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The idea that the timing of life-cycle transitions is interdependent is 

ubiquitous in the life course literature. Elder (1978, p. 26) has gone so far 
as to define the life course as "a concept of interdependent life patterns 
which vary in synchronization." The interdependence of life-cycle transi- 
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HETEROGENEITY AND INTERDEPENDENCE 

tions has been used to explain the age pattern of behavior (Mare, Winship, 
and Kubitschek 1984; Wohlwill 1970) and has also been a key component 
of explanations of historical change in family and life-cycle behavior. (See 
Modell and Hareven 1978 for a review.) 

Despite the prevalence of the idea that transitions are interdepen- 
dent, little theoretical or methodological work has been done to examine 
either what it means for two transitions to be interdependent or how one 

might tell whether two transitions are interdependent. My purpose here is 
to ameliorate this situation by developing a test of whether the timing of 
two transitions is in fact causally related. This test is developed by 
modeling interdependence in terms of hazard rates and using methods 
from the literature on survival analysis and event-history analysis (for 
example, Kalbfleish and Prentice 1980; Tuma and Hannan 1984). 

This chapter contrasts two different explanations of why transitions 

may appear to be related. First, there may in fact be a causal or structural 
relation between transitions. With respect to the age of leaving school and 

age of marriage, for instance, one might hypothesize that nonstudents have 
better marital prospects than students. As a result, individuals might delay 
marriage until after they have finished school. The other possibility is that 
there is in fact no real causal or structural relationship between events. 
Instead, one observes a relationship between two transitions because 
individuals differ in the rate at which they approach adulthood. Some 
individuals may decide to enter adulthood sooner or, to use a psychological 
term, may mature faster. As such, they are more likely to leave school and 
marry earlier. For others the reverse may be true. Heterogeneity across 
individuals in their rates of maturation can induce observed dependence 
across individuals between the two transitions. 

An example will help clarify the distinction between the two types 
of explanation. The example is of physiological growth. Consider the 

relationship across individuals between the age at which their heads reach 
full adult size and the age at which their legs reach full adult length. If we 
examined these two variables, we would probably find that they are 
positively correlated. Moreover, we might find that the age at which 
individuals' heads reach full development is generally earlier than the age 
at which their legs reach full length. Few nonexperts (and perhaps experts) 
would argue that there is a direct causal relationship between these two 
variables. Most people, myself included, would probably argue that indi- 
viduals differ in their rate of physiological growth and that it is because of 
individual heterogeneity in growth rates that we observe a relationship 
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between the age at which individuals' heads reach full size and the age at 

which their legs reach full length. 
Now consider the relationship between the age at which individuals 

reach full adult height and the age at which they reach normal adult 

weight. Here it is not clear that a causal relationship is absent. Since 

attaining full height is closely related to development of bone structure, 
and bone structure is an important element in supporting people's full 

weight, it may make sense to argue that there is a causal relationship 
between the two events. 

The issue is analogous to the problem of spurious correlation: Are 

two variables related because there is a direct causal link between them, or 

are they related as a result of being dependent on a third variable that has 

not been controlled? In this chapter the point is not, however, that there is 

a third variable but that there may be a process (unobserved) producing 
the observed relation between the timing of two transitions. 

The idea that some process is creating the observed relationship 
between the timing of two events is critical to this chapter. For the lack of 

a more general term I shall refer to this process as maturation. In using 
this term I intend to connote nothing more than the idea that there is some 

underlying process, varying across individuals and related to age, that 

determines behavior. I shall refer to this process as individual heterogene- 

ity in rate of maturation or, for short, individual heterogeneity. 
The argument that two variables are related because they are 

causally linked is common in sociology. It is at the heart of path analysis 
and the use of simultaneous equations. It is also found in the literature on 

Markov chains (for example, Coleman 1964; Tuma and Hannan 1984). 
The idea that there is some underlying process creating observed relations 

between variables is much less common. In other disciplines, however, it is 

an important hypothesis. Physiological growth is one example. Psychologi- 
cal and cognitive development theories are another. Economic theories of 

individual choice over the life cycle represent in disguised form a third 

example: Behaviors are related because they are part of a single optimiza- 
tion process.' 

The result presented in this chapter parallels one found in economics in 
an interesting way. The theories of the consumer and the firm imply an important 
symmetry condition known as Slutsky symmetry. Slutsky symmetry states that in a 
maximization model the cross-price elasticities must be equal. The result to be 

presented here is a symmetry condition, as well. For further discussion of Slutsky 
symmetry see Varian (1984). 
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Although the idea that there are underlying age-related processes 
determining individual behavior is not common in sociology, there is work 
that proposes a closely related set of ideas. A number of researchers 
working in the life-cycle tradition have argued that certain behavior is 
age-graded. The term age-graded refers to the descriptive aspects of behav- 
ior-that certain behavior varies by age, often dramatically so. Within this 
literature, though, there is also the suggestion that some behavior is 
age-determined or age-dependent. One example is the proposition that age 
norms are important determinants of behavior (Neugarten, Moore, and 
Lowe 1965; Elder 1975). Another example is the argument of Riley, 
Johnson, and Foner (1972) that roles are highly stratified by age and 
therefore age is a critical variable for understanding variations in individ- 
ual behavior. 

There is an important difference between the idea that behavior is 
partially age-determined and the idea that transitions are embedded in a 
singular process of maturation. The notion of age-gradedness assumes that 
individuals of the same chronological age are in similar positions. The idea 
of maturation allows for the possibility that individuals may change at 
different rates. Hence individuals of the same chronological age may be at 
very different positions with respect to their life-cycle development. The 
concept of maturation also suggests that behavior is age-determined, but in 
such a way that individuals may have different timetables. 

The rest of this chapter develops a set of mathematical models and 
then derives some results. The next section provides a short introduction to 
the idea of a hazard rate; causality and heterogeneity are then modeled in 
terms of hazard functions. I then look at the problem of distinguishing 
between the causal dependence and individual heterogeneity in rates of 
maturation.2 I show that in the most general case it is impossible to 

2 The work in this chapter is related to other work in sociology and 
econometrics. Tuma (1980), in a Markov chain context, has examined the implica- 
tions of estimating the parameters of one process when it is related to another 
process that is not taken into account. In a sense the present discussion is an 
extension of Tuma's work: I wish to look at the implications of examining the 
relationship between two processes (transitions) when they are possibly related to a 
third. The ideas presented here also parallel work on the distinction between 
heterogeneity and state dependence (Heckman 1978, 1981; Heckman and Borjas 
1980). These models consider transitions of a single type that are repeatable. The 
concern is whether there is any structural relationship across time between events 
or whether all the observed dependence is simply due to unobserved heterogeneity 
across individuals. I am also concerned with whether the observed relation between 
variables is simply a result of heterogeneity. I, however, assume that events are not 
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distinguish between these two explanations. It is, however, possible to 
make a distinction if restrictions are made. I develop a test for true 
dependence and present an empirical example based on the age of leaving 
school and age of marriage using the Occupational Change in a Genera- 
tion II (OCGII) Survey. 

MODEL SPECIFICATION 

Hazard Rates and Hazard Functions. There are a number of different 

ways to model interdependence and heterogeneity. In the last five years or 

so, sociologists have come to appreciate the virtues of formulating continu- 
ous-time models in terms of hazard functions. These virtues include the 
fact that problems of right censoring (that for some individuals the event 
has yet to take place) are easily dealt with and that the effects of 

time-varying variables can be incorporated. 
We begin with hazard rates and functions. (Readers familiar with 

these ideas may wish to skip this section. The following two sections show 
how interdependence and heterogeneity can be modeled with hazard 

functions.) Formally, the hazard rate for an event is defined as 

P(t < T+ ATlt> T) 
h(t)= lim Pt>0 

AT-O AT 

where the numerator is the probability that the time a transition takes 

place, t, given it has not occurred before time T, is between T and T+ AT 

(where At is an arbitrarily small increment of time). Note that the hazard 
rate is a function of t. As such, the hazard rate here is a hazard function. 
Since I am concerned with the timing of events in individuals' lives, time 
here and throughout the rest of the chapter is equivalent to age. Thus, by 
letting the hazard be a function of t, the hazard may vary with age. 

