Lditonial Policy
Thae aun of the Jounal of Puble Economies 15 to encoutage onginal scentibic contnbutions to thi

with particular emphasis on the application of modetn economic theoty and methods of quantiat Y "
discusston of public sector pohiey, and bung wgether work which bas in the past Leen scatterg . n
jounats

Editorial Board:

Editors.

A.B. ATKINSON. London School of Econonucs, 10 Portugal Street, London WC2A 2HD. UK
N.H. STERN, Department of Economics. University of Warwick, Coventry CV4 7AL, UK

Co-Editors

M.S. FELDSTEIN, Littauer Center 119, Harvard University, Cambridge. MA 02138, USA

C. HENRY, Laboratoire d’Econométrie de Itcole Polytechnique, 5 rue Descartes, 75230 Paris, France

A. SANDMO, Institute of Economics, Norwegian School of Ecanomics and Business Administration, Helleveien 30, 5035 Bergen-
Sandviken, Norway

J.E. STIGLITZ, Department of Economics, Princeton University, Princeton, NJ 08544, USA

Associate Editors:

R. ARNOTT, Department of Economics, Queen’s University. Kingston, Canada K7L 3N6

A.J. AUERBACH, Department of Economics, University of Pennsylvania, Philadelphia, PA 19104, USA

A.S. BLINDER, Dep of E ics, Pri Jni ity, Pri 1, NJ 08544, USA

P. BOHM, Department of Economics, University of Stockholm, S-106 91 Stockholm, Sweden

D.F. BRADFORD, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA

J.M. BUCHANAN, Center for Study of Public Choice, George Mason University. Fairfax, VA 22030, USA

P.A. DIAMOND, Department of Economics, M.1.T., Cambridge, MA 02139, USA

L. GEVERS. Faculté des Sciences Economiques et Sociales, Facultés Universitaires N.D de la Paix, Rempart de la Vierge 8. 5000 Namur
Belgium

A. GUESNERIE, Centre d'tconomie Quantitative et Comparative, teole des Hautes Etudes en Sciences Sociales, 54 Blvd. Raspail, 75006
Paris, France

K. HAMADA, Faculty of Economics, University of Tokyo, Bunkyo-Ku, Tokyo 113, Japan

J.A. HAUSMAN, Department of Economics, M.I.T., Cambridge, MA 02139, USA

J.G. HEAD, Dep: of E ics, Dalhousie Uni ity, Halifax, Nova Scotia, Canada

J.F. HELLIWELL, Department of Economics, University of British Columbia, Vancouver, Canada V6T 1W5

M.A. KING, Department of Economics, University of Bismingham. Birmingham B15 21T, UK

A.K. KLEVORICK. Cowles Foundation for Research in Econarnics, Yale University, New Haven, CT 06520, USA

$.Ch. KOLM, CEPREMAP, 140-142 rue du Chevaleret, Paris 13e. France

P. MIESZKOWSKI, Department of Economics, Rice University, Houston, TX 77001, USA

R.A. MUSGRAVE, Crown College, University of California, Santa Cruz, CA 95064, USA

H.C. RECKTENWALD, Institut fir Wirtschafts- und Finanzpolitik. Friedrich- Alexander-Universitit Erlangen-Nurnberg, Lange Gasse 2C
D-8500 Ninberg 1, FRG

K. ROBERTS, Department of Economics, University of Warwick, Coventry CV4 7AL, UK

H.S. ROSEN, Department of E ics, Pri 1 Uni ity, Princeton, NJ 08544, USA

J. SEADE, Department of Economics, University of Warwick, Coventry CV4 7AL, UK

€. SHESHINSKI, The Eliezer Kaplan School of Ecc and Social Sci The Hebrew Univessity, Jerusalem. israel

J.B. SHOVEN, Department of Economics, Stanford University, Stanford, CA 94305, USA

S.J. TURNOVSKY, Department of Economics, University of Hllinois, Champaign, IL 61820, USA

B.A. WEISBROD, Department of Economics, University of Wisconsin, Madison, Wi 53706, USA

A. WILLIAMS, Department of Economics, University of York, Heslington, York YO1 60D, UK

The Journal of Public Economics is published in volumes of approx. 400 pages: in 1984 three volumes will be published, each consisting c'
three issues of approx. 135 pages.

Subscription: 1984 (3 volumes)

Institutional subscriptions: The subscription price is SF 555, including postage. Personal subscription: Private subscribers are entitled to 2
subscription at the reduced rate of SF 210, including postage. The following rules apply: (1) subscription must be prepaid: (2) the orde
must be sent direct to the Publisher; (3) the copies should not be made available ta institutions. Subscriptions should be sent to
Publisher, Elsevier Sequoia, P.O. Box 861, Lausanne, Switzerland, or to any subscription-agent or booksefler. Claims for issues not recenez
will be honored free of charge if made within three months of the pubtlication date.

© 1984, Elsevier Science Publishers B.V. (North-Holland)

All rights reserved. No part of this pubfication may be reproduced, stored in a retrieval system or transmitted in any form or by any mea's
| ic, mechanical, ph pying, recording or otherwise, without the prior permission of the publisher, Elsevier Science Publishers 81
{North-Holland), P.O. Box, 1991, 1000 BZ Amsterdam, The Netherlands.

Submission of a paper to this journal entails the author's irrevocable and exclusive authorization of the publishet to collect any sums v
considerations for copying or reproduction payable by third parties (as mentioned in article 17 paragraph 2 of the Dutch Copyright Act o
1912 and in the Royal Decree of June 20, 1974 (S. 351) pursuant to article 16b of the Dutch Copyright Act of 1912) and/or to act i :r
out of Court in connection therewith.

Special tegulations for readers in the U.S.A. -~ This journal has been registered with the Copyright Clearance Center. Inc Consentis g
for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that :*¢
copier pays through the Center the per-copy fee stated in the code on the first page of each article for copying beyond that permattett t+

. Sections 107 or 108 of the U.S. Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to t™
Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01 970, U.S.A. If no code appears in an article. the author has not § ¢
broad consent to copy and permission to copy must be obtained directly from the author. All articles published prior to 1981 may be cog:
for a per-copy fee of US $2.25 aiso payable through the Center. (N.B. For review journals this fee is $0.20 per copy per page.) Not ‘i
profit educational institutions and instructors attached thereto, subscribing to this journal, are permitted to photocopy isolated articles *¢
not-for-profit classroom or library reserve use without fee. This consent does not extend to other kinds of copying. such as for gene-n
distribution, resale, advertising and promotion purposes, 0f for creating new collective works. Special written permission must be obta =
from the publisher for such copying.

Special regulations for authors — Upon acceptance of an article by the journal, the author(s) will be asked (o»lransler copyright of e
article to the publisher. This transfer will ensure the widest possible dissemination of information.

Printed in Great Britain by Belt and Bain Ltd., Glasgoa

Journal of Public Economics 23 (1984), 245-278. North-Hollund Publishing Company

INFORMATION PROCESSING AND JURY DECISIONMAKING |

Alvin K. KLEVORICK
Yale University, New Haven, CT 06520, USA

Michael ROTHSCHILD

University of California at San Diego, La Jolla, CA 92093, US A
and National Bureau of Economic Research

Christopher WINSHIP*

Nor.lhwestern University, Evanston, 1L 60201, USA
and Economics Research Center, National Opinion Research Center

Received September 1982, revised version received July 1983

iVtVe dc;/elop a model to explore the 1nfo§-mation propessing function that jury deliberation and
s analogues pe.rform. The central question we ask is: How much better could a jury possibl
pprform if it f)pumally used the collective information available to it than if it decides Za?es t: a
Zl:;sl:rm;ég;l;z vote before artl’y delifberation or information sharing occurs? It is shown how {hz

¢ s on a number of considerations, includi i j ¥
observauons_, the jAurors’ assessments of the rclati\;c im[;lc?rlt';icéhf)f cl(;'::lelm::d im?%l T
compared with society’s assessment of those errors, and differences in jurors’ abilitiezp errors

1. Introduction

The'k'inds of situations in which a group of people is called upon to make
a <.1e‘<:1s10n are numerous. One common setting involves a group of
{ndmduals who all have access to the same data, or to the same
mfo_rmational input for the decision, and who are faced with a dichotomous
choice. {Xn example is a corporate investment committee to which a
Presentatlon is made concerning a particular capital project and whose task
is to decide whether or not to proceed with the project. Another is a
person}nel committee (perhaps that of an academic department) which
interviews a candidate for a position (or hears the candidate give a seminar)
a'nd‘ must decide whether or not to hire the individual. There are many other
similar decision settings. The prototype, however, is the criminal jury, and we

*We are indebtqd to Gary Chamberlain, Arthur Goldberger, and Robert Lucas for perceptive
comments, to Michael S.louffer .for computational assistance, to the referees for helpful
comments, and to the National Science Foundation for research support. Some of the work on

this paper was d i i etingns .
Matlll’e l‘f)atic:sln gne while Rothschild held the Oskar Morgenstern Distinguished Fellowship at
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will analyze the kind of group decision just described in terms of the criminal
jury’s decision process.

At the end of a trial each juror has his/her own perspective on what has
transpired. Each one could, on that basis, render a verdict in the case. But
under the jury system, as we know it, the jury must deliberate before it —
and not the members of the jury acting individually — renders a verdict. An
important claim made in favor of the jury system (and similar
decisionmaking procedures) is that during the deliberation process, jurors
exchange points of view and assemble the evidence into a coherent picture
that is more likely to be correct than is the view of any one juror. That is to
say, one of the virtues claimed for a jury decision is that it is based on more
complete and better processing of the information available than the verdict
of any one juror deciding alone would be. :

Given the central and valuable role attributed to the information
processing that jury deliberation is supposed to achieve, it is striking that

-existing models of the jury decision process — including both abstract

mathematical formulations and simulation models — are inattentive to this
aspect of the jury’s work. Although these models depict how a jury might
move to a verdict from the initial views of its members, they do not provide
any description or specification of how the jurors’ views are combined or
how their various observations and insights are assimilated. Indeed, some of
the more sophisticated mathematical models imply that if a jury deliberates,
it will be more likely to err — to convict an innocent defendant and to
acquit a guilty defendant — than if it simply decides the case by a simple
majority vote before any deliberation occurs!

