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Abstract

For decades, researchers have sought to understand the separate contributions of age, period,
and cohort (APC) on a wide range of outcomes. However, a major challenge in these efforts
is the linear dependence among the three time scales. Previous methods have been plagued
by either arbitrary assumptions or extreme sensitivity to small variations in model specifica-
tion. In this article, we present an alternative method that achieves partial identification by
leveraging additional information about subpopulations (or strata) such as race, gender, and
social class. Our first goal is to introduce the Cross-Strata Linearized APC (CSL-APC) model,
a re-parameterization of the traditional APC model that focuses on cross-group variations in
effects instead of main effects. Similar to the traditional model, the linear cross-strata APC ef-
fects are not identified. The second goal is to show how Fosse andWinship’s (2019) bounding
approach can be used to address the identification problem of the CSL-APC model, allow-
ing one to partially identify cross-group differences in effects. This approach often involves
weaker assumptions than previously used techniques, and in some cases can lead to highly in-
formative bounds. To illustrate our method, we examine differences in temporal effects on
wages between men and women in the United States.



Introduction

The social sciences have long focused on studying changes in disparities among different groups—
including but not limited to those based on race, gender, education, and social class—in various
outcomes. At the core ofmuchof this research is the objective of identifying the relative importance
of aging, period-related, and cohort-based factors in creating trends in disparities observed among
groups. For instance, in the context of wage disparities between men and women, the causes could
range from changes in the age distribution, to period-related factors like changes in economic and
employment opportunities, to cohort-based factors that reflect enduring generational differences
in educational attainment or underlying values and attitudes.

However, as is well known, it is extremely difficult to identify the independent effects of age,
period, and cohort (APC) variables in a given data set.1 This is due to the APC identification
problem, or the fact that each of the temporal scales is a linear function of the other, such that
Period = Age + Cohort (for a discussion, see O’Brien 2015; Fosse and Winship 2019a). For ex-
ample, if a researcher follows a single birth cohort of men and women, one cannot tell whether
observed changes in the gender gap in earnings are entirely due to age or period effects because
the age and period variables have advanced in parallel. Similarly, when comparing two cohorts of
the same age, one cannot tell whether changes in a gender earnings gap are due to cohort or period
effects because the two cohorts differ not only in their year of birth but also in the year in which
their earnings are observed, reflecting a possible period effect.

Despite the difficulties posed by the identification problem, Fosse and Winship (2019b) have
shown that much can be learned from the data using what they call a bounds approach. Specifi-
cally, they show how theoretically driven assumptions about the size, sign, and/or shape of one or
more of the three underlying APC effects over a range of the data can be used to derive bounds on
the parameters of interest. In some cases, depending on the nature of the data and the particular
assumptions invoked, the bounds obtained can be very narrow (i.e., highly informative).

We have two primary objectives in this article. The first is to introduce what we call the Cross-
Strata LinearizedAPC (CSL-APC)model, a reparameterization of the traditional APCmodel that is
uniquely suited for the analysis of group disparities. Like the traditional APCmodel, the CSL-APC
model is used to specify the possible separate effects of age, period, and cohort. However, instead
of explaining an overall outcome in a population, the CSL-APCmodel is used to explain the differ-
ence in an outcome across strata (or subpopulations) such as gender, social class, and geographic
region. We do this by defining the between-group differences in age, period, and cohort effects as
the estimands of interest. However, the CSL-APC model, similar to the traditional APC model, is
not fully identified. Accordingly, our second objective is to show how the bounding approach of
Fosse andWinship (2019b) can be extended to examine between-group differences in APC effects.
We build on their core idea that theoretically driven assumptions can help set bounds on temporal

1By adopting the language of “effects,” we refer to the putative bundles of underlying causal factors that are proxied
by age, period, and cohort (Clogg 1982). This is distinct from “trends,” which are observed patterns in the data that
vary over calendar time (or period). For a discussion, see Fosse and Winship (2023).
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effects, thereby achieving partial identification. A potential advantage of focusing on partial iden-
tification of between-group differences in effects is that it changes the nature of the theoretical
assumptions required. However, instead of assumptions about the effects of age, period, and co-
hort on the overall levels of an outcome, assumptions are made about the effects of the three APC
variables on differences between groups. In some cases, these theoretical assumptions may be more
plausible than separate assumptions for each group as in a typical APC analysis.

To illustrate our approach, we analyze thewage gap betweenU.S.men andwomen using annual
supplemental data from the Current Population Survey from 1976 to 2019. Under a limited set of
assumptions, our analysis shows that cohort replacement effects have driven continued progress
in women’s relative pay, but that this progress has been partially offset by stagnating period effects
since the 1990s. These results provide valuable insights into the dramatic change in gender wage
inequality over the past four decades, as well as the slowing of the “gender revolution” since the
1990s (England et al. 2020).

In the following sections, we first present our empirical example and then briefly review the
most commonly used APC techniques for identifying the sources of change in cross-group dispar-
ities. We then discuss the related literature that attempts to explain temporal shifts in the gender
wage gap. Next, we introduce the CSL-APCmodel and show how it can be used to construct a 2D
APC graph, which is a crucial component of our bounds approach. We then analyze the effects of
age, period, and cohort on the gender wage gap. For conceptual clarity, we consider a case where
point identification is achieved by assuming that one of the three linear APC effects, specifically
the effect of age, is the same between women and men. However, this assumption is unrealistic in
our particular example. Therefore, to overcome this limitation, we build on the CSL-APC model
developing a cross-strata bounding approach that relies on much weaker assumptions. While ex-
plaining the analytical process step by step, we demonstrate how theoretical assumptions can be
used to derive bounding constraints and ultimately partially identify the cross-group differences in
age, period, and cohort effects. In addition, we present two novel types of sensitivity analyses that
can be used to assess the robustness of our results. To our knowledge, these sensitivity analyses are
a novel methodological contribution to the APC literature.

Empirical Example: The GenderWage Gap

As one of the most widely used measures of gender inequality, the wage gap between men and
women has been of great interest to scholars across the social sciences (O’Neill and Polachek 1993;
Cha andWeeden 2014; Blau and Kahn 2017; Horowitz and Igielnik 2020). Our analysis focuses on
identifying age, period, and cohort effects on over-time changes in the gender difference inmedian
annual earnings. Our data consists of pooled cross-sections of the Annual Social and Economic
Supplement of the Current Population Survey (CPS ASEC) from 1976 to 2019 (Flood et al. 2021).
Our analytic sample includes full-time, year-round wage and salary workers between the ages of
25 and 64 (830,856women and 1,121,562men). Full-time year-roundworkers are defined as those
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whoworked 50 ormoreweeks and at least 35 hours per week in the last calendar year.2 We exclude
the self-employed as their income is likely to be conflated with capital income. Since the outcome
is measured by respondents’ annual earnings in the previous calendar year, our earnings data cover
the period from 1975 to 2018. Throughout the article, we refer to the years to which the earnings
information applies instead of the survey years for convenience. Earnings are adjusted for inflation
in 2018 dollars. Because the top-coding scheme for earnings in the CPS has changed over time, we
use the median rather than the mean to measure the gender wage gap.3 Following the convention
in the APC literature, we group age and period into equal five-year intervals and compute cohort
from these intervals. This results in eight age categories ranging from 25-29 to 60-64, nine period
categories ranging from 1975-79 to 2015-2019, and sixteen cohort categories ranging from 1915-
19 to 1990-1994. We use the CPS ASEC survey sampling weights throughout.

We first present descriptive plots to illustrate trends in the U.S. gender wage gap over the 1975-
2018 period (see Table 1 in AppendixC for additional descriptive statistics). The left panel of Figure
1 plots the observed logmedian earnings across periods. It shows that the gender gap in logmedian
earnings has narrowed significantly over the last forty years, particularly in the 1980s. The right
panel also shows that, in the 1975-1979 period, women’s median earnings were 59 percent of their
male counterparts on the original (unlogged) scale. This share rose to 71 percent in the 1990-1994
period. Since then, women’s relative gains have slowed, reaching 80 percent in 2015-2018.4

Figure 1: Marginal Period Trends of the Gender Difference in Earnings
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Notes: Log median annual earnings (left) and the female-male percentage of median earnings (right) are
estimated among full-time (35+ usual work hours a week), year-round (50+ weeks a year), wage/salary
workers aged 25-64. Data from CPS ASEC 1976-2019.

2As an additional robustness check, we analyzed gender differences in median hourly earnings instead of annual
earnings. We also repeated the analysis of hourly earnings with the extended sample of full-time employees who
worked at least half a year (26 weeks) in the last calendar year. The results are robust to these different strategies
for measuring the gender wage gap. Figures 1 and 2 in Appendix D present the results.

3The substantive conclusions remain the same when we analyze mean wage differences instead of those based on
the median. See Figure 3 in Appendix D for the results.

4Previous research has shown stagnation since the 1990s in other outcomes related towomen’s labormarket status,
such as occupational desegregation (England et al. 2020).
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The above patterns raise the important question of whether these observed trends are driven
by underlying age, period, or cohort effects. Age effects may have driven the trends if age com-
position of full-time workers has changed in favor of women’s relative pay.5 If period effects are
dominant, this suggests that contemporaneous society-wide shifts, such as changing norms and
workplace policies regarding women’s employment, were the key factor in the wage convergence.
Alternatively, if cohort effects are the main explanation, it implies that the entrance of new cohorts
of men and women into employment where the gender wage gap is smaller, and the exit of older
individuals where it is larger, explains the observed decrease in the overall wage gap. Addition-
ally, it is of interest to determine whether the slowdown of gender wage convergence is due to age,
period, or cohort effects.

Figure 2 documents the age-graded patterns of the gender wage gap for selected birth cohorts.
As the figure shows, the gender gap has been decreasing steadily across cohorts. At the same time,
when comparing cohortswithin the same age range (e.g. at age 40 along the vertical dashed line), we
can see that the distance between cohorts is generally narrowing. These changes cannot necessarily
be attributed solely to underlying cohort effects, as cohorts compared at a given age differ both
in the year they were born and in the period during which their outcomes are observed. Thus,
observed differences may be the result of cohort effects or period effects.

Figure 2: Age-Graded Patterns of the Observed Gender
Difference in Earnings Among Selected Cohorts
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Notes: Age-graded patterns of the female-male percentage of median earnings are es-
timated among full-time (35+ usual work hours/week) year-round (50+ weeks/year)
wage/salary workers aged 25-64. Selective birth cohorts are presented for illustration.
The vertical dashed line is drawn to illustrate the degree of the gender wage gap for each
cohort when the cohort members were all at the same age of 40.

5However, the age composition of our sample has not changed substantially over time, such that the correlation
between age and period is less than 0.1. Therefore, changing age composition is not likely themain source of the trends.
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Previous Literature

So far, our analysis has focused only on the observed trends in the gender wage gap. However, as
we have emphasized, a key goal of APC analysis is to understand the underlying distinct effects of
age, period, and cohort on the outcome of interest. Before turning to how we will use the CSL-
APC model to analyze the distinct contributions of age, period, and cohort on the gender wage
gap, we highlight in this section two distinct bodies of literature relevant to our proposed method
and empirical analyses. We first discuss previous scholarship that has used various APC methods
to uncover differences in distinct temporal effects across subpopulations (or strata) such as race,
gender, and social class. We then outline research that has attempted to identify potential factors
causing over-time variability in the gender wage gap, focusing on research in the United States.

