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1. INTRODUCTION

Missing data is a common problem in many types of data analysis. In
this paper, we show how to deal with missing data in loglinear analy-
ses of frequency tables.! Our approach is based on two ideas: (1) Latent
class models can be adapted to contingency tables with missing data by
defining variables that are latent (missing) for some cases and are mani-
fest (observed) for others; and (2) latent class models can be viewed
as loglinear models for tables in which some cells are unobserved or
partially observed. Using our approach, we can retain the loglinear model
framework and notation and deal with missing data through a modest
extension of the standard model. Flexible software for latent class models,
such as DNEWTON (Haberman, 1989) and LEM (Vermunt, 1996) is
required, but the conceptual extension of elementary loglinear models is
straightforward.

By explicitly incorporating missing data into the analysis of a con-
tingency table, one can address two concerns. First, a researcher may be
worried about the possible loss of statistical power or precision of es-
timation that results when observations with missing data are excluded
from an analysis. If many cases have missing data on at least one variable,
exclusion of these cases from the analysis may substantially reduce the
sample and create unacceptably large standard errors. One may want to
incorporate cases with missing data into the analysis so that the informa-
tion associated with these cases can be used to obtain more precise esti-
mates. When the loss of statistical power is the only problem, incorporat-
ing missing data into a loglinear analysis is usually straightforward.

Second, one may be concerned that the exclusion of missing data
may result in inconsistent parameter estimates in loglinear models. This
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islikely to occur if there is a systematic mechanism producing the missing
data. In this case one should develop a model of the missing data process
jointly with the substantive model of interest. Later, we d.iscuss more
precisely the types of missing data processes that lead to 1nc.on515ten't
estimates. Although correcting problems of this type can be dlfﬁ(.?lllt, it
may be essential if one is to make appropriate substantive conclusions.
The next section of the paper presents an example that illustrates that
how one deals with missing data affects both the precision of parameter
estimates and the substantive conclusions that one draws. The subsequent
section briefly discusses one conventional approach to dealing with miss-

adding a category to a variable for missing data. We

ing data, namely, o
ates. Ne

show that this procedure typically leads to inconsistent estim Ne
we show how a contingency table can be extended to incorporate mlss:mg
data so that loglinear models for partially observed data can be applied.
We then consider alternative assumptions about missing data and the
models that these assumptions imply. We examine different models for
our first example, and then present a more complex empirical. example.
We then discuss various problems in estimation and identification.

2. EXAMPLE 1: PRENATAL CARE AND INFANT MORTALITY

Panel (a) of Table 1 presents data on the relationship between prena-
tal care and infant mortality in two clinics. These data were ﬁrst ana-
lyzed in Bishop, Fienberg, and Holland (1975). Little and Rubin (1987)

Table 1. Contingency Table with Partially
Classified Observations

Survival (5)

Clinic (C) Prenatal Care (P) Died Lived

(a) Completely Classified Cases

Clinic A less 3 176
more 4 293
Clinic B less 17 197
more 2 23

(b) Partially Classified Cases (Clinic Missing)
less 10 150

more 5 90

Source: (a) Bishop et al. (1975), Table 2.4-2; (b) artificial
data from Little and Rubin (1987, Table 9.8, p. 187).
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supplement these data with the hypothetical data in Panel (b) of the table,
which contain 255 infants whose clinic ID is missing. A researcher who
wishes to analyze the combined data in the two panels faces two problems.
First, data are missing for 255 out of 970 cases. If all cases with missing data
were omitted, this would substantially reduce statistical power. This is a
particularly serious issue because the response variable, infant mortality,
measures a rare event.

Second, assumptions about the true values of the missing data may
markedly affect the estimated effect of prenatal care on infant mortality.
Table 2 illustrates a range of possible outcomes under various extreme
assumptions. All other possible assignments of the missing data are less

Table 2. Mortality Rates for Data in Table 1 Under Alternative
Assumptions about Missing Data

Level of Prenatal Care

Assumption Clinic Less More Difference
1. Observed data collapsed over clinic 5.4 2.6 2.8
2. Complete data A 1.7 1.3 0.4

B 7.9 8.0 0.1
Missing are all:
3. Clinic=A A 3.8 2.3 0.5
4. Clinic=B B 7.2 5.8 1.4
5. Ifcare = less, clinic = A A 3.8 1.3 2.5
If care = more, clinic = B B 7.9 5.8 2.1
6. If care = more, clinic = A A 1.7 2.3 —0.6
If care = less, clinic = B B 7.2 8.0 —-0.8
7. If survival = died, clinic = A A 6.9 2.3 43
If survival = lived, clinic = B B 6.4 1.8 4.6
8. If survival = lived, clinic = A A 1.3 1.0 03
If survival = died, clinic = B B 12.6 233 -10.7
9. Ifcare = less & survival = died, A 6.9 1.0 59
or care = more & survival = lived,
clinic = A
If care = more & survival = died, B 11.8 23.3 ~11.5
or care = less & survival = lived,
clinic=B
10. If care = less & survival = died, A 0.9 3.0 -2.1
or care = more & survival = lived,
clinic=B
If care = more & survival = died, B 12.0 1.7 10.3
or care = less & survival = lived,
clinic= A
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extreme in that they yield estimates that fall within the range of those
reported in Table 2.