The hazard rate is equal to the conditional likelihood of an event 

occurring at t for those individuals for whom the event has yet to occur. 
This is seen by noting that the hazard is equal to 

f(t) 
h(t) = (1) 

1 - F(t) 

repeatable. The chapter also relates to recent work oii the nonparametric specifica- 
tion of heterogeneity in continuous-time models as random effects (see Heckman 
and Singer 1984). The results of this work are not applicable to the questions posed 
here, however. 
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where the numerator is the density function or likelihood for the variable t 
and the denominator is 1 minus the cumulative distribution function, F(t). 
The denominator, as we shall see, is also equal to the survivor function. 
One can solve for f(t) as follows: 

f(t) = h(t)exp[- h(z) d (2) 

Equation (1) shows that one can define the hazard function for any 
variable if its density function is known (and thus its cumulative distribu- 
tion function).3 Equation (2) shows that if one knows the hazard function 
for a variable its density can also be derived. 

One can think of the hazard rate as being the "speed" at which an 
individual is approaching a particular transition. A hazard rate captures 
the idea that individuals may differ in their rates of maturation: Individu- 
als who have large hazard rates are likely to undergo transitions earlier; 
those whose hazards are closer to zero are likely to undergo transitions 
later. 

Interdependence. My concern here is to determine whether two transi- 
tions are structurally interdependent. Consider two transitions a and b. 
Generally I want to think of a as the transition of leaving school and b as 
the transition into an individual's first marriage. Let ta and tb be the age 
at which these two events respectively occur. Besides using a and b as 
labels I also want to think of them as indicator variables with a = 1 and 
b = 1 indicating that the respective event has occurred and a = 0 and b = 0 
indicating that the event has not occurred. The interpretation will be 
obvious from the context. 

Dependence of events on each other can be modeled by assuming 
that the hazard for each event depends on the time at which the other 
event occurs. That is: ha = ha(t, t^) and hb = h(t, ta). This specification is 
quite general. It allows the occurrence of event b at tb to effect the hazard 
for a at time t if tb is less than or greater than t. Since the hazard for 
event a depends jointly on t and tb, any type of functional dependence is 
allowed. Thus a full set of lead and lag effects can be incorporated.4 

3 
Throughout the chapter I assume that variables have well-defined densi- 

ties except where noted otherwise. 4 It can be shown that any type of dependence can be specified in this way. 
This can be done by decomposing any joint distribution function into the product 
of a conditional distribution times a marginal distribution and then deriving how 
these two terms relate to the two hazards specified above. 
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FIGURE 1. Graph of hazard for marriage for a hypothetical individual. 
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A more restricted specification of dependence is to assume that the 
hazard for one event is simply affected by whether the other event has or 

has not occurred. This notion can be modeled as ha = ha(t, b) and hb = 

hb(t, a), where within each function a and b are being used as indicator 
variables. This specification captures the idea that when one event occurs 
it shifts the hazard function for the other event. For example, leaving 
school might shift the marital hazard function. This is illustrated in 

Figure 1. 
This last notion of dependence is equivalent to that found in the 

literature on Markov chains where states have been cross-classified by each 

other (see Coleman 1964; Tuma and Hannan 1984). In terms of the 
substantive example used in this chapter there are four states: in school/not 
married, out of school/not married, in school/married, and out of 

school/married. The interest then is in examining transition rates between 

these states. If one excludes transitions that involve more than one status 

change (say, moving from the in school/not married state to the out of 

school/married state), then the transition from being not married to 

married involves either moving from the in school/not married state to the 
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in school/married state or from the out of school/not married state to the 
out of school/married state. If the hazard for these two transitions differs, 
one might infer that leaving school has increased the marital hazard. 

An implication of the concept of dependence found in the Markov 
chain literature or the more general type specified here is that the timing 
of the two transitions for the individual is not independent in the statistical 
sense. That is, if fa and fb are the density functions of transitions a and b 

respectively and fab is the joint density function, then 

fab(ta, tb) fa(ta)fb(tb) (3) 

Conceptually, if an individual were to live a number of times, then across 
those lifetimes ta and tb would not be statistically independent. 

Lack of statistical independence is a general way of defining 
interdependence between two events at the individual level and is equiv- 
alent to that given above for hazards. I shall say that two events are 

interdependent (or equivalently that they are structurally related) if, at the 
individual level, they are not statistically independent-that is, Equation 
(3) holds. 

If one could observe individuals over repeated lifetimes or if there 
were some analogous set of repeated trials, standard statistical techniques 
could be used to test whether two events were independent of each other. 
In fact, it would be possible to consistently estimate various parameters in 
the presence of unobserved differences between individuals in their hazard 
functions. (See, for example, Kalbfleisch and Prentice, 1980;, Yamaguchi, 
1983.) In most social science applications, however, data on repeated trials 
do not (and often cannot) exist. As a result, the analysis must be done on a 

sample of individuals. Differences across individuals in their hazard func- 
tions then become a potential problem. 

Heterogeneity. In the introduction I argued that individuals might 
differ in how fast they approach adulthood or equivalently in how fast 

they "mature." I now want to specify this idea in terms of the hazard 
functions for our two transitions. To make it clear that functions differ 
across individuals, let i be a continuous variable indexing individuals of 
different types. Individuals with the same hazard functions are considered 
to be of the same type. Let K(i) be the density function for i (it will be 
used later in this chapter).5 The most general specification of the concept 

5 Note that i can be reduced to a discrete index by allowing its density 
K(i) to have mass only at a finite set of points. 

257 



that individuals differ in their rates of maturation would be to assume that 
the two hazards take the form 

ha(i, t) = h(ua(t), r(i, t)) 

hb(i, t)= h(ub(t), r(i, t)) 

where ua and ub represent components of the hazard common across 
individuals and r(i, t) represents individual heterogeneity that shifts the 
hazard through the function h. Since r(i, t) is solely a function of i and t, 
it can be interpreted as an individual-specific age effect on the hazard. It 
captures the premise that individuals at different ages differ in their rates 
of maturation. 

As stated the specification is quite general. It is worth considering 
several examples that are common in the literature on hazard functions. 
These are the additive hazard, the multiplicative or proportional hazard, 
and the accelerated failure-time model: 

ha(i, t) = Ua(t)+ r(i, t)\ 

hb(i, t)= u(t)+ r(i, t) (additive hazards) 

ha( i, t) = ua(t)r(i, t) 
hb( I, t)-= U(t)r(i, t)/ (multiplicative hazards) 
hb(i,t)=u (t)r(i,t) 

ha( i t) = u a(r(i, t)t) \ (accelerated failure-time 

hb(i, t)= ub(r(i, t)t) model) 

In the additive hazard formulation, differences in maturation rates 
affect the two hazards additively. Since r(i, t) is a function of t, the 
difference between the two hazards can change with age. Across individu- 
als, however, it is assumed that at any time the difference between the two 
hazards is the same. Thus it is assumed that the hazards for the two events 
are the same across individuals except for the addition of a term r(i, t) 
representing differences across individuals in their rates of maturation. 
Instead of assuming that differences between individuals enter additively, 
the multiplicative hazard model assumes that they enter multiplicatively. 
The ratio of hazards across individuals is then constant. 

Both the additive and multiplicative models operate directly on the 
hazard. The accelerated failure-time model assumes that heterogeneity 
enters as a direct transformation of time. The simplest form for r(i, t) is as 
a constant, r(i). In this case, ha(i, t) = ua(r(i)t) and h (i, t) = u(r(i)t). 
Here r(i) simply stretches or shrinks the time scale by a multiplicative 
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factor. Note that the accelerated failure-time model allows for any trans- 
formation of t since I can let r(i, t) = r*(i, t)/t, which gives ha(i, t) = 

ua(r*(i, t)) and hb(i, t) = Ub(r*(i, t)). In general r*(i, t) is restricted to be 
a strictly increasing monotonic function. As with the additive and multi- 
plicative models, the accelerated failure-time model assumes that the 
hazard for the two events is transformed in the same way. 