Incorporating Strata into APC Analysis

In general, researchers have relied on three approaches to extract unique effects for age, period, and
cohortwhile accounting for variability across strata. One approach is to fit separateAPCmodels for
each stratum and then compare estimates across strata (e.g., Yang and Land 2013:125-169; Masters
et al. 2014). A second, closely related approach is to fit a single APCmodel with a set of interaction
terms that allow for variability in effects across strata (e.g., Yang 2008; Pampel and Hunter 2012).
An advantage of this approachwhen using sample data is that one can easily conduct statistical tests
of cross-strata differences in the effects by examining the statistical significance of the interaction
terms. Finally, a third method is to construct an outcome that is a difference between two con-
trasting strata and then fit a conventional APC model with age, period, and cohort as inputs (e.g.,
O’Brien 2015:106-112). These parameters will capture cross-strata differences in the effects rather
than the main effects.6 Although limited in that only two groups can be compared at a time, this
approach has the advantage of simplicity and, because the focus is only on identifying cross-strata
variability in the effects, it may entail weaker assumptions than either of the first two approaches.
We adopt this last approach in presenting our CSL-APC model.

Regardless of which approach is adopted, a key decision entails how to obtain identification in
light of the linear dependence among the three temporal scales. We discuss the four most common
approaches to obtain identification among sociological and demographic studies that explicitly
examine variability in effects across strata. First, as suggested by Mason and colleagues (1973),
one can constrain two or more effects to be equivalent (e.g., Riebler and Held 2010, 2012). For
example, Mason and Smith (1985) analyze the effects of age, period, and cohort on tuberculosis. To
identify their model, they assume that the coefficients for ages 5 − 9 and ages 10 − 14 are equal.
The main problem with this approach is that any particular equality constraint, while seemingly
trivial, is actually a very strong assumption, since it is tantamount to assuming a particular value
for the unknown linear effect. An additional limitation is that in practice it is usually difficult to

6This approach is equivalent to modeling the interaction terms in the second approach above for two contrasting
strata (see Appendix A).
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theoretically justify any particular equality constraint over any other equality constraint (Kupper
et al. 1985).

A second approach is to categorize age, period, and cohort variables in a dataset so that they
do not retain exact linear dependence. This is often done by using categories of different lengths
for age, period, and cohort (Underwood et al. 2022). For example, Campbell and Pearlman (2013)
examine the same substantive question as in this article, namely the gender wage gap. Using CPS
data, they find that cohort replacement has driven the gender convergence of earnings. Although
their article provides useful insights for our study, Holford (2006) and Luo andHodges (2016) show
that this approach amounts to imposing a set of implicit equality constraints that typically lack the-
oretical justification. Moreover, as with the equality constraints approach, seemingly trivial repa-
rameterizations can produce dramatically different results depending on how category intervals
are defined (Luo and Hodges 2016).

A third approach is to use a hierarchical APC (HAPC) model (Yang and Land 2006, 2013). For
example, Pampel and Hunter (2012) use the HAPC model to examine how the education gap in
support for environmental spending varies across successive cohorts, controlling for age and pe-
riod. The main limitation of the HAPC model, as demonstrated by Luo and Hodges (2020), is that
it generally leads to a zero linear cohort effect (see also O’Brien 2017; Bell and Jones 2018).7 In
most applications, the assumption of a zero linear effect for cohort is inconsistent with prevailing
theories on the importance of cohort replacement (e.g., Ryder 1965).

Finally, a fourth approach is to use the Intrinsic Estimator or IE (Fu 2000, 2016; Yang et al.
2008), a type of Moore-Penrose estimator (Fosse and Winship 2018). For example, Masters et al.
(2014) use the IE to examine period and cohort effects on adult mortality, focusing on the Black-
white mortality gap. The main limitation of the IE is that the estimates depend on how the data
are coded (O’Brien 2015; Luo 2013; Fosse and Winship 2018). As shown in Luo et al. (2016), there
are always multiple coding schemes where the IE produces different sets of parameter estimates
equally consistent with the data.

In summary, current APC methods for incorporating cross-strata variability are limited, typ-
ically relying on strong implicit assumptions that are, in many cases, divorced from theoretical
considerations. To address this, we propose an alternative approach that extends the bounding ap-
proach of Fosse and Winship (2019b) to explore cross-strata differences in APC effects (hereafter,
“cross-strata effects”). This has several advantages. First, because it is based on partial rather than
point identification, the bounding approach generally involves much weaker assumptions than
methods based on point identification (Manski 2007). In fact, all of the above methods can be
seen as special cases of the bounding approach where very strict assumptions are used to obtain
narrow bounds (which are equivalent to point identification in the limit). Second, the bounding
approach is highly flexible, allowing for a variety of assumptions about the size, sign, and/or shape
of one or more of the temporal effects. Third, unlike many other techniques for APC analysis, the

7More precisely, the HAPCmodel will typically impose a zero linear effect on whichever of the temporal scales has
the most categories in the data. When a conventional age-by-period Lexis table is the data input, this will be cohort.
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bounding approach is based on a parameterization that clearly separates the identified from the
unidentified parts of the model (see Fosse and Winship 2019a). It can thus take full advantage of
estimates of nonlinear effects, which are identifiable because they are not linearly dependent. As-
sumptions based onmonotonic temporal effects over some range of the data are particularly useful
in this sense because in many cases they are easier to justify than constraints that assume exactly
equal effects. For example, one might assume that criminality increases in early adolescence and
then declines from the mid-twenties onward, or that the prevalence of prostate cancer increases
monotonically with age (Fosse and Winship 2019b). Finally and relatedly, the separation of the
unidentified from the identified parameters provides for a transparent link between theory and
the estimates, allowing researchers to trace the consequences of particular theoretical assumptions
on the conclusions obtained in any given application.

Potential Causes of the GenderWage Gap

As shown above, the wage gap between men and women in the United States has narrowed sub-
stantially since the 1980s, although the pace of narrowing slowed in the 1990s (England et al. 2020).
A dominant explanation for this convergence emphasizes the increasingly similar levels of human
capital that women and men bring to the labor force. Research shows that women’s human capital
characteristics, such as educational attainment, job tenure, and work experience, have grown at a
faster rate relative to men’s (O’Neill and Polachek 1993). This uneven pace of human capital ac-
cumulation explains a significant portion of the decline in the gender wage gap over the past four
decades (Blau and Kahn 2017).

However, gender convergence in wage-raising human capital characteristics is not the only
source of the narrowing wage gap. Declining fertility rates have also contributed to the rise in
women’s relative pay, as fewer children mean that women are less likely to experience a potential
wage loss from having children (Budig and England 2001; Killewald and Cricco 2020). In addition,
declining unionization and the rise of service economy have disproportionately suppressed wages
in traditionally male-dominated occupations and manufacturing sectors with high unionization
rates (Blau and Kahn 1997, 2017; Borghans et al. 2014). There is also evidence that gender dis-
crimination in earnings has declined to some extent, in part due to government anti-discrimination
policies in the 1960s and 1970s (Kurtulus 2012).

There is less consensus on why the progress in women’s relative earnings has slowed since
the 1990s. Given that the degree of occupational sex segregation has remained more or less the
same since the 1990s, various factors leading to gender differences in occupational choicemay have
slowed the rate of growth in women’s relative earnings (Blau et al. 2006). Relatedly, the emerging
ideologies of intensive mothering since the mid-1990s may have aggravated a career penalty for
working mothers who face more pressure from home (Hays 1996). Some studies suggest that the
Family andMedical Leave Act of 1993may have suppressedwomen’s earnings growth by impeding
their accumulation ofwork experience, but the empirical evidence is unclear (Blau andKahn 2017).
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Seemingly gender-neutral changes in the wage structure—for example, increasing wage returns to
long work hours or high-skilled tasks—have been shown to benefit the relative earnings of men,
who disproportionately occupy jobswith such conditions in the labormarket (Blau andKahn 2006;
Cha and Weeden 2014).

While we do not aim to adjudicate between these competing explanations for observed changes
in the gender wage gap, they provide useful insights into why age, period, and cohort may have
distinct effects on widening or narrowing the gap. On the one hand, changes in the earnings gap
driven by human capital and family demographics are likely to manifest as cohort effects. This
would be particularly the case for the effects drivenby education andoccupational choice, forwhich
intra-cohort variation among workers is likely to be limited. On the other hand, effects driven by
changes in the wage structure or policy enforcement would presumably manifest as period effects
on the wage gap, since their impact on the labor force is not likely to be limited to workers of a
particular birth cohort. Age effectswill reflect underlying family demographics and career patterns,
but wewould generally not expect age effects to drive the observed changes in the gender wage gap
across periods (as in Figure 1) unless there has been a significant shift in the age structure of the
workforce (see note 5).

Modeling Cross-Strata Temporal Effects

In this section, we present an extension of the conventional APC model by including additional
interaction terms between the strata variable and the variables representing age, period, and cohort.
This allows us to examine variations in temporal effects across different levels of the strata variable,
such as gender in our example. We then present a simplified version of this model, which we refer
to as the Cross-Strata Linearized APC (CSL-APC) model. As we discuss below, this model allows
for the focus on cross-strata differences in unidentified parameters (i.e., linear effects) as well as the
visualization of these parameters in a 2D APC plot, which is the basis for our bounding approach.

Classical and Linearized APCModels

Suppose we have an age-period Lexis table with cohorts on the diagonals. Each cell of the table
represents a value of a continuous outcome Y . Following the convention in the literature, we will
treat age, period, and cohort as categorical variables.8 Let i = 1, . . . , I denote the age groups,
j = 1, . . . , J the period groups, and k = 1, . . . , K the cohort groups, with k = j − i + I and
K = I + J − 1. The Classical APC model is represented by the following equation (Fosse and
Winship 2019a):

Yijk = µ+ αi + πj + γk + ηijk, (1)

where Yijk is the cell value; µ is the intercept; αi denotes the ith age effect (1, . . . , I); πj denotes the
jth period effect (1, . . . , J); γj denotes the kth cohort effect (1, . . . , K); and ηijk denotes a cell-specific

8For simplicity, we will also assume that the age and period categories are of equal width and that we have only
aggregated data (i.e., there is no individual-level variability within the cells).
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error term on the Lexis table. To identify the intercept, the age, period, and cohort parameters are
constrained to sum to zero such that

∑I
i αi =

∑J
j πj =

∑K
k γk = 0.