Estimates of the effect of prenatal care vary across a wide range. If
clinic status is ignored (assumption 1), the estimated difference in mortal-
ity rates by level of prenatal care is large (5.4% — 2.6% = 2.8%). How-
ever, if only complete data are used and estimates are computed within
clinics (assumption 2), the estimated differences are very small (0.4% for
Clinic A and 0.1% for Clinic B). Assuming that all missing data are from
Clinic A (assumption 3) or Clinic B (assumption 4) produces somewhat
higher estimates of the effect of the difference (0.5% and 1.4%, respec-
tively). Assuming more complex patterns of missing data increases the
range of possible effects. Under assumptions 5-10, the pattern of miss-
ing data is the opposite for the two clinics. For example, assumption Sis
that those who in fact were in Clinic A but are missing information on
their clinic received less prenatal care, and that those who in fact were in
Clinic B but are missing this information had more prenatal care. ACross
these assumptions for Clinic A, the difference in the mortality rates be-
tween the two levels of prenatal care ranges from —2.1% to +5.9%, and
for Clinic B it ranges from —11.5% to 410.3%. The estimates of the
percentage difference effects are greatest for the most complex assumed
patterns for the missing data, that is, assumptions 9 and 10, where the
missing data pattern is a function of both level of care and survival status
and the effect of level of prenatal care is the opposite in the two clinics.
Given the wide range of estimates in Table 2, it is impossible to infer
for either clinic whether more prenatal care is beneficial. What this exer-
cise does show, however, is that the most extreme estimates of the effect
of prenatal care occur when we assume that the mechanism generating

missing data differs between the two clinics.

3. CONVENTIONAL APPROACHES TO MISSING DATA

The most common approach to incorporating missing data into a loglin-
ear analysis is to add a “missing” category to the variables with missing
data. This is analogous to creating adummy variable in a regression anal-
ysis to indicate that respondents are missing on a variable. In both cases,
inconsistent estimates generally result (Little and Rubin, 1987). We con-
sider the loglinear case here. The inclusion of a missing data category may
affect both estimates of associations among the variables that contain no
missing data and also estimates of associations involving variables that
have missing data. The top panel of Table 3 presents a hypothetical table
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Table 3. Hypothetical Data for Showing the Effects of Using a Missing
Data Category

No Missing Data (N = 3,600)

Marginal Associations

X=0 X=1
Z=0 1,000 800
Z=1 800 1,000
Odds Ratio 1.56
Conditional Associations
Y=0 Y=1
X=0 X=1 X=0 X=1
Z=0 800 400 200 400
Z=1 400 200 400 800
Odds Ratio 1.0 1.0
With Missing Data
Conditional Associations
Y=0 Y=1 Y = Missing
X=0 X=1 X=0 X=1 X=0 X=1
Z=0 640 320 160 320 200 160
Z=1 320 160 320 640 160 200
Odds Ratio 1.0 1.0 1.56

with three variables, X, Y, and Z, in which no data are missing. In this
table X and Z are marginally associated with an odds ratio of 1.56, but,
within levels of variable Y, X, and Z are independent.

Now suppose that 20% of the data on Y are missing purely at random.
The lower panel of Table 3 arrays these data and distinguishes between
missing and nonmissing data by adding a third category to Y. If we exclude
the missing data from the sample, we get the same result as with the origi-
naldata- X and Z are conditionally independent. However, the standard
errors of any estimates will be larger because of the smaller sample. Con-
sider the association between X and Z for those cases in which Y is miss-
ing. For these cases, X and Z are conditionally dependent with an odds
ratio of 1.56, the same odds ratio as in the marginal table between X
and Y in the original data. This is because the missing category contains
cases in which both Y =0 and Y = 1. In fact, because the data are miss-
ing completely at random, it contains the same proportion of cases with
Y =0 and Y = 1 as in the full sample. Thus, the conditional association
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of X and Z for those with missing data is equal to the marginal associatic.)n
between X and Z in the original table, not their conditional relationship.
If one uses both the missing and nonmissing cases and estimates a com-
mon value for the conditional association between X and Z, the estimate
will lie between the marginal and the true conditional association be-
tween X and Z. Because it is impossible to control properly for Y for the
cases with missing values on Y, including a separate category for cas.es
that are missing on Y will not give a consistent estimate for the associa-

tion of X and Z conditional on Y.3

4. LATENT CLASS MODELS

The most common use of latent class models is to account for the associa-
tions among observed categorical variables with one or more latent f:ate—
gorical variables. One examines alternative models for a cross-classifica-
tion of the observed variables and typically assumes that the observed
variables are conditionally independent within categories of the latent
variable(s) (Goodman, 1974; Dayton and Macready, 1980; McCutcheor.l,
1987; Clogg, 1988; Hagenaars, 1988, 1993). By definition, the latent di-
mensions of tables in latent class models have missing data for every
observation. In contrast, in latent class models for missing data, data are
observed for some cases and unobserved for others. Thus, in the approach
discussed here, the latent class models have latent cells rather than latent
dimensions.

In our discussion and analysis of contingency tables with missing data,
we use several configurations of the data. We distinguish among three
configurations: (1) observed table, (2) complete data table, anq (3) ex-
panded table. In the observed table, each variable that has missing data
contains an additional category for missing observations. The compl.ete
data table is the cross-classification of observations that have no missing
data. The expanded table, which is only partially observed, consists of the
substantive variables cross-classified by a set of dichotomous variables
that indicate whether observations are missing on each of the original
variables. We term these variables missing indicators. The expanded table
represents not only how the substantive variables in the data are related
to each other, but also how the missing indicators relate to each other and
to the substantive variables.

We illustrate the relationships among these tables using the infar}t
mortality data shown in Table 1. The data contain four variables.: CI%HIC
(C), prenatal care ( P), survival status (S), and a missing on clinic indica-
tor (M) coded not missing = 0 and missing = 1. The 24 table of C by P
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by S by M is the expanded table. It contains two 2* subtables. One sub-
table table consists of the cross-classification of C by P by .S on the data
with no missing values on C. This is the complete data table and is equiva-
lent to subtable (a) in Table 1. The other subtable is a 2° subtable of the in-
complete data. This is subtable (b) in Table 1 cross-classified by the un-
observed clinical status of these individuals. Thus, this 23 table for the
incomplete data is latent. The union of the complete data table with the
two-way margin for the incomplete data is the observed table, which is
simply Table 1.