In all three models I have assumed that, net of the effect of r(i, t), 
the hazards for the two events are the same for all individuals. This implies 
that the "relation" between the hazards for the two individuals is the same 
across individuals. This is a strong and probably unrealistic assumption. 
Across groups, transitions have different relative positions in the life cycle. 
For instance, cohorts born early in this and the last century tended to leave 
school relatively early and marry relatively late. More recent cohorts, 
however, have tended to leave school later and marry earlier (Hogan, 
1981). This type of change cannot be explained by differences across 
cohorts in the rate at which they approach adulthood. Rather, the 
transition out of school and the transition into marriage must have a 
different relationship across cohorts. 

One approach to solving this problem would be to let the relation- 
ship between the two transitions be a function of observed variables X. For 
instance, one might want to condition the relation between the age of 
leaving school and age of marriage on cohort, ethnicity, region, or perhaps 
other variables as well. I have not done this in the analyses presented later 
in the chapter, but the appendix outlines how it could be done. 

MODEL IDENTIFICA TION 

Specification. The concept of structural dependence as discussed in 
the last section can be combined with the idea that there are individual 
differences in rates of maturation into a single set of equations where the 
ua and ub terms are used to capture differences between ha and hb: 

ha(i, t)= h(ua(t), r(i, t), tb) 

hb(i, t) = h(Ub(t), r(i, t), ta) 

The basic issue is whether one can distinguish between the effects of the 
different components in this model. In particular, is it possible to de- 
termine whether ta and tb affect each other or whether all the observed 
dependence between ta and tb is the result of r(i, t)? In asking this 
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question I assume that transitions are not repeatable and that the possible 
effects of exogenous variables are not being considered.6 

There are two specific questions one might ask in attempting to 
answer the more general question. First, when there is heterogeneity, but 
no structural dependence between the timing of two transitions at the 
individual level, are there any restrictions on the observed relationship 
between the timing of the two transitions in the population? If the answer 
to this question is yes, then it may be possible to develop a test of the null 

hypothesis that the observed relationship between two events is the result 

simply of heterogeneity. Second, if this is the case, how easily can this 

possibility be distinguished from the alternative that there is interdepen- 
dence between the two events at the individual level? In the language of 
statistics: What is the potential power for a test to distinguish the null 

hypothesis from the alternative of interdependence? 
The next section presents an example that illustrates the problem. 

The following two sections examine whether heterogeneity with no interde- 

pendence imposes any restrictions on the observed relationship between 
two events. In the case where no restrictions are placed on how heterogene- 
ity enters the hazard, the null hypothesis puts no restriction on the 
observed relationship between two events. This is a very important finding 
-it means that in general one cannot distinguish between heterogeneity 
and true interdependence. In the following sections, I examine the implica- 
tions of additive heterogeneity. Here the observed relationship between two 
events is restricted. This then allows one to develop a test of the null 

hypothesis of no interdependence at the individual level. Although the 

power of this test is not formally analyzed, in empirical analyses in which 
the alternative appears to be well specified (for example, that leaving 
school increases the marital hazard), the test appears to have no problem 
distinguishing between the null and the alternative hypotheses. 

An Example. To appreciate this problem consider the preceding 
additive hazard specification. Table 1 shows a hypothetical example in 
which all the observed dependence between the two events is due to 

heterogeneity [r(i, t)] that is assumed to enter the hazard functions 

additively. To keep the example simple I have used discrete time. There 
are two classes of individuals; those in the same class have the same 

6A common suggestion for dealing with issues of causality in problems of 
this type is to use simultaneous-equation methods from economics (see Waite and 
Stolzenberg, 1976; Marini, 1978). Elsewhere (Winship, 1983a) I have criticized this 

approach. 
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TABLE 1 
Example with Additive Heterogeneity 

Structural Hazard 

Time 1 Time 2 

Clas Event A 0.51 0.01 
ass Event B 0.01 0.51 

Event A 0.99 0.49 
lass Event B 0.49 0.99 

Population Distribution for Combined Classes 

Event B 

Time 1 Time 2 Time 3 

Time 1 0.245 0.379 0.126 

Event A Time 2 0.001 0.002 0.001 

Time 3 0.004 0.124 0.118 

Difference between 
Prob(A < B)- Prob(A > B) = 0.377 
Gamma = 0.7012 

Empirical Hazardfor Event A 

Time 1 Time 2 

B has not occurred 0.75 0.015 

B has occurred - 0.25 

Empirical Hazard for Event B 

Time 1 Time 2 

A has not occurred 0.25 0.515 

A has occurred - 0.75 

hazards (top portion of the table). Note that the hazard functions for class 
2 are equal to those for class 1 plus 0.48. Below the hazards is the expected 
distribution for the combined classes; the two classes are assumed to be of 

equal size. This distribution is calculated by first generating for the two 
classes the expected proportions for each event at the three times and then 
within each class deriving the expected distribution of individuals. Since 
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independence of the two events at the class level is assumed, proportions 
are obtained by taking the outer product of the two vectors representing 
the proportions for the two events at each time. Then the distribution 
functions for the two classes are averaged. 

As can be seen by the large gamma value, the two events are highly 
interrelated. Also shown in Table 1 are the empirical hazards for the 

population. In the case of event a, at time 2 the hazard for individuals for 
whom event b has occurred is much higher than for those for whom b has 
not. Similarly, for event b the hazard is higher for individuals for whom a 
has occurred than for those for whom it has not. Examples have been 
constructed for the multiplicative and accelerated time models but are not 
included here (see Winship 1983b). 

This example shows how heterogeneity can lead to apparent inter- 

dependence. The next two sections of the chapter examine whether it is 

possible to differentiate between true interdependence and heterogeneity. 
Unrestricted Case. In this section I want to show that if heterogeneity 

enters the hazard in an unrestricted way the population distribution 
function f(t,, tb) can take any form. The implication is that without 

putting restrictions on the way that heterogeneity enters the hazard it is 

impossible to distinguish heterogeneity from true interdependence. 
It will be easiest to carry out the proof with distribution rather than 

hazard functions. No generality is lost in doing this. Start by letting fa(i, t) 
and fb(i, t) be, respectively, the density functions for transitions a and b 
for individuals of type i. Let f(ta, tb) be the joint distribution for the two 

events in the population. I want to show that any f(ta, tb) can be 

decomposed as follows: 

f(ta, tb) 
= fa(i, ta)fb(i, tb)K(i) di 

where K(i) is, as above, the density function for i. That is, I want to show 
that under the assumption that the events are independent at the individ- 
ual level I can produce any f(ta, tb) by properly choosing fa(i, t), fb(i, t), 
and K(i). 

Without loss of generality let i, ta tb range continuously from zero 
to plus infinity. Let Z(ta, tb)= i be a 1-to-1 onto function from R2+, the 

nonnegative quadrant of the real plane, to R1 +, the nonnegative segment 
of the real line. The existence of such a function is guaranteed by the fact 

262 CHRISTOPHER WINSHIP 



HETEROGENEITY AND INTERDEPENDENCE 

that R2+ and Rl + have the same number of elements (see Boas 1960). 
Since Z is 1-to-1 onto, it will have a well-defined inverse. 

Let fa*(t) and fb*(t) be densities that have all their mass respec- 
tively at t* and t *.7 Now construct, by appropriate methods, individuals 
of different types such that for individuals of type i = Z(ta, tb) transition a 
takes place at ta and transition b takes place at tb. 

Let fa(i, t) =f*(r(i, t)) =fa*(a, + Sit) and fb(i, t) =fb*(r(i, t)) 
fb*(i + Sit). Choose ai and Si so that if i= Z(ta, t) then ai+ 8ita =t* 
and a,i + itb = t . Note that this transformation is of the type found in the 
accelerated failure-time model. 