The purpose of this paper is to explore, in the context of a formal model,
the information processing function that jury deliberation and its analogues
perform. In particular, we investigate when a jury that deliberates to a
unahimous verdict can reach better decisions — ones with lower
probabilities of error — than a jury that bases its decision on the view of the
majority of its members immediately after the trial is concluded. What is the
gap between the quality of decisions reached using a first-ballot, majority-
rule procedure and the quality of those that would be generated by a jury
making optimal use of the information provided at the trial?

It should be emphasized that we are not saying that juries that deliberate
actually process what they have seen and heard in an optimal way. Indeed.
in the complicated setting of an actual jury trial, it is not even clear how one
would characterize optimal processing of information. Our strategy, instead.
is to consider a simple model of juror observations, though one that is richer
than characterizations in the literature, for which we can define precisely
what an optimal jury decision rule would be. Of course, jurors do not read
the books on statistical decision theory that discuss this optimal procedure
nor do actual juries aggregate information according to this procedurc.
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Hence, our inquiry is not aimed at measuring the performance of actual
juries against that of first-ballot, majority-rule juries. Rather, our concern is
to gauge, within the context of a particular model, the maximum
improvement that deliberation could possibly yield and to consider the
circumstances that affect that possible gain. We will see that deliberation has
the potential for generating substantial improvement in the quality of
decisions, and we will see how that potential arises, especially the central role
that heterogeneity among jurors — in terms of what they see and hear, what
they believe about the costs of erroneous decisions, and what differences
there are in their information processing capacities — plays in determining
how much improvement is possible.

We begin, in the next section, with a discussion of the im'plica(ions that
existing models have for the value of jury deliberation. Then in section 3, we
present the model of juror observation that is basic to our analysis. Section 4
contains our comparison of the jury that makes optimal use of trial
information and the one that decides by first ballot majority vote. Central to
the analysis in section 4 is the assumption that jurors may differ in what they
see and hear at the trial. But that discussion assumes that the jurors share
the same view of the relative cost of erroneous convictions and erroneous
acquittals and that they have the same individual abilities to process
information. Sections § and 6, respectively, consider models in which these
assumptions are, each in turn, relaxed. The final section containg some
concluding remarks.

The analysis in sections 3-6 is technical and detailed. We conclude this
introduction with an informal discussion to convey a sense of the nature of
the models we examine and the results we obtain. Formal justifications for
the various rules mentioned here are, of course, deferred to the detailed
development.

To fix ideas, it is best to have a concrete (if unrealistic) example in mind.
Suppose that the jury in a particular trial knows that the defendant is guilty
il he is more than 6’ tall. The jury also knows that the defendant's height is
either 6" or 6'1”. Thus, the inferential problem each juror faces is one of
deciding whether the accused is 6 tall and innocent or 6'1” tall and guilty.
Imagine that the trial provides an opportunity for each juror to view the
defendant and thus to try to guess his height. When the juror views the
defendant, he/she forms an estimate of his height, which we denote as X,
This estimate is a normal random variable with variance ¢2, and its mean is
6" if the defendant is innocent and 6’ 1” if the defendant is guilty.

First consider the problem that a Jury composed of a single individual will
have in deciding the case on the basis of his/her information. The juror’s
optimal decision rule is a simple one: set a threshold Q and convict if the
estimate X; is greater than (. Thus, the juror’s problem is to set Q. It is
straightforward to calculate that Q, is a function of three things: the relative
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cost of the two kinds of errors the juror can make (erroneous convictio‘ns,
erroneous acquittals), the variance o2, and the average of the two alternative
values of the mean. In fact:

Q=6'Y+a%%, (1

where k is the log of the ratio of the cost of convicting the innocent to the
cost of acquitting the guilty. Notice that if k=0, so that the costs .of t.he two
kinds of errors are the same, it is not necessary to know o2, while 1f‘ k+#0,
then it is necessary to know 2. Consequently, the case k=0 is much simpler
than the case k#0. o

Now suppose that the jury is composed of several defduals whose
observations are independent. Each juror will make an f:stxmate of th.e
defendant’s height and the jury’s problem is to make a deci519n on tl_1e basis
of the observations of all its members X =(X,..., X,). If the jury d.ehberat‘es
and uses this information to make an optimal decision, it will base its v‘erdxct
on the sample mean X =3"7_, X,, a sufficient statistic for X. Once again the
decision will be to convict if X is greater than or equal to some threshold
value Q, and to acquit if X is less than Q,. Since X is a normal random
variable with variance ¢*(X, n)=02/n, the optimal choice will be to set

0,=64"+0%(X, n)k. )

Again, if k=0 the decision is simpler because the 'thrcshold value is
independent of ¢2, the variance of the individual observations. . .
Now consider a jury that decides the same case by vot.mg w1‘thout
deliberating, a first-ballot jury. Each juror decides on the basis of‘hls/hcr
observation whether to vote to acquit or to convict. The simplest voting rule
is majority voting and if jurors all apply the same standard, Q, th,cn the value
of the median juror’s estimate will determine the defendant’s fate;. The
problem then is what this standard should be. If the costs of the two k.mds of
errors are the same (k=0), then considerations of symmetry make.lt clegr
that each juror should vote to convict if and o.nly if hls/her'e.stlmate is
greater than 6’4", just as if he/she were the only juror. _The c}ecgon of the
first-ballot jury will be less efficient than that of thc? deliberating jury of the
same size because the median contains less information than the mean — the
median is not a sufficient statistic for X. But, when errors are‘equally costly,
the decision will be reasonable in the sense that the relative sizes of the two
error probabilities will be what the members of the jury would want them to
be — namely, equal. . _
If k50, so that false convictions and false acqmtta]s are .wexghed
differently, it is very difficult to see how the ﬁrsF-ballot jury can achieve even
this limited goal of desired relative error sizes. For if k#0, then the

~
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variability of the estimate must be taken into account when a threshold is
set. If this is not done, the relative costs of the two kinds of errors cannot
properly be balanced against one another. Whatever threshold or standard is
used, it will clearly depend on ¢2. Hence, to apply a reasonable rule when
k#0, jurors must communicate what o2 is. How they are to do this without
deliberating is unclear. :

To this point we have assumed, unrealistically, that jurors make
independent observations. This seems thoroughly incompatible with the basic
fact that they have all observed the same trial. It also has an obvious and
implausible implication — a Jury of infinite size will never err An
independent observations model essentially assumes that the trial generates
enough information to settle the question of whether the accused is guilty or
innocent. All that is necessary is that there be enough jurors to extract all the
information. As we show in sections 3-6, the most obvious changes in the
direction of realism make it even harder for the first-ballot jury, the one that
does not deliberate, to reach a reasonable decision. When the amount of
information that the trial generates is limited, the tasks of assessing the
variability of the sample median and taking it into account when balancing
the two kinds of errors become much more difficult.

Suppose, as we do in our analysis, that the information the trial generates
is, at best, limited: an infinite number of jurors would only be able to
discern the limited information the tria) reveals. In the concrete example we
have been discussing, imagine that all jurors view the defendant through a
foggy one-way mirror. Each juror’s observation consists of two parts: the
commonly observed events in the trial, which are imperfectly observed by all
jurors, and an idiosyncratic error of observation, which is due to independent
variations in eyesight, quality of lighting, and the like. The individual errors,
which have mean zero, are independent of each other and of the common
information in the trial. Again, all random variables are normally distributed.

Consider the problem of the deliberating jury. We show, once again, that
the optimal decision will be based on the sample mean of the jurors’
observations and that the problem is where to set the threshold. If k=0, the
problem is easy; in our example, the threshold is 6'%". If k+#0, since X is
again a normal random variable with a variance equal to ¢%(X,n) and mean
conditional on the innocence or guilt of the defendant, we can again use-
formula (2) to set the threshold Q.. In this case, however, 0%(X,n) is a more
complicated function than in the independent errors case discussed above. In
particular, to compute o*(X,n) in this case, each juror must partition the
error in what he/she observes into two parts — an idiosyncratic error and a
common error. This shows the potential value of deliberation. Unless jurors
get together and talk, it is difficult to see how they can correctly make this
partition. Deliberation allows jurors to compare observations so that they
can correctly aggregate the informatiop they have separately observed. In our
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example, discussion could bring out the faf:t that all jurors’ vision }\ivz%s
distorted by the same foggy mirror. Thus, jurors would know that their
errors of observations were not independent. .

As for the first-ballot jury, if k=0, then the. correct stzmda’rii" 15 th.e;
symmetric one: convict if the median obscrvgtion is greater than 6 i B:ut i
k0, the first-ballot jury’s problem is very dlfﬁcx.xlt beca'us.e the median quror
must somehow estimate the variance of the median. Thls is hard to do for 3
correct estimate depends on partitioning the error variance into common ag
independent components. We do not see how this can be done if jurors dc;
not talk to one another. We note in section 3 'that if jurors knew the m: el
generating their observations, they could devise rules that would lea hto
decisions that were both asymptotically reasonable and as go.oc'i as those that
an optimally deliberating jury could reach. Those decnsxo.n rul.lels are
complicated and depend on the parameter§ qf the model, which will viry
from case to case. We do not believe that juries or other groups in similar
decision situations are likely to use them.

