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This paper presents new models for simultaneous relation- 
ships among endogenous categorical variables. Previous inves- 
tigators have argued that the loglinear/logit framework is insuf- 
ficiently rich for the development of simultaneous equation 
models and that only models that postulate latent continuous 
variables (e.g. multivariate probit models) can represent simul- 
taneous relationships among categorical variables. This paper 
shows that by using latent class methods, we can develop 
loglinear models for simultaneous effects that are analogous 
to linear models in simultaneous equation theory. These mod- 
els, which are extensions of conventional loglinear and logit 
models for cross-classified data, are suitable when an indepen- 
dent variable is jointly determined with the dependent variable 
in a single-equation logit model or when there are reciprocal 
effects between two endogenous categorical variables. The 
models proposed here are extensions of recently developed 
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loglinear models for missing and other partially observed 
data. They have several advantages over the multivariate 
probit approach, including avoidance of the assumption of 
latent multivariate normally distributed variables, a closer link 
between units of measurement and structural parameters, and 
relative ease of computation. 

1. INTRODUCTION 

1.1. The Problem of Simultaneity 

A standard tool for the analysis of complex social phenomena 
is the structural equation model, which specifies the relationships 
between dependent variables and independent variables. This model 
is particularly valuable when several outcomes are jointly (simulta- 
neously) determined, that is, when each endogenous variable de- 
pends on the other endogenous variables under investigation. For 
example, in the interaction between spouses, the behavior of one 
spouse may affect the behavior of the other spouse, and vice versa 
(e.g., Duncan 1974; Duncan and Duncan 1978). The behavior of 
each spouse is both an independent variable and a dependent vari- 
able in a model of reciprocal effects. In other instances the joint 
determination of endogenous variables is more subtle. For example, 
one may wish to examine the effects of participation in a job-training 
program on the probability of employment at a subsequent date. 
Ideally, program participation is an exogenous variable that affects a 
single endogenous variable; but in the absence of random assignment 
of persons to the program, the structural relationship between partici- 
pation and employment may be obscured by systematic selection of 
individuals into (or out of) the program. Although employment sta- 
tus is the endogenous variable of primary interest, program participa- 
tion is also endogenous and is jointly determined with employment 
(e.g., Heckman and Hotz 1989). 

For continuous endogenous variables, simultaneous equation 
models are well-established extensions of the general linear model 
(e.g., Goldberger and Duncan 1973; Amemiya 1985; Duncan 1975). 
When one or more endogenous variables are discrete, however, 
more complex methods are used. Typically, simultaneous equation 
models for discrete endogenous variables are multivariate probit 
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models (e.g., Mallar 1977; Heckman 1978; Muthen 1984). These 
simultaneous models rely critically on the assumption that discrete 
endogenous variables are realizations of latent continuous variables. 
That is, structural relations are specified in terms of continuous vari- 
ables, thereby allowing interpretations that are similar to those from 
conventional structural equation models for observed continuous 
variables. In these models, the link between the latent continuous 
variables and the observed discrete variables is specified in auxiliary 
measurement equations, and estimation usually requires the assump- 
tion that conditional on the exogenous variables, the latent continu- 
ous variables follow a multivariate normal distribution. 

1.2. Simultaneous Equations: A Loglinear Approach 

An alternative strategy for analysis of simultaneous relations 
among discrete variables is to extend standard loglinear and logit 
models for categorical data (e.g., Bishop, Fienberg, and Holland 
1975; Goodman 1978; Haberman 1978-79; Fienberg 1980). On the 
surface, this strategy seems attractive: (a) It expresses structural rela- 
tions among variables in a way more closely tied to the way that 
variables are measured; (b) it avoids the analytic fiction that discrete 
endogenous variables always arise from latent continuous variables; 
(c) it avoids the assumption of (conditional) multivariate normality 
of endogenous variables; and (d) it avoids the computational burden 
that arises in probit models for polytomous outcomes or for more 
than two or three dichotomous outcomes (e.g. Daganzo 1979). 

This strategy for simultaneous equation modeling for discrete 
endogenous variables, however, has not been followed. Indeed, 
many analysts have concluded that loglinear models cannot be used 
to analyze simultaneous relationships among endogenous variables. 

Goodman (1973) presents methods for analysis of recursive 
causal systems using loglinear models but represents relationships 
between jointly determined variables by only their partial association. 
By this formulation, the reciprocal effects between pairs of endoge- 
nous variables are not identified, and the structural relations between 
variables are not distinguished from their partial associations. 

Brier (1978) shows that elementary loglinear models for two 
endogenous variables imply two logit equations in which the recipro- 
cal effects of the endogenous variables are equal. He concludes that 
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"generally, reciprocal effects can never be separated in systems of 
logistic models. . . . The only techniques that allow simultaneous 
estimation of reciprocal effects involve the concept of latent continu- 
ous variables" (1978, pp. 124, 126). 

In a widely used text, Fienberg states: "Can we set up non- 
recursive systems of logit models for categorical variables, with prop- 
erties resembling those of the nonrecursive systems of linear struc- 
tural equations? The answer to this question is no" (1980, p. 134). 

Heckman (1978, p. 950) asserts that "the loglinear model is 
not sufficiently rich in parameters to distinguish structural associa- 
tion among discrete random variables from purely statistical associa- 
tion among discrete random variables. The distinction between 
structural and statistical association is at the heart of simultaneous 

equation theory." Heckman argues that the error structure of the 

logit model is too restrictive to allow the model to represent simulta- 
neous relationships. Specifically, because the logit model does not 
allow for correlated errors across equations, it is inappropriate for 

estimating simultaneous effects. 
This paper shows that models for simultaneous effects among 

endogenous variables can in fact be specified and estimated by ex- 

tending loglinear models for cross-classified data. In particular, we 

develop models that expand the standard loglinear model by incorpo- 
rating partially observed variables. These variables are observed for 
some cases but are unobserved for others. The use of partially ob- 
served variables allows for a sufficiently rich parametric structure to 
model simultaneity within the framework of loglinear models. These 

simultaneity models do not rely on the assumption of latent continu- 
ous variables; nor do they make distributional assumptions beyond 
the usual multinomial sampling assumptions of the loglinear model. 
The models are analogous to standard simultaneous equation models 
for continuous variables in that they permit the separation of struc- 
tural relations of variables from their statistical associations and, in 
models of simultaneity between two endogenous variables, the isola- 
tion of distinct reciprocal effects. At the same time, this approach to 
simultaneous equation modeling retains the conceptual and practical 
advantages of loglinear and logit approaches. 

The models presented in this paper build on recently devel- 

oped models for cross-classified data in which some variables are 

missing for some observations. Fay (1986), Little and Rubin (1987), 
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Baker and Laird (1988), and Winship and Mare (1989) present 
loglinear models for tables with missing data, including data that are 
not missing at random. Haberman (1988) presents a general computa- 
tional algorithm for estimating loglinear models on indirectly or par- 
tially observed contingency tables. 

Section 2 of this paper describes data that we will use to illus- 
trate our models and discusses alternative structural relationships 
that may be investigated with the data. Section 3 presents a model 
for a single structural relationship that is potentially confounded by 
simultaneity between the dependent variable and one of the regres- 
sors. This model is analogous to the dummy-endogenous-variable 
model that is based on extensions of multivariate probit analysis 
(Heckman 1978; Maddala 1983). Section 4 presents a model for 
reciprocal effects between two endogenous variables. This model is 
analogous to the simultaneous equation model that has been com- 
monly applied in sociology (e.g., Duncan, Haller, and Portes 1968; 
Stolzenberg and Waite 1977; Marini 1984). We show how each of 
these two models can be formulated and estimated on a partially 
observed contingency table and present illustrative empirical results. 
Section 5 discusses the identifiability of the simultaneous equation 
models presented here. Section 6 discusses some limitations of the 
proposed models and problems for further research. 