5. LOGLINEAR-LATENT CLASS MODELS FOR MISSING DATA

Missing data can be incorporated into an analysis by applying loglinear
models to the expanded table. Because neither table is directly observed,
we require a latent class model. Assuming that observations are obtained
under a multinomial sampling scheme, we see that a loglinear model for
the expanded table in the infant mortality example is

log mijir = A+ AM + 45 + 40 + 47 + A+ )P+

CP _ 4CS | yPS_ yMCP MCS MPS
+A AT F AL A AT Ay

2SS 4 2MCPS,
where 7;1; denotes the probability that an individual falls into the cell
for the ith level of M (i =0,1), the jth level of C (j = 0,1), the kth level
P (k=10,1), and the /th level of the S (! = 0,1). Here, A is determined by
the constraint that Zijk, miji = 1, and the remaining A’s are parameters,
some of which may be zero. (For example, A]CkP denotes the clinic by
prenatal care association for a contrast involving the jth clinic and the
kth prenatal care categories.) We assume that these parameters satisfy
the typical constraint that the sum of all parameters of a particular type
is zero.

Let fij« represent the observed frequency in the ijk/th cell. When
this cell is not directly observed, we denote the hypothetical frequency by
ikt If i = 0 when clinic is known and i = 1 when clinic is missing, then
we observe the collapsed tables fi .y = f,, + fii» but not the f,, or
113w separately. The log-likelihood function for the model is

log L= fous log(mojut) + D fisas og(mions + muue),
JKl kl

where the first summation is for cells that are not missing and the sec-
ond summation is for cells that contain missing data. The terms contained
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in the first summation follow the form for likelihood terms in a loglin-
ear model (e.g., Agresti, 1990, p. 166), whereas the terms in the second
summation follow the form for likelihood terms in a latent class model
(Andersen, 1980, p. 260). Our missing data model, therefore, combines
elements of loglinear and latent class models.

6. TYPES OF MISSING DATA MODELS

The discussion of missing data patterns in Table 2 showed that estimates
of the effect of prenatal care depend critically on assumptions about hgw
the missing data are distributed. Having shown how to include missing
data into a loglinear analysis through the use of the expanded table, we

can examine specific models.

A. MCAR Models

The most restrictive model assumes that data are missing completely at
random (MCAR) (Little and Rubin, 1987). This means that the missing
indicators are assumed to be independent of all other variables. Consider
the hypothetical data in Table 3 where there are three variables, X, Y,
and Z,and there is missing information on Y for some cases. Let M be
the missing data indicator for Y. Then the MCAR model for these da'lta
is equivalent to (M) (XY Z), where we have used the parentheses to 1n-
dicate an arbitrary set of associations among X, Y, and Z. The models
(MY(XY)(YZ), (M)(XZ)(Y), and (M)(XYZ) are all examples of mod-
els in which the data are assumed to be MCAR. In each of these cases,
whether data are missing, as indicated by M, is assumed to be indepen-
dent of the other variables in the model. When data are MCAR, they
can be omitted from the analysis without affecting parameter estimates.
However, because omitting missing data reduces the sample size, it re-
duces the precision of estimated parameters involving variables that have

no missing data.

B. MAR Models

A less restrictive and usually more realistic assumption is that whether a
variable is missing is a function of the values of other observed variables;
that is, data are missing at random (MAR), conditional on the observed
data (Little and Rubin, 1987). With MAR data, whether a variable is
missing for a particular case is random conditional on the observed values
on the other variables. In terms of our hypothetical data in Table 3, MAR
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models are of the form (M XZ) (XYZ), where, as before, the associations
among the variables inside the parentheses are arbitrary. These models are
MAR because M is conditionally independent of the variable it pertains
to, Y. Typically, the inclusion of MAR data has very small effects on the
estimated relationships between the variable that has missing data and
the other variables. However, dropping cases with missing data may affect
the estimated associations among the other variables in the model. Thus,
incorporating cases with missing data into the analysis may affect both
the precision and consistency of the estimates for the relationships among
variables that do not have missing data (Winship and Mare, 1989).

C. NINR Models

When the probability that a variable has missing data is associated with
the variable itself conditional on the other variables in the model, this re-
quires a model for nonignorable nonresponse,or NINR. NINR models are
required when it is likely that some survey respondents refuse to answer
a question. For example, persons with unusually high or low incomes may
be less willing to divulge their incomes than persons with incomes in the
middle of the income distribution. Elsewhere (Winship and Mare, 1989)
we examined data on whether individuals had ever been arrested. Here,
one would expect that persons who had been arrested would be less likely
to answer the question than those who had not been arrested.* In our hy-
pothetical data, any model that assumes dependence between M and Y is
a NINR model. For example (MY) (XY)(YZ), (MY) (MX) (XY)(YZ),
and (MY Z) (XY) (YZ) are all NINR models.

When data are in fact subject to nonignorable nonresponse, omitting
observations with missing values results in estimates that are not only
inefficient but inconsistent as well. Often the bias can be considerable.
For example, in Table 2, assumptions 3 through 10 are consistent with
a variety of NINR models. Depending on what assumptions one makes
about the true values of the missing data, one gets quite different estimates
for the effect of Prenatal Care on Survival. Unfortunately, NINR models
can often be difficult to estimate.