2. The implications of existing models

The implications that existing models‘ have for the value qf jury
deliberation are best introduced by considering the most recent contrlt{utlo.rl
of Gelfand and Solomon [Gelfand and Solomon (1.977a', 1977b)],.whxch is
one of the most sophisticated efforts at mode}mg jury verdlct.s. ThF
characteristic that determines the value of the deliberative process in their
model is a common feature in the literature. . N .

Gelfand and Solomon begin by partitioning a jury’s decision process into
two stages. First, they model the determination of. the first-ballot dlstrlbuélon
of jurors’ votes using a mixed binomial formu]a'tnon that they developed as
an e;(tension of Poisson’s models for jury verdlcts'[Gelfand and So(liomog
(1973,1974)]. To estimate the parameters of this mod'el, Gelfan fat}x1
Solomon use a unique data set gathered by Kalven and Zeisel as part o ;22
Chicago Jury Project [Kalven and Zeisel (1966)']. These were data. oln ’
criminal cases in Brooklyn and Chicago for which Ka!ve’n and Zellse wter
able to use post-trial interviews to reconstruct the juries ﬁrst—b'al ?t vo fzts.
These were the data that had led Kglven ,an_d Zf:lsel to their rr.la]c(;rlb y
persuasion’ hypothesis that the final verdict of a jury is largely d‘etermmers 1 y
the position that the majority of jurors take before any deliberation occu r I

! : i ared the first-ballot votes of these .22.5 jun:ies with their. ina

ver:!):i:rtl:,n ll:i;hflgzn‘:imljhazte‘lis;lllclgTrt%tangcs wh::rert:lerecisseasn d‘:;:é?s rir;ajg]rétﬁ i:;::}:§;nfo;rctc;]r;v;§=;?;
or for acquittal, t'he jury in roughly nine out of ten cases e . tne oty
majority. Only with extreme mfreguenc_y does the minority succee i n;: reuading (he majorty
t;l)ec:;[f);gifx?;l:dvg};?c‘:.g. t t’ll?hgeLlllpbs?lrg:l?sna. .x;ag‘ij:a]lull:ul:lecr}‘\v afEZUetxtclf: ﬁ.(l)nction £f the deliberation

i i the consensus, the outcome
it not so much decide the case as bring about ) !
E;(::;?;\f;g: ?)gf:r: rg;)g: highly likely by the distribution of first ballot votes’ [Kalven and Zeisel

(1966, pp. 488-489)].
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In the second stage of the Gelfand-Solomon model, some social decision
schemes, incorporating varying degrees of majority persuasion, are used to
describe how the jury moves from its first-ballot position to its final verdict.
A social decision scheme is simply a transition matrix (hat represents the
Jury’s deliberation as a stochastic process moving the jury from a first ballot
vote to a final position. [See Davis (1973) and Davis, Bray and Holt (1977)].
It is a comparative static, first-ballot/final-verdict model, which does not
explicitly depict the jury’s deliberation process. Gelfand and Solomon
consider two alternative schemes involving different degrees of majority
persuasion. First, they assume that the first-ballot majority always prevails
and that if the jury is initially evenly split, then with probability 1 the final
verdict will be innocent and with probability 4 it will be guilty. They apply
this transition model to both twelve-member and six-member juries.

But Gelfand and Solomon regard this ‘first-ballot majority decides the
outcome’ assumption as a crude approximation, and they go on to consider
a more refined social decision scheme. Their refined scheme for the twelve-
person jury is based on the one Davis (1973) suggested as a result of his
experience with a large number of mock jury trials.? When they turn to the
six-person jury, Gelfand and Solomon provide no elaborate justification for
the social decision scheme they present. Rather, they simply assert that it is
plausible to assume that the probability of a transition to a particular six-
person jury verdict if h out of six people initially vote for conviction is the
same as the transition probability to that verdict that Davis specifies for a
twelve-person jury when 2h out of twelve people initially vote for conviction.

Gelfand and Solomon use their two-stage model of jury decisionmaking to
analyze the relative magnitudes of the errors six-person and twelve-person
juries would make. They conclude that a twelve-member jury is to be
preferred to a six-person jury. The basis for their conclusion is shown in
table 1, the entries of which are calculated from the relevant parts of tables 4
and 7 in the Gelfand and Solomon article, Columns (1) and (3) are based on
the model in which the transition from first-ballot vote to final verdict is
determined entirely by the first-ballot majority, while columns (2) and (4) use
as the transition probabilities from first ballot to final verdict the elements of
Gelfand and Solomon’s modification of Davis’s social decision scheme. The
major observations Gelfand and Solomon make are that a six-person jury is
much more likely to convict an innocent person than is a twelve-person jury

Gelfand and Solomon modify the Davis scheme for two reasons. First, they want the
resulting social decision scheme to fit reasonably well the transitions from first-ballot vote to
final verdict that were actually found by Kalven and Zeisel in the 225 cases mentioned earlier.
Second, when the resulting social decision scheme is taken together with the estimated
parameter values for their first-stage model, Gelfand and Solomon want it to yield an overall
frequency distribution of convictions, acquittals, and hung juries that fits the empirical
distribution found by Kalven and Zeisel in their overall study.
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Table 1
Error probabilities of jury decisions.*

Acquittal of a
guilty defendant

Conviction of an
innocent defendant

() %) 6) @
First-ballot  Post-deliberation First-ballot Post"dehberallop
majority unanimous verdict majority unanimous verdict

6-person

jury 0.0144 0.0688 0.0138 0.0639

12-person

jury 0.0007 0.0469 0.0007 0.0266

*Calculated from Gelfand and Solomon (1977a, tables 4 and 7).

- and that a six-person jury is much more likely to acquit a guilty person than

is its twelve-person counterpart.?

There is, however, another very important point to observe about the
numbers in table 1. Instead of comparing the two rows in the table, as
Gelfand and Solomon do, consider each row separately and compare the
entry in column (1) in the row with that in column (2) and compare the
entry in column (3) in the row with that in column (4). The clear conclusion
is that allowing a jury of either size to deliberate until it reaches a
unanimous verdict results in a higher probability of convicting an innocent
defendant and a higher probability of acquitting a guilty defendant than if
the verdict were based instead on the outcome of a predeliberation, first-
ballot majority vote. In fact, according to Gelfand and Solomon’s results, a
six-person jury deciding the case by a first-ballot majority vote would make
much better decisions — lower error probabilities for both kinds of errors —
than would a twelve-person jury deciding under a unanimity rule.*

®Although Gelfand and Solomon state their results in terms of the probability of convicting
an innocent person and the probability of acquitting a guilty one, ‘these are not the probabilities
that they calculate and present in their paper. Instead, to measure jury errors, !hey compute, an.d
their tables display, the conditional probability that a defendant is innocent given that he/she is
convicted and the conditional probability that a defendant is gui.lt.y given that he/she is
acquitted. Both sets of conditional probabilities — those wh.ich condlt_xon on the true state of
nature (guilt or innocence) and those which condition on the jury’s verdict — are of interest in a
discussion of the accuracy of the jury decision process. But the error probablll}les t!lat condition
on the true state of nature are the relevant ones for a decision-theoretic analygxs of jury structure
and jury decisions rules. 1t is this set of error probabilities that we display in tablg 1, and we
indicate that they are calculated from information in the Gel{and and Sglomon article because
the latter did not directly provide these numbers. The qualitative comparisons that Gelfand and
Solomon draw and the ones that we draw for their results are invariant with respect to which
set of error probabilities one uses. )

“This implication of the Gelfand and Solomon results was observed independently by
Grofman (1979, pp. 24-25; 1980, pp. 298-299), though his dlsc.ussu‘m is based solely on t‘he error
probabilities that Gelfand and Solomon present. He uses the implication as part of his ‘case for
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This interpretation of the Gelfand and Solomon results summarized in
table 1 suggests that there is a problem, and there is one. The fact that
deliberation increases the probability of error is a consequence of an implicit
assumption of the Gelfand and Solomon model. Specifically, they assume
that the result of deliberation depends only on the first-ballot vote and a
stochastic process, and not on the guilt or innocence of the accused. This
means that all of the information about the defendant’s guilt or innocence is
contained in the first-ballot vote. Let q(h,N;G) denote the probability that a
Jury of N persons that begins with a predeliberation vote of 4 for conviction
eventually convicts a guilty defendant, and let g(h, N;I) be the probability
that a jury of N persons with h initial-ballot votes for conviction eventually
convicts an innocent defendant. Then Gelfand and Solomon essentially
assume that:

qg(h, N;G)=q(h, N;I)=q(h, N).

But this implies that the deliberation process adds noise to the first-ballot
vote, which by assumption in the Gelfand and Solomon model is an estimate
of the guilt or innocence of the accused. Thus, the deliberative process can
only produce decisions that are worse than those resulting from a pre-
deliberation majority vote.

A rather simple formal argument illustrates this point. To facilitate the
analysis, assume N is odd. (The same line of reasoning can be followed if N
is even, but one must keep careful account of tied votes.) Then, under the
first-ballot majority-rule standard, an initial vote of more than N/2 for

majority verdicts’, but he does not suggest any explanation of the observed phenomenon. In
addition, he does not provide a formal argument about conditions, beyond those in the Gelfand
and Solomon study, under which one could expect to observe pre-deliberation, first-ballot
majority verdicts that are superior to full deliberation, unanimous verdicts.