Now f,(i, t) =fa(Z(ta, tb), t) and f(i, t)= f(Z(ta, tb), t) are densi- 
ties that respectively have all their mass at ta and tb for i = Z(ta, tb). Thus 
associated with each pair (ta, tb) are individuals of type i = Z(ta, tb) for 
whom transitions a and b take place, respectively, at ta and tb. 

To construct f(ta, tb) choose K(i) = K(Z(ta, t )) so that there are 
the correct number of individuals of each type. This is done by letting 
K(i) = K(Z(ta, tb)) =f(ta, t). Then it is the case that for fixed t' and t[: 

f0 f(ta' tb) = fa(i, t')fb(i, tb)K(i) di 

I have shown that one can construct individual types so that 
individuals of the same type have the same values for ta and tb. Moreover, 
I have demonstrated that any pair (ta, tb) can be associated with a set of 
individuals for whom transitions a and b take place at ta and tb, 
respectively. Then I have simply chosen K(i) so that there is the correct 
number of individuals associated with each pair (ta, tb) to construct the 

density function f(ta, tb). 
Additive Hazards. In this section I want to show that if heterogeneity 

enters the hazard additively, there are important restrictions on the form 
of the population joint distribution for the two transitions, f(ta, tb). As a 

result, it is possible to test the null hypothesis that the observed relation- 

ship between two transitions arises solely because of heterogeneity in the 
rates at which individuals mature. 

To consider the effects of additive heterogeneity I need to shift from 
hazard functions and consider survivor functions. For transitions a and b 

7Technically these two functions are known as Dirac delta functions 
(Kaplan 1973) and are not proper densities. 
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the survivor functions are 

Sa( t) = Prob( ta> t1) = exp - ha(t) dt 

Sb(t2) = Prob(t> t2) = exp [- ^h(t) dt 

The survivor functions, Sa and Sb, simply equal 1 minus the cumulative 

density functions, Fa(t1) and Fb( t). The survivor function gives the 

probability that a transition has not occurred by time t. It is the probabil- 
ity that an individual has "survived" until time t. 

Survivor functions have the nice property that they are additive. 
That is, the population survivor function is simply the integral of the 
individual survivor functions: 

S( t ) = S(i, t )K( i ) di 

This property will prove important in developing a test for interdepen- 
dence. Let S(i, tl, t2), the joint survivor function, be the probability that 
individuals of type i have not experienced transition a before t1 and 
transition b before t2. For a model with heterogeneity but independent 
transitions, S(i, tl, t2) equals the product of the two individual survivor 
functions: 

S(i, tl, t2) = S(i, tl)Sb(i, t2) 

and the population survivor function is 

S(t1, t2) = | Sa(i, tl)Sb(i, t2)K(i) di 
o 

Consider the case where there is additive heterogeneity in the 
hazards-for example, ha(i, t) = Ua(t) + r(i, t). Then the survivor func- 

tions for transitions a and b are 

Sa(, tl) = exp- [ua(t)+r(i,t)dt] 

(exp[- 1f (t) dt exp[- fr(i, t) dt} 

Sb(i, t2) = exp - 
[ub(t) + r(i, )] dt 

( [exp[-0 2(t)dt ex [- r(i t) dt 
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HETEROGENEITY AND INTERDEPENDENCE 

Thus the joint survivor function for individuals of type i can be written 

S(ti, t , t2)= (exp[ - f (t)dt 

X ({exp[- fr(i, t)dt])X exp[-f2r(i, t)dt }) 

X exp[- f b(t)dt]} 

Or letting R(tl), G(i, tl, t2), and C(t2) denote, respectively, the terms to 
the left of, within, and to the right of the middle expression: 

S(i, tl, t2) = R(t,)G(i, tl, t2)C(t2) 

The only term that depends on i is G: 

G(i, tl, t2) =g(i, t)g(i, t2) 
where 

g(i, t) = exp[- f'r(, t) dt] 

Note that G(i, t1, t2) is a symmetric function: G(i, t1, t2)= G(i, t2, tl). I 
can now write the population joint survivor function as 

f0 
S(t0, t2) = | R(tl)G(i, tl, t2)C(t2)K(i) di 

which can be factored into 

S(tl, t2) R(tl)[ G(i, t, t)K(i ) di]C(t2) 

Let G*(t,, t2) be the term in the brackets in the last equation so that 

S(t,, t2) = R(t,)G*(tl, t2)C(t2) 

Since G*(tl, t2) is an integral of symmetric functions, G(i, t1, t2), G*(tl, t2) 
is also a symmetric function. Thus the last equation states that S(t,, t2) 
can be written as a product of a function of t, alone, R(tl), a symmetric 
function in t1 and t2, G*(tl, t2), and a function of t2 alone, C(t2). Not all 

joint survivor functions can be written in this form. Borrowing a term from 
the log-linear model literature (see Bishop, Feinberg, and Holland 1975), I 
call a survivor function that can be written in this form quasi-symmetric. 

This result suggests a test for event interdependence. Specifically, 
given an estimate of the population joint survivor function one can test the 
null hypothesis that this function is quasi-symmetric. If the null hypothesis 
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cannot be rejected, then there is evidence that the observed relation 
between two transitions might solely be the result of heterogeneity.8 The 
next section develops such a test. 

TESTING FOR QUASI-SYMMETRY 

Estimation. Two problems need to be addressed in developing a test 
for quasi-symmetry. First, in most data sets the survivor function is 

observed only at a finite number of discrete points. In the data analyzed in 

the next section, for instance, age of leaving school and age of marriage 
are measured only in years of age. This approach causes no great 

problems. It means that the survivor function can be tested for quasi-sym- 

metry at only a discrete set of points. Thus the condition for quasi-symme- 
try given in the last section becomes 

S = RG*C 

where, if there are t points of time, S is a t X t matrix with the (tl, t2) cell 

being equal to S(tl, t2). Further, R is a t X t diagonal matrix of row effects 

with the t, diagonal element being equal to R(t1). Similarly, C is a t X t 

diagonal matrix of column effects. Finally, G* is a t X t symmetric matrix 

with the tl, t2 cell being equal to G*(tl, t2). Thus when a survivor 

function is observed at a finite number of points one ends up testing 
whether the realization of that survivor function as a matrix can be 

decomposed into a set of row, column, and symmetry effects.9 

This condition looks more familiar described in log-linear notation. 

The quasi-symmetry condition is 

ln Sk = R* + C + G* (4) 

8 Some quasi-symmetric survivor functions cannot be produced from ad- 
ditive heterogeneity. When R, C, and G* are discrete, a sufficient condition for a 
quasi-symmetric S to have resulted from additive heterogeneity is that the matrix 
G* be nonnegative definite and that the nonnormalized eigenvectors of G* be 
transformable into a (nonorthogonal) basis such that for each basis vector v the 
elements of Rv and vC are nonnegative and monotonically decreasing. It is not 
known whether this is also a necessary condition. I would expect this condition to 
hold in most applications. 9 The reader should not think that I have suddenly moved from a 
continuous to a discrete-time model. The procedure used here assumes that the 
underlying process occurs in continuous time. The test, however, assumes that this 
continuous process is observed only at discrete points of time. 
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with 

EGj= EGck*= 
j k 

and 

Gj* = Gk* for all j, k (5) 

where R = ln R, C? = lnCkk, and Gj}* = lnGj.10 Note that only the 
last restriction (Gjk* = Gkj*) is testable. The other equations are defini- 
tions. Thus testing whether a survivor function is quasi-symmetric is 

equivalent to testing whether Gj=* = Gk**. 
The fact that individuals are not identically distributed presents 

somewhat greater problems. Because of this, I cannot simply estimate 
restricted and unrestricted forms of the model by maximum likelihood and 
use a standard likelihood ratio test to test whether Gj* = G*. One 

approach to the problem is to try to carry out the analysis via marginal- 
likelihood analysis. I have investigated this approach, and it does not 

appear possible to derive general results using this method. 
An alternative is to carry out the analysis via maximum likelihood 

or what is more correctly termed quasi-maximum likelihood and to use a 
Wald or Lagrange multiplier test (Wald 1943; Silvey 1975). These tests 
are valid even when individuals are not identically distributed (White 
1982). I develop a Wald test below. 