7. FITTING MISSING DATA MODELS TO INFANT
MORTALITY DATA

We can illustrate the fitting of alternative missing data models with the
data in Table 1. Table 4 presents the estimated likelihood ratio G? and
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Table 4. Goodness of Fit of Selected Models for Infant

Mortality Data

Model G? df BIC

Complete Data
1. SC PC 0.08 2 —13.06

MCAR Models
2. MSPC 24.81 7 —23.33
3. MSPPC 20.02 5 —14.37
4. MSC PC 7.98 5 —26.41
5. MSCPCSP 7.84 4 —19.67

MAR Models
6. MPSPC 20.13 5 —14.26
7. MP PCSP 15.33 4 —12.18
8. MPSC PC 3.30 4 2421
9. MPSCPCSP 3.16 3 —17.47
10. MS PCSP 17.83 4 —9.68
11. MS SC PC 5.79 4 -21.72
12. MSSC PCSP 5.65 3 —14.98
13. MSMP PC 17.94 4 -9.57
14. MSMPSP PC 13.55 3 —7.08
15. MSMP SC PC 1.57 3 —19.06
16. MS MP SC PC SP 1.38 2 —12.37

NINR Models
17. MCS PC 20.13 5 —14.26
18. MC PCSP 15.33 4 -12.18
19. MC SC PC 2.26 4 —25.25
20. MC SC PCSP 2.00 3 —18.63
21. MCMPS PC 20.13 4 -7.38
22. MC MP PCSP 15.33 3 -5.30
23. MCMP SC PC 0.39 3 -20.24
24. MC MP SC PC SP 0.39 2 —13.36
25. MC MS PC 17.94 4 -9.60
26. MC MS PCSP 13.55 3 -7.08
27. MC MS SC PC 1.64 3 —18.99
28. MC MS SC PC SP 1.40 2 —12.35

Bayesian information criterion (BIC) (Raftery, 1995) statistics for the
complete data and selected missing data models. In this analysis, we regard
infant mortality as the response variable and clinic and prengtal care as
the explanatory variables. Thus, we consider only models thzjt include the
association between prenatal care and clinic (PC). The G? values here
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should be viewed with caution. Because several of the frequencies in
Table 1 are very small, the G? statistics may not follow a X? distribution
(Agresti, 1990).

For the complete data, model 1, which includes all one-way effects
and the two-way associations between Survival Status and Clinic (SC),
and between Prenatal Care and Clinic (PC), fits the data extremely well
(G? = 0.08, df = 1), implying that Prenatal Care and Survival Status are
conditionally independent within clinics. The data, therefore, suggest that
the level of prenatal care does nor affect the probability that an infant
will survive (Bishop et al., 1975; Little and Rubin, 1987). If we include
the missing data, then a much larger class of models is available. Among
MCAR models, the (M) (SC) (PC) model (model 4), which is analogous
to the best-fitting complete data model, fits the data well (G? = 7.98,
df = 5). This is an adequate fit, assuming that G? does in fact follow a X?
distribution for these data.

Although the fit of the MCAR model is reasonable, it is nonetheless of
interest to examine MAR and NINR models for these data. Considering
these models as a whole, one can draw a number of general conclusions.
First, models that do not contain both the (SC) and (PC) associations fit
the data poorly. Second, for all three types of missing data models, the
(S P) association appears to be statistically insignificant. Thus, for these
data, our analysis is consistent with the analysis of the complete data
alone. The data support the assumption that prenatal care and survival
status are conditionally independent.

Across the three types of missing data models, however, there are some
interesting differences. MAR models fit better than their corresponding
MCAR models by the G? criterion. Whereas the (M) (SC) (PC) model
has a G? of 7.98 on 5 degrees of freedom, the two comparable MAR
models where M is assumed to be a function of Level of Prenatal Care
(8) or Survival Status (11) have G? of 3.30 and 5.79, respectively (df = 4).
Differencing these amounts from the MCAR G?, we get G? statistics of
4.68 and 2.19 (df = 1). Assuming that G? follows a X? distribution, we see
that the first of these differences is significant at the 0.05 level, indicating
that a significant improvement in fit is achieved by assuming that M is
associated with level of prenatal care (). Adding the (MS) term to the
(MP) (SC) (PC) model lowers the G? to 1.57 (Model 15), but this decre-
ment is not statistically significant. The NINR models also fit the data bet-
ter by the G? criterion. A model in which the likelihood of having missing
data is simply a function of the clinic, that is, (MC) (SC) (PC), gives a G*
of 2.26 on 4 degrees of freedom (Model 19). This model has a lower G*
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with the same degrees of freedom as the MAR model (MP) (SC) (PC)
(Model 8), although a nested comparison between these two models is
obviously impossible. The (MC) (SC) (PC) model implies that the like-
lihood of missing data on clinic is only associated with which clinic a
mother was served by. Adding an (MS) term to the model lowers the G?
to 1.64 (df = 3) (Model 27). Alternatively, adding an (MP) term to the
(MC) (SC) (PC) model lowers the G? to 0.39 (Model 24), an extremely
good fit. Neither of the changes, however, is significant at the 0.05 level,
assuming a X2 distribution for G?. With considerations of fit, parsimony,
and plausibility, we conclude that Model 19 is the most satisfactory model
for the data.

It is certainly possible to conceive of more complex NINR models.
Table 2 illustrated how various assumptions about the pattern of missing
data lead to substantial differences in estimates for the effect of Level of
Prenatal Care on Survival. Cases 5 through 10 in Table 2 are all equiva-
lent to saturated NINR models, that is, models that fit the data perfectly
and that have zero degrees of freedom. Many of these models are also
unidentified and, by definition, cannot be tested against the data. All
of these models assume that the missing mechanism has a three-way or
higher interaction with the clinic and another variable. For example, cases
5and 6 assume a three-way interaction among M, C, and P. Cases 9 and
10 assume a four-way interaction among M, C, P, and S. These models all
assume that in the two clinics different types of data are likely to produce
missing data on clinic. Without some assumptions we cannot rule out the
estimates associated with these allocations. If, however, we assume that
the missing data mechanism is the same in the two clinics except for the
rate at which missing data occurs, then this rules out these possibilities.
The (MC) (SC) (PC) model represents this assumption.