Penrod and Hastie (1979, pp. 480-483) observe a similar phenomenon in their illustrative
calculations comparing the performance of twelve-person juries operating under unanimous and
non-unanimous (two-thirds majority rule) decision rules. In these calculations, they use an initial
vote distribution that produces a good fit to the Chicago Jury Project data on the 225 criminal
cases mentioned earlier, and they use a pair of social decision schemes that are roughly
comparable Lo the ones Gelfand and Solomon use. Penrod and Hastie’s calculations yield error
rates for non-unanimous juries that are lower than those in the corresponding unanimous juries.
They interpret this outcome by examining what happens when the jury’s pre-deliberation vote
would exactly meet the two-thirds majority requirement of the non-unanimous jury, though of
course their interpretation applies as well when the pre-deliberation vote exceeds the non-
unanimous decision criterion. Hence, the situations for which they interpret their result are
exactly analogous to those in which (a) there is a majority on the first ballot and (b) one is
comparing the simple majority decision rule with the unanimity requirement. The explanation
that Penrod and Hastie offer is that the decision schemes they use ‘do not assume that
deliberation serves to correct the errors made in first ballot votes’ but rather ‘these decision
schemes reflect relatively unfavorable views of the deliberation process insofar as they assume
that both correct and errorful initial majorities are equally likely to be reversed during
deliberation’ (p. 481). '
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conviction will resuit in a conviction, while an initial vote of less than N/2
for conviction will result in an acquittal. Let

f(h, N;G)=probability that on the first ballot h of N jurors vote to
convict a guilty defendant;

f(h,N;T)=probability that on the first ballot h of N jurors vote to
convict an innocent defendant.

‘Then, the probability that an N-person jury operating under the first-ballot
majority-rule standard will convict an innocent defendant is:

Y f(hN;D).

h>Nf2
The p}obability that the same error will be made by a jury that reaches a

verdict only when the jurors are unanimous in their position is:

N
hgof (h, N;Dg(h,N).

Hence, the result that the deliberative process increases the probability of an
erroneous conviction — that is, the probability of a guilty verdict when the
defendant is truly innocent — which appears in the Gelfand and Solomon
estimates in table 1, can be expressed as:

N
Y. f(,N;Dg(h,N)> > f(hN;]). ()
K=0 _ h>N/2

We will now present two assumptions that, taken together, imply that (3)
is true if the jury necessarily reaches a verdict — that is, if the stochastic
process describing the jury’s movement from its first-ballot position does not
permit hung juries. The first is essentially a symmetry assumption:

q(h, Ny+gq(N—h,N)=1. )
This can be interpreted more easily if it is written as:

q(h, Ny=1—q(N —h,N). @)
The left-hand side of (4) is the probability that an N-person unanimity-rule

jury eventually convicts a defendant (whether he/she is innocent or guilty)
when there are initially h votes for conviction. The right-hand side of (4) is
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th . . -
dcf: p(;obablhty that an N-person unanimity-rule jury eventually acquits a
eTe;: ant when there are initially h votes for acquittal.
mOdeel: .sectc})‘n?‘fls‘sumptlon, which is satisfied by the Gelfand and Solomon
> 18 that 1t 1s more likely that on the first ball jori j
. » t a majority of th
will vote correctly and a minori i it i tho o eration
‘ ority will err than it is that the i i
il ve : . predeliberatio
majority will be in error. In terms of our notation, the assumption is that: . !

S(N;D)> f(N~h,N;1) for h<N/2

and

%

S, N;D) < f(N—h,N;1) for h>Nj2.
;Fo S‘if thit the conditions in (5) conform to the preceding verbal statement
f_ont51bel: the case of h<N/2. Then (5) says that the probability that on the,
irst ballot h jurors vote to convict an innocent defendant is greater than the

probability that N —# jurors vote to convict, where N —h>h since h<N/2

The second half of §
interproted. of (5), for the case where h>N/2, can be similarly

dl’lj}?e proposition su’gge§ted by the Gelfand-Solomon result — that
eli efatlon' prodL{ces decisions that are worse than those yielded by a
predeliberation majority-rule vote — can be proved as follows. ’

Proposition.  Under conditions (4) and (5) above, it follows that:
N
h,N;D)q(h, ;
h;of( Ja( N)>h>Z):w2f(h, N; ). (3)
Proof.
N
;.Zo S (h,N;D)q(h,N) =h>ZN/2 [/ (h,N;T)g(h,N)
But, by (4), q(h, N)+g(N —h,N)=1, and we have:
N
;.Zo S(h,N;T)q(h, N) >;.>Z~/zf(h’ N; D). QE.D.

This proposition concerns the probability of an erroneous conviction. But
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it is also easily shown that under assumptions (4) and (5) the probability of
an erroneous acquittal is higher if the jury deliberates subject to a unanimity
rule than if it simply follows the dictates of its first-ballot majority.

The argument leading to the proposition above applies to a model in
which there are no hung juries. Hence, it cannot directly explain the results
in table 1 since the Gelfand and Solomon model of the jury deliberating
subject to a unanimity rule includes the possibility that such a jury can fail
to reach a verdict. For a discussion of conditions that yield results analogous
to the proposition — namely, that deliberation reduces the quality of jury
decisions — when hung juries are possible, see Klevorick, Rothschild and
Winship (1982, pp. 18-20).

The critical assumption underlying the proposition, its analogues when
hung juries are possible, and the manifestation of these results in table 1,
with higher error probabilities for juries that deliberate than for those that
do not, is that g(h, N;I)=g(h, N; G). This assumption is quite common in the
literature on juries, including in the reverse Ehrenfest model of the jury
decision process, which two of us previously analyzed.’ But the assumption
is generally implicit rather than explicit and has obviously not been tested.

3. A model of juror observations

It is certainly no surprise that a first-ballot majority vote results in lower
error probabilities than does a unanimous, post-deliberation verdict when
deliberation is unrelated to the truth. Now consider the other extreme: How
does the outcome of the first-ballot. majority-rule procedure compare with
the post-deliberation outcome when the jury’s deliberation optimally uses the
information provided at trial? How do the two decision procedures compare
when the jury’s discussion provides the ideal opportunity for the jurors to
share the observations they have made during the trial, for the strength of
different jurors’ views to be considered, and for the jurors to discuss the
standards to be applied in reaching a verdict? To answer these questions, we
need to develop a characterization of juror observation and jury deliberation
that is richer than those in existing models.

We assume that n jurors observe the trial. They may see different things in
the same set of in-court proceedings, and they may process what they have
seen in different ways. Each juror enters the jury room not only with a view
about whether the defendant is innocent or guilty but also with an idea
about how strongly he/she holds that view. The following model of
correlated normal observations captures this structure.

Assume that the ith juror observes

_ Y, +a¥,
1 +a?1

SKlevorick and Rothschild {1979).

0<azco, (6)
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where Y9, Y,..., Y, are independent normal observations with unit variance;
and for i=0,...,n : ’

- 0 if guilty
EY, = ’
{ ~B if innocent. M

The observation ¥, represents what all the jurors saw, while ¥, is what only
‘the ith juror observed. The parameter a indicates the common weight all the
jurors place on the common ‘signal’ they extracted from the trial relative to
the weight each attaches to his/her individual observation. Finally, B>0
measures the information content of the signal provided by each observation.
If B is large, it is relatively easy to tell the innocent from the guilty. If B is
small, it is very difficult to do so.

It is .important, from both a conceptual and an analytical point of view, to
recognize that this model of juror observation is equivalent to one in which
each juror receives the same information from the trial but different jurors

make independent errors of observation. In the latter model, the ith juror’s
observation is:

_ Y +aZ
'-(1+a2)*’ (8)
where
Y, ~N{0,1) fori=I1,... n )

Z~N(0,1) if guilty
Z~N(-D,1) if innocent; (10)

the Y’s are independent (i=1,2,...,n) of each other and of Z; and the
parameter D is the bound on the ability of the Jury to distinguish between
the innocent and the guilty.®

‘In the formulation given by (8)<(10), Z is the information conveyed by the
trial, ¥; is the observation error the ith juror makes, and X; is 2 measure of
the ith juror’s perception of the defendant’s guilt. The jurors’ errors of

obs.ervation are independent, identically distributed normal random
variables. Letting

Da
T=rar o

5To see the equivalence between the model in (6) and (7) and that in (8)-{10), let Y;= ¥ —E¥,

for i=1,...,n; Z=Y,+(EY,/a); recall that EY; is the same for all i so that Z does not depend on
i; and set D=[(1+a)/a]B. '
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X;~N(@O,1) if guiity, (12)
X, ~N(—=T1) if innocent.

The correlation between the X;’s, which we denote p, is:

=_a_2._ (13)
P 1va®
so that T=D\/;;. As (12) shows, T is a measure of the individual juror's
ability to make a correct decision. ' ‘ )
Before we examine the ways in which an n-person jury might use the
observations it has — the values of the n X variables — let us consider the
way a decisionmaker would make optimal use of the information cqnveyed
by the trial, Z, if he could in fact observe Z. Define the random variable W

as follows:

_az (14)
(1+a*¥

Its distribution is:

W N(0, p) if guilty, 15)
N(—T,p) if innocent,

and it should be clear that W, as a transform of Z, contains all th.e
information in the trial. Society would surely want the process that uses this
trial information, in deciding the defendant’s guilt or innocence, to reflect
sbciety’s tradeoff between the two possible kinds of errors th?t can be mglctie
— namely, convicting an innocent defendant. and acquitting a guilty
defendant. Assume the terms of that tradeoff are given by

_(I—B)F(G|I) (16)
©oera|G)
where
0 =the prior probability that the defendant is guilty, and

I'(i|jy=the cost associated with declaring state i when state j is
the true state.