An alternative specification is the Linearized APC (L-APC) model, which divides the overall tem-
poral effects into linear andnonlinear effects (Holford 1983; Fosse andWinship 2019a). The L-APC
model is given by:

Yijk = µ+ α(i− i∗) + π(j − j∗) + γ(k − k∗) + α̃i + π̃j + γ̃k + ηijk, (2)

where α, π, and γ denote the age, period, and cohort linear effects, respectively; and α̃i, π̃j , and γ̃k
refer to nonlinear effects for the ith age, jth period, and kth cohort categories, respectively. The age,
period, and cohort categories are centered around the midpoint indices marked by the asterisks,
i∗ = (I + 1)/2, j∗ = (J + 1)/2 and k∗ = (K + 1)/2, such that the age, period, and cohort
parameters, as in Equation 1, satisfy the zero-sum constraint. The parameterization in Equation 2
has the main advantage of clarifying the nature of the identification problem: While the intercept
and the nonlinear effects are identified, the linear effects α, π, and γ are not (Fienberg and Mason
1979; Holford 1983).

Cross-Strata Linearized APCModel

Suppose s = 1, . . . , S indices some set of S strata, or subpopulations of substantive interest (e.g.,
race, gender, class, geographic region, and so on). The L-APCmodel can be generalized to incorpo-
rate cross-strata differences, leading to what we call the Stratified Linearized APC (SL-APC) model:

Yijks = µs + αs(i− i∗) + πs(j − j∗) + γs(k − k∗) + α̃is + π̃js + γ̃ks + ηijks, (3)

which is identical to Equation 2 except now the intercept, linear effects, nonlinear effects, and error
terms are allowed to vary across levels of the strata variable. As noted previously, our interest lies
in identifying the differences in the APC effects across strata, rather than the stratum-specific effects
(see also Appendix A for another interpretation).

Focusing on the differences requires a reformulation of Equation 3. The simplest approach is to
reformulate Equation 3 in terms of differences between any two selected strata.9 For our example,
in which gender is the strata variable, we will let s = 2 refer to women and s = 1 to men. This
gives us the following differenced model equation, which we refer to as the Cross-Strata Linearized
APC (CSL-APC) model:

Yijk[s=2] − Yijk[s=1]

=
(
µ2 + α2(i− i∗) + π2(j − j∗) + γ2(k − k∗) + α̃i2 + π̃j2 + γ̃k2 + ηijk2

)
−
(
µ1 + α1(i− i∗) + π1(j − j∗) + γ1(k − k∗) + α̃i1 + π̃j1 + γ̃k1 + ηijk1

)

or, equivalently,

∆Yijk = ∆µ+∆α(i− i∗) + ∆π(j − j∗) + ∆γ(k − k∗) + ∆α̃i +∆π̃j +∆γ̃k +∆ηijk, (4)

9Alternatively, as we show in Appendix A, one can specify a model with a set of interactions between the linear
and nonlinear components and the levels of the strata variable. With this formulation, the interactions will capture the
cross-strata differences in the temporal effects.
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where ∆Yijk denotes the cross-strata difference in outcomes; ∆µ is the difference in intercepts;
∆α, ∆π, and ∆γ are the cross-strata differences in the linear effects; ∆α̃i, ∆π̃j , and γ̃k are the
differences in the nonlinear effects (or deviations from the linear effects);∆ηijk is the difference in
cell-specific error terms between the two strata.

The CSL-APCmodel, like the traditional APCmodel, is not identifiedwithout further assump-
tions because it is still the case that Period= Age+ Cohort (j − j∗ = i− i∗ + k − k∗). However,
focusing only on identifying the differences in APC effects across strata, as opposed to both the
strata-specific main effects and the differences in effects in Equation 3, requires assumptions only
about the differences in effects.10 This often entails weaker theoretical assumptions, intuitively be-
cause fewer are unidentified. We discuss this issue further below in our analysis of the gender gap
in earnings.

TheCSL-APCmodel is easily applied to aggregatedAPCdata. Assuming that the data have been
collected based on age and period, researchers can first construct two age-period Lexis tables, one
for each group to be compared. For example, in our application one table would be a set of log
median earnings for men while the other would be a set of log median earnings for women. Then
a new Lexis table is created that is the difference between the two tables (in our case, women’s log
median earningsminus those ofmen). This differenced Lexis table, in which the cells denote cross-
strata differences in the outcome, is then the data object used to fit the CSL-APC model. The data
preparation procedure is conceptually identical when researchers have individual-level data as in
our case. Appendix B provides the Lexis table used in our analysis.

The Cross-Strata Canonical Solution Line

As noted above, the parameters for the linear components in Equation 4 are not identified. How-
ever, we will show that theoretically driven assumptions can place bounds on these parameters,
allowing partial identification of the cross-strata APC effects. These bounds can be represented al-
gebraically or graphically; both approaches are equivalent (Fosse andWinship 2019b). For simplic-
ity, we present a graphical representation throughout the rest of the article (see Table 2 in Appendix
C for an algebraic representation of the bounds).

An important graphical tool for understanding how the bounds work is the so-called canonical
solution line, a line showing all possible estimates of the cross-strata linear APC effects (Fosse and
Winship 2019a, 2019b). To understand the canonical solution line, it is important to be first aware
of the two underlying parameters on which it is based: θ1 and θ2. Although the parameters for the
linear components are not identified, certain combinations of the parameters are (Holford 1983).
Because of the identity Period = Age + Cohort, any APC model can be written as a function of
just two of the three APC variables. Replacing the period index (j − j∗) with the age (i − i∗) and
cohort (k − k∗) indices in Equation 4 gives:

10For a detailed discussion of identification issues in a two group model using an alternative parameterization, see
Nielsen (Unpublished).
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∆Yi[i+k−I]k = ∆µ+ θ1(i− i∗) + θ2(k − k∗) + ∆α̃i +∆π̃i+k +∆γ̃i +∆ηi[i+k]k (5)

where, in this application, θ1 =∆α+∆π and θ2 = ∆π+∆γ. Following Fosse andWinship (2023),
we interpret θ1 as the life cycle slope because it describes the overall linear trend in group disparities
across age levels (within any given cohort); likewise, θ2 is the social change slope because it describes
the overall linear trend in group disparities across cohorts (within any given age group). Note that
in Equation 5 there are effectively only two linear parameters, not three. As such, both θ1 are θ2
are identified and can be estimated from the data.

Using our data on the gender wage gap in the United States, the least squares estimate of θ1
is −0.002 (p> 0.05), meaning that a 10-year change in age is associated with a 0.002 (about 0.2
percent) decrease in women’s earnings relative to men. The estimated θ2 is 0.084 (p < 0.001),
meaning that a 10-year cohort change is associated with a 0.084 (about 8.7 percent) increase in
women’s relative earnings (see Table 3 in Appendix C for the full regression results). The number
of observations is 72, which is simply the total number of age-period cells in the Lexis table defined
by eight age categories andnine period categories (8×9 = 72). AppendixA andAppendixB explain
the estimation process in more detail.

Next, it is essential to understand that the estimated θ1 and θ2 can severely restrict the possi-
ble estimates of the cross-strata age, period, and cohort linear effects. To see this, note that two
equations θ1 = ∆α + ∆π and θ2 = ∆π + ∆γ involve three unknowns of cross-strata linear ef-
fects (or slopes). Among the initial sets of differenced parameters, which could be anywhere in
three-dimensional parameter space, these two equations, together with estimates of θ1 and θ2, can
constrain the possible estimates to only certain combinations of values that lie on a single line. This
insight has not beenwidely recognized in the current APC literature in sociology and demography.
As shown by Fosse and Winship (2018), the APC solution space can always be reduced to a one-
dimensional space, or the cross-strata canonical solution line—the simplest geometric representation
of the APC identification problem.

To illustrate this fact, consider Figure 3, which is based on simulated values of θ1 = 3 and θ2 =
−2. Panels (a) and (b) of Figure 3 display the age-period plane defined by the identified quantity
θ1 = 3 and the period-cohort plane defined by the identified quantity θ2 = −2, respectively.
These two planes intersect to form a line, as shown in Figures 3 (c) and (d). Each point on this line
represents a set of estimates for the parameters∆α,∆π, and∆γ that are consistent with the data.
This visualization also represents the APC identification problem, since the absence of a linear
dependence would cause three respective planes to intersect at a single point in parameter space.
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Figure 3: Geometric Derivation of the Cross-Strata Canonical Solution Line
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Notes: Representation of the canonical solution line using values of θ1 = 3 and θ2 = −2. The vertical
axis represents a range of cross-strata period linear effects, while the horizontal axes represent ranges for
cross-strata cohort and age linear effects, respectively. Age-period plane is defined by ∆π = θ1 − ∆α,
where θ1 = 3. Period-cohort plane is defined by∆π = θ2 − ∆γ, where θ2 = −2. The intersection of
the two planes in the parameter space of cross-strata linear effects defines the canonical solution line.

Fosse and Winship (2019b) further demonstrate how the canonical solution line can be rep-
resented in two-dimensional space without loss of information. They call this a 2D-APC plot, as
shown in Figure 4. This two-dimensional representation is possible because of the linear depen-
dence among the three temporal scales that occurs even in the analysis of cross-strata differences
in effects.
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Figure 4: 2D APC Plot of the Cross-Strata Canonical Solution Line
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Notes: This figure is based on the θ1 estimate of−0.002 and the θ2 estimate of 0.084. The left vertical axis
represents a range of cross-strata age linear effects, the horizontal axis a range of cross-strata period linear
effects, and the right vertical axis a range of cross-strata cohort linear effects. The axis labels are denoted
with asterisks (*) to indicate that the axes move along all possible linear effects consistent with data (the
solid line) instead of the “true” linear effects. The dashed lines refer to the points where each respective axis
is equal to zero. The solid line indicates the canonical solution line denoting all possible cross-strata linear
effects consistent with the data. The empty circles represent the age-period (upper) and period-cohort
(lower) origins where the respective set of axes are equal to zero.

Figure 4 illustrates three key elements of the data: the slope of the canonical solution line, which
is always negative one, the direction and scale of the axes, and the values of θ1 and θ2. While the
slope and direction of the axes are equivalent for all temporally structured data, the values of θ1 and
θ2 can vary depending on the∆α,∆π and∆γ parameters. These values determine the location of
the canonical solution line in the 2DAPC plot relative to the age-period and period-cohort origins.

Point Identification: Equality-of-Effects Assumption

In the following sections, we outline how to use this 2D APC plot, along with theoretical assump-
tions, to bound the cross-strata differences in age, period, and cohort effects. To provide conceptual
clarity on how to bound the parameters, we first consider the simplest case in which one imposes
the assumption of equal effects across strata, thereby yielding point estimates. While we present
this approach for illustrative purposes, we view this as a very strong assumption that may be theo-
retically justified only in particular applications.

The equality-of-effects (EOE) assumption involves presuming that one of the overall age, pe-
riod, or cohort effects is the same across two different groups, thereby allowing for the identifica-
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tion of differences in the other two temporal effects.11 In general, we contend that two conditions
must be met to justify the EOE assumption: first, there needs to be a strong theoretical reason to
support the invariance of a total effect for age, period, or cohort (i.e., both the linear and nonlinear
effects) across subpopulations; second, the nonlinear effects between the two groups must be ob-
servationally equivalent within some degree of uncertainty. We elaborate on each of these points
below.