Start by considering how to get estimates of R*, C*, and G**. This 
can be done by using a maximum-likelihood type of procedure. Consider 
the matrix S of survival probabilities. Associated with any matrix S I can 
define a matrix P of the same dimension, where Pjk is the proportion of 
individuals in the population for whom transition a occurs between j- 1 
and j and transition b occurs between k - 1 and k. The relationship 
between Pjk and S is 

=Pk = Sl k- - Sji ,k Sj,_I Sj,k (6) 

The matrix S will be a proper survivor function if and only if P is a proper 
distribution function-that is, if and only if every cell of P is nonnegative. 
In the analysis I impose the further restriction that it be nonzero. This 
latter restriction is maintained by maximizing the log likelihood. Since the 

"' I have purposely not included a grand mean in Equation (4) in order to 
keep the notation parallel with that presented above. This means that the row and 
column effects are identified only up to a constant. 
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log of zero is minus infinity, estimates of P that contain zero values cannot 

represent maxima. 
Think of Pk as the (pseudo) likelihood for an individual that the 

two transitions occur in the specified time intervals. It is not the actual 
likelihood since it does not take into account differences across individuals 
in their likelihood of having transitions occur at different times. Put 
another way, this representation does not model the fact that individuals 
do not have the same probabilities of ending up in each cell of the matrix 
P. Define the pseudo log likelihood of the sample as 

'= EEEA AjklnPjk (7) 
i j k 

where A jk= 1 if for person i transition a occurs between j - 1 and j and 

transition b occurs between k - 1 and k; otherwise Aijk= 0. Here the Pjk 
are functions of the S.k, which are in turn functions of R*, G**, and C*. 
White (1982) shows that maximization of the pseudolikelihood in this 
situation gives consistent estimates of the population values of P. 
Mosimann (1962) shows that this is true in the specific case of the 
multinomial. The situation is parallel to that in regression analysis where 

ordinary least squares gives consistent estimates of the slope parameters 
even with heteroscedastic errors (Hoadley 1971). 

This approach can be used to estimate both restricted (Gj** = G*)*) 
and unrestricted forms of the model. In the unrestricted case, estimation is 

straightforward. The model is just identified and, as a result, the estimated 

joint survivor function is equivalent to the observed joint survivor function. 

The parameters can be obtained by solving Equations (4) and ignoring 

Equations (5). 
With the restrictions, the model is overidentified subject to the set of 

binding constraints defined by Equations (5). A search procedure needs to 

be used to obtain the parameter values that maximize the likelihood. In 

the empirical analyses reported later I have used the method of scoring 
(Rao 1973) to maximize Equation (7) subject to the conditions in Equa- 
tions (4), (5), and (6) and the constraint that Pk > 0 for all j, k. 

Wald Test. One can test whether the data have a quasi-symmetric 
survivor function by estimating the unrestricted model and then testing 
whether the symmetry restrictions Gj** = Gj* hold. These restrictions can 
be tested by determining whether the differences Gj* - G*.* are signifi- 
cantly different from zero. The procedure is analogous to a t-test in 
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regression analysis where a particular coefficient parameter is estimated 
without restriction and one then tests whether that estimate is significantly 
different from zero. The t-test in regression is an example of a Wald test. 
As with a t-test, the Wald test described here relies on the fact that the 
parameter estimates are asymptotically distributed multivariate normal 

(White 1982). 
Because individuals are not identically distributed, the usual esti- 

mate of the covariance matrix as the inverse of the Fisher information 
matrix is not consistent. This matrix, however, does provide an upper 
bound for the covariance matrix of the parameters. (See Domowitz and 
White 1982, for the general result and Mosimann's 1962 decomposition 
discussion for the case of the multinomial.) As a result, using this matrix in 
the Wald test provides a conservative test of the null hypothesis of no 

interdependence. The formula for the jkth element of the Fisher informa- 
tion matrix is 

9 log q d logo? 
Ijk 

= E l~o alo (Fisher information matrix) 
n - 

where n is the sample size. This expression is also equal to the sample 
estimate of n times the covariance of the jth and kth elements of the 
gradient of the log likelihood (the vector of partial derivatives of the log 
likelihood). 

The essential idea behind the Wald test is that if a vector of k 
variables, v, has a multivariate normal distribution with mean zero and 
covariance matrix 2, then the quadratic form v'Z-lv is distributed as X2 
with k degrees of freedom (for example, see Hogg and Craig, 1970). If v 
has a nonzero mean, then this will not be the case. This is the analog to 
doing a multivariate t-test. 

Using this result, the symmetry restriction can be tested by letting 
vk = Gjk* - G**. Since the G** are distributed asymptotically multi- 
variate normal, the vk are also distributed asymptotically multivariate 
normal. The test of the null hypothesis that the data are quasi-symmetric 
is then carried out by testing the equivalent hypothesis that the vector v 
has mean zero. As just described, this is done by calculating a X2 value 
from v'S~- v, where 2 is estimated by the information matrix. Very large 
values relative to the degrees of freedom indicate rejection of the hypothe- 
sis that v = 0, that is, the hypothesis that the data are quasi-symmetric. 
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EMPIRICAL ANALYSIS 

Data. It is beyond the scope of this chapter to carry out a detailed 

empirical analysis of the relationship between different life-cycle transi- 
tions. I have, however, done a limited analysis of two transitions, the age of 

leaving school and age of marriage, using the Occupational Change in a 
Generation II Survey (OCG II). A detailed description of this data set can 
be found in Featherman and Hauser (1978). Hogan (1978, 1981) has 
carried out detailed analyses of these two variables with the same data. 

The sample analyzed is restricted in several ways. First, OCG II is 
limited to males. Second, although a survivor function can be estimated 
with right censoring at any age (Kaplan and Meier, 1958), I have 
restricted the sample to individuals aged 30 or older and have analyzed 
the joint survivor function only up to age 30. By this age most males have 
left school and married, so this is not a particularly burdensome restriction. 
With the hope of minimizing the heterogeneity in the data, I have also 
limited the analysis to nonblacks. 

The next section provides a descriptive analysis of the data. The 

point is to show that at a simple level there does seem to be some 

interdependence between the age of leaving school and age of marriage. 
The following section describes the results of carrying out the Wald test for 

quasi-symmetry. Then the quasi-symmetry model is fit to the data and the 
fitted model is compared to the actual data. The analysis is then repeated 
for individuals who leave school and marry after the age of 19. 

Descriptive Analysis. Table 2 shows the frequency distribution for the 
two events for a total of 17,230 individuals. Only 288 individuals have 
neither married nor finished school by age 30. Gamma for this table is 

0.11722, indicating a modest association between the two events. Individu- 
als are much more likely to leave school before marrying than the reverse; 
the difference between the proportions of the population following each of 
these patterns is 0.5618. These findings are consistent with those of Hogan 
(1978, 1981). 