Suppose that W is in fact observed. Then, given the distribl‘xtic.m in (lSd)
and the fact that K specifies the relative magnitude:_s of the a prior ixpe‘c;ﬁo
costs of errors of misclassification, the problem facing a decisionmaker
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wants to minimize the expected costs of such errors is a special case of the
following standard problem in statistical hypothesis testing: a set of »
independent observations has been drawn from a normal population with
unknown mean p and known variance o2. We wish to test the hypothesis
H:u=0 versus the hypothesis H,:u=—T, and the tradeoff between the
expected cost of errors of misclassification is K. Letting V denote the sample

mean of the n observations, o} denote the variance of ¥V (=¢*/n), and
k=log K, the optimal test is:

2
accept H, if and only if V;%k—%’lf (17)

[See, for example, Chernoff and Moses (1959, pp. 253-254, 335-336); Mood
and Graybill (1963, pp. 281-290).]

The optimal decision rule in (17) should be noted carefully for it will
reappear in various guises throughout our analysis. In particular, we can
now apply the ideal decision rule in (17} to the problem of the social
decisionmaker who observes W and must decide on the basis of that one
observation whether the defendant is guilty or innocent. Note first that H,
corresponds to the larger value for # (namely u=0) in the testing problem
just as the defendant’s being guilty corresponds to the larger value of u
(1=0) in the jury problem. Hence, setting V=W and o2 =p in (17), the ideal
rule for the social decisionmaker would be:

convict if W;k?‘o_%ﬁ
(18)
- k
acquit if W<7€_%7j

Contrast the ideal social decision rule in (18) with what the ith juror
would do if he/she adopted the social tradeoff K as his/her own. Given thc
distribution of X; in (12), the optimal decision for the ith juror acting alone
is to follow the rule in (17) with V=X, and o} =1. The ith juror would

k
convict if X gT—%’E

K (19)
acquit if X <—f~%T.

The crucial difference between the optimal decision rule based on all the
information in the trial and the optimal decision rule based solely on the ith
juror’s observation is that the former takes into account the correlation
between the ‘non-noisy’ components of what the jurors see.
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4. The optimal use of trial information and the first-ballot majority vote

If the model of juror observations in section 3 applies to the members of
an n-person jury, what is the optimal way for that jury to reach a verdict?
How can the jury make the best use of the information available to it and, in
particular, take account not only of the initial views of each of its members
but also of the varying strength of those views? And, how does such ideal
performance compare with the jury’s performance if it follows the first-ballot
majority rule?

The answer is that if the model presented in section 3 applies, the jury

faces a problem in discriminant analysis. The jury must ‘classify’ the

defendant as guilty or innocent on the basis of the ‘measurements’ — one per
juror — it has on the defendant and the knowledge that the jury observes

X~N(@©,Z) if the defendant is guilty (20)
X ~N(—Te,X,) if the defendant is innocent, (21
where X'=(X,,X,....,X,), ¢=(1,1,...,1), and Z, is the variance—covariance

matrix of X. From (12) and (13), we know that each diagonal element of Z,
is 1 and each off-diagonal element is p.

The solution to the problem of classifying an observation into one of two
known multivariate normal populations with equal covariance matrices is
given by Anderson (1958, pp. 133-137). Following Anderson’s approach, the
jury makes optimal use of the information it has by forming the statistic:

U,=X'SteT+iT2%E te. (22)

It can be shown that:

N@a,0)  if guilty,
~ 23
Us {N(—%a, o) if innocent, (23)
where
: 2 2 T2
a=Tres =T 004 E) __ T2 (24

na®+1 (n—-Dp+1

Then, if K is, as defined in section 3, the ratio of the a priori expected cost of
convicting an innocent defendant to the a priori expected cost of acquitting a
guilty one, and k=logK, the optimal rule for the n-person jury we have
modelled is:

convict if U, 2k,
acquit if U, <k.

(25)
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For the variance-covariance matrix X, of the jury’s observations as we have
modelled them, the test in (25) reduces to:

convict if X, gﬁ[ﬂp_ﬂ_:] —iT

T n
- - 2
acquit if X,,<—Ii (n=Dp+1 —-iT (26)
T n 2%
where
%,=1% x,
n;i=y

is the mean of the n jurors’ observations.

Note that the optimal decision in (26) takes the form of the optimal test
presentec.l in (17) with V=X, and of=[(n—1)p+1]/n. Since the jurors’
ob§crvat10ns are not independent, the derivation of the test in (17) does not
str}ctly apply. But given the specific, symmetric structure of . in our case
(w1th I's on the diagonal and p everywhere else), the sample"mean of the
jurors’ observations is a sufficient statistic for the common mean of the X,’s
and one can demonstrate that (17) is, in fact, the optimal test in this case. o

The error probabilities of the optimally deliberating jury, which are

calgulated using the distribution of U, in (23) and the decision rule in (25)
are: ’

1
Pr(acquit|guilty) = ¢ [k — 2“],

Ja

Pr(convict|innocent) = ¢>[ -

k+%o¢] 27
\/& k)

where ¢ is the cumulative distribution function of the standard normal
variate S: '

S
4(5)= | jz_nexp(—%sﬂ ds.

In our analysis, we shall be particularly interested in what happens to jury
performance as the jury increases in size. Note first that, from (24):

lim tX=T2/p (28)

n=w

Hence, there is a limit to the quality of the decisions that the optimally
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deliberating jury — or any jury that uses the information generated by the
trial — will make.

Second, and most important, as n— oo the decision rule in (26) approaches
the ideal decision rule in (18), the decision rule that would optimally use all
the information in the trial. To see this, observe that as n—oo, the term
[(n—1)p+1]/n in (26) approaches p, and the critical value on the right-hand
side of (26) approaches kp/T—1T, which is the right-hand side of (18).
Furthermore,

1

: 1 a7
X —lix—"“‘“a wtaZ
T R (1+a®)t —(1+a?)¥

M=

where

> ¥

7L
ni=y
But E(Y;)=0 implies E(Y,)=0; and from the law of large numbers, it follows
that Var(Y,)-0 as n— 0. Hence, as n—» o0, X,—aZ/(1 +a®)*=W, as defined
in (14). But then as the size of the jury increases, X,— W so that a decision
based on X, is based on all the information contained in the trial, and the
left-hand side of (26) approaches the left-hand side of (18).

Finally, we can use (28) above to calculate the asymptotic error
probabilities under optimal use of trial information. Denoted with an
asterisk, they are:

1T
| Pr*(acquit|guilty) = ¢ [ k{e—iﬁ}

1 T
Pr*(convict{innocent) = ¢ ~k[£——— .
N

(29)

One special case of the jury that makes optimal use of the information at
trial is worthy of note. It is the case in which the jury attaches equal weight
to the a priori expected costs of the two kinds of errors it can make. For
such a jury, K=1, hence k=log K =0, and the jury optimizes by equating
the probabilitiess of making the two kinds of errors. Setting
k=0 in (26), (27), and (29), we see that such a jury follows the decision rule:

convict if X, = —3
T (26)
acquit if X,< -3

A.K. Klevorick et al., Information processing and Jjury decisionmaking 263

the probability it errs is:

Pr(acquit|guilty) = Pr(convict [innocent) = ¢[ ~4/a; (279
and the asymptotic value of this error probability is:

Pr*(acquit[guilty) = Pr*(convict | innocent) = ¢ l: ——l—T} (29

N7

We will return to this special case below.

Now consider the performance of a jury that renders a verdict based on a
simple majority vote of the jurors before any deliberation has occurred. Each
juror observes a normal random variable X, with the distribution given by
(12). Then, given the social tradeoff K between the two kinds of errors, the
ith juror follows the decision rule in (19), which we repeat here:

convict if X, 2=~3T

(30)

IRl TR

acquit if X, <——1T

Under the first-ballot majority-rule procedure, the jury will convict the
defendant if and only if the number of guilty votes is greater than n/2. Thus,
the probability that the jury will render a guilty verdict is the probability
that more than n/2 of the X;’s are greater than or equal to
k/T—4LT so that

-7

Pr(acquittal) = PrIichd, < % - %TJ’

2

med, n

. Pr(conviction) = Pr[X

~i &

(31

where X ..q , is the median observation in a jury of size n.

Hence, as one would expect, the performance of the jury acting under the
first-ballot majority-rule procedure depends on the median observation
Xmea.» and how the juror who makes that observation decides on his/her
vote. Let Y,..4 , be the median of the juror errors of observation Y,, Y,,..., Y,.
Then, from (8), we have:

Ymed. n + aZ

X g, p=—eden 72
med, n (1 +(12)i’ , (32)
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As n—sco, the variance of Y., , approaches zero and since Y, ~ N(0, 1) for all
i, Ypea n itself approaches zero. Hence, as n— oo,

X —aZf{l +a) =W

med,n
But then, since lim,_ ., X, also equals W, tests based on the median could be
asymptotically as good as tests based on the mean. That is to say, as the size
of the jury increases, the median observation approaches W, which contains
all the information in the trial, just as the mean of the observations
approaches W.

Thus, a large jury that decides its verdict by a first-ballot majority vote
has the information to perform as well as it would if it followed the rule for
optimal deliberation. But if the median voter follows the decision rule in (30)
above, applying society’s error tradeoff K to his/her own observation, the
large jury deciding by first-ballot majority rule will not — except for one
special case — perform as well as it would under the optimal deliberation
rule in (26). Following the decision rule in (30), the large jury’s median voter
will  vote to convict if and only if  Xgea.Z(k/T) —4T
so that the large jury applying a first-ballot majority rule is
essentially applying the criterion: convict if and only if W=(k/T)—1T The
optimal decision criterion, which we have seen the optimally deliberating jury
approaches as it increases in size, indicates instead [see (18)] that a guilty
verdict should be rendered if and only if W=(kp/T)—%T. Hence, the large
jury deciding cases on the basis of first-ballot majority rule would achieve
asymptotic optimality if its median voter applied the rule: convict if and
only if X peq, n 2 (kp/T)—%T, which differs from what the rule in (30) dictates.