With respect to the first condition, it is critical to have a strong theoretical rationale to sup-
port the assumption of invariance of a total temporal effect across subpopulations. For example,
epidemiological theories may arguably predict that certain biological mechanisms determine the
age-related patterns of some health-related outcomes. If the mechanisms do not differ across sub-
populations, it is plausible to assume that they are affected by the same age effects. For example,
Riebler and Held (2010) examine APC effects on chronic obstructive pulmonary disease-specific
mortality rates among men in England and Wales from 1950 to 1999. Their analysis assumes that
men in England and men in Wales are exposed to the same general age effects, leading to the iden-
tification of period- and cohort-specific differences in mortality rates between the two groups of
men.12

Figure 5 illustrates the impact of the EOE assumption for age on identification in the case of
the gender wage gap. By assuming that the age effects are the same, we also assume that the age
linear effects are the same formen andwomen, thereby identifying the between-gender differences
in period and cohort effects on earnings. Graphically, point identification is achieved at the point
where the dashed solution line intersects the red solid line specified by the assumption (i.e.,∆α∗ =

0). As a result, among the innumerable sets of parameter estimates along the canonical solution line,
a particular set of the estimates for cross-strata linear effects (or slopes) is identified.

However, we are not aware of any theory that justifies the equality of age effects on earnings
between men and women, nor for period or cohort effects. It is well known that the age-related
shifts in earnings are drastically different between men and women. This is because life-cycle pat-
terns of family and demographic behaviors are closely intertwined with women’s earnings, even
conditional on full-time employment. Moreover, there is reason to believe that the period and co-
hort effects operate differently for male and female earnings. A large body of research evidences
that the social environment has changed in favor of women’s relative pay and that the composition
of the female working population has shifted substantially across cohorts (see Blau and Kahn 2017
for a review).

11The EOE assumption is equivalent to a strategy adopted by Riebler and Held (2010, 2012). They show that if two
groups are assumed to have the same total effect for one of either age, period, or cohort (including both linear and
nonlinear effects), then group differences are identified for the other two temporal effects. Although their claim is
correct, as we elaborate below, it is stronger than it needs to be and can be partially tested against the data. Regarding
the first point, because only the cross-group linear effects are unidentified, an assumption about the equality of linear
effects across the two groups is sufficient for identification. Moreover, the assumption that the total effects are equal
ignores the fact that the nonlinear effects are identified and can be compared empirically.

12It is important to note that the identified cross-group effects of period and cohort are only as valid as the theory
underlying this EOE assumption.
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Figure 5: Identifying Constraint Based on the Age
Equality-of-Effects Assumption with a 2D-APC Plot
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Notes: The figure is based on the θ1 estimate of−0.002 and the θ2 estimate of 0.084. The left
vertical axis represents a range of cross-strata age linear effects, the horizontal axis a range
of cross-strata period linear effects, and the right vertical axis a range of cross-strata cohort
linear effects. The dashed line indicates the canonical solution line denoting all possible cross-
strata linear effects consistent with the data. The dot refers to the point where the solution line
intersects the red solid line (i.e., the cross-strata age linear effect equals zero) as stated by the
EOE assumption for age.

The second condition for justifying the EOE assumption is that the nonlinear effects of the
temporal scale of interest (either age, period, or cohort) need to be similar between two groups
within some degree of uncertainty. In practice this means that the overall shape of the nonlinear
effects should be similar between the groups being compared.13 We propose three specific ways to
detect the possible (in)equality of the nonlinear effects, using the gender wage gap as an example.

First, as an informal “test,” researchers can graphically examine whether each cross-strata non-
linearity (e.g., ∆α̃i for each i = 1, . . . , I ) is close to zero. The estimated cross-strata nonlinear
effects of age, period, and cohort are shown in Figure 6. As can be observed, it does not seem to be
the case that the nonlinear effects on the gender wage gap are close to zero, either for age, period,
or cohort. If they were, we would see straight flat lines in the three panels.

13Certainly some part of the nonlinear effects will reflect noise. Although this is not the focus of our discussion
here, one solution is to smooth the nonlinear effects by, for example, dropping higher-order polynomials or imposing
strong zero-centered prior distributions over the nonlinearities (e.g., see Fosse 2021).
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Figure 6: Estimated Cross-Strata Nonlinear Effects of Age, Period, and Cohort
on the Gender Wage Gap
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Notes: The panels (a), (b), and (c) show the estimated cross-strata nonlinear age, period, and cohort
effects on the gender wage gap, respectively. The dotted lines indicate the mean value (i.e., intercept)
of the gender wage gap.

Second, in addition to an informal visual inspection, one could perform a formal statistical test
of nonlinear effects. Specifically, an F-test can be used to assess whether nonlinear effects of age,
period, or cohort are jointly different between two groups (e.g., α̃i = 0 for each i). Although the
inability to reject the null hypothesis of zero (i.e., equality between two groups) does not necessarily
confirm that the nonlinear effects are equal, the test at least provides face validity to the claim that
the nonlinear effects are not substantially different between the two groups, especially when the
sample size is large. In our example, the F-tests shown in Table 1 indicate that we can reject the
null of no differential nonlinear effects with respect to age, period, and cohort.

Table 1: Joint F-Test Results of Cross-Strata Nonlinear Effects and Model Fit Statistics

Test of Nonlinear Effects Model Fit

Test Type H0 in F-test χ2 Statistic p-value AIC BIC

Full CSL-APCModel - - - −363.93 −293.35

No Between-Gender Age Nonlinearities ∆α̃i = 0 for all i 516 p < 0.001 −189.68 −132.77

No Between-Gender Period Nonlinearities ∆π̃j = 0 for all j 132.38 p < 0.001 −275.43 −220.79

No Between-Gender Cohort Nonlinearities ∆γ̃k = 0 for all k 197.07 p < 0.001 −266.71 −228.01

Lastly, researchers can rely onmodel fit statistics to examine whether omitting the cross-strata
nonlinear effects significantly reducesmodel fit. TheAkaike InformationCriterion (AIC) orBayesian
Information Criterion (BIC) values are presented in Table 1. We can see that the full CSL-APC
model with parameters for all of the between-gender nonlinear effects shows the best model fit
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(i.e. the smallest AIC/BIC statistics) in the case of the wage gap. This means that it is difficult to
claim that the cross-strata nonlinear effects do not play a role in shaping the gender wage gap.

In sum, when researchers have solid evidence that the linear effect is the same and the nonlinear
effects between twogroups are observationally indistinguishable for one of the threeAPCvariables,
they can make use of the EOE assumption to identify cross-group differences in the remaining
two temporal effects. However, this is not applicable in the case of the gender wage gap, as there
is no strong evidence to suggest that the age, period, or cohort effects are equal between men and
women. The results of the three tests conducted also do not support that the nonlinear effects are
the same for both groups. In the following, we present our more general bounding approach to
the identification problem, which can flexibly incorporate more realistic assumptions supported
by theories of the gender wage gap. The EOE assumption-based solution outlined above can be
considered as one special, restricted case of this bounding approach.

Partial Identification: Bounding Analysis of Cross-Strata APC Effects

Our cross-strata bounding approach builds on the framework proposed by Fosse and Winship
(2019b), which is based on the insight that constraints implied by theoretical claims, along with
information from the data, can be used to bound one or more of the APC effects. Despite its flex-
ibility in incorporating theoretical assumptions, Fosse and Winship’s bounding approach has not
been readily applied to the temporal analysis of group disparities. We adapt their framework to
develop a bounding approach that partially identifies cross-strata differences in APC effects (or
“cross-strata effects”). It is critical to understand that although the analytical procedures might ap-
pear similar, our estimands differ substantially from those of a group-specific APC analysis; rather
than overall main effects, our approach focuses on identifying cross-group differences in effects.14

Below we elaborate on the process of cross-strata bounding analysis step by step.

Step 1: List Set of Credible Theoretical Assumptions

The bounding approach requires assumptions about the size, sign, or shape of the cross-strata APC
effects. These assumptions serve to constrain the possible region of the cross-strata canonical so-
lution line shown in Figure 4. Because the assumptions must be informed by theories about the
differences in temporal effects between groups, researchers should carefully review their assump-
tions in light of various (and possibly conflicting) theories to ensure that the assumptions are as
credible as possible.

With the flexibility of a bounding approach, researchers can invoke awide range of assumptions
about cross-strata age, period, or cohort effects. We illustrate three types of assumptions that we

14An alternative strategy to our cross-strata bounding approach would be to perform a bounding analysis for each
respective group and then compare the bounded APC effects between the two groups. We indeed encourage applied
researchers to rely on this approach involving multiple stratum-specific bounding analyses if there are sufficient the-
oretical foundations to yield precisely bounded temporal effects within each comparison group. In many substantive
cases, however, researchers may not be able to find such rich theoretical support separately for each group.
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think are particularly useful for applied researchers:

1. Monotonic Effects Assumption: This assumption states that differences in age, period, or co-
hort effects across strata are monotonically increasing (or decreasing) over a specified range.
Thewider the specified range, the stronger the assumption involvingmonotonicity of cross-
strata effects. An assumption of monotonic cross-strata effects involves imposing a con-
straint on the total cross-strata effects (i.e., the combination of the linear and nonlinear ef-
fects) of age, period, or cohort over the specified range. Because we can identify and estimate
the nonlinear effects, themonotonic effects assumption implies a constraint on the unknown
linear cross-strata effect. If one of the three cross-strata linear effects (or slopes) is bounded,
this implies bounds on the other two slopes. This is simply an extension of the idea that for
any given value of the cross-strata linear effect, the canonical solution line determines the
value of the remaining two linear effects. As a result, bounds on all cross-strata effects are
identified.

2. Non-Monotonic Effects Assumption: This assumption is that the cross-strata effects do not
increase (or decrease) monotonically over a given range of ages, periods, or cohorts. The
cross-strata effects may decrease, remain constant, or increase over the specified range, but
the increase (or decrease) is not monotonic. In this sense, the non-monotonic effects as-
sumption is mutually exclusive with, and the opposite of, the monotonic effects assumption.
Unlike the monotonic effects assumption, the non-monotonic effects assumption becomes
weaker as the specified range increases. However, like the monotonic effects assumption,
the non-monotonic effects assumption imposes a constraint on the total cross-strata effects
of age, period, or cohort over the range specified by the researcher. Because the nonlinear
effects are identified, this results in a bound on one of the cross-strata APC linear effects.
This in turn yields bounds on the other two temporal effects.

3. Linear Effects Assumption: This assumption states that over the full range observed in the data,
one of the linear age, period, or cohort effects is assumed to diverge, converge, or remain the
same across groups. In practice, this means that one is specifying the direction of one of
the underlying cross-strata linear effects (or slopes). Importantly, this assumption is limited
to the linear effects and does not imply that the total age, period, or cohort effects always
diverge, converge, or remain the same across groups. The EOE assumption explained in the
previous section is a more restrictive case of this assumption, where not only a slope but also
the corresponding cross-strata nonlinear effects are assumed to be zero.