8. EXAMPLE 2: INTERGENERATIONAL
EDUCATIONAL MOBILITY

A common use for loglinear models is the analysis of intergenerational
social mobility. These analyses typically focus on cross-classifications of
parents’ and offsprings’ socioeconomic characteristics derived from retro-
spective reports by the offspring. A problem for these analyses is missing
data on the parents’ characteristics. In this example, we examine the asso-
ciation between father’s schooling and offspring’s educational attainment,
using data from the 1994 General Social Survey (GSS) and the Survey of
American Families (SAF). The 1994 GSS, a cross-section survey of the
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Table 5. Offspring’s Educational Attainment by Father’s
Educational Attainment

Offspring’s Schooling
Father’s Schooling <12 12 >12
<12 46 135 113
12 12 75 145
>12 4 30 206
Missing 23 29 18

Source: 1994 General Social Survey, respondents age 18 and older
with a sibling interviewed in the Survey of American Families.

U.S. population, included a module on the socioeconomic characteris-
tics of persons related to GSS respondents, including parents, children,
spouses, and siblings. The SAF was a telephone survey administered to
one randomly selected sibling of the GSS respondents (Mare and Hauser,
1994). Table 5 cross-classifies father’s and respondent’s schooling as re-
ported by respondents in the GSS. These data were restricted to persons
age 18 and older who had a sibling who was interviewed in the SAF. Of
the 836 persons included in the table, 70, or 8.4%, failed to report their
father’s educational attainment. This may be construed as a relatively
modest amount of missing data, and some researchers would simply omit
observations in which father’s schooling is missing. This decision, how-
ever, may have a big effect on one’s estimates and inferences. One way of
seeing the consequences of omitting missing data is to examine the esti-
mated distribution of father’s schooling and association between father’s
and offspring’s schooling under several alternative hypothetical patterns
of missing data. Table 6 shows the four local odds ratios for the 3 x 3
table of father’s schooling by offspring’s schooling under four scenar-
ios: (1) data missing completely at random; (2) missing observations on
father’s schooling are all drawn from respondents whose fathers have less
than 12 years of schooling; (3) missing observations are all drawn from
respondents whose fathers have more than 12 years of schooling; and
(4) missing observations are all drawn from the same level of schooling
as the respondent. Under these alternative assumptions, the proportions
of persons whose fathers have less than 12 years of schooling ranges from
approximately 33% to approximately 40%. The estimated local odds
ratios under alternative assumptions about missing data vary substan-
tially. For example, the local cross-product ratio between whether a father
is a high school graduate versus a dropout and the corresponding contrast
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Table 6. Local Odds Ratios and Distributions of Father’s Schooling Under
Alternative Assumptions about Missing Data

Local Odds Ratios Distribution of Father’s Schooling

<12/12 12/>12 <12 12 >12
1. Observed Data
<12/12 213 2.31
0.384 0.303 0.313
12/>12 1.20 3.55
2. Missing Data All Taken from Diagonal
<12/12 4.43 1.67
0.354 0.293 0.352
12/>12 0.87 5.36
3. . Missing Data All Taken from <12
<12/12 2.62 2.42
0.409 0.257 0.332
12/>12 1.20 3.55
4. Missing Data All Taken from >12
<12/12 2.13 231
0.328 0.257 0.413
12/>12 0.35 1.96

Source. Table 5.

for offspring varies between 2.13 for data missing at random and 4.43 for
data missing exclusively from persons who have the same schooling level
as their fathers.

We can examine the association between father’s and offspring’s
schooling while taking account of missing data by using variants of the
missing data models discussed earlier. Although data may be missing
completely at random, it is more likely that whether data are missing on
father’s educational attainment is associated with a respondent’s own ed-
ucational attainment and possibly father’s educational attainment itself.
The former problem may arise because better educated respondents are
more likely to be cooperative and conscientious in answering survey ques-
tions. The latter problem may arise if respondents perceive that it is de-
sirable to have a better educated father or if individuals with more poorly
educated fathers are less likely to know their father’s schooling. Some off-
spring of fathers with low levels of educational attainment may misreport
their father’s schooling, but others may simply not report it.

By itself, Table 5 provides limited information with which to inves-
tigate the impact of missing data on our estimates of the distribution of
father’s education or of the association between father’s and offspring’s
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education. That better educated respondents may be more likely to re-
port their father’s schooling can be investigated with this table. If this is
the only systematic source of missing data, and if father’s and offspring’s
educational attainments are associated, this idea can be represented as a
saturated MAR model for this table. However, the idea that whether data
are missing on father’s schooling is associated with father’s schooling itself
requires amodel of nonignorable nonresponse (NINR), which is notiden-
tified from these data. To investigate nonignorable nonresponse requires
a variable that is associated with father’s schooling but not with whether
father’s schooling is missing. Such variables are difficult to find because
most characteristics of an individual that are associated with father’s
schooling are also associated with the individual’s propensity to report
father’s schooling. A solution to this problem is to use the responses to the
same item in an independent interview conducted with a person related to
the original respondent. The SAF asked a sibling of each GSS respondent
to report on father’s schooling. Table 7 cross-classifies GSS respondent’s
report of father’s schooling, GSS respondent’s report of his or her own
schooling, and the SAF respondent’s — that is, GSS respondent’s sibling’s -
report of father’s schooling. This table includes categories for missing data
on both reports of father’s educational attainment and can be used to ex-
amine a variety of models for missing data.