2. AN EXAMPLE 

2.1. Simultaneous Equation Models for Reciprocal Effects 

Table 1 cross classifies two-wave panel data on whether or not 
high school boys perceive themselves to be members of their school's 
leading crowd and whether their attitude toward the leading crowd is 
favorable or unfavorable. These data are from a study by Coleman 
(1961), in which high school students were interviewed in October 
1957 and in May 1958. Membership is measured by a response to the 
question, "Are you a member of the leading crowd?" Attitude is 
measured by the respondent's agreement or disagreement with the 
statement, "If a fellow wants to be part of the leading crowd around 
here, he sometimes has to go against his principles" (Coleman 1964, 
p. 168). These data have been analyzed by Coleman (1964), Good- 
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TABLE 1 
Cross-Classification of Panel Data on Membership In and Attitude Toward the Leading Crowd in High School 

Wave 2 

Member Nonmember 
Membership (C) 
Attitude (D) Favorable Unfavorable Favorable Unfavorable 

Membership Attitude 

(A) (B) 

Member Favorable 458 110 140 49 
Member Unfavorable 171 56 182 87 

e 
Nonmember Favorable 184 531 75 281 
Nonmember Unfavorable 85 338 97 554 

Source. Coleman 1964. 
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FIGURE 1. Models for two endogenous variables. 

man (1973, 1974), Fienberg (1980), Duncan 
(1988). 

(1985), and Haberman 

Although many models can be applied to these data, we em- 

phasize those that represent simultaneous relationships between 
membership in and attitude toward the leading crowd. Figure 1 repre- 
sents alternative models for the leading-crowd data, where A, B, C, 
and D denote membership in the leading crowd at wave 1, attitude 
toward the leading crowd at wave 1, membership at wave 2, and 
attitude at wave 2, respectively. In model a, both membership and 
attitude at wave 1 affect both membership and attitude at wave 2. 
Within each wave, membership and attitude are associated, but the 
direction of the effect is unspecified. Thus, although model a allows 
for mutual causation of membership and attitude over time, it does 
not represent their simultaneous effects on each other. This model 
can be estimated as a loglinear model with the terms AB, AC, AD, 
BC, BD, and CD. Model b is similar to model a, except that it omits 
the cross-lagged associations between membership and attitude. It 
can be estimated as a simple loglinear model with terms AB, AC, 
BD, and CD. 

Unlike models a and b, models c and d include the reciprocal 
effects of membership and attitude on each other at wave 2. These 

A . C 

B > D 
(a) 

A 

B 

C 

B ' D 
(g) 
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effects are represented by the single-headed arrows that connect C 
and D. In addition, models c and d include residual association be- 
tween C and D that remains once the dependence of C and D on 
each other and on A and B are taken into account. This residual 
association is represented by the double-headed arrows connecting C 
and D in models c and d. Whereas model c also allows for cross- 
lagged effects, model d omits these effects. These models could be 
specified as pairs of simple logit models. For example, model c could 
be represented as a loglinear model or as two logit models for the 
probability that a boy is in the leading crowd (given A, B, and D) and 
that he has a favorable attitude toward the leading crowd (given A, 
C, and D). By this formulation, however, the partial effects of D on 
C and of C on D are necessarily equal and thus are no more informa- 
tive than the CD partial association in model a (Brier 1978). The 
same result holds for model d. The logit models, moreover, cannot 
distinguish the reciprocal effects between C and D from the associa- 
tion that remains once their dependence on A, B, and each other is 
taken into account. In contrast, if C and D were continuous vari- 
ables, a conventional simultaneous equation model (or the analo- 
gous multivariate probit model [Heckman 1978]) for model d would 
yield distinct estimates of the effects of C on D and D on C. In this 
approach, variables B and A are instrumental variables for C and D, 
respectively. Moreover, by this approach it is possible to identify 
both the reciprocal effects of C and D and also the residual correla- 
tion between C and D net of their dependence on A, B, and each 
other. Model c, however, is not identified in a conventional simulta- 
neous equation approach. 

Although conventional loglinear and logit models cannot iso- 
late the reciprocal effects of C and D in model d, extensions of the 
loglinear model can. These extensions, which we shall term structural 
loglinear models, also enable one to distinguish the two reciprocal 
effects of C and D from their remaining partial association once 
causal relationships are taken into account. Whereas extensions of 
loglinear models can contain all of the parameters for model d, they 
cannot do so for model c. These new models, which are presented in 
section 4, enable one to isolate all of the effects that can be obtained 
in conventional simultaneous equation models. Before we present 
these models, however, we consider simpler simultaneous equation 
models. 
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2.2. Simultaneous Equation Models 
for One Equation with Endogenous Regressor 

A simpler model is required when one has a single dependent 
variable but one or more independent variables can be jointly deter- 
mined with the dependent variable. This problem arises in the study 
of job-program effects on employment mentioned above, but it can 
also be illustrated with the leading-crowd data in Table 1. Suppose 
that variable A is not observed, that instead of Table 1 we have a 23 
table of attitude at wave 1 (B) by membership at wave 2 (C) by 
attitude at wave 2 (D), and that we are mainly interested in the 
effects of membership on attitude. Models e-i in Figure 1 apply to 23 
tables. Models e andf are simple models for the effects of B and C on 
D and can be specified and estimated as elementary loglinear mod- 
els. Models g, h, and i, in contrast, represent joint determination of 
C and D. The single-headed arrow between C and D denotes the 
effect of C on D. The double-headed arrow represents additional 
association between the variables not due to the effect of C on D. 
This association may occur because D affects C as in models c and d; 
because other variables, not included in the table, affect both C and 
D; or because C and D have measurement errors that are correlated. 

As in the four-variable model with reciprocal effects, the pa- 
rameters of models g, h, and i cannot be retrieved from conventional 
loglinear models. In contrast, if C and D were continuous variables, 
conventional simultaneous equation methods could be used to esti- 
mate model i, in which A serves as an instrumental variable for D. In 
the conventional simultaneous equation approach, models g and h 
are not identified. The structural loglinear models proposed in this 
paper, however, can isolate the parameters of models h and i, but not 
model g. Models h and i are analogous to the dummy-endogenous- 
variable model proposed by Heckman (1978) within the multivariate 
probit framework. We discuss this model in the next section. 

3. STRUCTURAL LOGLINEAR AND LOGIT MODELS FOR 
A SINGLE EQUATION WITH SIMULTANEITY 

In this section we describe single-equation models for categori- 
cal variables in which one independent variable is jointly determined 
with the dependent variable. We begin by outlining a general ap- 
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proach to distinguishing between structural and spurious association 
in categorical variables. Then we apply this approach to the simulta- 
neous equation model. 

3.1. Structural Effects and Partial Observability 

In nonexperimental data, observations on the joint distribu- 
tions of dependent and independent variables almost always con- 
found the structural relationships between variables with spurious 
association. Spurious associations arise because unmeasured vari- 
ables may affect both the independent and the dependent variables; 
because respondents may be selected (or select themselves) into cate- 
gories of the independent variable on the basis of their expected 
outcomes on the dependent variable, creating "feedback" between 
the dependent and independent variables; or because of correlated 
errors of measurement in the dependent and independent variables. 
Spurious association between observed variables arises because ob- 
servations are not randomly assigned to levels of the independent 
variable. 