The above three types of assumptions are quite general and can be applied to any number of
contexts. In practice, theoretical assumptions will vary depending on the outcome of interest and
the subpopulations being compared. Based on the literature reviewed earlier, we propose the fol-
lowing assumptions in the context of the gender gap in earnings.
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1. Monotonic Age Effects (25-34): We assume that the differential age effects between men and
women will expand the wage gap from age 25 to 34. This is because this age range overlaps
substantially with women’s prime childbearing ages, and fertility is shown to have differen-
tial effects on the wages of men and women. The extensive literature on the motherhood
wage penalty suggests that mothers’ earnings relative to fathers, net of full-time employ-
ment, will decrease through pathways involving reduced work hours, employer discrimina-
tion, seeking family-friendly jobs with lower earnings, and so on (Budig and England 2001;
Correll et al. 2007; Killewald and García-Manglano 2016; Yu and Kuo 2017). Conversely,
a related literature suggests that men will receive a fatherhood wage premium through this
age range (Hodges and Budig 2010; Killewald 2013).

2. Non-Monotonic Age Effects (35-49): Another assumption we rely on is that the gender differ-
ences in age effects will not necessarily increase the wage gap in a monotonic fashion from
35 to 49. The gap may increase over a shorter age range (from 35-39 to 40-44 or from 40-44
to 45-49), but it will not increase monotonically from age 35 to 49 (not both from age 35-39
to 40-44 and from age 40-44 to 45-49). This assumption about the difference in age effects
betweenwomen andmen, like the previous one, is based on life-cycle patterns of fertility. As
children reach school age, the childcare burden on parents tends to decrease, especially for
mothers between 35 to 49. Even conditional on full-time employment, mothers are likely
to increase their working hours or move to higher paid positions in the workforce (Musick
et al. 2020).

3. Period Linear Effect: We also impose a sign constraint on the gender difference in period lin-
ear effect (or period slope), assuming that it is positive (i.e., leads to a smaller wage gap). This
assumption is based on a large body of research claiming that the social environment has,
at least to some extent, become more favorable to women’s pay relative to men’s since the
1970s (see Blau and Kahn 2017). For example, anti-discrimination practices and changes in
laws and policies likely increased women’s relative pay on average over this period (Kurtu-
lus 2012). Declining unionization rates and a declining share of manufacturing jobs, along
with an increase in well-paying service sector jobs, may have reduced the relative earnings
of men, who were disproportionately employed in manufacturing and in sectors with high
unionization rates (Blau and Kahn 1997; Borghans et al. 2014). Thus, we expect these differ-
ential impacts on men and women to manifest as a positive period linear effect on women’s
relative pay.

4. Cohort Linear Effect: Lastly, we also consider an assumption that the cohort slope is posi-
tive (i.e., leads to a smaller wage gap). This assumption is based on human capital theory,
which predicts that shifts in the female labor force composition across cohorts have led to
an overall increase in women’s relative pay (Goldin 2021). This is evidenced by the fact that
the educational attainment of recent female cohorts is higher than that of their earlier coun-

19



terparts, and that the rate of educational expansion has been much greater for women than
for men. The duration of work interruptions, an important determinant of earnings loss, is
also shorter on average for recent cohorts of women, partly due to their lower fertility (Blau
and Kahn 2017; Killewald and Cricco 2020). These factors are considered to be primarily
cohort-specific characteristics and are therefore expected to result in a positive linear effect
on the gender wage gap.

Step 2. Estimate and Display Set of Linear and Nonlinear Effects

In the second step, we will begin by estimating θ1, θ2, and the cross-strata nonlinear effects. These
quantities are all identified and can therefore be estimated from the data. Specifically, to estimate
these parameters, we fit the model in Equation 5 to an age-period Lexis table in which the cell val-
ues are outcome differences between the two groups. The estimation results for our example are
reported in Table 3 in Appendix C. We then use the values of θ̂1 and θ̂2 to construct the canoni-
cal solution line. The cross-strata canonical solution line and nonlinear effects can be presented
visually, as shown in the 2D APC plot (Figure 4) and cross-strata nonlinear effect plots (Figure 6).

Step 3. Compute Bounds on the Age, Period, and Cohort Effects

The third step in the analysis is to determine the bounds on the age, period, and cohort effects
based on the specified assumptions. By calculating the minimum and maximum slope values for
the temporal scale of interest that are consistentwith a given assumption, researchers can assess the
limits and variability of the possible parameter estimates. Although it is possible to evaluate each
assumption separately, in our example we choose to apply the first two age-related assumptions
simultaneously because of their common theoretical basis.

The general principle of the bounding approach is that researchers start with the assumptions
that are most credibly supported by theories. In our case, we believe that the life-cycle patterns of
fertility reasonably support our assumptions about age effects, particularly given the large literature
demonstrating the existence of a motherhood wage penalty. Additionally, since we are primarily
interested in distinguishing between period and cohort effects, it seems natural to apply the age-
related assumptions first.

Our first assumption is thatwomen’s earnings have declined relative tomen’s earnings between
ages 25 and 34. For this assumption to be hold, the age slope must be less than about 0.116, which
is twice the difference between the nonlinear effects of ages 25-29 and ages 30-34 (see Figure 6
and Appendix C Table 3).15 If the age slope is equal to or greater than 0.116, then women’s relative
earnings would increase or at least remain constant over this age range, violating this assumption.

Our second assumption is that women’s relative earnings do not necessarily decline monoton-
ically from age 35 to 49. For this assumption to be satisfied, the age slope must not take the value
that results in a monotonic decline in women’s relative earnings over this age range. In this age

15Wemultiply by two just to make the coefficient scales consistent (i.e., a 10-year change).
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span, the most positive shift in the nonlinear effects is 0.031 (between ages 40-44 and ages 45-49;
see Figure 6). Therefore, the age slope must be equal to or greater (or less negative) than −0.031;
otherwise, the negative age slope will offset the positive shift in the nonlinear effects and result in
monotonically decreasing relative earnings for women.

From these two assumptions we can derive bounds on the minimum (−0.031) and maximum
(0.116) values of the age slope. These bounds on the linear effects can be easily visualized using
a 2D APC plot, as shown in Figure 7. This graph shows that the possible region of the canonical
solution line is now restricted to the range between−0.031 and 0.116 in terms of the age slope.

Figure 7: Upper and Lower Bounds of Cross-Strata
APC Linear Effects on the Gender Wage Gap
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Notes: The figure is based on the θ1 estimate of−0.002 and the θ2 estimate of 0.084. The left vertical
axis represents a range of cross-strata age linear effects, the horizontal axis a range of cross-strata
period linear effects, and the right vertical axis a range of cross-strata cohort linear effects. The
dashed line indicates all possible linear effects consistent with data. The solid line in the colored
region refers to the feasible region of cross-strata linear effects given the first two assumptions about
the shape of the cross-strata age effects.

Given the constraints on the age slope, we can also compute the minimum and/or maximum
values of the period and cohort slopes. Since the estimated sum of the between-gender age and
period linear effects (θ̂1) is−0.002, the resulting minimum and maximum values of the between-
gender period linear effect are−0.118 and 0.029, respectively. Similarly, the bounds on the period
slope translate into the bounds on the cohort slope (from 0.054 to 0.202), since we estimated the
sumof the period and cohort slopes to be 0.084. These calculations are easily visualized in Figure 7.
Since the plot is based on the values of θ̂1 and θ̂2, restricting the range of the age slope automatically
translates into restricting the ranges of the period and cohort slopes. As a result, we have now
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partially identified the between-gender linear effects of age, period, and cohort based on the two
theoretical assumptions about the differential age effects between women and men.

Step 4. Partial Identification Based on Bounding Constraints

Based on the constraints on the APC slopes, we can construct bounds on the overall age, period,
and cohort effects producing cross-group disparities. The following Equation 6 formulates the
bounded APC effects. While its format is similar to Equation 4, we add a bounding scalar ν to each
cross-strata linear effect as follows:

∆Yijk = ∆µ+ (∆α+ ν)(i− i∗) + (∆π − ν)(j − j∗) + (∆γ + ν)(k − k∗) + ∆α̃i +∆π̃j +∆γ̃k +∆ηijk, (6)

Setting different values of ν yields different possible values on the solution line. If ν is set to the
maximum value, the age slope will be the maximum, the period slope will be the minimum, and
the cohort slope will be the maximum. If ν is set to the minimum value, the opposite is true. The
range of a total age effect in a given age category ((∆α + ν)(i − i∗) + ∆α̃i) can then be con-
structed and plotted, as can the period and cohort effects. In the case of the gender wage gap, the
bounded cross-strata APC effects based on the two age-related assumptions are shown in Figure 8.
The results suggest that the cross-strata cohort effects may have played a crucial role in increasing
women’s relative earnings compared to the cross-strata period effects. However, the bounds of the
overall between-gender APC effects remainwide, precluding amore precise understanding of each
temporal effect.

Figure 8: Bounded Cross-Strata Age, Period, Cohort Effects on the Gender Wage Gap
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Notes: The shaded areas represent the bounded effects of age (a), period (b), and cohort (c) on the gender wage gap
based on the two age-related assumptions. The dotted lines follow the mid-points in each shaded area. The dark
bold lines along one end of the shaded areas depict one possibility of the APC effects where the between-gender
age linear effect is most positive, the between-gender period linear effect is most negative, and the between-
gender linear cohort effect is most positive within the bounded ranges.
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Step 5. Repeat Steps 3-4 Invoking an Additional Theoretical Assumption

Although the results so far provide ameaningful conclusion about the relative importance of period
and cohort effects in driving gender wage convergence, the assumptions about age effects alone do
not provide a precise understanding of the temporal effects on the gender wage gap, especially the
period effects. Researchers can repeat Steps 3 and 4, relying on additional theoretical assumptions
that may provide a narrower range of bounds on the cross-strata temporal effects.

In our example, we proceed with the assumption that the period slope is positive (∆π > 0). We
now have three bounding constraints at hand: 1)∆α > −0.031; 2)∆α < 0.116; and 3)∆π > 0.
The resultant bounds in all slopes can be computed manually. Alternatively, these constraints can
be depicted in the 2D-APC plot, serving to illustrate further restrictions in the possible region of
the solution line. Figure 9 shows the 2D-APC plot where all three bounding constraints are intro-
duced. The possibleminimum andmaximumvalues are−0.031 and−0.002 for the age slope, zero
and 0.029 for the period slope, and 0.054 and 0.084 for the cohort slope. Note that the resultant
constraints on the slopes are different from the ones originally specified by the assumptions be-
cause the bounds for one slope are mutually defined by constraints on the other slopes. The figure
shows that the bounds on each slope have significantly narrowed down compared to Figure 7 due
to the newly introduced constraint from the positive period slope.
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Figure 9: Upper and Lower Bounds of Cross-Strata
APC Linear Effects on the Gender Wage Gap

 

 

 

−0.25 −0.15 −0.05 0.05 0.15 0.25

−0.25

−0.15

−0.05

0.05

0.15

0.25

−0.25 −0.15 −0.05 0.05 0.15 0.25

−0.10

0.00

0.10

0.20

0.30

∆π*

 

∆α* ∆γ*

Notes: The figure is based on the θ1 estimate of−0.002 and the θ2 estimate of 0.084. The left
y-axis represents a linear age effect, the x-axis indicates a linear period effect, and the right
y-axis represents a linear cohort effect. The dashed line indicates all possible linear effects
consistentwith data. The solid line in the overlapping colored regions (red indicates age-related
assumptions; blue indicates a period-related assumption) refers to the possible area of the linear
effects if the three assumptions about age and period effects were satisfied.