It is conceptually clear why the first-ballot rule generally fails to produce
an asymptotically optimal result. The median voter in the large jury makes
an observation in which the noise factor approaches zero. He/she should
take this into account and, when formulating his/her decision rule, recognize
that his/her observation has a lower variance than an observation chosen at
random. If the median juror does not take this into account, his/her vote will
lead the jury to a non-optimal decision.” To make this more precise, recall
that the criterion for the optimal decision rule in (17) is:

T (33)

N

2

avk
Ve —
27T

"There is an analogy in the competitive bidding literature, more specifically, in the
phenomenon referred to as ‘the winner's curse’. Potential bidders with private information
should recognize that they will win only if their observations are extreme. Hence, when
evaluating the information in their observations, they should condition on the observations
being extreme. See Milgrom and Weber (1982).
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Hence, in the optimal decision criterion, the variance weights the term k/T,
which reftects the decisionmaker’s tradeoff between the two types of errors.
Overestimating the variance has the same effect as using a larger absolute
value of k.

Suppose, then, that a large jury decides the case on the basis of a first-
ballot simple majority vote and that each juror — including the one with the
median observation — follows the decision rule in (30). Then if the jury
regards the expected cost of convicting the innocent as higher than that of
acquitting the guilty, so that k>0, it will tend to acquit too many truly guilty

defen(iants, That is, if k>0, then the asymptotic error probabilities satisfy the
following incqualities:

Pr¥(A]|G)> Pr¥(A|G) > Prj(C|1)> Pri(C|1), (34)

where F denotes the first-ballot simple majority rule procedure, D ideal
deliberation, A acquittal, and C conviction. If k<0, then the inequalities in
(34) are reversed.

The result in (34) is illustrated in fig. 1, which depicts the efficiency frontier
for the jury's decision problem. For any given level of one of the error
probabilities, the corresponding point on the frontier gives the minimum
attainable level of the other error probability — that is, the level that an
optimally deliberating jury would achieve. The frontier can be generated by
varying k in the expressions for the error probabilities given in (29) above. It
can be verified that the frontier is negatively sloped and, if each of the error
Probabilities is less than one-half, convex. In terms of the figure, the
inequalities in (34) show that a large jury applying a first-ballot majofity rule
when, for example, k=4k, >0 will, in fact, attain a point like k, on the
frontier where k,>k,. The jury will reach a point on the efficiency frontier,
but one where the probability of false acquittals is higher than desired.

How far from its target on the efficiency frontier does a jury stray when it
reaches a verdict on the basis of a first-ballot, simple majority vote?
Alternatively, if such a jury were to deliberate in an optimal way, by how
much could it reduce the expected loss due to its misclassification of
defendants? Of course, the answer depends on the values of the various
parameters. But to get some sense of the disparity between the jury’s desired
combination of error probabilities and the combination it attains, consider a
very special case of the social tradeoff between the two types of errors a jury
can commit (K). Specifically, suppose that F(G|I)=I‘(I[G), so that the cost
of a false conviction is equal to the cost of a false acquittal. In this case,
minimizing the expected loss due to errors of misclassification is equivalent
to minimizing the (unconditional) probability of an error:

(I1-0)yPr(C

1)+ 0Pr(A|G).
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L

Efficiency Frontier

Pr*(Cc|I)

Probapil}ty of k. =0

Convicting an 0
Innocent
Defendant Kk

45° 2

v

Pr* (A|G)
Probability of

Acquitting a
.Guilty Defendant

Fig. 1

The social tradeoff K then equals (1—6)/8, or the prior probabili.ty that the
defendant is innocent divided by the prior probability that he/she is guilty, so
that K equals the prior odds that the defendant is innocent. N

For this specification of K, table 2 compares the uqcondltlonal error
probability for infinitely large juries that decide on ‘the basx‘s Qf a ﬁr§t-ballot.
majority vote with the unconditional error prot?ablhty for snpnlarly sized, but
optimally deliberating juries.®. The comparison is mgde for dlfferem. yalues of
K and p for two cases, one in which the asymptotic error prqbablllfy of an
optimally deliberating jury with K=1 is 0.3 and the other in which that
probability is 0.1. We see that in both cases, when K=1 ' (sg that
k=In K =0), the asymptotic error probability of the ﬁr.st-ba}llot, majority-rule
jury is the same as that of the optimally deliberating jury. As we shall

ive i ati ies in table 2 is that 0=1-0=} so tha
8An alternative interpretation of the entries in .(db ) at 0 1 %0

K =I‘?GTI)/F(I|G), the relative social costs of the two kinds o( mlsclas;lﬁf:atlon. In Ehns case, the
entries in table 2 equal the expected losses due to misclassification multiplied by 2/(/"\+ I'g).
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Table 2
Asymptotic probability of error.

Case i Case ii
K f 2 4 1 2 4
D 03 0262 0.165 0.1 0.089  0.058
p=0.1 F 03 0333 0200 0.1 0310 0200
A 006 0071 0036 00 0221 0142
D 03 0.262 0.165 0.1 0.089 0.058
p=05 F 03 0284 0197 0.1 0.102  0.094
A 00 0022 0033 ° 00 o001 3 0036
D 03 0202 0165 0.1 0.089  0.058
p=08 F 03 0265 o0.186 0.1 0.095 0077
A 00 0003 0021 0.0 0006 0019

D =asymptotic probability of error for optimally deliberating jury.

F=asymptotic probability of error
A=absolute difference between t

for first-ballot majority-rule jury.

he asymptotic error probabilities of

the two kinds of juries.

demonstrate below, this result is completely general. If K=1, a large jury
will do equally well applying a first-ballot majority rule or engaging in
optimal deliberation.

For K=2 and K=4, however, the difference in performance due to
optimal deliberation is considerable. As one would expect, the differences are
greater for the smaller values of p because the smaller p is, the larger is the
correction that the median juror should make in his/her decision rufe. In the
worst instance — case ii with K=2, p=0.1 — the absolute difference
between the asymptotic error probabilities is 0.22 and the first-ballot,
majority-rule jury is nearly 3.5 times more likely to err than is its optimally
deliberating counterpart. Thus, if a jury chooses to decide on a verdict on the
basis of the outcome of a first ballot majority vote, with each juror following
the decision rule in (30) above, rather than to engage in optimal deliberation,
then the jury can have a considerably higher chance of making an error.

The preceding discussion points us to the one special case in which the
large jury performs as well under first-ballot simple majority rule as it does
under the optimal deliberation rule jn (26). It is the special case we
considered earlier in which the jury attaches equal weight to the two kinds of
errors it can make so that: K=1 and k=0. In this case, the median voter
applying the rule in (30) votes to convict if and only if X .4 ,=—1T We
have observed that as n—oco, X mea,n— W. Hence, for large juries, the median
voter’s criterion and, consequently, the Jury’s decision rule, is equivalent to:
convict if and only if W= —1T. As can be seen from (18), this is the optimal
decision rule for the case in which k=0. Hence, when k=0, the decision
criteria of the first-ballot simple majority jury and the optimally deliberating
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jury converge asymptotically to the same rule. Consequently, for k=0, the
asymptotic error probabilities of the two kinds of juries are the same, and
they are given in (29"). In terms of fig. 1, this means that when k=0, the large
jury that decides the case by a simple majority on the first ballot attains the
frontier point, ko, for which it aims.

For this special case in which the jury attaches equal weight to the two
kinds of errors, there is a particularly simple relationship between the size of
a large jury that decides by first-ballot majority rule and the size of the
optimally deliberating jury that achieves the same degree of accuracy.

- Namely, if the large jury that deliberates optimally — that is, follows the rule
in (26") — is of size n, then a first-ballot, majority-rule jury will have to be of
size (n/2)n, or approximately 57 percent larger, if it is to achieve the same
error probabilities, that is, the ones given in (27)). The reason for this is as

follows. For large n, the median of a set of independent, identically
distributed- normal variables with mean (and median) x4 and variance c? will
be approximately normally distributed with mean p and variance ne?/2n’
Applying this result to approximate the distribution of Y. , we can use
(32) to calculate the variance of Xpeq,n which is 3n[(1 —p)/n]+p. But then

" the error probabilities of the large jury that decides the case by first-ballot
majority rule can be computed using the expressions in (31). One finds that
for large n, with k=0, the probability of error for a jury that uses the first-
bailot majority-rule procedure is approximately equal to:

1— .
o[- )

Equating'the probability in (27') to that in (35) and solving for the n in (35)
as a function of the jury size in (27), it is straightforward to show that if the
optimally deliberating jury is of size n, the first-ballot jury must be of size
(n/2)n if the two are to be of equal efficiency.

Before leaving the special case in which k=0, let us consider some
evidence about how quickly the error probabilities of the optimally
deliberating and first-ballot majority-rule juries converge and how large the
discrepancy between the errors is for small n, Table 3 contains a comparison
of the error probabilities of the two kinds of juries as jury size varies. The
illustrative comparisons are made for two values of the asymptotic error
probabilities — 0.3 and 0.1 — and for a range of values of p, the correlation
between the jurors’ observations. (In table 3, we do not distinguish between
the error probabilities for false convictions and those for false acquittals since
the jury acts to equate those probabilities when k=0.)