Another way of viewing spuriousness is that it results from 
incomplete observation on the dependent variable. For each respon- 
dent, we observe the dependent variable for a single level of an inde- 
pendent variable but do not observe what the dependent variable 
would have been had the respondent been assigned to other levels of 
that independent variable (Rubin 1978). In most nonexperimental 
studies, one must infer effects from differences in the dependent vari- 
able across levels of an independent variable that are observed for 
different respondents; that is, one must infer from comparisons be- 
tween persons who are not necessarily identical on unmeasured vari- 
ables. If, on the other hand, one could observe distinct dependent 
variables for each individual for each value of an independent vari- 
able, then one could make much stronger causal inferences from com- 
parisons within persons who are, by definition, identical on un- 
measured variables across levels of the independent variables. In the 
absence of repeated observations on the same respondent across lev- 
els of an independent variable, one can nonetheless model the par- 

1For concreteness our discussion refers to "respondents," "persons," and 
"individuals" throughout. Obviously, our models apply to other units of analysis 
as well. 
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tially observed data. Although one cannot estimate effects for each 
person, one can estimate the average effect of a variable across per- 
sons. Rubin (1978) provides a general model for causal inference in 
which outcomes on the dependent variable on unobserved levels of 
the independent variables are regarded as "missing data." Winship 
and Mare (1989) show how loglinear models for missing data enable 
one to make inferences about respondents' behavior when it is not 
observed. Before extending these models to simultaneous equations, 
we describe their formulation for the more elementary case of a single 
endogenous variable. In practice, if the dependent variable is the only 
endogenous variable (that is, if all independent variables are exoge- 
nous), then elementary loglinear and logit models and the models for 
partially observed data presented here provide identical estimates of 
effects. We begin with this case, however, to illustrate the approach in 
its simplest form, before going on to the more complex case of jointly 
determined variables. 

Suppose that we have a single endogenous variable D and a 
single exogenous variable B, each of which takes the values 1 or -1. 
For example, B and D may denote attitude toward the leading crowd 
at waves 1 and 2, respectively, and thus be observed in a collapsed 
version of Table 1. The observed data, therefore, are a 2 x 2 fre- 
quency table. To assess the effect of B on D, we can use an elemen- 
tary logit model, 

logit[p(D = 1 B)] = 3 + /3, (1) 

where the subscript j indexes levels of B and j/3B = 0. 
An alternative formulation recognizes that for each respon- 

dent, we observe D for only one level of B and we do not observe D for 
the level of B that the respondent did not experience. Define two 
additional variables, D1 and Do, that denote respondents' values on D 
when B equals 1 and -1, respectively. For respondents for whom B = 
1, D1 = D and D, is unobserved; for respondents for whom B = -1, Do 
= D and D1 is unobserved. Here, B is an indicator for whether D1 or Do 
is observed. In the language of experiments it indicates the treatment 
to which an individual is assigned. Since B is exogenous, it is indepen- 
dent of D1 and Do. Whether B = 1 or -1 is not related to the outcome 
on D1 and Do. Assignment to levels of B is at "random." 

We can represent the relationship between our three variables 
in a partially observed 23 table with dimensions B, D1, and Do. This 
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D1 - 1 

DO - 1 

B 1 

DO - -1 

DO - 1 

B --1 

DO - -1 

D1 - -1 

B - D - 1 B - 1; D - -1 

1 2 

B * D - 1 B - 1; D - -1 

3 4 

B - -1; D - 1 B - -1; D - 1 

6 6 

B - D - -1 B - D - -1 

7 8 

FIGURE 2. Expanded form of table with one exogenous and one endogenous variable. 

table is illustrated in Figure 2, which shows the mapping between the 
observed data on B and D and the partially observed relations 
among B, D1, and Do. This table can be modeled as a latent class/ 
loglinear model using methods described by Winship and Mare 
(1989) and below. The loglinear model that is equivalent to the logit 
model (1) is the model of one-way effects (independence): BD1Do. 
This equivalence is explained below. The assumption that B is inde- 
pendent of DI and Do (that is, the assumption that B is exogenous) is 
essential to the identification of the model. The D1Do interaction is 
not identified. For convenience it is set to zero. 

To understand the relationship between the above loglinear 
model and the logit model (1), consider two logit equations that the 
above loglinear model implies: 

logit[p(D, = 1)] = 3D1, 

logit[p(DO = 1)] = 3D?. 

(2) 

(3) 

The effect of B on D is the difference in levels between D1 
and D0, that is, /3D1 - PDO. The average level of D in the population 
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is (1,D1 + /D00)/2. Equations (2) and (3) cannot be estimated using 
standard methods, since D1 and Do are not fully observed. That B is 

independent of D1 and D0, however, implies that 

logit[p(D1 = 1) B = 1] = PD1 (4) 

logit[p(D0 = 1) | B = 0] = ?D0. (5) 

These two equations can be estimated using standard methods, since 
D1 and Do are fully observed for the specified value of B in each 

question. The estimation of (4) and (5) is equivalent to the estima- 
tion of (1). Combining the dependent variables in equations (4) and 

(5) gives the dependent variable in equation (1). The relationships 
between the parameters in the three equations are as follows: /3 = 
(3D1 + 3D0)/2, X3B = (3D1 - /D0)/2, and PB = (PDO - D1)/2. 

If B is exogenous, estimation of equation (1) and estimation of 
a loglinear model with only the one-way effects in Figure 2 yield 
identical results. Nothing more about the relationship between B and 
D is learned by using the latent class approach. One can always 
postulate a separate dependent variable for each combination of 
levels of the independent variables, but this is unnecessary whenever 
one assumes that all of the independent variables are exogenous. In 
this case, by assumption, the effects that derive from the between- 

respondent comparisons on the dependent variable across levels of 
the independent variable are satisfactory. 

As discussed in detail below, when an independent variable is 
jointly determined with the dependent variable, it becomes fruitful 
to distinguish between respondents' observed outcomes on endoge- 
nous variables and those that they would have obtained if their val- 
ues on the independent variables were different from those ob- 
served. It is possible to model these relationships by using latent class 
loglinear models that are more complicated than the one-way effects 
model above. This is the key to our approach. 

3.2. General Form of the Single-Equation Model with Simultaneity 

Our approach is applicable to models h and i in Figure 1, 
although our initial discussion will be confined to model h. Model i, 
which can be estimated by a similar approach, is discussed in section 
5.2. 
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To separate the structural effect of C on D from the statistical 
association between these variables, we use a model in which each 

respondent has two outcomes on variable C and two outcomes on 
variable D. That is, we distinguish between respondents' actual re- 
sponses on D and their hypothetical responses if they had a value of 
C different from the one that we observe; and we distinguish be- 
tween respondents' actual responses on C and their hypothetical 
responses if they had a value of D different from the one that we 
observe. Let B, C, and D take on values of 1 or -1. Now define four 
new variables: D1 and D0, which denote respondents' outcomes for 
alternative values of C, and C1 and C0, which denote respondents' 
outcomes for alternative values of D. 