Tables 3 and 4 show, respectively, the hazard rates for marriage 
and schooling broken out in several ways. At the top of Table 3 is the 

simple marital hazard rate by age. Here the hazard is simply the propor- 
tion of the population who have not yet married who marry in a given 
year. As one might expect, the hazard increases with age and then levels 
out toward 30. The second and third rows of Table 3 show the marital 
hazard by school enrollment status. At all ages the marital hazard is 
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TABLE 2 
Observed Distribution of Nonblacks Over 30 Years of Age 

Age of Age of Marriage 
Leaving 
School < 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 > 30 Total 

23 5 14 15 42 
3 1 3 12 13 
4 0 3 12 26 
1 1 4 20 48 
2 0 1 7 48 
6 0 2 5 56 
2 1 3 3 7 
2 0 0 1 7 
0 0 1 0 0 
1 1 0 1 4 
0 1 0 1 6 
0 1 0 1 1 
0 0 0 3 2 
0 0 0 1 0 
1 0 0 1 1 
0 0 0 0 2 
1 0 0 1 2 
3 1 2 2 8 

49 12 33 86 273 

62 78 93 96 90 76 
35 56 58 72 71 60 
44 81 110 86 79 72 
72 127 159 143 150 113 
87 127 161 209 176 169 

154 243 305 347 342 267 
73 182 213 226 255 214 
13 52 118 136 131 116 
11 11 52 96 85 67 
5 22 31 78 91 66 

13 15 29 48 59 83 
3 16 19 34 54 59 
7 12 22 47 50 39 
4 11 30 35 42 36 
6 12 21 18 44 32 
7 9 17 23 43 26 
4 8 13 24 24 29 

30 71 78 117 163 151 
630 1,133 1,529 1,835 1,949 1,675 1 

72 61 63 55 42 36 166 
46 48 50 32 29 17 110 
58 62 47 46 30 25 123 
92 102 78 61 40 39 160 

112 111 87 66 62 42 155 
247 186 155 108 107 63 280 
230 163 113 83 72 52 198 
91 81 64 69 40 38 98 
64 64 44 26 31 20 91 
56 73 43 35 35 17 77 
61 49 47 25 25 23 67 
63 42 43 27 22 20 57 
41 56 52 26 23 14 50 
36 38 36 29 24 15 47 
25 26 25 22 17 19 42 
25 29 14 14 17 9 37 
27 13 21 16 10 17 30 

139 127 94 80 82 64 288 
,485 1,331 1,076 820 708 530 2,076 

Nole: Gamma = 0.11722; Prob(A < B) - Prob(B < A) = 0.5618. 

< 13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

< 30 
Total 

1,089 
716 
908 

1,410 
1,622 
2,873 
2,090 
1,057 

663 
636 
552 
462 
444 
384 
312 
272 
240 

1,500 
17,230 



TABLE 3 
Marital Hazard 

Respondent 's Age 
14 15 16 17 18 19 20 21 22 23 24 25 26 27 

0.001 0.002 0.005 0.016 0.038 

0.000 0.001 0.003 0.011 0.029 
0.005 0.010 0.015 0.032 0.055 

0.005 
0.001 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.002 
0.002 
0.002 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 

0.013 
0.004 
0.003 
0.003 
0.001 
0.001 
0.001 
0.000 
0.002 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 

0.014 
0.017 
0.013 
0.014 
0.004 
0.002 
0.001 
0.001 
0.000 
0.002 
0.002 
0.002 
0.007 
0.003 
0.003 
0.000 
0.004 
0.001 

0.041 
0.019 
0.029 
0.035 
0.030 
0.020 
0.003 
0.007 
0.000 
0.006 
0.011 
0.002 
0.005 
0.000 
0.003 
0.007 
0.008 
0.005 

0.063 
0.051 
0.051 
0.054 
0.056 
0.055 
0.035 
0.012 
0.017 
0.008 
0.024 
0.007 
0.016 
0.010 
0.019 
0.026 
0.017 
0.020 

Total Population 
0.070 0.102 0.136 0.167 0.173 

By School Enrollment Status 
0.050 0.070 0.108 0.149 0.160 
0.091 0.124 0.152 0.176 0.178 

By Age of Leaving School 
0.084 
0.086 
0.099 
0.100 
0.086 
0.092 
0.091 
0.050 
0.017 
0.035 
0.028 
0.035 
0.028 
0.029 
0.040 
0.034 
0.034 
0.049 

0.109 
0.098 
0.149 
0.140 
0.119 
0.127 
0.117 
0.120 
0.081 
0.051 
0.056 
0.043 
0.052 
0.082 
0.072 
0.067 
0.058 
0.056 

0.127 
0.135 
0.137 
0.146 
0.176 
0.165 
0.141 
0.157 
0.163 
0.137 
0.099 
0.081 
0.118 
0.104 
0.067 
0.097 
0.114 
0.090 

0.136 
0.153 
0.146 
0.180 
0.180 
0.195 
0.185 
0.180 
0.173 
0.185 
0.134 
0.140 
0.142 
0.139 
0.175 
0.201 
0.128 
0.137 

0.133 
0.153 
0.156 
0.165 
0.210 
0.189 
0.190 
0.194 
0.165 
0.164 
0.218 
0.177 
0.130 
0.138 
0.154 
0.152 
0.178 
0.147 

0.185 0.203 0.207 0.198 0.214 0.203 

0.170 0.190 0.178 0.173 0.197 0.203 
0.190 0.208 0.214 0.204 0.217 0.203 

0.145 
0.139 
0.148 
0.161 
0.176 
0.216 
0.252 
0.189 
0.188 
0.167 
0.205 
0.230 
0.156 
0.160 
0.142 
0.172 
0.201 
0.159 

0.144 
0.168 
0.186 
0.212 
0.212 
0.207 
0.239 
0.208 
0.232 
0.261 
0.208 
0.199 
0.253 
0.201 
0.172 
0.242 
0.121 
0.173 

0.174 
0.210 
0.173 
0.206 
0.211 
0.217 
0.218 
0.207 
0.208 
0.208 
0.251 
0.254 
0.315 
0.238 
0.200 
0.154 
0.223 
0.155 

0.184 
0.170 
0.205 
0.203 
0.203 
0.194 
0.205 
0.282 
0.155 
0.213 
0.179 
0.214 
0.230 
0.252 
0.220 
0.182 
0.219 
0.156 

0.172 
0.186 
0.169 
0.167 
0.239 
0.238 
0.224 
0.227 
0.218 
0.271 
0.217 
0.222 
0.264 
0.279 
0.218 
0.270 
0.175 
0.189 

0.178 
0.134 
0.169 
0.196 
0.213 
0.184 
0.208 
0.279 
0.180 
0.181 
0.256 
0.260 
0.219 
0.242 
0.311 
0.196 
0.362 
0.182 

In School 
Out of School 

28 29 

Age of 
Leaving 
School 

< 13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

?> 30 



TABLE 4 
Schooling Hazard 

Respondent 's Age 
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

0.044 0.059 0.097 0.124 

0.044 0.059 0.097 0.124 
0.115 0.138 0.158 0.169 

<13 0.115 0.174 0.053 0.111 
14 0.143 0.000 0.167 0.000 
15 0.158 0.188 0.308 0.111 
16 0.169 0.203 0.426 0.259 
17 0.056 0.119 0.250 0.333 
18 0.062 0.083 0.147 0.209 
19 0.053 0.081 0.138 0.161 
20 0.040 0.080 0.125 0.145 
21 0.041 0.052 0.090 0.145 
22 0.038 0.044 0.088 0.113 
23 0.038 0.047 0.077 0.125 
24 0.033 0.042 0.070 0.092 
25 0.038 0.051 0.088 0.105 
26 0.049 0.049 0.085 0.104 
27 0.042 0.063 0.089 0.105 
28 0.044 0.047 0.066 0.109 
29 0.034 0.052 0.086 0.102 

> 30 0.058 0.068 0.095 0.102 

Total Population 
0.250 0.243 0.162 0.121 0.132 0.133 

By Marital Status 
0.247 0.239 0.160 0.122 0.129 0.134 
0.476 0.353 0.187 0.117 0.145 0.130 

By Age of First Marriage 
0.375 0.200 0.250 0.000 0.167 0.000 
0.000 0.200 0.000 0.000 0.250 0.333 
0.250 0.500 0.000 0.333 0.000 0.000 
0.250 0.200 0.083 0.000 0.091 0.100 
0.583 0.175 0.212 0.000 0.154 0.273 
0.467 0.415 0.126 0.122 0.063 0.176 
0.366 0.432 0.218 0.059 0.125 0.097 
0.322 0.331 0.274 0.167 0.119 0.127 
0.282 0.256 0.207 0.185 0.184 0.139 
0.247 0.245 0.167 0.130 0.160 0.123 
0.225 0.233 0.165 0.114 0.127 0.182 
0.224 0.268 0.145 0.119 0.118 0.146 
0.196 0.214 0.135 0.124 0.161 0.129 
0.206 0.190 0.133 0.105 0.115 0.142 
0.193 0.184 0.187 0.087 0.128 0.105 
0.212 0.181 0.123 0.108 0.137 0.114 
0.170 0.169 0.148 0.092 0.086 0.127 
0.206 0.183 0.1 00.116 0.111 0.108 

