates).

Elwert and Winship3 also write that ‘MG depart in important
respects from the standard model of counterfactual causal
inference’; this is true, although we do not depart from it in the
way that Elwert and Winship describe. Perhaps most import-
antly, we are interested in the causal effect in a target population
(the group of individuals about whom our scientific question
asks), not in the study population. The two populations are 
not necessarily the same: The study population may include
individuals who are not in the target population but are being
used as substitutes for the counterfactual experience of the
target (e.g. our scenarios one and two); it may even include no
individual from the target population (e.g. our scenario three).
The distinction is important because (1) the size of a causal-
effect measure is not a biological constant, as it may vary with
the composition of the target population, and (2) the target
population may not be available for study (e.g. the people
enrolled in a randomized trial may not be the target popula-
tion of public health or medical interest). Thus a large, well-
conducted randomized trial would usually not provide an
unbiased estimator for a causal-effect measure unless the people
enrolled in the trial are representative of the target population;
this condition is rarely stated in presentations of the potential-
outcomes model.

Dawid4 questions the meaning of deterministic disease occur-
rence, which we used only for simplicity. Kaufman and Kaufman
explain what we mean: ‘individual potential responses are fixed
rather than random quantities’. Pdoomed, for example, repre-
sents individuals who would always get the study disease if the
study were hypothetically repeated, fixing the entire history of
that individual except for exposure and factors affected by
exposure. Using Dawid’s example of a penny toss, a two-tailed
penny will always land tails up. Stochastic counterfactuals are
discussed in detail elsewhere.16–18 Dawid also states ‘Things
become much murkier if no uniformity assumption can be
made, since then no perfect substitute exists’. This statement is
just wrong: Because of averaging, a substitute may perfectly
represent a counterfactual outcome of the target even if there is
no uniformity in either group.18 The practical problem is that we
are usually unable to identify a perfect substitute with certainty.

Disagreements
Regarding Dawid’s objections to counterfactual causal inference, we
recommend readers to sec. 1.4.4 of Pearl19 and the commentaries
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on ‘Causal interference without counterfactuals’,6 most of
which embrace counterfactual models and address his
objections in detail7–12 (the exception being Shafer13). Dawid
objects to counterfactual events because (by definition) they 
do not occur and so cannot be observed (although he concedes
a role for them in formulating causal models).6 We and
others9–12 maintain that this property of counterfactuals leads
to insights and reveals assumptions that are hidden by other
models. For example, a P-value (the probability of observing 
a statistic as large as observed or larger) is defined in terms 
of counterfactuals (in the ’or larger’), which implies that one
should reject use of P-values if one rejects inferences based on
non-occurring events.

Shafer4 offers predictive causality as an ‘obvious’ alternative
to counterfactual theories. While predictive theories are inter-
esting, we find them as yet too limiting to supplant counterfactual
theories, and quite obscure for teaching purposes. Treatments 
of predictive causality we have seen have dodged the thorny
problem of defining causality by relying on circularities4,13

(which usually go unnoticed), or on a metaphysical notion of
covariate sufficiency6 (which becomes a derived concept in other
theories18,19), or on hidden potential outcomes.13 Shafer4

indulges in the circularity when he defines weak causation by
saying ’A is a probabilistic cause of B if it raises the probability
of B’. What does it mean for A to ‘raise’ a probability if not 
to cause an increase? Probabilistic counterfactuals16–18 provide
the only non-circular answer we know of, notwithstanding
Shafer’s inability to understand them4 or even acknowledge
their existence.13 Shafer’s definition of strong causality,4 ‘that A
causes B in a strong sense if we can predict, using a method of
prediction that proves consistently correct, that B will happen if
we do A and will not happen if we do not do A’, tacks on a
subjective observer (‘we’ who predict) to an objective definition
of causation identical to that based on the ‘do’ (or ‘set’) operator
of potential-outcome models.19 This does not strike us as an
advantage of Shafer’s theory13 over counterfactual theories.

Shafer4 nicely sums up another reason why predictive causality
has thus far failed to attract the usage that counterfactual
theories have: ‘The very word [counterfactual] places us in the
situation where A has already been performed and so not(A) 
is counter to the facts. The counterfactual theory insists that
there should be a well-defined answer … to the question of
what would have happened if A had not been performed. The
predictive theory, on the other hand considers only what can 
be predicted before the choice between A and not(A) is made’.
The latter limitation means that Shafer’s restrictive version of
predictive causality demurs to directly face down the subjunct-
ive causal questions of deep concern to individuals and society.
Those questions are explicitly cast in a counterfactual ‘but for’
form put to American juries, such as ‘but for the action of 
tobacco companies in promoting the use of cigarettes, would 
the state of Minnesota have had health-care costs as high as it 
did bear?’ The only substance we see in Shafer’s criticism of 
such questions13 is addressed by prefixing ‘health-care costs’ with
‘expected’.

No one doubts the difficulty of answering such questions, 
but we dispute Shafer’s attempt to address these difficulties by
denying meaning to the question.4,13 The philosophy espoused
by Shafer4 as well as Dawid6 strikes us and others8–10 as a form
of logical positivism (misattributed to Popper6,8) that attempts

to hobble science by a fiat of restriction to questions that admit
tidy solutions. All else is condemned as ‘untestable’, ‘metaphys-
ical’, or ‘silly’ and therefore not scientific,6,13 without regard 
to the importance of the question; witness Dawid’s2 claim that
a causal relative risk ‘is simply not an appropriate subject for
discourse’! In contrast, counterfactual theories allow one to
examine such questions logically, and make clear exactly where
precise estimates cannot be attained without detailed mech-
anistic knowledge;17 they thus show why answers to certain
causal questions must remain conjectural, and how to shape
those conjectures to be consistent with background information
(including results from predictive research).3,17 They also help
us shape questions and answers to remove such ambiguity as
can be removed,3,5,17 without introducing the distortions and
oversimplifications that seem to attend extreme positivist
approaches.13 If we do not avail ourselves of these advantages,
special interests will still exploit them expertly.20

While we welcome other coherent theories of causality (such
as decision-analytic6 and graphical theories19), they have so 
far failed to yield a broad set of widely tested statistical methods
comparable to that of the potential-outcomes model of
counterfactuals (invented by Neyman21 in the early 1920s, yet
often misattributed to Rubin,3 though not by Rubin himself22).
Analysts employ this model to good effect whenever they apply
a permutation test (such as Fisher’s exact test) to randomized-
trial data,15,23 and the vast work by Rubin, Robins, and
Rosenbaum has extended the model and methods to obser-
vational studies.11,22,24 Shafer points out correctly that Lewis’s
counterfactual theory is not equivalent to this model, but fails
to point out that Lewis’s theory (in which counterfactuals are
taken as actual events in ‘closest possible worlds’) is far more
metaphysical than Neyman’s model, and lends absolutely no
support to Shafer’s theory.

Shafer4 also takes us to task for juxtaposing Feynman’s name
with citations of physicists who endorse counterfactuals.5 Indeed,
Feynman did not advocate counterfactuals because, to the best
of our knowledge, he never discussed them. As for whether
‘many’ physicists oppose them,4 the truth will be unknown until
there is a more thorough poll of physicists than either we or
Shafer (we each cite one) have mustered. Although we doubt
whether epidemiologists should base any decision on the poll’s
outcome, we note that Shafer’s cite4 (like Shafer13) fails to even
consider probabilistic counterfactuals.
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