These models can be regarded as applying to an expanded table that
includes separate dimensions for the substantive variables of interest and
for whether these variables are missing. The 3 x 3 x 3 x 2 x 2 expanded
table has the following five dimensions: GSS respondent’s educational at-
tainment (Q), GSS respondent’s report of father’s educational attainment
(Fg), SAF respondent’s report of father’s educational attainment (Fs),
whether Fg is missing (M), and whether Fy is missing ( Ms). For exam-
ple, from Table 7 we can identify GSS respondents who have missing data
on father’s schooling classified by their own schooling and their siblings’
reports of father’s schooling, We do not know the educational attainment
of these individuals® fathers (although a large fraction of these individ-
uals have the same father as their sibling'and, for them, their father’s
education can be inferred). Thus, for a given level of own schooling and
sibling’s report of father’s schooling, GSS respondents who have missing
data on their own report of father’s schooling are distributed in an un-
known way across categories of their father’s schooling. Our models for
missing data are based on selected interactions among the five dimensions
of this expanded table.
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18

Missing Offspring’s
Schooling

<12
12

16

>12
177

>12
Offspring’s
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12
13
21
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13
109
23

>12
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11
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<12
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Many logically possible models may be fit to the frequenciesin Table 7.
We limit the range of possible models through the following substantive
considerations. First, because of the well-known correlation between the
socioeconomic positions of parents and offspring, father’s and offspring’s
educational attainment are associated. Indeed, this association provides
the substantive interest in this table. Inasmuch as the GSS and SAF re-
spondents’ reports of father’s educational attainment ( F; and Fs) apply to
the same individual in most families, they are two reports of the same trait
and thus both of these measures are associated with offspring’s school-
ing. Thus, all models should include the F5O and the FsO associations.’
Second, inasmuch as most siblings share the same father, their reports
of father’s schooling are likely to be strongly associated. Thus, all of our
modelsinclude the F¢ Fs association. Third, siblings’ propensities tofail to
report father’s schooling may be associated, either because of a shared re-
luctance to provide this information or a shared ignorance of their father’s
schooling. For most models, therefore, we include the Mg My association.
Fourth, it is an empirical question whether data are missing on father’s
schooling is associated with respondent’s own educational attainment and
with father’s schooling itself. Thus, we examine alternative models with
and without the OMg, OMs, FeMg, and FsMs associations. Finally, we
assume that whether a person reports father’s schooling is conditionally
independent of his or her sibling’s reported level of father’s schooling,
given the association between each sibling’s reported level of father’s
schooling. Thus, we assume the absence of the F; My and the FsM,; asso-
ciations. These are the key restrictions for identifying NINR models for
these data.

Table 8 presents goodness-of-fit statistics for selected models fit to
the observed data in Table 7. Model 1 is an MCAR model in that it

Table 8. Goodness of Fit of Selected Models for Educational Mobility Table

G? df BIC

Model

CENA LA W

FgFs, FgO, FsO, Mg, Ms (MCAR)
FGFs, Fs0, FsO, MgMs (MAR)

FGFs, F50, FsO, OMg, MgMs (MAR)

FGFs, FGO, FsO, OMs, MgMs (MAR)

FGFs, F30, FsO, OMg, OMs, McMs (MAR)

FgFs, FGO, FsO, FGMg, FsMs, MgMs (NINR)

FG Fs, F50, FsO, OMg, OMs, FoMg, McMs (NINR)

FGFs, Fs0, FsO, OMg, OMs, FsMs, MgMs (NINR)

FGFs, F50, FsO, OMg, OMs, FocMg, FsMs, MMs (NINR)

1,470.6 27 12889
117.9 26 =570
73.6 24 —87.9
871 24 -744
515 22 —-96.5
480 22 -1000
462 20 —~884
285 20 -106l
203 18 1008
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assumes conditional independence of whether data are missing on the
two measures of father’s schooling from any of the other dimensions of
the table. This model includes parameters for the marginal distributions of
whether data are missing on F and Fs (Mg and Ms, respectively), but no
association between whether data are missing on these two variables. As
indicated by both the likelihood ratio G2 and the BIC statistics (Raftery,
1995), this model fits very poorly.

Models 2-5 are MAR models. Model 2 includes a parameter for the as-
sociation between Mg and M and fits the data much better than Model 1.
This suggests that GSS respondents and their siblings both fail to report
their father’s schooling at a much higher rate than one would expect if
their rates of nonresponse were statistically independent. Common fam-
ily circumstances may determine whether offspring know their father’s
educational attainment. Models 3,4, and 5 incorporate parameters for the
association between GSS respondent’s schooling and whether GSS and
SAF respondents’ have missing data on father’s schooling. Inclusion of
both of these associations significantly improves the fit of the model. The
OMg association implies that better educated respondents differ from
more poorly educated respondents in their level of cooperation with the
survey or their knowledge of their father’s schooling. The O M; associa-
tion may arise because the table does not include a dimension for SAF
respondent’s own educational attainment. Given a strong correlation be-
tween siblings’ educational attainments, we observe an O Mg association
when the schooling of SAF respondents is not taken into account.

Models 6-9 are NINR models that include associations between Fg
and Fs on the one hand and Mg and Ms on the other. Model 6 includes the
FeMg and Fs Mg associations, but it excludes the associations between Mg
and Ms and GSSrespondent’s educational attainment (0). This model fits
much better than Model 2, the corresponding MAR model (G,? ~ Gg* =
69.9,4 df, p <.001), and it provides provisional evidence of nonignorable
nonresponse. Model 6, however, does not fit the data well by the G2
criterion. A more stringent test for NINR is to estimate the Fo Mg and
FsMs associations in the presence of the OMg and OMjs associations.
Models 7 and 8 include the FgMg and Fs M associations, respectively,
as well as OMg; and OMs. Model 7 fits marginally better than Model 5,
the corresponding MAR model (G? — G = 5.3,2 df; p = .071), whereas
Model 8 fits much better than Model 5 (G2 — GZ = 23.0, 2 df, p < .001).
This provides strong evidence for NINR for Fs and somewhat weaker
evidence for Fi. Model 9 includes the OMg, OMs, FGMg, and FsMg
associations and fits significantly better than Model 5 as well as the three
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Table 9. Estimated Association Parameters
for NINR Model (Model 9)

Model Terms A SE(\) exp(A)