0.128 0.141 0.142 0.134 0.135 0.138 

0.131 0.145 0.141 0.131 0.114 0.118 
0.123 0.137 0.142 0.136 0.143 0.144 

0.000 
0.500 
0.000 
0.111 
0.063 
0.049 
0.115 
0.095 
0.114 
0.129 
0.159 
0.177 
0.127 
0.151 
0.126 
0.113 
0.127 
0.103 

0.000 0.000 
0.000 0.000 
0.000 0.000 
0.375 0.200 
0.133 0.000 
0.121 0.078 
0.098 0.099 
0.122 0.189 
0.178 0.161 
0.137 0.133 
0.125 0.131 
0.140 0.143 
0.194 0.163 
0.215 0.189 
0.139 0.180 
0.133 0.160 
0.101 0.121 
0.101 0.106 

0.200 0.000 
0.000 0.000 
0.000 0.000 
0.250 0.000 
0.077 0.167 
0.128 0.171 
0.120 0.102 
0.163 0.157 
0.099 0.140 
0.161 0.187 
0.134 0.126 
0.116 0.131 
0.133 0.172 
0.162 0.109 
0.167 0.127 
0.135 0.156 
0.174 0.100 
0.106 0.104 

0.250 
0.000 
0.000 
0.333 
0.200 
0.118 
0.101 
0.143 
0.170 
0.128 
0.161 
0.163 
0.093 
0.183 
0.167 
0.109 
0.210 
0.094 

Not Married 
Married 

Age of 
First 
Marriage 



higher for individuals not in school than for those who are. The difference 
between the hazards for the two groups, however, is much larger at 
younger ages and declines with age so that by the late twenties there is 
almost no difference at all. 

The rest of Table 3 shows the marital hazard by age of leaving 
school. The hazard rate for the year in which an individual leaves school is 
shown in boldface type. If one believes that when an individual leaves 
school his chances of marrying should increase, then the rates to the right 
of the emphasized rate should be higher than those to the left. Although 
the pattern is far from being clean, especially at the youngest ages of 

leaving school, this in general is the case. An example is individuals who 
leave school at age 23, for whom the marital hazard at age 22 is 0.134 and 
at age 24 is 0.205. 

Table 4 shows the same set of results for age of leaving school. At 
the top of the table is the hazard for the whole sample. In this case the 
hazard rises quickly to peak at ages 18 and 19 when individuals are 

finishing high school and then declines. The next two rows show the 
hazard by marital status. At the youngest ages married individuals are 
much more likely to leave school than individuals who are not married. 
After age 21, though, marital status appears to make no difference. 

The bottom part of Table 4 shows the hazard for leaving school by 
age of first marriage. Analogous to Table 3, the hazards for the year in 
which an individual first marries have been emphasized. As in Table 3, 
one might expect that individuals would be more likely to leave school 
after they have married. At the youngest ages this seems to be the case. For 

instance, the hazard for individuals who marry at age 17 is 0.250 at age 16 
but 0.583 at age 18. For individuals who marry at age 19 or later, the 

pattern is mixed, though in most cases it is the opposite of that at youngest 
ages. That is, individuals are less likely to leave school after they marry 
than before. For example, individuals who marry at age 26 have at age 25 
a hazard of 0.215 and at age 27 a hazard of 0.162. 

These simple analyses suggest that there is interdependence be- 
tween the age of leaving school and age of marriage. The timing of these 
two events is modestly correlated and individuals are very likely to leave 
school before they marry. Moreover, an examination of the hazards 

suggests interdependence. In particular, leaving school appears to increase 
the marital hazard. This effect is greatest at the youngest ages. 

Wald Test. The Wald test for quasi-symmetry indicates whether the 
observed association between age of leaving school and age of marriage 
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could be explained simply by additive heterogeneity. The test is carried 
out assuming that individuals differ only in terms of a single additive 

component in their hazards. Thus the test does not allow the relationship 
between the age of leaving school and age of marriage to differ across 
individuals. More detailed analyses would let this relation vary as a 
function of a set of observed variables, X. Such an analysis must await the 
future. 

To carry out the Wald test for quasi-symmetry I had to collapse 
the data. In order to eliminate zero cells, I have collapsed the categories 
for ages less than or equal to 13 to 17 into a single category. This 

procedure also gives a matrix of manageable size. Even so, the Wald test 
involves inverting a 169 X 169 matrix, close to the limit of the computer 
system used (a Cyber 170-730). The collapsed data behave very much like 
the full table. Gamma is 0.1324, somewhat higher than in the original 
table. A standard X2 test for independence using the log-likelihood form of 
the X2 statistic (Bishop, Feinberg, and Holland 1975) gives a X2 of 
1,175.82 with 169 degrees of freedom, indicating a highly significant lack 
of independence.11 In the collapsed table individuals are still much more 
likely to leave school before marrying than the reverse; the difference 
between the two proportions is 0.55212.12 

The row, column, and cell parameters needed in the Wald test were 
found by solving Equations (4). This can be done simply by forming the 
log of the empirical joint survivor function and then using an ANOVA 
type procedure whereby the row and column effects are taken out leaving 
the cell effects. The Wald test was calculated by a program written in 
APL. The result was a X2 statistic of 378.30 with 78 degrees of freedom. 
This result is highly significant and represents a resounding rejection of the 
quasi-symmetry hypothesis. Using the normal approximation to the X2, 
this is a little over 15 standard deviations from the mean. 

Although the quasi-symmetry model as a whole fits very poorly, it 
is important to see whether it fits equally poorly over the whole age range. 
To answer this question I looked at the ratio of the differences Gj* - G 

"All statistical tests reported in this chapter are based on the assumption 
that OCG II is a simple random sample. In fact, it is a cluster sample. What the 
relative size of the design effects are for the models tested is unclear. It is quite 
doubtful that such corrections would affect the quality of the results reported. 

'2I conducted detailed analyses of the survivor function at younger ages. 
These analyses confirm the result reported in the chapter that at younger ages the 
quasi-symmetry model fits the data quite poorly. 
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to their standard errors. Looking at these results (not presented here), a 
definite pattern emerges. First, terms involving ages 17 or less, 18, and 19 
are those most often likely to be significantly different from zero. Second, 
relative to the number of individuals who left school at age 17 or less, 18, 
or 19 and then married shortly thereafter, there are too few individuals in 
the data relative to the model estimates who married at these ages and 
then left school thereafter. Putting it the other way around, at the youngest 
ages there are too many individuals who leave school and then marry soon 
after. This finding is consistent with the hazard rate analysis reported 
above. 

To examine this matter further, I fit the quasi-symmetry model to 
the collapsed data in order to compare the observed data with those 

predicted by the quasi-symmetry model. To do this it was necessary to 

collapse the data further by grouping categories for ages 18 through 29 
into adjacent pairs giving an 8 X 8 matrix. A maximum-likelihood routine 
based on the method of scoring (Rao, 1973) written in APL was used. The 

process of estimation itself suggested how poorly the model fit the data. It 
was never possible to get the program to converge. After 634 iterations the 
search procedure had not stopped, though the parameter values were 

changing less than 0.000004 per iteration. I therefore decided to use the 

parameter values at the 634 iteration as the estimates. 
Table 5 shows the ratio between the observed and expected fre- 

quencies. Several results should be noted. In the first column there are too 
few observed relative to expected individuals in all cells. This can happen 

TABLE 5 
Observed Divided by Expected Frequencies: Quasi-Symmetry Model 

Age of 
Leaving Age of Marriage 
School < 17 18-19 20-21 22-23 24-25 26-27 28-29 > 30 