9Kendall and Stuart (1958, p. 329).
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N Table 3
Probability of error: Comparison of first-ballot and optimally delibetating juries
when k=0. )
n= 1 S 9 11 15 25 35 1o9)
Pr*=03
D 0434 0377 .0355 0349 0339 0327
~ . . . , 0320 03
p=01 F 0434 0391 0.370 0363 0352 0337 0329 03
g 8000 0014 0.014 0014 0013 0011 0009 00
.355 0316 0.309 0308 0306 0304 03
~ ) . . .303 0.3
p=05 F 0355 0322 0314 0311 0309 0305 0304 03
g 0.000 0.006 0.004 0004 0003 0002 0001 00
0320 0304 0303 0302 0302 030! 03
~ . . . 301 03
p=08 F 0320 0306 0.304 0303 0302 0300 0301 03
A 0000 0002 0.001 0.001 0001 0001 0000 00

Pr*=0.1

0343 0222 0.182 0.171 0156 0.136 0.12

. . . 1127 0.1
0343 0249 0208 0196 0177 0152 0139 ot
0000 0.027 0.026 0025 0022 0016 0013 00

0.182  0.121  0.112 0110 0107 0104 0.1
. . . 103 0.4
0.182 0.129 0.118 0115 o111 0107 0.105 0.1
0.000 0.008 0.006 0.005 0004 0002 0002 00
0.126 0.106 0.103 0.103  0.102 0.101 0.10
. . . 101 0.1
0.126 0.108 0.105 0.104  0.103  0.102 0.t01 0.1
0.000 0002 0.002 0001 0001 0001 0000 00

a1
1
o
n
>TyY >TmY >y

D=probabﬁl_ity of error for optimally deliberating jury.
F=probablhtx of error for first-ballot majority-rule jury.
A =absolute difference between the error probabilities of the two kinds of juries.

Several features of the comparison are noteworthy. First, the differences
between th_e error probabilities of the two kinds of juries are quite small
even for small n. The largest difference in the table is 0.027, and it occurs for,
p=0.1,.¥’r".=0.1, n=5. Thus, when k=0 and the jury’s asymptotic error
probability is 0.1 or 0.3, the first-ballot majority-rule jury does not seem to
be at a great disadvantage relative to one that engages in optimal

deliberation even when n is small. Second, the rate of convergence between

the two .juries’ error probabilities is moderate. Third, convergence is not
monotonic. For example, for p=0.1, Pr*=0.3, the largest absolute difference
between the two error probabilities is for n=9. One’s intuition might suggest
tha.t t-he smaller the jury, the greater the disadvantage of the first-ballot
{najc‘)r'lty-r.ule procedure. The non-monotonicity of convergence shows that
lntunt.lon is not correct, and another moment’s thought suggests the flaw in
that intuition. We know that the error probabilities under the two decision
methods must be the same for a single-person jury (n=1) since one person
does not engage in deliberation. And we have also shown that the error
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probabilities are equal for n—co. Consequently, the convergence between the
two error probabilities cannot be monotonic.

Finally, if a large jury attaches different expected costs to the two kinds of
errors — so that K#1 and k0 — but it still wants to decide on the basis
of a predeliberation vote, there are two ways it can make an optimal
decision. First, individual jurors can take account of the correlation between
their observations and alter the cutoff in the individual decision rule in (30)
to (kp/T)—4T. Then a decision based on a simple majority vote would
converge to the optimal decision as n—co. Alternatively, the individual jurors
" can be instructed to vote as if the two kinds of errors do have equal weight
— that is, as if k=0 — but the jury as a whole would agree to convict the
defendant only if a fraction

a*>  k
4|t | o

voted to convict. It is straightforward to show that as k varies, a first-ballot
" jury following this rule asymptotically traces out the same efficient tradeoffs
between the two kinds of error probabilities as the optimally deliberating
jury does.

5. The effects of differences in jurors’ standards

To this point, we have implicitly assumed that the social tradeoff between
the two types of errors that a jury can commit, K, is universally shared, or at
least that each juror puts aside personal views and applies the social tradeoff
in casting his/her vote. Suppose, on the contrary, that different jurors have
different views about the appropriate tradeoff between the expected costs of
erroneous convictions and erroneous acquittals, and suppose that they do
not simply adopt the social tradeoff when they become jurors. In particular,
assume that individual standards k; =log K; are normally distributed among
the population with mean k* and variance v2. We will also assume that the
distribution of standards is independent of the distribution of observations
made by jurors. What implications does the existence of this distribution
have for the comparative performance of first-ballot, majority-rule juries and
optimally deliberating juries?

To focus attention on the new issues introduced by the dispersion of
standards in the population, let us assume that a jury adopting the first-
ballot majority-rule procedure does so in a ‘sophisticated’ way. Specifically,
assume that each individual juror takes account of the correlation between
his/her observation and the others’ and alters the cutoff in his/her decision
rule to reflect that correlation. Hence, if juror i applies the standard k;, that
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juror’s decision rule is:

convict if X,.gkLTp—%Tj
(37
kp | (37)

acquit if X1<_,T"*§T

As we observed at the end of section 4, a decision based on a simple
majority vote of jurors who apply (37) to determine their individual positions
will converge to the optimal decision as n— oo if each juror uses the social
standard k for k;.

Consider the decision process of a first-ballot, majority-rule jury in which
juror i votes according to the decision rule in (37) with k; representing that
juror’s personal view of the tradeoff between false convictions and false
acquittals. The outcome for the defendant depends on which inequality in
(37) holds for more than n/2 jurors, that is, whether the median value of
Xi—kip/T is greater than, equal to, or less than —iT

Define

so that, from the definitions of X, and W in section 3, X;—(kip/T)=R, + W.
Then the jury’s decision rule can be expressed as:

convict if W+ R 2 —

med, n =

IT
2%
acquitif W+R 4 ,<—1iT

(38)

where R, , is the median value of

Y kip
(1+ad T

in a jury of size n. From the definition of R;, we can determine its
distribution:

k*p 1 v?p?
R"""’(‘T’ a2t TT) 39)

It follows from the distribution of R; in (39) that as n— oo, R, .cq.» approaches
~k*p/T and its variance goes to zeYo. Thus, asymptotically the defendant is
convicted by a jury following the first-ballot, majority-rule procedure if and
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only if W—(k*p/T)2 — 4T This large jury follows the decision rule:

*
convict if and only if ng?p—%T. (40

Comparing (40) with the optimal decision rule in (18), we see that the large
first-ballot, majority-rule jury in which jurors correct for the correlation of
their observations but apply their personal views of the error tradeoff will
reach a point on the efficiency frontier. Whether it reaches the socially

optimal point depends on the relationship between the social standard k and
" the mean k* of the distribution of the k’s. If k=k* then as n—oo, the
sophisticated first-ballot, majority-rule jury will approach the socially
optimal decision rule. Otherwise, it reaches a point on the efficiency frontier,
but not the socially optimal point.

It should be emphasized that in this section we have compared the verdicts
of a ‘sophisticated’ first-ballot, majority-rule jury with the results of following
a decision rule that makes use of all the information in the trial and applies
society’s tradeoff between the two kinds of erroneous verdicts. We have not
. identified the latter with the results of a particular way of processing the
contributions of n jurors, an identification we were able to make in the
previous section. There the optimal way to proceed was to apply
discriminant analysis to the jurors’ observations. The problem with making
any such identification in the current setting is that there is no way to specify
how the individual jurors’ k;’s ought to be aggregated to arrive at the social
standard k. :

It is also not possible to compare the performance of the first-ballot,
majority-rule jury with that of a jury that first combines its members’
standards and then applies discriminant analysis using that composite
standard, unless one specifies how that aggregation occurs. As one example,
it can be shown that given the specification in this section, a first-ballot,
majority-rule jury that is ‘sophisticated’ in correcting for correlated
observations will attain the same error probabilities as a large jury that first
averages its members’ standards and then applies discriminant analysis to
their observations with that averaged standard.

One last observation can be made about the case in which k=k*, that is,
in which society’s standard is equal to the mean of the distribution of
individual standards. A possible interpretation of this situation is that all
members of the population actually share the same standard k, but when a
particular individual, say the ith, applies that standard, some ‘noise’ enters
and he/she actually uses the individual standard k;. An interesting question is
whether a jury that decides by ‘sophisticated’ first ballot, majority rule
should agree on a common standard, call it k° before casting individual
votes or whether each juror should vote based only on his/her individual
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standard k;. For the case in which k=k*, intuition suggests that if the
aggregation procedure is unbiased, so that E(k°)=k, then the jury should
agree on a single standard before voting if the variance of the agreement
procedure is less than the variance of the individual ks, namely, less than v2.
It can be demonstrated that this is, in fact, a sufficient condition for pre-
balloting aggregation of standards to be desirable. An example of an
aggregation procedure that satisfies this sufficient condition is averaging the

jurors’ k;-values. One that fails to meet the condition is adopting the view of
the most extreme juror.

6. The effects of differences in jurors’ abilities to decide

In the previous analysis we have assumed that all jurors were equally able
to follow the testimony and arguments they saw and heard and the
instructions they received at the trial. Of course, though, jurors are likely to
differ in their abilities to process the information produced by a trial. In this
section we examine the effect of one difference in jurors’ abilities: differences
in the variances of the jurors’ measures of the defendant’s guilt or innocence.
To focus attention on these differences among jurors in the context of a
tractable model, we simplify our earlier formulation by assuming that the
jurors’ observations are uncorrelated.

Specifically, we suppose that juror i observes X ; where

(a) X;~N(0,a?) if the defendant is guilty,

(b) X;~N(—1,07) if the defendant is innocent, “D

and the X;s are uncorrelated. The crucial difference between this
specification and our previous one is that ¢2, the variance of the juror’s
measure of the defendant’s guilt, can now vary across jurors. We will assume
that the precision of a juror’s observation, (¢2)7?, is the same no matter
whether the defendant is innocent or guilty, and we will assume that this
precision is distributed according to a gamma distribution with parameters
m/2 and (2y)~!. The mean and variance of the precision of the juror's
observation are:

t
E [;{I =ym (42)

and

VarI:—?:l =29%m. (43)
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The analysis that follows is facilitated by the observation that if H satisfies
1/a?=7yH, . (44)

then H is distributed as chi-square with m degrees of freedom.