MsMg 0.670 0.358 1.954
Fc1oFs13 3.868 0.294 47.847
Fe12Fs.12 3.967 0.570 52.826
Fg.12Fs2 4476 0.646 87.882
Fea12Fs.12 8.056 0.778 3,152.654
F1205 0.075 0.501 1.078
Fo120.13 0.704 0.488 2.022
F;.12012 —0.285 0.876 0.752
FG.120.12 1.562 0.836 4,768
Fs1,0, 0.645 0.514 1.906
Fs0.1; 0917 0.504 2.502
Fs. 120, 1.325 0.858 3.762
F5.120.12 1.606 0.831 4,983
Foia Mg -0.197 0.462 0.821
Fo. Mg —-2.292 1.469 0.101
Fg1o Mg -2.156 1.233 0.116
Fg.10 Ms -2.672 0.951 0.069
O Mg -0.924 0.326 0.397
0.1 Mg —-1.620 0.281 0.198
O Mg —0.883 0.351 0.414
0,12 Ms ~(.865 0.378 0.421

other NINR models. By the likelihood ratio criterion, Model 9 is the best
fitting model (G5 = 20.3,18df, p = .316), although the BIC indicates that
Model 8 is slightly more satisfactory.

Table 9 presents estimates of two-way association parameters and par-
tial odds ratios from Model 9, which reveal the systematic nature of miss-
ing data on father’s educational attainment. First, the estimated partial
odds ratio for the two missing data indicators (Mg M) indicates a pos-
itive association between siblings’ propensities to fail to report father’s
educational attainment. The SAF respondent is almost twice as likely to
have missing data on father’s schooling if his or her sibling in the GSS fails
to report father’s schooling than if the sibling reports father’s schooling.
Second, more highly educated GSS respondents are much more likely to
report their father’s schooling than their more poorly educated counter-
parts. Relative to GSS respondents who were high school dropouts, for
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example, those who had more than a high school degree had odds of not
reporting father’s schooling that are only one fifth as great. Finally, miss-
ing data on father’s educational attainment is associated with the level
of father’s education. For example, for SAF respondents whose fathers
had more than a high school degree, the odds of missing data are only
approximately 7% of the odds for SAF respondents whose fathers were
high school dropouts. Both the parameter estimates and the goodness-
of-fit tests provide more evidence of nonignorable nonresponse for SAF
respondents’ reports of fathers’ schooling than for GSS respondents’ re-
ports. This may occur because GSS respondents’ own educational attain-
ments are controlled in our models, whereas SAF resondents’ attainments

are not.

9. ESTIMATION AND IDENTIFICATION

A. Estimation

The estimates reported in this paper were calculated by using
DNEWTON, a flexible program for the estimation of latent class mod-
els, including models with latent cells such as the ones discussed in this
paper (Haberman, 1989). Further discussion of DNEWTON is provided
in the Technical Appendix. A good alternative to DNEWTON is LEM
(Vermunt, 1996), which has similar capabilities. The development of sev-
eral user-friendly latent class programs has substantially reduced the bur-
den of estimating latent class models. Although modern software makes
the estimation of loglinear models for missing data feasible, several esti-
mation problems nonetheless are common. These include (1) failure of
the program to converge; (2) estimates on the boundary of the parameter
space; (3) cells with small expected frequencies (< 5), and (4) poor model
fit. These important issues, which are problems for latent class models
more generally, are discussed in the introductory chapter of this volume.

B. Identification

Consider the hypothetical data shown in Table 3 consisting of variables
X, Y, and Z but collapsed over Z.If we add to this a variable M indicating
whether information on Y is missing for a case, we then have a 2’ table
of X by Y by M. This is shown in Table 10 both as a 2 x 3 subtable of the
observed table and as a 2° expanded table that is partially latent. In a
complete eight-cell table, a fully saturated model has seven parameters
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Table 10. Hypothetical Data from Table 3
Collapsed Over Z

(a) Observed Table
Y=0 Y=1 Y =DMissing

X=0 960 480 360
X=1 480 960 360
(b) Expanded Table
M=0 M=1
Y=0 Y=1 Y=0 Y=1 Total
X=0 960 480 ? ? 360
X=1 480 960 ? ? 360

(plus a grand mean). However, Table 10 has only six cells - four for
the X-Y complete data subtable and two for the categories of X among
respondents with missing data on Y. Therefore, a model with at most
five parameters is identified. If one fits a marginal parameter for each
of the dimensions X, Y, and M, then, among hierarchical models, the
most complex five-parameter model can include at most two two-way
interactions. The potential models are as follows: (1) (M X) (XY) (MAR
Model); (2) (MY) (XY) (NINR Model); and (3) (MX) (MY), which is
not identified.

To see that the (M X) (MY) model is not identified, note that in panel
(b) of Table 10 one can observe the association between X andY for
the complete data. The (M X) (MY) model assumes that the partial X~
Y association (conditional on M) is zero, which can be tested by using the
complete data. That we can test that the X-Y interaction is zero means
that a parameter for this association is identified, irrespective of whether
other parameters of the (MX) (MY) model are not identified. Such a
test would use 1 degree of freedom, leaving only 4 degrees of freedom
for estimating the five parameters of the (MX) (MY) model. Thus the
(MX) (MY) model cannot be identified.

MAR models are usually identified, even if data are missing on several
variables (Little and Rubin, 1987, pp. 171-94). A sufficient condition for
identification of MAR models is that some observations are complete on
all variables and that these observations represent all possible combina-
tions of the variables in the model (Fuchs, 1982).

General rules for the identification of NINR models have not yet
been developed. Some guidance is available, however, from results on
the identifiability of NINR models for two-way tables and from rules for
identification of latent class models. Little and Rubin (1987, pp. 238-9)
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summarize the identifiability of models for two-way (J x K) tables in
which one dimension of the table has missing observations. Denote the
dimensions of the table by X and Y. Let all observations be present for
X, but some observations on Y be missing. Let a third variable, M, de-
note whether data are missing on Y. Among the several loglinear models
that can be fit to the X, Y, M table, NINR models are those that include
the M-Y interaction. The only NINR model that is potentially identifi-
able is (MY) (XY), that is, a model in which the fully observed variable
is associated with the partially observed variable, but is independent of
whether data are missing on the partially observed variable. This model
is identified if J > K, that is, if the number of categories of the fully ob-
served variable is at least as large as the number of categories of the
partially observed variable. In a 2 x 2 table, / = K and the model is just
identified.