Figure 10 shows the bounded APC effects based on the three theoretical assumptions about
age and period effects. We assumed that 1) women’s relative earnings decline from ages 25-29
to 30-34; 2) women’s relative earnings do not necessarily decline monotonically from ages 35-
39 to 45-49; and 3) the between-gender period linear effect is positive such that it is favorable
to gender wage convergence. The estimated APC effects shown in the figure prove to be almost
as informative as the point estimates. The results suggest that progress in gender convergence
in earnings has been largely driven by cohort effects, and that cohort effects have continued to the
present. This may be due either to progress in human capital accumulation among the female labor
force entering the labormarket, to the exit from the labormarket of earlier female cohortswho tend
to share the characteristics associated with lower average earnings (e.g. high fertility rates), or to
declining economic prospects among the newly entering male labor force. It is reassuring that this
finding on cohort effects is not based on theoretical assumptions about cohort effects, but is derived
from the age and period-related assumptions alone. This strategy for making confident inferences
about temporal effects is related to the principles we described in Step 1 about the order in which
different theoretical assumptions need to be introduced: Researchers may want to start with the
most credible assumption that does not involve the temporal scale in which researchers are most
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interested.

Figure 10: Bounded Cross-Strata Age, Period, Cohort Effects on the Gender Wage Gap
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Notes: The shaded areas represent the bounded effects of age (a), period (b), and cohort (c) on the
gender wage gap based on the three assumptions about age and period effects. The dotted lines
follow the mid-points in each shaded area. The dark bold lines along one end of the shaded
areas depict one possibility of the APC effects where the linear age effect is most positive, the
linear period effect is most negative, and the linear cohort effect is most positive within the
bounded ranges.

A new finding in Figure 10 as compared to Figure 8 is that the slowing gender convergence
in earnings since the 1990s is likely due to period effects that have been stagnant or may have
even become slightly negative since the beginning of the 1990s. The period effects since the 1990s
are consistent with the argument that labor demand shifts in terms of industries and occupations
favoring women decreased in the 1990s than in the 1980s (Blau and Kahn 2006). Prior scholarship
also posits that the ideology and practices of intensive mothering appeared since the mid-1990s
(Hays 1996), whichmay have preventedmothers frommakingmorewage gains by increasing labor
demands from home. An increase in wage returns to overwork could have also benefited men’s
wage gains who disproportionately work long hours (Cha and Weeden 2014).

Finally, age effects on women’s relative pay are estimated to follow the U-shaped pattern. Age
effects have the most severe effects on the gender wage gap during age 35 to 49. After about age
50, women begin to show a recovery in their earnings relative to men’s.

Researchersmaywant to further introduce the remaining set of theoretical assumptions if their
estimation results are not precise enough to answer the research question at hand. Theymightwant
to do so also when they are almost equally confident about two assumptions and wonder if an ad-
ditional introduction of the remaining assumption may affect the estimation results. Since the es-
timation results about each unique temporal effect are very precise in our example, it is no longer
necessary to adopt further identifying constraints. Still, we can also test out the positive cohort
slope assumption, as we view this assumption as equally compelling as the positive period slope
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assumption. Figure 11 describes the constraint newly introduced by the positive cohort slope as-
sumption. The solid line indicates the solution line bounded by the previous age and period-related
assumptions. The figure shows that the positive cohort slope assumption does not further narrow
down the possible region of the solution line, as the constraint imposed by the assumption is lo-
cated outside the existing possible region of solution line (the solid line). Therefore, the resultant
bounded effects of age, period, and cohort are the same as in Figure 10. The results confirm that the
order of the assumption introduced (the period slope assumption vs. the cohort slope assumption)
does not affect the estimation results. These results also increase our confidence in the conclu-
sion with regards to the key importance of cohort replacement in determining changes in women’s
relative pay since the conclusion does not rely on any assumption about the cohort effect itself.

Figure 11: Upper and Lower Bounds of Cross-Strata
APC Linear Effects on the Gender Wage Gap
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Notes: The figure is based on the θ1 estimate of−0.002 and the θ2 estimate of 0.084. The left y-
axis represents a linear age effect, the x-axis indicates a linear period effect, and the right y-axis
represents a linear cohort effect. The dashed line indicates all possible linear effects consistent
with data. The solid line in the colored region refers to the possible area of the linear effects if
the previous three assumptions about age and period effects were satisfied. The colored region
indicates the bounds of linear APC effects imposed by the positive cohort-slope assumption.

In sum, the bounded effects shown in Figure 10 support the conclusion that cohort replacement
has been fundamental to the observed convergence in earnings between women and men. The
slower rate of change since the 1990s appears to be driven by stagnating or maybe even slightly
declining period effects. These findings shed light on the temporal process by which a categorical
inequality in the labor market, in this case gender inequality, can change and face challenges in
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making further progress.16

Sensitivity Analyses

Ashas becomemore common in empirical social science research, researchers are expected to carry
out sensitivity analyses in order to assess the robustness of their findings. This is not something
Fosse andWinship (2019b) considered. We discuss two types of sensitivity analyses. First, theoret-
ical assumptions made by the researchers may be too strong to be justified, and the bounds in the
temporal effects might be biased as a result. Second, researchers might be concerned if the con-
straint resulting from a monotonic or non-monotonic effect assumption is driven by an extreme
component in one of the nonlinear effects.

First, test results implying the inconsistency of the assumption set with the data can serve as
a sufficient condition for the invalidity of the assumption set.17 Researchers can test the validity
of an assumption set based on the constraints imposed on the canonical solution line. The logic
is that if the assumption set were not feasible, bounding constraints implied by the assumption
set would not be consistent with any combination of cross-strata linear age, period, and cohort
effects. Graphically, this means that there would be no remaining region of the solution line that
is consistent with the assumption set. For example, suppose that we assumed the monotonically
increasing effects of period on women’s relative pay, instead of the positive period slope. That is,
the period effects contribute to increasing women’s relative pay across every successive period,
and there is no interval where the more recent period’s effect is the same (stagnant) or less positive
(decrease) than the preceding period. This monotonic increase assumption in terms of period, in
addition to the previous two age assumptions, would give the following bounding constraints: 1)
∆α > −0.031; 2)∆α < 0.116; and 3)∆π > 0.035.

These constraints are depicted in the 2D-APC plot in Figure 12. The figure demonstrates that
there is no region of the solution line consistent with these constraints. This is because the period
slope is bounded between−0.118 and 0.029 by the age constraints, while the constraint that∆π >

0.035 places the minimum value of the period slope outside this bound. The results show that the
monotonic-increase assumption on period effects, in combination with the two age assumptions,
are not consistent with data.

16There has been somedebate aboutwhether selection into full-timeworkmay have driven the observed time trends
in the gender wage gap. However, a recent study by Blau et al. (2021) reviews previous evidence on this debate and
casts doubt on this interpretation.

17Still, it is important to note that the test results not indicating the inconsistency do not necessarily ensure the
validity of the assumption set, nor is it viable to assess the validity of each theoretical assumption among the assumption
set against data separately.
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Figure 12: Upper and Lower Bounds of Cross-Strata
APC Linear Effects on the Gender Wage Gap
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Notes: The figure is based on the θ1 estimate of−0.002 and the θ2 estimate of 0.084. The left y-
axis represents a linear age effect, the x-axis indicates a linear period effect, and the right y-axis
represents a linear cohort effect. The dashed line indicates all possible linear effects consistent
with data. There is no region where all three colored regions (each representing the age (red),
period (blue), or cohort (green) bound) overlap, meaning that there is no possible area of the
linear effects if all the assumptions introduced here were satisfied.

Second, researchersmight be concerned if the resultant constraint is driven by a single extreme
component of a nonlinear effect. The concern can arise because bounding constraints concerning
monotonic/non-monotonic effects are determined by the segment of nonlinear effects that has the
maximum or minimum slope. This segment might differ to an unusual degree from other neigh-
boring segments of the nonlinear effects. Researchers can inspect what nonlinear effect is directly
responsible for the constraint made and evaluate the extent to which they are uncertain about the
estimate of this nonlinear effect.

In our empirical example, we have two assumptions that state (non-)monotonicity of the age
effects. Figure 13 shows which of the nonlinear effects is associated with the resultant constraint
on the bounded age effects. For the first assumption involving the monotonic decrease in women’s
relative earnings over the age range 25 to 34, the corresponding interval linking the age category
25-29 and the category 30-34 is colored red in the upper panel. For the second assumption about
the non-monotonic decrease in women’s relative earnings, the corresponding intervals from age
35-39 to 45-49 are colored red in the bottom panel. Among the intervals colored red, those directly
responsible for the bounding constraint are expressed with solid lines, and the other red lines are
expressed with dotted lines. By visualizing these intervals, researchers can evaluate their confi-
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dence in the intervals that are directly associated with the bounding constraint (i.e., the red solid
lines). For example, if the slope of the red solid line is quite different from neighboring intervals
in a way that is not supported by theories, they may wonder if any bias has been induced into any
of the estimated nonlinear effects linking the red solid line. Likewise, if they are uncertain about
the estimated nonlinear effect mostly due to sparse observations in the corresponding temporal
category, especially at the tails of the cohort categories, they can smooth the estimated nonlinear
effects by reducing the degree of polynomials and repeat the analysis. Since our data set comprises
a large number of respondents, we are confident in the estimated nonlinear effects. Also, the red
solid line in the bottom panel of Figure 13 is not substantially different in its steepness from the
preceding interval (i.e., the red dotted line), which relieves the concern about the credibility of the
constraint imposed by the second assumption.

Figure 13: Estimated Cross-Strata Nonlinear Effects Governing
the Bounds Imposed by (Non-)Monotonicity Assumptions
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Notes: In the upper panel, the interval governing the bounds imposed by the age monotonicity
assumption is denoted with a red solid line. In the bottom panel, the interval involving the age
non-monotonicity assumption is colored red (eitherwith a dotted or solid line), and the interval
directly relevant to the bounds imposed by the assumption is denoted with the red solid line.
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Discussion and Conclusion

The analysis of group disparities has been a central empirical agenda in sociology and other social
science disciplines. Disparities in socially valued resources across race, ethnicity, gender, education,
geographic region, and other dimensions of social categories reflect social inequality produced
by underlying stratification processes (Grusky 1994). The extent of group differences in public
opinion is also a primary focus of scholars interested in social polarization and cohesion (Hout et al.
2022). Sociologists have also sought to understand the broader process of social change through
the study of group differences, which can illuminate, for example, how attitudes toward emerging
social issues diffuse across socioeconomic groups (Esping-Andersen and Billari 2015; Pampel and
Hunter 2012).