D1, D0, Cl, and Co are partially observed variables inasmuch as 
whether we observe them depends on the particular value of C and D 
that we observe. The logical relations among C, D, C1, Co, D1, and Do 
are as follows: (a) if C = D = 1, then C1 = 1, D1 = 1, and C and Do 
are unobserved; (b) if C = 1 and D = -1, then CO = 1, D1 = -1, and 

C1 and Do are unobserved; (c) if C = -1 and D = 1, then C1 = -1, Do 
=1, and Co and D1 are unobserved; (d) if C = D = -1, then Co = 

-1, Do = -1, and C1 and D1 are unobserved. This implies that C = 

[(D + 1)C1 + (1 - D)Co]/2 and that D = [(C + 1)DI + (1 - C)Do]/2. 
Despite the partial observability of C1, Co, D1, and D0, a gen- 

eral model for the dependence of D on C is 

p(D, = 1 B,Cl,Co) = F,(B,C,,Co), (6) 

p(Do = 1 B,C1,C) = Fo(B,Cj,Co), (7) 

where F1 and Fo denote functions that will be specified more fully 
below. Equations (6) and (7) are a structural model for D inasmuch 
as they represent the effects of B and C on D apart from the actual 
sample values of B, C, and D. As we will show more explicitly below, 
the model separates the structural effect of C on D from the sample 
association between C and D. In these respects, this model is analo- 
gous to the endogenous switching regression model (Maddala 1983; 
Mare and Winship 1988), which separates the structural effects of a 

categorical variable from systematic, sample-specific selection of ob- 
servations into levels of the categorical variable that are potentially 
correlated with the dependent variable. 
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D1 - 1 

DO - 1 DO - -1 
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D1 - -1 

DO - 1 DO - -1 

CO - 1 

Cl - 1 

CO - -1 

CO - 1 

C1l -1 

CO - -1 

C D- C D C ; D - C - 1; D -1 C1; -1 

1l 2 3 4 

C-D-1 
C-D-1 C-D--1 

C - 1; D - -1 
C ? -1; D 1 

I 1;D C - 1; D --1 
l | C 

? 
-1; D - 1 

9 10 11 12 

C ? -1; D 1 C D - -1 C - -1; D - 1 C D -1 

13 14 16 | 16 

FIGURE 3. Expanded form of table with two endogenous variables (conditional on exoge- 
nous variables). 

3.3. Structural Loglinear Model for the Expanded Table 

We specify and estimate structural loglinear models for an 
expanded, partially observed contingency table with dimensions B, 
C1, Co, D1, and D0.2 Figure 3 illustrates the expanded table for the jth 
category of B. We observe none of the individual cells of the ex- 
panded table. Instead, each observed combination of C and D for a 
given level of B can fall into four cells in the expanded table. For 
example, if C = -1 and D = 1 for an observation, then it is poten- 
tially a member of cell 9, 11, 13, or 15 of the expanded table. Two 

2An alternative approach to the single-equation model with an endoge- 
nous independent variable is to specify a model for an expanded table with 
dimensions B, C, D1, and D0, that is, to consider alternative outcomes on D for 
different values of C but to assume that C1 = CO = C. This approach yields a 
model that is similar but not identical to the one presented here. The relation- 
ship between these two models is a subject for further research. The model 
presented here generalizes more easily to the simultaneous equation model 
presented in section 4. 
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cells of the expanded table are logically impossible (7 and 10), and 
for two other cells of the expanded table (6 and 11), two distinct cells 
of the observed table provide information. 

Since B has two categories, a general loglinear model for the 
expanded table would have 28 parameters (32 - 4 = 28, because of 
the four logically impossible cells), which would not be estimable 
because the observed table has only eight cells. Thus, we use a more 
restricted model. In keeping with model h in Figure 1, we assume 
that B does not directly affect C. This is analogous to the assumption 
in standard simultaneous equation theory that B is an instrument for 
C. Thus, all interactions that include the BC1 and BCo terms are set to 
zero. In addition, we assume that all interactions that include the 
D1Do and CC0o terms are zero. This implies that conditional on B, DI 
and Do are independent and C1 and Co are independent.3 Assuming 
that observations are obtained under multinomial sampling, a re- 
stricted loglinear model is 

log Pjklmn= A + AB + AkC + Ao + A + AD (8) 
BD1 BBDO C IDO CDO COD1 I CODO 

+A_I A + l +Am +A , jm jn - '~"k l m In 

where Pjklmn denotes the probability that an individual falls into the jth 
category of B (j = -1,1), the kth category of C1 (k = -1,1), the Ith 
category of Co ( = -1,1), the mth category of D1 (m = -1,1), and the 
nth category of Do; the intercept A is determined by the constraint that 

jklmnPjklmn = 1; the remaining A's are parameters; and SjAB = kAkC = 

CO_ D_ C DO_ Av D,BD_ Y BD =_ A BD V BDO = v,A 
BDO _ v ClDl 

Z,1 m --n n - j,jm -~m jm - 'j,jn n --njn -- k"km 
S ClDl _ ClDO C1 lDO _ VC-OD _ COD1 = _ YCODO _ 

m km - wk -kn ~ .n kn - .ltlm - mm I lln 
~ 

ACODO = 0. 
Model (8) is not identified inasmuch as it contains 12 parame- 

ters, four more than the number of observed cells. However, a more 
restrictive version of (8), which is identified, captures the essential 
features of model h in Figure 1. In particular, we assume that D does 
not affect C, i.e., that AC1 = Ac?. We also assume that ACD1 AC1DO k I km kn 

3Unlike the interactions in the endogenous switching model based on 
linear and probit equations (Maddala 1983; Mare and Winship 1988), these 
interactions are identified in structural loglinear models under certain condi- 
tions. The assumption that they are zero is usually not realistic. In the examples 
presented in this paper, however, the models fit well when these interactions are 
omitted. Footnotes 4 and 6 report results for models in which these interactions 
are included. For the most part, the estimates do not change, although standard 
errors are larger. 
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= ACl = ACDO , a restriction explained below. Equation (8) includes 
distinct effects of B on D1 and Do. This amounts to a three-way 
interaction between B, C, and D. Model h in Figure 1, however, 
assumes a single effect of B on D (irrespective of the value of C). 

,BD1 =BDO a 
Thus, we assume that ABm = ABD, i.e., that B does not interact with C 
in affecting D. 

We impose the above constraints by using two new variables, 
C* and D*. These variables help to simplify the equations below 
and to provide a direct connection to the structure of the design 
matrices discussed below. C* is indexed by s and has three levels, 1, 
0, -1. The index s of C* is the sum of the indexes of C1 and C0, k 
and 1 respectively; that is, s = (k + 1)/2. The parameters for C*, for 

example AC*, are the sums of the parameters for C1 and C0, for 
example A *= Ak1 + A? = 2A1. D* is defined analogously for the 
variables D1 and Do. D* has index t, where t = (n + m)/2, and AD* = 
AD + A?D = 2Am. When C* and D* are used in higher-way effects, 
the above relations generalize. Thus, including the term ABD* implies 
that Ajm = Ajn , with AB = ABD1 + ABDO = 2AD Using C* and D* 

jm jn , WIlfljt jm Jin 2jm 
implies that the terms involving C1, Co, D1, and Do are implicitly 
included in an expression and that they have been constrained to be 
equal in the way noted above: AC*D* = AklDl + AC1DO + AOD1 + A ODO 

4Ak1Dl. This term represents the residual association of C and D net 
of the structural relationship(s) between the two variables. Inclu- 
sion of this term implies that all terms to which it sums are included 
and constrained to be equal. As we show below, the definitions of 
C* and D* are consistent with the way design effects are defined 
when equality constraints are imposed. 

Under these assumptions and notation, the model becomes 

log Pjklmn = A + A B + A + c* + A0D + ABD* + AC*D* (9) log Pjklmn-kl m n jmn st 

Model (9) is a structural loglinear model for the effects of C on 
D, taking account of the residual association between these two 
variables. The structural coefficient for the effect of C on D is 2(A1 - 

AD?). To see this, note that AD denotes the average level of D when C 
= 1, whereas A?D denotes the average level of D when C = -1. Thus, 
the effect of C is proportional to the difference between these two 
parameters. T prtil atin btwn C n The partial association between C and D is . The 
latter parameter corresponds to the double-headed arrow in model h 
of Figure 1 and measures the tendency of respondents for whom C1 = 
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1 and CO = 1 to be more (or less) likely to have D1 = 1 and Do = 1. If 
the model contained separate parameters Ac*D1 and Ac*DO (instead of 

AC*D*), then these two parameters would correspond to the effects of 
nonrandom selection from the levels of D1 and Do into categories of 
C and would be analogous to correlated disturbances in endogenous 
switching regression models (e.g., Maddala 1983; Mare and Winship 
1988). In this model, however, we estimate only a single parameter 
for nonrandom selection, yielding a model that is analogous to the 
dummy endogenous variable model (Heckman 1978, p. 938). 