These results suggest that NINR models are identified if (1) for every
partially observed variable, there exists a fully observed variable that is
conditionally independent of the missing data indicator; and (2) the num-
ber of categories of the partially observed variable does not exceed the
number of categories of the fully observed variable. The fully observed
variable plays a role in identifying the model that is analogous to an in-
strumental variable in a structural equation model, and the condition is
equivalent to assuming that parameter for the two-way interaction b(?-
tween the fully observed variable and the missing indicator is zero. This
restriction can sometimes also be met by assuming that higher-order in-
teraction terms are zero. Baker and Laird (1988), for example, estimate
a model in which two fully observed variables both affect the missing
indicator, but the model is identified because the three-way interaction
among the variables is assumed to be zero.

An intuitive way of understanding the identifiability of some NINR
models is to note that they are often similar to standard latent class models
that are analogous to factor models (e.g., Goodman, 1974). Consider the
NINR (MC) (SC) (PC) model for the Little-Rubin data. If C were miss-
ing on every observation, the model would be a standard latent class model
in which C is a latent “factor” and M, S, and P are its observed “indica-
tors.” The model assumes that M, S, and P are conditionally independent
given C. If C were missing on every case, however, the model would qot
be identified without either another indicator for C or additional restric-
tions on the parameters. In the pure latent variable case, we observe
only the two-way relationship between P and S, which is insufficient
for estimating the associations between both § and C and also P and C.
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But when data are missing for only some of the cases, we observe the
relationship between S, P, and C in the complete data. Thus we can esti-
mate both the S-C and P-C associations simply from the complete data.
Only the relationship between M and C has to be estimated indirectly.
When C is partially observed, therefore, this NINR model is identified.

10. CONCLUSION

Conventional methods of dealing with missing data in multivariate models
run serious risks. Omitting observations with missing data from an anal-
ysis certainly reduces sample size (and thus the precision of estimates)
and, at worst, may lead to severe biases in parameter estimates. Simply
incorporating missing data by adding categories for missing data to the ob-
served variables generally results in inconsistent estimates. Fortunately,
alternatives to the conventional approaches provide powerful methods
for investigating the degree to which data are missing systematically and
for carrying out appropriate substantive analyses.

The approach illustrated in this chapter® is to extend standard analy-
ses of categorical data by recognizing that when some data are missing,
the resulting contingency tables have cells that are partially observed. We
suggest that one analyze such data by using latent class loglinear models
for tables that have a mixture of fully and partially observed cells. This
approach enables one to investigate hypotheses about the mechanisms
by which missing data come about as well as the substantive relationships
of interest. Inasmuch as these models are simply variants of standard
loglinear models, one can incorporate missing data by using well-known
procedures for specifying multiway interactions in contingency tables.
Unlike standard loglinear models for fully observed data, however, these
models typically require that the analyst incorporate additional data or
make simplifying assumptions to identify the relationships between
substantive variables of interest and indicators of whether data are

missing.
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NOTES

1. Fuchs (1982), Little and Rubin (1987), Baker and Laird (1988), Winshi.p and
Mare (1989), and Park and Brown (1994) provide a technical discussion of
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how missing data can be incorporated into loglinear models. In this chapter,
we discuss the key ideas needed for the researcher to incorporate missing data
in a loglinear analysis.

2. These programs can estimate loglinear models with arbitary patterns of miss-
ing data. As a result, we do not need to consider the issues found in earlier
literature as to whether the missing data pattern is monotone and/or whether
the likelihood can be factored (Little and Rubin, 1987).

3. Winship and Mare (1989) provide a more extensive analysis of this exam-
ple. In particular, we show that the estimated effect for the association be-
tween X and Z is biased when we add a missing data category to Table 3.

4. Econometric models for sample selection bias are examples of NINR models
(Winship and Mare, 1992).

5. A related set of models explicitly distinguishes between the “true” father’s
schooling and the fallible reports of father’s schooling provided by each sib-
ling. This distinction can be incorporated into latent class models, We do not
consider these models in this chapter.

6. This research was supported by National Science Foundation Grants SBR-
94-11875 and SBR-94-11670, and by the Graduate School of the University
of Wisconsin-Madison.

Appendix A: Notational Conventions

The purpose of this appendix is to indicate the similarities among what
might, at first reading, appear as highly disparate forms of notan(?n usetd
by the various contributors to this volume. The following discussion will
be most accessible to those who are familiar with the basic latent class
model. Thus, it is recommended that readers familiarize themselves with
the notational styles in the two introductory chapters, Chapters 1 and 2,
before reading through this appendix.

As with nearly all statistical models, the latent class model can be
expressed by using a variety of different notational conventions. The
problem of differing notation is exacerbated with the latent class model
because the LCM can be parameterized in two seemingly different,
though equivalent, parameterizations: probabilistic and loglinear (see
McCutcheon, Chapter 2).

The probabilistic parameterization — the most commonly used param-
eterization —was first introduced to a broader audience by Goodman, who
used the iterative proportional fitting estimation method (1974a, 1974b).
Goodman adopted a horizontal “overbar” notational style to represent
conditional probabilities; thus, in this notational style, the basic latent

class model is represented as

T
ABCD X_Ax_Bx_CX_DX
Tijki :Z”z T g Ty e~ s
! 1

=

where the symbol ;¥ represents the latent class, or mixing, propprtion
P(X =t). This is a relatively widespread and common representation us-
age, although some authors occasionally elect to use some other charac-
ter than X to represent the latent variable, and some choose to use some
other letter thant = 1, ..., T to represent the specific classes of the latent
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