< 17 0.93 1.17 1.17 0.93 0.87 0.98 0.89 1.08 
18-19 0.53 0.90 1.18 1.11 1.09 0.93 0.89 0.88 
20-21 0.32 0.48 0.91 1.07 1.10 1.08 1.05 1.01 
22-23 0.76 0.64 0.83 1.01 1.10 1.07 1.03 1.01 
24-25 0.90 0.66 0.81 0.93 1.04 1.21 1.07 0.98 
26-27 0.53 1.24 0.85 0.96 0.87 1.05 1.19 1.08 
28-29 0.71 2.08 0.93 1.03 1.00 0.92 1.07 1.02 
>30 0.54 1.41 0.92 1.01 1.04 0.98 1.07 1.02 
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because the model constrains the row and column marginals of the 
survivor function, not the distribution.13 Second, the first row of the table 
(minus the first element) seems to suggest a pattern. There are too many 
observed relative to expected individuals who marry right after leaving 
school as opposed to marrying later. Again, this pattern suggests that there 
is some interdependence. If one accepts Hogan's (1978, 1981) proposition 
that norms govern the sequencing of transitions, one might argue that the 
data support a hypothesis that there is a norm of not marrying before 
finishing high school. An examination of the second row from the third 
column on reveals this same type of pattern.14 

Since the analysis suggests that the lack of fit of these data occurs 

mostly at the younger ages, I decided to test the survivor function for 

quasi-symmetry between the ages of 20 and 30. This test is equivalent to 
examining individuals who left school and married after the age of 19. 
Doing so reduces the sample size to 6,120. Gamma for this subtable is 
0.1010 and the standard X2 test for independence gives a result of 251.33 
with 100 degrees of freedom. The difference between the proportion of 
individuals who left school before marrying from the proportion who did 
the reverse is only 0.0273. A Wald statistic was calculated to test the 
quasi-symmetry hypothesis for this portion of the survivor function. This 
calculation results in a x2 of 49.1 with 45 degrees of freedom. Under the 
assumption of a simple random sample, this X2 has a probability of 
0.7151, indicating that quasi-symmetry cannot be rejected for this compo- 
nent of the survivor function. 

The quasi-symmetry model for this subtable was also estimated. 
Convergence was achieved in 20 iterations. Examination of the ratio of 
observed to expected frequencies (not presented) indicates that the model 
fits the data quite well. If anything is to be made of the pattern of fit, it is 
just the reverse of that for younger age groups presented earlier: There are 
too few individuals marrying right after finishing school. Hence both the 
Wald statistic and the size of the discrepancy between the observed and 

13 One reviewer suggested constraining the row and column marginals of 
the distribution rather than those of the survivor function. As discussed above, the 
quasi-symmetry model implies that it is the row and column marginals of the 
survivor function that are constrained. 

'4Allowing parameters of the quasi-symmetry model to vary with respect 
to observed X's might well increase the fit of the model to the data. This approach 
needs to be investigated in future analyses. The hypothesis that there is a structural 
relationship between age of leaving school and age of marriage such that individu- 
als wait to marry until after finishing high school, however, seems quite plausible. 
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expected frequencies suggest that the quasi-symmetry model fits this 

portion of the data well.15 
In summary, then, the descriptive analyses and tests of the quasi- 

symmetry hypothesis have provided several results. At the youngest ages 
both the descriptive analysis and the Wald test suggest that there may be 

interdependence between the age of leaving school and age of marriage. In 

particular, leaving school appears to increase the hazard for marriage. At 
older ages the descriptive analysis suggests that there is interdependence, 
but it is much weaker. A test of the quasi-symmetry hypothesis, however, 
suggests that all of this interdependence may be explained by unobserved 

heterogeneity. 

CONCLUSION 

This chapter has examined two possible reasons why the timing of 
different life-cycle transitions may be interrelated. There may be a causal 

relationship or, alternatively, the observed relation may be the result of 

heterogeneity across individuals in the rates at which they approach 
adulthood. In colloquial language: Some people bloom late and others 
bloom early. 

I have looked at the question of whether these two possibilities are 

observationally distinct. In the general case I have shown that they are 
not. When heterogeneity is only allowed to enter the hazard additively, 
however, a distinction can be made. A test of the null hypothesis that the 
relation between two events is due simply to additive heterogeneity was 
then developed. 

Finally, the relation between the age of leaving school and age of 

marriage was examined using the OCG II data. Fairly simple analyses 
pointed to interdependence between these two transitions. A test of the null 

hypothesis that this observed interdependence was due to additive hetero- 

geneity suggested, however, that there was evidence of interdependence 
only at the youngest ages. 

5 As pointed out in note 8 quasi-symmetry does not guarantee that a 
survivor function can be obtained from additive heterogeneity. Note 8 indicates an 
additional sufficient condition. I calculated the eigenvalues and eigenvectors for 
my estimate of G*. All but two eigenvalues were within machine error of zero. The 
first eigenvalue was quite large and represented over 95 percent of the trace; the 
other eigenvalue represented something less 5 percent of the trace. It was then 
quite easy to find an oblique rotation of the two eigenvectors associated with these 
two eigenvalues that gave basis vectors satisfying the condition in note 8. 
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APPENDIX: OBSERVED X'S 

In the main body of the chapter I have made the strong assump- 
tion that the relation between transitions a and b is the same across 
individuals. Mathematically this is equivalent to the functions R(tl) and 

C(t2) not varying across individuals. As has already been noted, this is a 

strong assumption. Failure of the quasi-symmetry model to fit the data 

may result from this condition not holding as opposed to true interdepen- 
dence being present. 

One solution to this problem is to let the hazards for the two events 
be a function of a set of observed variables X. Thus the relation between 
the two transitions can vary with X. Then the survivor functions for 
individuals with observed variables X and of type i are 

Sa[i tl, X(0)] = exp - f {Ua[t, X(0)] + r(i, t)} dt) 

Sb[i, t2 ,x()]=exp(-f'U[t2, X)] =exp+ r(i, t) dt 

where 0 and 4 are parameters to be estimated. Using a factoring similar 
to that used earlier in the text, the survivor function for individuals with 
covariates X is equal to 

S(t,, t,, X) = exp - Ua[t, X(0)] dt 

+00 (ft \ 

X exp - l r (ti,t)dt) 

Xexp(- 2r(i, t)dt)K(ilX)di 

Xexp - uf2Ub[t, X()] dt 

The population survivor function is then just the integral of this expression 
over all X. Since a sum of quasi-symmetric functions is in general not itself 
quasi-symmetric, the population survivor function is not in general quasi- 
symmetric. Notice that, as before, the first term is a function of t1, the 
second term of t1 and t2, and the third term of t2. Each term is also a 
function of X. Using previous notation and leaving 0 and c implicit, the 
preceding expression can be written as 

S(tl, t2, X) = R(t,, X)G(tl, t2, X)C(t2, X) 

where, as before, R,G,C are the first, second, and third terms in the 
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foregoing equation. The dependence of G on X is due to the fact that X 
and i may not be independent. If they are independent, K(ilX) = K(i) 
and G will not be a function of X. 

As in the original formulation, this model can be estimated by 
pseudo maximum likelihood with the parameters in R, G, C being func- 
tions of X. With a large sample and few values for X, the easiest way to do 
this is to stratify on X and estimate R, G, C for each set of individuals 

separately. This may be impossible if there are time-varying X's, however, 
because distinct time paths represent distinct values of X. Since the 
stratified samples are independent, a Wald test can be carried out on each 
set of individuals and the x2 statistics from each test can be added to 

produce a x2 statistic for the entire population. 
With samples that are too small to stratify, the effects of X on R, 

G, and C have to be parameterized. In this case parameter estimates can 
be obtained by maximizing the pseudolikelihood for the sample. As before, 
when we have observations at discrete points in time we can define the 

pseudolikelihoods for individuals from their survival probabilities. Equa- 
tion (6) in the main body of the chapter does this. The maximum-likeli- 
hood estimates can then be obtained by using a nonlinear optimization 
program. (This will probably be very expensive.) The Wald test then 
consists of testing whether the appropriate differences between the parame- 
ters of G(t,, t2, X) are equal to zero. 

Variation in R and C with X can be interpreted as representing 
differences across groups in the timing of the two transitions and in relative 

position of the transitions to each other. Variation in G with X is the result 
of dependence of i on X. Generally, this variation will not be interpreta- 
ble. 
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