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Introduction 

The overwhelming majority of OLS regression models estimated in the social sciences, 
and in sociology in particular, enter all independent variables as main effects.  Few re-
gression models contain many, if any, interaction terms. Most social scientists would 
probably agree that the assumption of constant effects that is embedded in main-effects-
only regression models is theoretically implausible. Instead, they would maintain that 
regression effects are historically and contextually contingent; that effects vary across 
individuals, between groups, over time, and across space.  In other words, social scien-
tists doubt constant effects and believe in effect heterogeneity.   

But why, if social scientists believe in effect heterogeneity, are they willing to substan-
tively interpret main-effects-only regression models?  The answer—not that it’s been 
discussed explicitly—lies in the implicit assumption that the main-effects coefficients in 
linear regression represent straightforward averages of heterogeneous individual-level 
causal effects. 
 The belief in the averaging property of linear regression has previously been chal-
lenged. Angrist [1998] investigated OLS regression models that were correctly specified 
in all conventional respects except that effect heterogeneity in the main treatment of in-
terest remained unmodeled. Angrist showed that the regression coefficient for this 
treatment variable gives a rather peculiar type of average—a conditional variance 
weighted average of the heterogeneous individual-level treatment effects in the sample. If 
the weights differ greatly across sample members, the coefficient on the treatment vari-
able in an otherwise well-specified model may differ considerably from the arithmetic 
mean of the individual-level effects among sample members.  

In this paper, we raise a new concern about main-effects-only regression models. 
Instead of considering models in which heterogeneity remains unmodeled in only one 
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effect, we consider standard linear path models in which unmodeled heterogeneity is 
potentially pervasive.  

Using simple examples, we show that unmodeled effect heterogeneity in more than one 
structural parameter may mask confounding and selection bias, and thus lead to biased 
estimates. In our simulations, this heterogeneity is indexed by latent (unobserved) group 
membership. We believe that this setup represents a fairly realistic scenario—one in 
which the analysts has no choice but to resort to a main-effects-only regression model 
because she cannot include the desired interaction terms since group-membership is un-
observed. Drawing on Judea Pearl’s theory of directed acyclic graphs (DAG) [1995, 
2009] and VanderWeele and Robins [2007], we then show that the specific biases we 
report can be predicted from an analysis of the appropriate DAG. This paper is intended 
as a serious warning to applied regression modelers to beware of unmodeled effect het-
erogeneity, as it may lead to gross misinterpretation of conventional path models.  

We start with a brief discussion of conventional attitudes toward effect heterogeneity in 
the social sciences and in sociology in particular, formalize the notion of effect heteroge-
neity, and briefly review results of related work. In the core sections of the paper, we use 
simulations to demonstrate the failure of main-effects-only regression models to recover 
average causal effects in certain very basic three-variable path models where unmodeled 
effect heterogeneity is present in more than one structural parameter. Using DAGs, we 
explain which constellations of unmodeled effect heterogeneity will bias conventional 
regression estimates. We conclude with a summary of findings.  
 
The Presumed Averaging Property of Main-Effects-Only Regression Models 
The great majority of empirical work in the social sciences relies on the assumption of 
constant coefficients to estimate OLS regression models that contain nothing but main 
effect terms for all variables considered.1 Of course, most researchers do not believe that 
real-life social processes follow the constant-coefficient ideal of conventional regression. 
For example, they aver that the effect of martial conflict on children’s self-esteem is 
larger for boys than for girls [Amato and Booth 1997]; or that the death of a spouse in-
creases mortality more for white widows than for African American widows [Elwert and 
Christakis 2006]. When pressed, social scientists would probably agree that the causal 
effect of almost any treatment on almost any outcome likely varies from group to group, 
and from person to person.  

But if researchers are such firm believers in effect heterogeneity, why is the constant-
coefficients regression model so firmly entrenched in empirical practice? The answer lies 
in the widespread belief that the coefficients of linear regression models estimate aver-
ages of heterogeneous parameters—average causal effects—representing the average of 
the individual-level causal effects across sample members. This (presumed) averaging 
property of standard regression models is important for empirical practice for at least 

                                                
1 Whether a model requires an interaction depends on the functional form of the dependent and/or 
independent variables. For example, a model with no interactions in which the independent vari-
ables are entered in log form, would require a whole series of interactions in order to approximate 
this function if the independent variables where entered in nonlog form.  
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three reasons.  First, sample sizes in the social sciences are often too small to investigate 
effect heterogeneity by including interaction terms between the treatment and more than a 
few common effect modifiers (such as sex, race, education, income, or place of resi-
dence); second, the variables needed to explicitly model heterogeneity may well not have 
been measured; third, and most importantly, the complete list of effect modifiers along 
which the causal effect of treatment on the outcome varies is typically unknown (indeed, 
unknowable) to the analyst in any specific application. Analysts thus rely on faith that 
their failure to anticipate and incorporate all dimensions of effect heterogeneity into re-
gression analysis simply shifts the interpretation of regression coefficients from 
individual-level causal effects to average causal effects, without imperiling the causal 
nature of the estimate.  