3.4. Logit Form of the Model 

To show the link between the structural loglinear model and 
the general model presented in section 3.2, we write (9) as two logit 
models, one for D1 and one for Do. That is, 

logit[p(Dl = 1 I B,C1,Co)] = pD + pBD* + pC*D*, (10) 

logit[p(D0 = 1 B,C1,Co)] = D0 + + C*D* (11) 

where 3D1 = 2AD1, 3DO = 2AD, pBD = 2AD, and/ p*D*= 2Ac*D* Equa- 
tions (10) and (11) correspond to the general model of (6) and (7), 
but we can also write the model as a single equation: 

logit[p(Dq = 1 I B,C1,Co)] = PD + 3DC + BD* + /C*D*, (12) 

where Dq is a variable taking the value 1 or -1 for the qth category 
of C (q = 0,1); pD is the grand mean of the logit of the probability 
that Dq=1 

= [ = 
(D + DO)/2]; 

pDC is the structural effect of C on 

D (that is, D3C = /D - DO, and p C = pDO - pDl); and the remaining 
notation is as defined above. Model (12), therefore, contains pa- 
rameters for the structural effects of B and C on D, as well as for 
the association between C and D that remains once the dependence 
of D on C and B is taken into account. 

3.5. Estimation with an Empirical Illustration 

We can obtain the parameters of (12) from the corresponding 
loglinear model (9), which we estimate by treating the unobserved 
cells in Figure 3 as "missing" data (Winship and Mare 1989). We get 
maximum likelihood estimates of expected cell frequencies and pa- 
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rameters of (9) using Haberman's (1988) DNEWTON program for 
loglinear models estimated from indirectly observed contingency ta- 
bles. Haberman (1988) describes the computational algorithm, and 
Winship and Mare (1989) provide an example of its application to 
simple contingency tables with missing data. The estimation proce- 
dure requires that one specify (a) a design matrix for the relationship 
between the parameters to be estimated and the expected frequen- 
cies of the expanded table and (b) a mapping between the observed 
cell frequencies and the cells of the expanded table. 

For model (9) applied to the three-variable BCD version of 
the leading-crowd data in Table 1, we present the design matrix and 
cell mapping in Table 2. The rows of Table 2 refer to cells in the 
expanded table. The columns of the design matrix labeled Model 
Terms correspond to parameters in equation (9). The columns for B, 
C*, Do, and D1 are contrast-coded indicator variables. These vari- 
ables are dB, dC*, dD?, and dDl, respectively. (The variable dc* is the 

average of the separate indicator variables for C1 and C0, say dC1 and 
dCo.) Then the columns for BD* and C*D* are dB(dD? + dDl)/2 and 
dC*(dDO + dDl)/2, respectively. This coding imposes the restrictions 
jBDl BDO Cl CD COD1 COD 

Aj A A I km = n k A and k = n on (8) above 
The first column shows how the observed frequencies are 

mapped into 28 of the cells in the expanded table. The four cells 
corresponding to the two levels of cells 7 and 10 in Figure 3 are not 
included in this list because they are logically impossible. Thus, their 
frequencies are constrained to be zero. 

As noted above there are potentially 28 parameters associated 
with the model for the expanded table in Figure 3. But Table 2 
includes 32 rows because cells 6 and 7 in Figure 3 receive observa- 
tions under two outcomes for each of the two levels of B. We have 
listed the contribution of each outcome separately. If we had com- 
bined the contributions, which would lead to the same results, Table 
2 would have 28 rows. The last column of the table contains expected 
frequencies for a model to be discussed below. 

The top panel of Table 3 presents likelihood-ratio chi-square 
(G2) statistics for model (9) plus several simpler models fit to the 
BCD version of Table 1. Model I includes the structural effect of C 
on D (as implied by the terms Do and D1), but no partial association 
between these variables. Model II includes the partial association (as 
implied by the term C*D*), but no structural effect. Model III in- 
cludes both the structural effect and the partial association. Models I 
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TABLE 2 
Design Matrix, Cell Mapping, and Expected Frequencies for Single-Equation 

Model with Endogenous Regressor for Collapsed Version of 

Leading-Crowd Data 

Observed 
Model Terms 

ObseFrequency C D B C D D BD* CD* 
Frequency C D B C* D1 Do BD* C*D* 

11 1 1 1 1 1 
11 1 1 1 -1 0 
1 1 1 0 1 1 1 
1 1 1 0 1 -1. 0 
1 1 ?-1 1 1 1 - 
1 1 -1 1 1 -1 0 
1 1 -1 0 1 1. -1 
1 1 -1 0 1 -1 0 
1 -1 1 1 --1 1 0 
1 -1 1 1 -1 -1 -1 
1 -1 1 0 --1 1 0 
1 -1 1 0 1 -1 - 
1 -1 --1 1 - 1 1 0 
1 -1 --1 1 --1 -1 1 
1 -1 -1Z 0 - 1 1. 0 
1 -1 -1 0 -- 1 -1 1 

-1 1 1 0 1 1. 1 
-1 1 1 0 --1 1 0 
-1 1 1 -1 1 1 1 

-1 1 1 -1 -1 1 
-1 1 - 1Z 0 1 1 - 1 

-1 1 -1 0 - 1 0 
-1 1 -1 -1 1 1 - 
-1 -1 -1 --1 1 0 

-1 -1 1 0 1 -1 0 
-1 - 1 0 - 1 -1 -1 
-1 -1 1 -1 1 -1 0 
-1 -1 1 -1 -1 -1 - 
-1 -1 - 1 0 1 -1 0 

-1 -1 -12 0 - 1 -12 1 
-1 -1 -1 -1 1 -1 0 

-1 -1 -1 -1 - 1 - 1 1 

Expected 
Frequencies 

(Expanded Table) 
Model III 

2 338.248 
0 34.175 
0 209.986 
0 57.722 
2 105.465 
0 32.310 
0 65.473 
0 54.572 
0 66.609 

-2 6.730 
0 112.503 
0 30.925 
0 62.974 

-2 19.293 
0 106.363 
0 88.654 
0 209.986 
0 112.503 

-2 130.360 
0 190.018 
0 65.473 
0 106.363 

-2 40.646 
0 179.648 
0 57.722 
0 30.925 
0 97.493 
2 142.110 
0 54.572 
0 88.654 
0 92.172 
2 407.386 

642 
642 
642 
642 
256 
256 
256 
256 
215 
215 
215 
215 
279 
279 
279 
279 
641 
641 
641 
641 
394 
394 
394 
394 
330 
330 
330 
330 
641 
641 
641 
641 
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TABLE 3 
Likelihood-Ratio Chi-Square Statistics for Three-Variable Models for 

Leading-Crowd Data 

Model G2 df 

Structural loglinear models 
I. B, C*,Dl, Do, BD 57.64 2 

II. B, C*, D*, BD*, C*D* 14.02 2 
III. B, C*, D, Do, BD*, C*D* 0.07 1 

Elementary loglinear models 
IV. BD, CD 32.44 2 
V. BC, CD 263.46 2 

VI. BC, BD 31.18 2 
VII BC, BD, CD 0.04 1 

TABLE 4 
Parameter Estimates in Logit Form of Structural Loglinear Models for the 

Three-Way Table 

Model I Model II Model III 

Variablea /3 SE(3) /3 SE(3) 3 SE(3) 

Intercept .297 .037 .364 .040 .403 .090 
D, - Do .416 .075 -.667 .218 
B 1.162 .072 1.192 .070 1.110 .076 
C*D* 1.080 .124 2.000 .324 

aB is attitude toward the leading crowd in wave 1; C is membership in the leading 
crowd in wave 2; and D is attitude toward the leading crowd in wave 2. 

and II are both nested within III, and as the G2 statistics indicate, 
both the structural and the partial associations are statistically signifi- 
cant and are needed to provide an adequate model for these data. 