In this article, we first developed the Cross-Strata Linearized APC (CSL-APC) model, which
focuses onunderstanding the separate cross-group effects of age, period, and cohort on anobserved
disparity. Similar to the traditional APC model, the cross-strata linear age, period, and cohort
effects are not identified in the CSL-APC model. To address the identification problem, we show
how the bounding approach of Fosse andWinship (2019b) can be extended to examine differences
in age, period, and cohort effects across strata. We define cross-strata effects as the estimands of
interest, rather than the separate effects for each group, and use theoretically driven assumptions
to achieve partial identification of these temporal effects. Our approach involves setting bounds
on the cross-strata effects, starting with identifying what can be known from the data alone with
as few restrictions as possible. Using data on the wage gap between U.S. men and women and
under a limited set of assumptions, our analysis shows that cohort replacement effects have driven
continued progress inwomen’s relative pay. Yet, this progress has been partially offset by stagnating
period effects since the 1990s. These results are generally consistent with those of Campbell and
Pearlman (2013), althoughwe support this conclusion based on a weaker set of theoretically driven
assumptions.18

The approach outlined in this article has several advantages. First, our method is more general
and flexible because it allows for various constraints on the size, shape, or sign of one ormore of the
cross-strata parameters, rather than specifying only one type of constraint. Second, our constraints
typically involve weaker theoretical assumptions than those commonly used in previous methods
and, at least in some applications, can provide quite narrow bounds solely from general theoretical
assumptions about life course effects. In particular, by focusing on cross-strata differences rather
than the main effects, we can obtain more credible results in many applications where the assump-
tions made are more plausible for cross-strata differences in effects than for strata-specific effects.
Third, we provide two types of sensitivity analyses that researchers can use to assess the credibil-
ity of their results, a novel contribution to the APC literature. Finally, we have outlined a general
five-step procedure for bounding APC effects to guide future research, and some of the steps can

18The assumption for theirmain analysis is that the age, period, and cohort effects are the samewithin each five-year
category of the temporal scales, which is effectively a kind of equality constraints approach.

30



be useful to any practitioner analyzing temporally structured data.
Further research on cross-strata differences in APC effects could focus on a fewkey areas. First,

we have focused on model identification but have not addressed the quantification of uncertainty
due to sampling variability. Although our CPS data have a large sample size and we are less con-
cerned about the uncertainty of our results, sampling variability can make bounds too broad when
small samples are used. Therefore, we suggest that researchers consider developing techniques to
quantify this uncertainty, such as those based on bootstrapping, especially when using small sam-
ples. Second, a fruitful direction for future research is to conduct a sensitivity analysis of a cross-
strataAPCmodel that includesmechanisms or proxy variables (Winship andHarding 2008; see also
Fosse and Winship 2019a). This approach would involve starting with strong assumptions about
mechanisms—first aiming for a point estimate—and then weakening those assumptions, yielding a
set of upper and lower bounds on the cross-strata effects. This may be useful for assessing the ro-
bustness of the estimated results when important mechanisms or proxies are thought to bemissing
from the data. Lastly, future research can explore the Bayesian interpretation of our framework by
imposing prior distributions on one or more of the parameters of the CSL-APCmodel. A Bayesian
approach would require just as strong assumptions as the approach used here, but some analysts
may be attracted to a Bayesian approach in part because it offers a wider range of ways to constrain
the set of possible linear effects (e.g., see Fosse 2021).

In conclusion, the methods presented in this article provide a coherent, step-by-step approach
to partially identifying cross-strata effects using the least stringent assumptions possible. It must
be recognized, however, that the results of any APC analysis, including the cross-strata approach
presented in this article, are not fully verifiable or falsifiable from the data alone. In contrast to
purely descriptive analyses that focus, for example, on estimating observed intra- and intercohort
trends or marginal period trends (see, e.g., Fosse 2023; Fosse and Winship 2023), APC analyses
necessarily require assumptions that are external to the data (Fienberg 2013). The validity of these
assumptions ultimately depends on the soundness of the social, biological, or cultural theory on
which they are based, which may be flawed and lead to erroneous conclusions. Therefore, it is es-
sential that researchers conducting a cross-strata APC analysis not only emphasize the tentative
nature of their findings, but also carefully triangulate their results using different sets of credible,
theoretically-based assumptions. Our bounding approach provides just such a conceptual frame-
work and methodology for researchers interested in leveraging information about subpopulations
to uncover cross-group age, period, and cohort effects.
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Appendix A: Details on the CSL-APCModel

The presentation of the models in the main text are quite general in that we do not specify exactly
how the linear and nonlinear components have been constructed. Following previous research
(e.g., Holford 1983; Fosse and Winship 2019a), we will use orthogonal polynomials such that, for
example, aL denotes the linear component, a2 denotes the quadratic component, a3 the cubic com-
ponent, and so forth.19 This implies the following re-expression of the L-APC model:

Yijk = µ+ α(i− i∗) + π(j − j∗) + γ(k − k∗) + α̃i + π̃j + γ̃k

= µ+ αaL + πpL + γcL +

I−1∑
i+1

αiai +

J−1∑
j+1

πipj +

K−1∑
k+1

γkck + ηijk, (7)

,
where aL, pL, and cL are the age, period, and cohort linear components with corresponding linear
effects α, π, and γ; a2, . . . , aI−1 are the age nonlinear components with corresponding nonlinear
effects α2, . . . , αI−1; p2, . . . , pJ−1 are the period nonlinear components with corresponding non-
linear effectsπ2, . . . , πJ−1; c2, . . . , cK−1 are the cohort nonlinear componentswith corresponding
nonlinear effects γ2, . . . , γK−1; and ηijk denote the cell-specific error terms.

Likewise, the CSL-APC model is also quite general and there are various ways of parameter-
izing cross-strata differences in APC effects. While one can allow parameters to vary across any
number of levels of a strata variable in principle, we have two levels for gender in our case. Let an
indicator (dummy) gender variable G coded as g = 1 for women and g = 0 for men. Including
and interacting this strata variable with the linear and nonlinear components for age, period, and
cohort results in the following model, which is analogous to the SL-APC model in Equation 3 in
the main text:20

Yijk = µ+ αaL + πpL + γcL +

I−1∑
i+1

αiai +

J−1∑
j+1

πipj +

K−1∑
k+1

γkck + µGG+

αG(aLG) + πG(pLG) + γG(cLG) +

I−1∑
i+1

αGi(aiG) +

J−1∑
j+1

πGj(pjG) +

K−1∑
k+1

γGk(ckG) + ηijk, (8)

where αG, πG, and γG are interaction effects between the gender variable and the age, period,
and cohort linear components, respectively; αGi, πGj , and γGk are interaction effects between the
gender variable and the nonlinear components for age, period, and cohort, respectively.

There are two closely related ways of interpreting the interaction terms in Equation 8. On the
one hand, the interaction effects can be interpreted as representing differences in age, period, and
cohort effects between the strata. For example,αG can be interpreted as the difference between the
age linear effect for women and the age linear effect for men. On the other hand, the interaction
effects can be interpreted as representing the cross-strata outcome disparity for varying values
of age, period, and cohort. For example, the parameters for αG can be interpreted as the gender
“effect” on the outcome (i.e., between-genderwagedisparity) for varying levels of age. In general, we
focus on interpreting the parameters as cross-strata differences in age, period, and cohort effects,

19Note that the identity in the below equation may be only approximate depending on how the design matrix is
constructed. In our analyses we use QR decomposition to construct the nonlinear components. Because the elements
of the design matrix can still be quite large, for the purposes of numerical stability we include the additional step of
norming each of the columns of the design matrix representing the nonlinear components. We use a weighted version
of orthogonal polynomials to make sure polynomial terms are perpendicular to lower-order terms in our empirical
data (Elbers 2020).

20If we had multiple levels of strata, then we would specify an expanded set of interaction terms on the right-hand
side of the equation with indicator variablesX1,X2, and so on.
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but researchers may opt for the second interpretation depending on the substantive application.21
We are now ready to show how the CSL-APC model is derived from a variant of the model in

Equation 8, or the SL-APCmodel in Equation 3 in the main text. After substituting forG = 1 and
G = 0, we can express the CSL-APC model as follows:

Yijk[G=1] − Yijk[G=0] =(
µG × 1 + αG(aL × 1) + πG(pL × 1) + γG(cL × 1) +

I−1∑
i+1

αGi(ai × 1) +

J−1∑
j+1

πGj(pj × 1) +

K−1∑
k+1

γGk(ck × 1) + ϵijk[G=1]

)

−
(
µG × 0 + αG(aL × 0) + πG(pL × 0) + γG(cL × 0) +

I−1∑
i+1

αGi(ai × 0) +

J−1∑
j+1

πGj(pj × 0) +

K−1∑
k+1

γGk(ck × 0) + ϵijk[G=0]

)

= µG + αGaL + πGpL + γGcL +

I−1∑
i+1

αGiai +

J−1∑
j+1

πGjpj +

K−1∑
k+1

γGkck + (ηijk[G=1] − ηijk[G=0]),

or, in a more compact general form:

∆Yijk = ∆µ+∆α(i− i∗) + ∆π(j − j∗) + ∆γ(k − k∗) + ∆α̃i +∆π̃j +∆γ̃k +∆ηijk, (9)

which is equivalent to Equation 4 in the main text.22

21Our case is a specific example of the general conceptual issue that appears when interpreting interaction effects.
Suppose there is an interactive effect of a continuous variable X and a binary group indicator G on an outcome Y,
namely, Y = µ+ β1X + β2G+ β3(X ×G)+ ϵ. One interpretation of β3, which aligns with the first interpretation
above, is that the effect ofX is different between the two groups indicated byG. Another interpretation,more consistent
with our second interpretation, is that the between-group difference in the outcome indicated by G varies depending
on the level of X (see Fox 2016:140-150)

22The estimated nonlinear effects for each age, period, cohort category as presented in Figure 6 are predicted values
based on the parameter estimates for an intercept and orthogonal polynomials.
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Appendix B: Lexis Table

Table 1: Lexis Table of the Gender Wage Gap

Period

Age 1975-79 1975-79 1975-79 1975-79 1975-79 1975-79 1975-79 1975-79 1975-79

25-29 -0.35 -0.30 -0.23 -0.15 -0.14 -0.09 -0.10 -0.09 -0.12
(0.004) (0.009) (0.006) (0.008) (0.009) (0.009) (0.009) (0.006) (0.011)

30-34 -0.49 -0.39 -0.31 -0.26 -0.24 -0.20 -0.16 -0.15 -0.20
(0.005) (0.007) (0.008) (0.009) (0.005) (0.005) (0.006) (0.010) (0.007)

35-39 -0.59 -0.50 -0.44 -0.34 -0.34 -0.29 -0.27 -0.22 -0.19
(0.009) (0.009) (0.008) (0.010) (0.009) (0.005) (0.011) (0.007) (0.007)

40-44 -0.61 -0.58 -0.49 -0.39 -0.36 -0.32 -0.29 -0.26 -0.25
(0.013) (0.006) (0.010) (0.002) (0.011) (0.009) (0.007) (0.007) (0.010)

45-49 -0.63 -0.60 -0.53 -0.45 -0.37 -0.35 -0.33 -0.32 -0.28
(0.013) (0.010) (0.009) (0.009) (0.013) (0.010) (0.010) (0.010) (0.010)

50-54 -0.60 -0.58 -0.53 -0.48 -0.44 -0.36 -0.28 -0.33 -0.27
(0.011) (0.014) (0.015) (0.012) (0.011) (0.012) (0.013) (0.010) (0.009)

55-59 -0.57 -0.61 -0.56 -0.49 -0.44 -0.40 -0.31 -0.30 -0.27
(0.015) (0.013) (0.012) (0.016) (0.012) (0.010) (0.011) (0.014) (0.012)

60-64 -0.52 -0.51 -0.52 -0.44 -0.42 -0.36 -0.39 -0.30 -0.26
(0.009) (0.023) (0.012) (0.023) (0.019) (0.019) (0.012) (0.014) (0.012)

Notes: The rows indicate age categories, and the columns indicate period categories. The input in each cell denotes
the gender difference (=female−male) in log median annual earnings in the respective age-period category. Standard
errors for each difference are presented in parentheses.