 
Defining Effect Heterogeneity 
We start by developing our analysis of the consequences of causal heterogeneity within 
the counterfactual (potential outcomes) model. For a continuous treatment T∈(-∞,∞), let 
T = t denote some specific treatment value and T = 0 the control condition. Y(t)i is the 
potential outcome of individual i for treatment T = t, and Y(0)i is the potential outcome of 
individual i for the control condition.  For a particular individual, generally only one 
value of Y(t)i will be observed.  The individual-level causal effect (ICE) of treatment 
level T = t compared to T = 0 is then defined as: δi   = Y(t)i –Y(0)i. 

  Since δi is generally not directly estimable, researchers typically attempt estimat-
ing the average causal effect (ACE) for some sample or population:  

 
  

€ 

δ = δ i / N
i=1

N

∑  

 We say that the effect of treatment T is heterogeneous if:   

€ 

δ i ≠ δ  for at least one i.  
In other words, effect heterogeneity exists if the causal effect of the treatment differs 
across individuals. The basic question of this paper is whether a regression estimate for 
the causal effect of the treatment can be interpreted as an average causal effect if effect 
heterogeneity is present. 
 
Regression Estimates as Conditional Variance Weighted Average Causal Effects2 
The ability of regression to recover average causal effects under effect heterogeneity has 
previously been challenged by Angrist [1998]. Here, we briefly sketch the main result. 
For a binary treatment, T=0,1, Angrist analyzed situations where the effect of treatment 
varied across strata defined by the values of the covariates X in the model but the OLS 
regression estimated was misspecified to include only a main effect term and no interac-
tions between treatment and X. Angrist showed that the regression estimate for the main 
effect of treatment can be expressed as a weighted average of stratum-specific treatment 
effects, albeit one that is difficult to interpret. For each stratum defined by fixed values of 
X, the numerator of the OLS estimator has the form: δxWxP(X=x), where δx is the 

                                                
2 This presentation follows Angrist 1998 and Angrist and Pischke 2009. 
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stratum-specific causal effect and P(X=x) is the relative size of the stratum in the sample. 
The weight, Wx, is a function of the propensity score, Px=P(T=1 | X), associated with the 
stratum, Wx = Px (1- Px), which equals the stratum-specific variance of treatment. This 
variance, and hence the weight, is largest if Px is .5 and smaller as Px goes to 0 or 1.  

If the treatment effect is constant across strata, these weights make good sense. OLS 
gives the minimum variance linear unbiased estimator of the model parameters under 
homoscedasticity assuming correct specification of the model. Thus in a model without 
interactions between treatment and covariates X the OLS estimator gives the most weight 
to strata with the smallest variance for the estimated within-stratum treatment effect, 
which, not considering the size of the strata, are those strata with the largest treatment 
variance, i.e. with the Px that are closest to .5. However, if effects are heterogeneous 
across strata, this weighting scheme makes little substantive sense: in order to compute 
the average causal effect, 

€ 

δ , as defined above, we would want to give the same weight to 
every individual in the sample. As a variance-weighted estimator, however, regression 
estimates under conditions of unmodeled effect heterogeneity will not converge to the 
(unweighted) average treatment effect.  

 
Path Models with Pervasive Effect Heterogeneity 
Whereas Angrist analyzed a misspecified regression equation that incorrectly assumed no 
treatment-covariate interaction for a single treatment variable, we investigate the ability 
of a main-effects-only regression model to recover unbiased average causal effects in 
simple path models with effect heterogeneity across multiple parameters.  

Setup: To illustrate how misleading the belief in the averaging power of the constant-
coefficient model can be in practice, we present simulations of basic linear path models 
of the form: 

 
       α         B         β 

    
A C 

                      γ 
 
Figure 1: A simple linear path model 
 
where we have repressed the usual uncorrelated error terms. To introduce effect hetero-
geneity, let G = 0, 1 index membership in a latent group and permit the possibility that 
the three structural parameters α, β, and γ vary across (but not within) levels of G. The 
above path model can then be represented by two linear equations: B = AαG + εB and C = 
AγG + BβG + εC. In our simulations, we assume that A~N(0,1) and εB, and εC are iid 
N(0,1), and hence all variables are normally distributed. From these equations, we next 
simulate populations of N=100,000 observations, with P(G=1) =P(G=0)= 1/2. We start 
with a population in which all three parameters are constant across the two subgroups 
defined by G, and then systematically introduce effect heterogeneity by successively 
permitting the structural parameters to vary by group, yielding one population for each of 
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the 23  = 8 possible combinations of constant/varying parameters. To fix ideas, we choose 
the following group-specific parameter values, shown in Table 1: 

 

       

For simulations in which one or more parameters do not vary by group, we set the 
constant parameter(s) to the average of the group specific parameters, e.g. α = (α0 + α1)/2. 
Finally, we estimate a conventional linear regression model for the effects of A and B on 
C using the conventional default specification, in which all variables enter as main effects 
only, C=Aγ + Bβ + ε. 