Table 4 presents logit parameter estimates for these models. 
As indicated by the parameter estimates for B in all three models, 
the odds of a favorable attitude toward the leading crowd in wave 2 
are higher for persons having a favorable attitude in wave 1 than for 
persons having an unfavorable attitude. The estimated effect of mem- 
bership in the leading crowd in wave 2 (C), however, depends on 
which model is estimated. Models I and II imply that members of the 
leading crowd in wave 2 have more favorable attitudes toward the 
leading crowd in wave 2, whereas model III reveals a more complex 
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relationship. Membership in the leading crowd reduces the probabil- 
ity of a favorable attitude in wave 2, but the partial association of 
membership and attitude is positive. This suggests that although be- 
longing to the leading crowd makes one less likely to view the leading 
crowd favorably, unmeasured common causes of membership and 
attitude induce a positive association between these two variables. 
Although this example is simple, it illustrates that one can distinguish 
structural from residual associations using our methods.4 

The lower panel of Table 3 reports G2 statistics for several 
elementary loglinear models. The fit of the model of no three-way 
interaction, model VII, is close but not identical to that of model III. 
Whereas model VII includes all two-way interactions, model III uses 
the two-way interaction of B and C to identify the two parameters 
governing the relationship between C and D. Although models III and 
VII fit the observed data similarly, they yield different expected fre- 

quencies for the expanded table. Unlike the expected frequencies for 
model VII, the expected frequencies for model III vary across cells of 
the expanded table that correspond to the same cells of the observed 
table. The choice between models III and VII should be determined in 

part by the assumption that is made about the structural relationship 
between the variables, that is, whether B directly affects C. This 
choice is analogous to the problem of making assumptions about in- 
strumental variables in standard simultaneous equation models. 

4. STRUCTURAL LOGLINEAR AND LOGIT MODELS FOR 
RECIPROCAL EFFECTS 

4.1. General Form of the Model 

We now extend the approach described in section 3 to the 
model for reciprocal effects. This corresponds to model d in Figure 1 
and will be illustrated with the four-way table for the leading-crowd 
data. Our model again views each respondent as having two pairs of 
outcomes, a pair for each of variables C and D. Defining all notation 
as above, let A be an additional exogenous variable, taking values of 

4We also estimated model III allowing for a D1Do association. Under this 

model, G2 = 0 (0 df). The estimated association parameter is -0.376 (SE = 

1.212), other parameter estimates for the model change somewhat, and their 
standard errors are larger than when the DDo0 association is omitted. The pa- 
rameter for D1 - Do becomes -0.422 (SE = 0.338). 
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1 or -1, that affects C but not D. A general model for the mutual 
dependence of C and D is 

p(C1 = 1 IA,B,D = 1) = G1(A,Do,Dl), (13) 

p(Co = 1 A,B,D = -1) = G2(A,D,D), (14) 

p(Dl = 1 | A,B,C = 1) = G3(B,Co,C ), (15) 

p(Do = 1 A,B,C = -1) = G4(B,Co,C1), (16) 

where the Gi denote functions that will be specified more fully below. 
Equations (13)-(16) are a structural model for C and D and include 
not only the effects of A and D on C and of B and C on D, but also 
the residual association between C and D. These effects are de- 
scribed below. 

4.2. Structural Loglinear Model for the Expanded Table 

We specify and estimate a loglinear model for an expanded, 
partially observable table with dimensions A, B, Cl, Co, D1, and Do. 
The full expanded table has 26 = 64 cells. Figure 3 now shows the 
cross-classification of C1, Co, D1, and Do given a combination of val- 
ues of A and B (A = i, B = j). The relationships between the 
observed values of C and D and the cells of the expanded table are 
the same as for the single-equation model. 

A general loglinear model for the expanded table has 56 pa- 
rameters (since there are eight structural zeros due to cells 7 and 10 
in Figure 3), whereas the observed table has only 16 cells. Thus, we 
impose a number of restrictions. In keeping with model d of Figure 
1, we assume that partial associations between A and Do, A and D1, B 
and Co, B and C1, and higher-way interactions involving these pairs of 
terms are zero. These are analogous to instrumental-variable assump- 
tions. As before, we assume that all interactions that include the C1Co 
or D1Do terms are zero. Additional discussion of these two assump- 
tions is given in section 6 below. Assuming that observations are 
obtained under multinomial sampling, a restricted loglinear model is 

log Pikm= A + A+ AC1 + AC + ADI+ AD? + AB 

AC1 + ACO + BD1 ABDO + C1D1 i C1DO COD1 ik ii jm jn 'km ' +kn" '1 (17)m 
+ CODO 

+ ,In , 

where Pijklmn denotes the probability that an individual falls into the 
ith category of A (i = -1,1), the jth category of B (j = -1,1), the kth 
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category of C1 (k = -1,1), the Ith category of CO (I = -1,1), the 
mth category of D1 (m = -1,1), and the nth category of Do; the 
intercept A is determined by the constraint that fijklmnPijklmn 

= 1; the 

remaining A's are parameters; and ZiAA = jAB = kA = -,Ac? = 
v AD1l_ DO_ iAB _ v AB_ v AAC1_ v AAC1_ jAACO_ v ACO_ 

mAm ~'nAn ~iAij ~jAij -- "iik 
~ 

''"k'ik ~iAil ~lil 
v BD1 _ v BDl _ ,BDO _ ,BDO _ AClD _- A ClD1 _ A ClDO 

j^jm ~' m"jm '~j^jn - 
,nA-jn = kkm 

~ 
kmkm - kkn j-' m jm I -n 

_ v CDO _ v ICODI _ v COD1 _ CODO _ CODO _ . '_n,kn -llm mAlm t nln - u 

Equation (17) contains more parameters than are required by 
the reciprocal-effects model. Thus, we impose some further restric- 
tions. Equation (17) includes distinct effects of A on C1 and Co (that 
is, the effect of A on C interacts with D) and effects of B on D1 and 
Do (that is, the effect of B on D interacts with D). In contrast, model 
d in Figure 1 assumes a single effect of A on C and B on D. Thus, we 
also assume that AC1 = A AC and that ABD = ABD These restrictions ik ii jm jin 
imply that 

log Pijklmn += A + A B + ACl + A D 1 A + ADO + AAB log ijklmn 
= 

kI +A mI n (18) 

+ ABD* + AC* + 
C*D* +A1 +Ah +Ahc 

jt is St 

where C* and D* are as defined above. 
Equation (18) is a structural loglinear model for the reciprocal 

effects of C and D. The effect of C on D is 2(A1 - ADO), and the effect 
of D on C is 2(Acl - Ac?). Note that A1D denotes the average level of D 
when C = 1 and that AD? denotes the average level of D when C = 
-1. Thus, the effect of C on D is proportional to the difference 
between these two parameters. Similarly, A4,C and Ac? denote the aver- 
age levels of C when D = 1 and D = -1, respectively, and the effect 
of D on C is proportional to the difference between these two pa- 
rameters. The partial association between C and D is AsCD*. It mea- 
sures the association between C and D that remains once their recip- 
rocal effects and the effects of A and B are taken into account. 
Whereas model (17) includes four parameters for associations among 
C1, Co, D1, and D0, model (18) includes only a single parameter, 
which is analogous to the residual correlation in the structural form 
of a conventional simultaneous equation model. 