Suppose the ith juror considers the expected costs of the two kinds of
errors he/she can make to be equal so that K=1 and k=0 for this juror.
Consequently, he/she adopts a decision rule that equates the probabilities of
making the two kinds of errors. Then, given the specification in (41), this
juror will vote to convict if his/her observation exceeds —% and to acquit if
that observation is less than —4. The probability that this juror votes

incorrectly when the defendant is guilty is:
p=Pr[X; < —}|X,~N(0,6)]. (45)

Since k=0 for this juror, the probability in (45) is also the probability that
he/she errs when the defendant is innocent.

This error probability is easily calculated. To evaluate it, we must
remember that o? is a random variable with density g(a?), calculate the
probability of an incorrect decision conditional on a given value of 0%, and
then integrate over ¢7. The result is that the probability that the ith juror

reaches an incorrect decision is:

X; 1
Prl Sic —— |,
r[a,< 20,-]

where X; ~N(0,07). Letting S be a standard normal variate and using (44)
we see that this probability is:

S
ply,m)=Pr[S< —%\/ﬁ]=pr[m< -%\/);1_]

=Pr[t, < —4./ym], (46)

where t,, is distributed as a ¢ distribution with m degrees of freedom.

From (46) it is clear that the probability that an incorrect decision is made
by a juror who attaches equal weight to the expected costs of the two kinds
of errors is a function of the two parameters y and m. In our analysis of the
effects of differences in jurors’ abilities, we will want this error probability to
remain constant. This is achieved by defining y as a function of m, which we
will denote u{m). The properties of u(m) are important because they establish
m as a measure of the dispersion of jurors’ abilities. Specifically, with the
error probability p in (46) held constant, the parameter m measures,
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inversely, the variability of individual jurors’ abilities to process trial
information.'® If m=1, jurors’ abilities are quite variable;'* while as m— oo,
the variability in ability of individual jurors vanishes, and the model
converges to the model of section 4 where jurors did not vary in ability. (To
see this rigorously, note that t,,—S as m—s 00.)

The fact that jurors vary in ability has no effect on the probability of error
when the jury decides on the basis of first ballot votes. The errors made by
the jury are simply determined by the probability that the individual juror
errs, which is given by (46) above. The probability that an n-member jury
errs in its decision is then:

) ('r’)p(y, my (1—p(y, m))" " (47)

r>n/2

Now consider an n-member deliberating jury that makes optimal use of its
observations of the n random variables X=(Xy,...,X,), which are
independently distributed with X;~N(0,6?) if the defendant is guilty and
X;~N(—1,07) if he/she is innocent. Here we will consider only the case
where the jury treats the expected costs of the two kinds of errors as equal so
that k=0. Hence, the jury will form the statistic U, defined in (22) and the
optimal decision rule is to convict if and only if U, 20. Given the structure
of the jurors’ observations in the present model, this is equivalent (o
convicting if and only if

3 (48)

where X, is the weighted mean of the X,’s:
- X; 1
X, =Yy
~Yod [T “

'%To establish this relationship between m and Var[1/a{], let 1,, , be defined by Prit,, <l ) =p
that is, t, , is simply the critical value for tail probability p of a t dostribution with w
degrees of freedom. But from the properties of the ¢ distribution, it follows that for p<4, as w
increases, t,, , increases — that is, IIW",[ decreases. Hence, as m increases, if the probability in
(46) is to remain constant, we must have \/ﬁ decrease. But then it follows that for p to stay
fixed, y must decrease more than proportionately to the increase in m so that w/(m)< —u(m)/m.
Substituting u(m) for y in the expression for Var{1/¢?] in (43), differentiating with respect to m,
and using this result about w/(m), yields the desired result: as m increases, the variance of the
individual jurors’ abilities decreases.

"'The upper bound, m=1, is imposed only by our desire to have the probability computed in
(46) be a t distribution. If 1/0? is distributed as a gamma distribution with parameters v and ¢,
then the same logic as was used to derive (46) shows that the probability that a juror decides
incorrectly is just Pr[y< 3], where y is a standardized normal variate divided by the square root
of an independent gamma distribution and & is a function of v and & This is, in principle, easy to
calculate. It is not, as is the ¢ distribution, extensively tabulated.
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Now X, is distributed as:

X, ~N(0,1/a) if guilty, (50)
X, ~N(—1,1/a) if innocent,

where a=Y", (/7). For fixed (6},0%,...,062), the probability that the jury errs

is:

o[~4./al. 4

Since a=};(1/07), the assumptions about the distribution of ¢? imply
a~I[nmf2,(2y)"']. If we let a=yL, then L~y2,. We can then calculate the
optimally deliberating jury’s error probability by integrating over «. Letting
y(«) denote the density of « and using S as the standard normal variate, we
‘have:

error probability = [ {&[ —+./a]} y(@)da=Pr[S < —} /L]
= Pr[S/(\/L/\/ynm) < =4, /ynm]
=Pr[tnm < _—%\/ ynm]’ (52)

where t,,, is distributed as a ¢ distribution with nm degrees of freedom.

How should we expect the error probability of the optimally deliberating
jury to change with m? Intuitively, one would think that the more variable
the abilities of the jurors, the lower the probability of error. The optimal
deliberation process pays the most attention to those individuals with high
abilities (small ¢7), and it discounts the views of those with low abilities
(large o?). The optimal jury will always do at least as well as the most able
juror and usually considerably better. Thus, as the variance in ability
increases, the jury would be more likely to get a very high ability juror and
that would yield a low probability of error.

Although we do not have an analytic proof that this intuition is correct,
we do have some numerical results that support the following conjecture for
the jury whose members’ observations were modelled in this section. If the
probability of a single juror being in error is held constant, then the greater
the variance in ability (the smaller is m), the lower is the probability that the
optimally deliberating jury will err. The numerical results appear .in .table.4,
which presents the probability of error for optimally deliberating juries with
different variances in ability and the probability of error for the first-ballot
jury. As we noted above, differences in ability do not affect tl‘1§ first-ballot
jury’s performance. But, as table 4 does show, differences in aplllty do. aﬂ'e_ct
the probability of error of the optimally deliberating jury. A jury basing its
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Table 4
Probabilities of error when there are differences in ability.

>
I

1 5 9 11 15 25 35

1 0400 0250 0178 0.152 0.114 0.058 0.031
2 0400 0267 0199 0174 0.136 0.078 0.046
4 0400 0276 0211 0187 0.149 0.089 0.056
10 0400 0282 0219 0195 0.158 0.097 0.062
co 0400 0286 0224 0200 0.163 0.103 0.067

T I3
W

ballot 0400 0317 0267 0247 0.213 0.154 0.114

m= 1, high variance; m= co, no variance.

decision on a first-ballot majority vote will be at a greater disadvantage
compared with one that uses information optimally the greater is the
variance in abilities of the jurors. :

1. Concluding remarks

In this paper we have focused attention on the processing of information
by juries, an aspect of the jury system that is central to almost all policy
discussions but that has been neglected in the development of models that
are intended to inform such discussions. We have analyzed, in particular, the
opportunity that jury deliberation offers for making decisions that are better
than those produced by majority votes taken before any discussion among
the jurors. Deliberation is important precisely because it enables differences
in what jurors have seen, in the strengths of jurors’ views, in their decision
standards, and in their abilities all to be taken into account in reaching a
verdict. These are factors that a first-ballot, majority-rule decision cannot
weigh and that previous models of the jury decision process have not
encompassed.

Do the benefits of jury deliberation outweigh its costs? To answer this
question, one must consider the various elements we have discussed — both
the implication of other jury decision models, like Gelfand and Solomon’s,
that deliberation creates noise, and the implications of our analysis about
how deliberation enables a better approach to more complex problems. But
one must also weigh a host of factors that we have not addressed: for
example, the costs of jury deliberation and the process values served by
having juries deliberate. And, finally, one must bear in mind that we have
provided only an upper bound on the benefits of jury deliberation since we
have compared the first-ballot outcome with that produced by first-best jury
deliberation.

1

JPE-B
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This paper develops econometric methods to estimate the effect of the piecewise-linear budget
constraints created by grant formulas in which the subsidy rate is not constant over
expenditures (e.g. closed-end grants). The methods are applied to the AFDC program. The
results show that, because of the kinked nature of the grant formula, (1) the present federal
formula actually increases cross-state inequality in AFDC benefits, (2) several subsidy rates in
the formula actually reduce benefits, and (3) the so-called ‘flypaper’ effect disappears.

1. Introduction

As economists who have studied the public sector are well aware, actual
government programs often differ significantly from those outlined in
undergraduate and graduate texts. This is especially true in the area of
grants-in-aid, for grant programs as actually legislated and implemented
administratively are frequently far different from the simple models of those
programs with which economists generally work. The two most common
models of the effect of grants-in-aid on state and local expenditures are those
which depict either an open-end matching grant, under which expenditures
by the receiving government are subsidized by the granting government at a
constant rate, or a block grant, under which the receiving government is
given a subsidy fixed in amount and independent of its own expenditures.
These two models are simple to analyze because they alter the budget
constraint of the receiving government in a simple fashion, by a change in
s)opc‘ in the first case and by a parallel outward shift in the second case, but
they are far less common in practice than programs which alter the budget
constraint in more complex ways. Closed-end grants, which outnumber all
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