Recall that G is latent and therefore cannot be included in the model. The parameter, γ 
refers to the direct effect of A on C holding B constant, and β refers to the total effect of 
B on C.3 In much sociological and social science research, this main-effects regression 
model is intended to recover average structural (causal) effects, and is commonly be-
lieved to be well suited for the purpose.  

Results: Table 2 shows the regression estimates for the main effect parameters across 
the eight scenarios of effect heterogeneity. We see that the main effects regression model 
correctly recovers the desired (average) parameters, γ=1 and β=1.5 if none of the pa-
rameters vary across groups (column 1), or if only one of the three parameters varies 
(columns 2-4).  

Other constellations of effect heterogeneity, however, produce biased estimates. If αG 

and βG (column 5); or αG and γG (column 6); or αG, βG, and γG (column 8) vary across 
groups, the main-effects-only regression model fails to recover the true (average) pa-
rameter values known to underlie the simulations. For our specific parameter values, the 
estimated (average) effect of B on C in these troubled scenarios is always too high, and 
the estimated average direct effect of A on C is either too high or too low. Indeed, if we 
set γ=0 but let αG and βG vary across groups, the main-effects-only regression model 
would indicate the presence of a direct effect of A on C even though it is known by de-
sign that no such direct effect exists (not shown).  

Failure of the regression model to recover the known path parameters is not merely a 
function of the number of paths that vary. Although none of the scenarios in which fewer 
than two parameters vary yield incorrect estimates, and the scenario in which all three 
parameters vary is clearly biased, results differ for the three scenarios in which exactly 
two parameters vary.  In two of these scenarios (columns 5 and 6), regression fails to 
                                                
3 The notion of direct and indirect effects is receiving deserved scrutiny in important recent work 
by Robins and Greenland 1992; Pearl 2001; Robins 2003; Frangakis and Rubin 2002; Sobel 2008; 
and VanderWeele 2008.  
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recover the desired (average) parameters, while in the third scenario (column 7), 
regression does recover the correct average parameters. 

 

 
In sum, the naïve main-effects-only linear regression model recovers the correct aver-

age parameter values only under certain conditions of limited effect heterogeneity, and it 
fails to recover the true average effects in certain other scenarios, including the scenario 
we consider most plausible in the majority of sociological applications, i.e., where all 
three parameters vary between groups. If group membership is latent—because group 
membership is unknown to or unmeasured by the analyst— and thus unmodeled, linear 
regression generally will fail to recover the true average effects. 
 
DAGs to the Rescue 
These results spell trouble for empirical practice in sociology. Judea Pearl’s work on cau-
sality and directed acyclic graphs (DAGs) [1995, 2000, 2009] offers an elegant and 
powerful approach to understanding the problem. The critical insight for the present dis-
cussion is that effect heterogeneity, rather than being a nuisance that is easily averaged 
away, encodes structural information that analysts ignore at their peril.    

Pearl’s DAGs are nonparametric path models that encode causal dependence between 
variables: an arrow between two variables indicates that the second variable is causally 
dependent on the first (for detailed formal expositions of DAGs, see Pearl 1995, 2009; for 
less technical introductions see Robins 2001; Greenland, Pearl and Robins 1999 in epi-
demiology, and Morgan and Winship 2007 in sociology). For example, the DAG in 
Figure 2 indicates that Z is a function of X and Y, Z= f(X,Y,εZ), where εZ is an unob-
served error term independent of (X,Y): 
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εZ 

 
X 
  Z 
 
Y 
 
Figure 2: DAG illustrating direct effect modification of the effect of Y on Z in X 
 

The advantage of using non-parametric DAGs is that f( ) can be any function. For 
example, the DAG in Figure 2 is consistent with a linear structural equation in which X 
only modifies (i.e. introduces heterogeneity into) the effect of Y on Z, Z=Yξ + YXψ + 
εZ.4 In the language of VanderWeele and Robins [2007], who provide the most extensive 
treatment of effect heterogeneity using DAGs to date, one may call X a “direct effect 
modifier” of the effect of Y on Z. The point is that a variable that modifies the effect of Y 
on Z is causally associated with Z, as represented by the arrow from X to Z.  