4.3. Logit Form of the Model 

To show the link between the structural loglinear model and 
the general model presented in section 4.1, we write (18) as four logit 
equations, one each for Cl, Co, DI, and D0. That is, 
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logit[p(C1 = 1 A,D1,D0)] = P c + ic + C*D*, (19) 

logit[p(C0 = 1 |A,D1,Do)] = Pc? + Pc + Pc**, (20) 

logit[p(D1 = I B,C1,Co)] = D1 + pBD* + C*D*, (21) 

logit[p(D0 = 1 B,C1,Co)] = 3DO + pBD* + C*D*, (22) 

where3pcl =2Ac1, co = 2A 0,3 1 =2AD O= 2ADO ,C = 2AC, BD* = 

2ABD*, and C*D = 2AC*D . Equations (19-22) correspond to the gen- 
eral model given by (13)-(16), but we can also write the model as 
two logit equations, one for C and one for D: 

logit[p(Cr = 1 A,D1,Do)] = p3 + PrCD + * + p*D*, (23) 

logit[p(Dq = 1 I B,C1,Co)] = D + pC + BD +* + C*D* (24) 

where Cr is a variable taking the value 1 or -1 for the rth category of 
D (r = 0,1); Dq is a variable taking the value 1 or -1 for the qth 
category of C (q = 0,1); 3c is the grand mean of the logit of the 
probability that Cr = 1 [f3C = (3cl + pcO)/2]; pD is the grand mean of 
the logit of the probability that D = 1 [3?D = (pD1 + pDO)/2]; pCD is the 
structural effect of D on C (that is, 3D = pl - 3O, and pD = pO - 

Pcl); ,C is the structural effect of Con D (that is, pD = D - PDO, and 

poc = p-DO - pD1); and the remaining notation is as defined above. 

Equations (23) and (24), therefore, contain structural parame- 
ters for the effects of B and D on C and the effects of A and C on D, 
as well as the association between C and D that remains once their 
dependence on each other and on A and B is taken into account. 
Note that the structural parameters are unrestricted and that in gen- 
eral, pcD / pDc. That pc*D enters both (23) and (24) implies that the 
two logit models should be estimated jointly. This contrasts with 
Brier's (1978) formulation in which the logit model for each depen- 
dent variable is estimated separately and yields identical parameters 
for the reciprocal relationship between C and D. 

4.4. Empirical Illustration 

As in the case of the single-equation logit model, we obtain 
the parameters for the two-equation logit model (23)-(24) from its 
corresponding structural loglinear model for the expanded table 
(18). Table 5 presents the design matrix and cell mapping for (18). As 
in Table 2, the rows in Table 5 refer to cells in the expanded table. 
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TABLE 5 

Design Matrix, Cell Mapping, and Expected Frequencies for Reciprocal-Effects Model 
for Four-Variable Leading-Crowd Data 

Expected 

Model Terms Frequencies 
Observed (Expanded Table) 
Frequency C D C1 CO D1 Do A B AB AC* BD* C*D* Model III 

1 1 1 1I 
1 1 1 -1 
1 -1 1 1 
1 -1 1; -1 
1 1 -1 1 
1 1 -1 -1 

-1 1 -1 1 
-1 1 -1 -1 
-1 1 1 1 
-1 1 -1 1 
-1 -1 1 1i 
-1 -1 -1 . 1 

1 -1 1 -1 
1 -1C -1 -1 

-1 -1 1 -1 
-1 -1, -1 -1 

1 1 1 1 
1i 1 1 -1 
1 -1 1, 1 
1 -1 1 -1 
1 1 -1 1 

1 -1 -1 
-1 1 -1 1 
-1 1 - -1 
-1 1 1 1, 
-1 1 -1 1 
-1 -1, 1 1 
-1 -1 -1 1, 

1 11 1 1. 2 
1i 1 1 1i 0 0 
1, 1 1 0 1 0 
1 1 1 0 0 0 
1 1 1 1 0 0 
1 1, 1 1 -1 -2 
1 1 1 0 0 0 
1 1 1 0 -1 
1 1 1 0 1 0 
1 1 1 0 0 0 
1 1 1 -1 1 -2 
1 1 1 -1 0 0 
1 1 1 0 0 
1 1 1 0 -1 0 
1 1 1 -1 0 0 
1 1, 1i -1 2 
1 -1 -1 1 -1 2 
1 -1 -1 1 0 0 
1, -1 -1 0 -1 0) 
1 -1 -1 0I 0 0 
1 -1 -`1 1. 0 0 
1 - -1 1 1, -2 
1 -1 -1 0 0 0 
1 -1 -1 0 1 0 
1 -1 -1 0 -1 0 
1 -1I -1 0 0 0 
1 -1 -1 -1 -1 -2 
1L -1. -1 -1 0 0 

th h^ 

458 
458 
458 
458 
140 
140 
140 
140 
110 
110 
110 
110 

49 
49 
49 
49 

171 
171 
171 
171 
182 
182 
182 
182 

56 
56 
56 
56 

1 1 
1 1 
1 1 
1 1 
1 -1 
1 -1 
1 -1 
1 -1 

-1 1 
-1 1 
-1 1 
-1 1 
-1 -1 
-1 -1 
-1 -1 
-1 -1 

1 1 
1 1 
I 1 
1 1 
1 -1 
1 -1 
1 -1 
1- S -i 

-1 1 
-1 1 
-1 1 
-1 I 

308.1 
47.9 
74.8 
22.0 
92.5 
14.4 
30.0 

8.8 
52.8 
30.0 
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LOGLINEAR MODELS FOR SIMULTANEOUS EFFECTS 

TABLE 6 
Likelihood-Ratio Chi-Square Statistics for Four-Variable Models for 

Leading-Crowd Data 

Model G2 df 

Structural loglinear models 
I. AB, AC*, BD*, C*D* 9.78 7 

II. AB, C1, Co, D1, Do, AC*, BD* 30.28 6 
III. AB, Cl, Co, D1, Do, AC*, BD*, 1.17 5 

C*D* 

Elementary loglinear models 
IV. AB, AC, BD, CD 17.91 7 
V. AB, AC, AD, BC, BD 15.72 6 

VI. AB, AC, AD, BC, BD, CD 1.21 5 

Except for the C and D columns, each column of the design matrix 
corresponds to a parameter in (18). The columns for C1, Co, D1, and 
Do are contrast-coded indicator variables that denote positions in 
Figure 3. If we denote these variables as dA, dB, dcl, dC?, dD, and dDO, 

respectively, then the columns for higher-way interaction are formed 
as follows: dAB = dAdB; dAc* = dA(dCl + dC?)/2; dBD* = dB(dDl + dD?)/2; 
and dC*D* = (dcl + dC?)(dDl + dD0)/4. This coding reflects the equality 
restrictions that we impose on (17). The first column shows the ob- 
served frequency that is mapped into each cell of the expanded table. 
The final column reports the expected frequencies for one of the 
models that is discussed below.5 

The top panel of Table 6 presents G2 statistics for (18) plus 
several simpler models fit to Table 1. Model I includes the partial 
association between C and D but no structural relationships between 
these two variables. This model fits the data well. Model II includes 
the structural effects of C on D and D on C but not the partial 
association between the two variables. This model fits the data 