In presenting our CSL-APCmodel, we assumed that we have only aggregated data (see note 8). But
researchers may have individual-level sample data to construct a Lexis table of cross-strata differ-
ences, as we do in our empirical example using the CPS data. In these cases, the Lexis table needs
to be estimated from the individual-level sample data. To do so, we conducted a regression of log
earnings on age, period, sex, and all the two-way and three-way interactions between these vari-
ables. Since we aremodeling amedian difference betweenmen’s andwomen’s earnings conditional
on age and period, we relied on a (conditional) quantile regression at the median. The CPS ASEC
survey samplingweights are applied to the regression so that the estimatedmedian differences rep-
resent the population characteristic. Predicted marginal “effects” of gender, which are allowed to
vary by age and period, can be computed from the fitted median regression and are used as the cell
values in the above Lexis table. If researchers are interested in modeling a cross-strata difference
in mean values, they can instead conduct an OLS regression to estimate the corresponding Lexis
table.

A potential advantage of using individual-level data as opposed to aggregated data is that re-
searchers can have a better knowledge of the precision with which each cell value is estimated. For
example, the gender-specific variance of log earnings, which is likely not available in aggregated
data, affects the precision of the estimated cell values. Taking differential precision into account
can yield an efficiency gain as compared to OLS where cell variance is assumed to be constant,
especially in small samples like the Lexis table (N=72). We therefore incorporate the estimated
standard errors of cell values (presented in parentheses in Table 1 above) when fitting a weighted
least squares regression of the CSL-APC model. The weight of each cell is computed as 1/se2.
With that said, the point estimates are very similar to OLS estimates of the CSL-APC model, and
the substantive conclusions from the bounding APC analysis remain the same.
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Appendix C: Additional Tables

Table 1: Descriptive Statistics of the CPS Sample

Men Women

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max
Age 41.7 10.3 25 64 41.88 10.4 25 64
Period 1999.3 12.5 1976 2019 2000.8 12.0 1976 2019
Cohort 1957.7 15.5 1912 1994 1958.9 15.0 1912 1994
Earnings 69,437.2 60,473.6 1.6 1,958,398.9 48,314.5 40,898.2 1.3 1,401,398.9
Obsv. 1,121,562 830,856

Notes: Mean values and their standard deviations are computed for the weighted sample using the CPS ASEC survey
sampling weights. Earnings refer to respondents’ annual earnings in the last calendar year.
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Table 2: Bounding Formulas for Cross-Strata Differences in APC Slopes

Age Bounds: αmin ≤ ∆α ≤ αmax

θ1 − αmax ≤ ∆π ≤ θ1 − αmin

(θ2 − θ1) + αmin ≤ ∆γ ≤ (θ2 − θ1) + αmax

Period Bounds: θ1 − πmax ≤ ∆α ≤ θ1 − πmin

πmin ≤ ∆π ≤ πmax

θ2 − πmax ≤ ∆γ < θ2 − πmin

Cohort Bounds: (θ1 − θ2) + γmin ≤ ∆α ≤ (θ1 − θ2) + γmax

θ2 − γmax ≤ ∆π ≤ θ2 − γmin

γmin ≤ ∆γ ≤ γmax

Notes: Age, period, and cohort slopes are α, π, and γ, respectively, with (.)min and
(.)max denoting minimum and maximum values of the bounds. We denote θ1 =
∆α+∆π, θ2 = ∆γ +∆π, θ1 − θ2 = ∆α−∆γ, and θ2 − θ1 = ∆γ −∆α.
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Table 3: Estimated Thetas andNonlinear Age, Period, and Cohort Effects on the GenderWageGap

Parameter Coefficient Std. Error 95% CI:
Lower Bound

95% CI:
Upper Bound

∆µ -0.339 0.002 -0.342 -0.335
∆θ1 -0.002 0.002 -0.007 0.002
∆θ2 0.084 0.001 0.081 0.086
∆α̃2 0.152 0.007 0.138 0.166
∆α̃3 -0.026 0.006 -0.039 -0.013
∆α̃4 -0.006 0.006 -0.019 0.007
∆α̃5 0.011 0.006 -0.001 0.023
∆α̃6 -0.003 0.006 -0.015 0.009
∆α̃7 0.009 0.006 -0.003 0.021
∆π̃2 -0.063 0.006 -0.075 -0.052
∆π̃3 0.009 0.006 -0.003 0.020
∆π̃4 0.014 0.006 0.002 0.025
∆π̃5 -0.014 0.006 -0.025 -0.002
∆π̃6 0.003 0.006 -0.008 0.014
∆π̃7 0.008 0.006 -0.004 0.019
∆π̃8 -0.011 0.006 -0.023 0.000
∆γ̃2 -0.038 0.015 -0.069 -0.007
∆γ̃3 -0.150 0.014 -0.178 -0.123
∆γ̃4 0.046 0.014 0.018 0.074
∆γ̃5 -0.031 0.014 -0.059 -0.004
∆γ̃6 -0.046 0.013 -0.073 -0.018
∆γ̃7 0.031 0.013 0.005 0.058
∆γ̃8 0.049 0.014 0.022 0.077
∆γ̃9 0.012 0.013 -0.014 0.038
∆γ̃10 -0.020 0.012 -0.044 0.003
∆γ̃11 0.013 0.010 -0.007 0.032
∆γ̃12 0.012 0.009 -0.006 0.030
∆γ̃13 -0.006 0.008 -0.023 0.010
∆γ̃14 -0.009 0.008 -0.024 0.007
∆γ̃15 -0.003 0.006 -0.016 0.010

Adjusted R-squared 0.98
Number of Cells 72

Notes: Nonlinearity parameters are estimated for varying degrees of orthogonal polyno-
mials, respectively, as denoted by their subscripts (see Appendix A and Appendix B for
more details of the estimation process). The estimated nonlinear effects presented in Fig-
ure 6 are predicted values based on the above nonlinearity and intercept estimates.

42



Appendix D: Additional Figures

Figure 1. Bounding Analysis Results of Gender Differences in Median Hourly Wages

A. Upper and Lower Bounds of Linear APC Effects
on the Gender Wage Gap
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B. Bounded Age, Period, Cohort Effects on the Gender Wage Gap
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Notes: Hourly wages instead of annual earnings are analyzed. In the upper panel (A), the left y-axis represents a linear
age effect, the x-axis indicates a linear period effect, and the right y-axis represents a linear cohort effect. The dashed
line indicates all possible linear effects consistent with data. The solid line in the overlapping colored regions (red
indicates age-related assumptions; blue indicates a period-related assumption) refers to the possible area of the linear
effects if the three assumptions about age and period effects were satisfied. In the bottom panel (B), the shaded areas
represent the bounded effects of age (a), period (b), and cohort (c) on the genderwage gapbasedon the three assumptions
about age and period effects. The dotted lines follow the mid-points in each shaded area. The dark bold lines along
one end of the shaded areas depict one possibility of the APC effects where the linear age effect is most positive, the
linear period effect is most negative, and the linear cohort effect is most positive within the bounded ranges.
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Figure 2. Bounding Analysis Results of Gender Differences in Median Hourly Wages, Including
Half-Year-Round Workers

A. Upper and Lower Bounds of Linear APC Effects
on the Gender Wage Gap
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B. Bounded Age, Period, Cohort Effects on the Gender Wage Gap
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Notes: Hourly wages instead of annual earnings are analyzed, and full-time wage/salary workers who worked at least
26 weeks in the last calendar year are included. In the upper panel (A), the left y-axis represents a linear age effect, the
x-axis indicates a linear period effect, and the right y-axis represents a linear cohort effect. The dashed line indicates
all possible linear effects consistent with data. The solid line in the overlapping colored regions (red indicates age-
related assumptions; blue indicates a period-related assumption) refers to the possible area of the linear effects if the
three assumptions about age and period effects were satisfied. In the bottom panel (B), the shaded areas represent the
bounded effects of age (a), period (b), and cohort (c) on the gender wage gap based on the three assumptions about age
and period effects. The dotted lines follow the mid-points in each shaded area. The dark bold lines along one end of
the shaded areas depict one possibility of the APC effects where the linear age effect is most positive, the linear period
effect is most negative, and the linear cohort effect is most positive within the bounded ranges.
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Figure 3. Bounding Analysis Results of Gender Differences in Mean Annual Earnings

A. Upper and Lower Bounds of Linear APC Effects
on the Gender Wage Gap

 

 

 

−0.25 −0.15 −0.05 0.05 0.15 0.25

−0.25

−0.15

−0.05

0.05

0.15

0.25

−0.25 −0.15 −0.05 0.05 0.15 0.25

−0.10

0.00

0.10

0.20

0.30

∆π*

 

∆α* ∆γ*
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Notes: Differences in log mean annual earnings between men and women are analyzed instead of median differences.
In the upper panel (A), the left y-axis represents a linear age effect, the x-axis indicates a linear period effect, and the
right y-axis represents a linear cohort effect. The dashed line indicates all possible linear effects consistent with data.
The solid line in the overlapping colored regions (red indicates age-related assumptions; blue indicates a period-related
assumption) refers to the possible area of the linear effects if the three assumptions about age and period effects were
satisfied. In the bottom panel (B), the shaded areas represent the bounded effects of age (a), period (b), and cohort (c)
on the gender wage gap based on the three assumptions about age and period effects. The dotted lines follow the mid-
points in each shaded area. The dark bold lines along one end of the shaded areas depict one possibility of the APC
effects where the linear age effect is most positive, the linear period effect is most negative, and the linear cohort effect
is most positive within the bounded ranges.
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