Returning to our simulation, one realizes that the social science path model of Figure 1, 
although a useful tool for informally illustrating the data generation process, does not, 
generally, provide a sufficiently rigorous description of the causal structure underlying 
the simulations. Figure 1, although truthfully representing the separate data generating 
mechanism for each group and each individual in the simulated population, is not gener-
ally the correct DAG for the pooled population containing groups G = 0 and G = 1 for all 
of the heterogeneity scenarios considered above.  Specifically, in order to turn the social 
science path model of Figure 1 into a DAG, one would have to integrate G into the 
picture. How this is to be done depends on the structure of heterogeneity. If only βG (the 
effect of B on C) and/or γG (the direct effect of A on C holding B constant) varied with G, 
then one would add an arrow from G into C.  If αG (the effect of A on B) varied with G, 
then one would add an arrow from G into B.  

 
          G  
                                                                

     B                         
                                                                        
 
A        C 
 
Figure 3: DAG consistent with effect modification of the effects of A on B, and B on C 
and/or A on C, in G 

                                                
4 It is also consistent with an equation that adds a main effect of X. For the purposes of 
this paper it does not matter whether the main effect is present. 
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The DAG in Figure 3 thus represents the DAG for those simulated scenarios in which αG 
as well as either βG or γG, or both, vary with G (columns 5, 6, and 8). Interpreted in terms 
of a linear path model, this DAG is consistent with the following two structural equa-
tions: B = Aα0 + AGα1 + εB and C = Aγ0 + AGγ1 + Bβ0 + BGβ1 + εC, where the iid errors, 
ε, have been omitted from the DAG and are assumed to be uncorrelated.5  

In our analysis, mimicking the reality of limited observational data with weak substan-
tive theory, we have assumed that A, B, and C are observed, but that G is not observed. It 
is immediately apparent that the presence of G in Figure 3 creates two problems: first, G 
is a confounder for the effect of B on C. Second, B is a “collider” [Pearl 2009] on the 
undirected path from A to C via B and G. Together, these two problems explain the 
failure of the main-effects-only regression model to recover the true parameters in panels 
5, 6, and 8: in order to recover the effect of B on C, β, we need to condition on the con-
founders A and G. But G is latent so it cannot be conditioned on. At the same time, 
conditioning on the collider B in the regression opens a “backdoor path” from A to C via 
B and G (when G is not conditioned on), which induces selection bias in the estimate for 
the direct effect of A on C, γ [Pearl 2000; Hernán et al 2004]. Hence, both coefficients in 
the main-effects-only regression model will be biased for the true (average) parameters.  

By contrast, if G modifies neither β nor γ, then the DAG would not contain an arrow 
from G into C; and if G does not modify α then the DAG would not contain an arrow 
from G into B. Either way, if either one (or both) of the arrows emanating from G are 
missing, then G is not a confounder for the effect of B on C, and conditioning on B will 
not open a backdoor path from A to C. If so, the main effects regression model is unbi-
ased and will recover the true parameters, and correctly average them where appropriate, 
as seen in panels 1-4 and 7.  

In sum, Pearl’s DAGs neatly display the structural information encoded in effect het-
erogeneity [VanderWeele and Robins 2007]. Consequently, Pearl’s DAGs immediately 
draw attention to problems of confounding and selection bias that may occur when more 
than one effect in a causal system varies across sample members. Analyzing the appro-
priate DAG, the failure of main-effects-only regression models to recover average struc-
tural parameters in certain constellations of effect heterogeneity becomes predictable.  
 
Conclusion 
This paper considered a conventional structural model of a kind commonly used in the 
social sciences and explored its performance under various basic scenarios of effect het-
erogeneity. Simulations show that the standard social science strategy of dealing with 
effect heterogeneity—by ignoring it—is prone to failure. In certain situations, the main-

                                                
5 By construction of the example, we assume that A is randomized and thus marginally 
independent of G. Note, however, that even though G is mean independent of B and C 
(no main effect of G on either B or C), G is not marginally independent of B or C because 
var(B|G=1)≠var(B|G=0) and var(C|G=1)≠var(C|G=0). Adding main effects of G on B 
and C would not change the arguments presented here. 
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effects-only regression model will recover the desired quantities, but in others it will not. 
We believe that effect heterogeneity in all arrows of a path model is plausible in many, if 
not most, substantive applications. Since the sources of heterogeneity are often not theo-
rized, known, or measured, social scientists continue routinely to estimate main-effects-
only regression models in hopes of recovering average causal effects. Our examples 
demonstrate that the belief in the averaging powers of main-effects-only regression mod-
els may be misplaced if heterogeneity is pervasive, as estimates can be mildly or wildly 
off the mark. Judea Pearl’s DAGs provide a straightforward explanation for these diffi-
culties. DAGs remind analysts that effect heterogeneity encodes structural information 
about confounding and selection bias that requires consideration when designing 
statistical strategies for recovering the desired average causal effects. 
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