5The structure of Table 5 is analogous to that of Table 2. Table 5 has 64 
rows, 16 for each of the four combinations of A and B. As shown in Figure 3, for 
each combination of A and B, only 14 of the 16 combinations of C1, C0, DI, and 
Do are logically possible. Within levels of A and B, Table 5 contains a row for 
each of the 14 combinations, for a total of 56 rows. Figure 3 contains eight 
additional rows for cells 6 and 11 because these cells receive observations from 
more than one source. This leads to a total of 64 rows in Table 5. See the 
discussion of Table 3 for further details. 
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TABLE 7 
Parameter Estimates in Logit Form of Structural Loglinear Models for the 

Four-Way Table 

Model I Model II Model III 

Variablea ' 
SE(3) p SE(f) /3 SE(X) 

Effects on C 
Intercept -.168 .044 -.115 .044 -.234 .051 

Ci - Co .142 .146 .347 .160 
A 2.444 .086 2.498 .086 2.372 .094 

Effects on D 
Intercept .329 .039 .287 .039 .320 .041 
D1 - Do .314 .064 -.658 .247 
B 1.176 .072 1.174 .074 1.150 .074 

C*D* .344 .104 1.276 .264 

aA is membership in the leading crowd in wave 1; B is attitude toward the leading 
crowd in wave 1; C is membership in the leading crowd in wave 2; and D is attitude toward 
the leading crowd in wave 2. 

poorly. Model III includes both the structural effect and the partial 
association between C and D. This model fits the data extremely 
well, both absolutely and relative to models I and II. The expected 
frequencies of the expanded table under model III are reported in 
the final column of Table 5. 

Table 7 presents estimates of the logit parameters for these 
models. In all three models, membership in the leading crowd in 
wave 1 substantially increases the odds of membership in wave 2. 
Likewise, holding a favorable attitude toward the leading crowd in 
wave 1 substantially increases the odds of a favorable attitude in 
wave 2. The three models, however, yield different results about the 
relationships between membership in wave 2 and attitude in wave 2. 
Model I indicates a net positive association between membership and 
favorable attitude. Model II indicates that the reciprocal effects of 

membership and attitude are both positive, but only the effect of 
membership on attitude is statistically significant. The estimate for 
the latter effect, moreover, is more than twice the estimate for the 
effect of attitude on membership. Model III, in contrast, indicates 
that a favorable attitude toward the leading crowd in wave 2 signifi- 
cantly raises the odds of joining the leading crowd in wave 2. But 
membership in the leading crowd reduces the chances of holding a 
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favorable attitude. Model III also shows a positive partial association 
between membership and attitude. These results are consistent with 
those reported in Table 4 for the three-variable table. The simulta- 
neous equation model in the latter table also indicated a negative 
effect of membership on attitude once the joint determination of the 
two variables was taken into account. These calculations illustrate 
that the structural loglinear model enables us to isolate the separate 
reciprocal effects of a pair of endogenous variables and to distinguish 
these effects from their residual association.6 

The lower panel of Table 6 reports G2 statistics for several 
elementary loglinear models. The fit of the model of no three-way 
(all two-way) interactions, model VI, to the observed data is very 
close to the fit for model III, but it is not identical. The structural and 
elementary loglinear models are distinct, and the parameters of one 
model cannot be derived from those of the other. The choice be- 
tween models VI and III should be determined by one's analytic 
goals and the plausibility of the assumption that A does not directly 
affect D and that B does not directly affect C. 

5. IDENTIFICATION 

General rules for the identification of structural loglinear mod- 
els have not yet been developed, but some guidance is available from 
results on the identifiability of models for missing data in loglinear 
models. In this section we show the link between the identifiability of 
our models and that of certain models for missing data. This enables 
us to show that the models presented in sections 3 and 4 are in fact 
identified and to suggest some general guidelines for identification of 
structural loglinear models. The identification conditions presented 
in this section are sufficient but not necessary conditions. 

5.1. Identification of Models for Missing Categorical Data 

The structural loglinear models presented in this paper are 
extensions of models for categorical data in which some variables are 

6We also estimated model III allowing for CICO and D1Do associations. 
For this model, G2 = 0.806 (3 df). The estimated parameters for these terms are, 
respectively, -0.931 (SE = 4.60) and 0.756 (SE = 0.938). Under this specifica- 
tion the estimate for Di - Do is -0.390 (SE = 0.2115) and for Cl - C0 is 0.332 
(SE = 0.1743). In general, standard errors are larger under this model. 
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not fully observed (Little and Rubin 1987; Winship and Mare 1989). 
In (9) and (18), Cl, Co, D1, and Do are each partially observed, and 
for each of them, a fully observed variable denotes whether or not 
they have "missing data." Variable C1 is observed when D = 1 and 
missing when D = -1, whereas Co is observed and missing under the 
opposite conditions. Likewise, D1 is observed when C = 1 and miss- 
ing when C = -1, whereas Do is observed and missing under the 
opposite conditions. Each of these partially observed variables, more- 
over, is potentially subject to nonignorable nonresponse (NINR); 
that is, whether or not the variables are missing is associated with the 
level of the variable itself (e.g., Winship and Mare 1989). For exam- 
ple, D1 in (8) and (17) is associated with C1 and CO and thereby with 
C, which determines whether or not D1 is observed. This implies that 
the identifiability of model terms involving C1, Co, D1, and Do should 
be governed by rules similar to those that apply to other, simpler 
contingency tables in which a variable is subject to NINR. 

These rules can be summarized as follows. Consider a two-way 
(J x K) table with dimensions X and Y. Let all observations be present 
for X, but let some observations be missing for Y. A third variable, M, 
denotes whether data are missing on Y. A potentially identifiable 
NINR model is (XY) (YM), that is, a model in which the fully observed 
variable X is associated with the partially observed variable Y but is 
conditionally independent of whether data are missing on Y. This 
model is identified if J K, that is, if the number of categories of the 
fully observed variable is at least as large as the number of categories 
of the partially observed variable (Little and Rubin 1987, pp. 238-39). 
More generally, NINR models are identified if (a) for every partially 
observed variable, there exists a fully observed variable that is condi- 
tionally independent of whether data are missing on the partially ob- 
served variable and (b) the number of categories of the partially ob- 
served variable does not exceed the number of categories of the fully 
observed variable (Winship and Mare 1989). 

5.2. Identification of Structural Loglinear Models 

To establish the identifiability of structural loglinear models 
(9) and (18), we rely on the results for models with missing data 
stated above plus the fact that some parameters for models of the 
expanded table can be identified without any overidentifying restric- 
tions on the structural model. Consider a simplified version of (18), 
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log Pkln = A + As+ At + ACD, (25) 

which implies the inclusion of the terms A1c = Ac?, AD1 = ADO, and 
C1D1 = kC1DO_hlm = COD1 denotes the 

AC1Dl = CDo = AcD1 = ACOD and where Pklmn denotes the probability 
that an individual falls into the kth category of Cl (k = -1,1), the Ith 
category of CO (I = -1,1), the mth category of D1 (m = -1,1), and 
the nth category of Do; the intercept A is determined by the constraint 
that SklmnPklmn = 1; and all other notation is as defined above. Model 
(25) represents the two-way association between the average values 
of C1 and Co and of D1 and Do. This model can be identified directly 
from the observed 2 x 2 CD table without other identifying restric- 
tions. The four parameters of the model are nonlinear functions of 
the four frequencies in the observed CD table.7 Because As*, A', and 
AC*D* are always identified from the CD table alone, to establish the 
identifiability of (9) and (18) it suffices to show that parameters for 
C1, Co, D1, and Do and for the relationships between these variables 
and the exogenous variables are identified. 

In the structural loglinear model for a single equation with an 

endogenous independent variable, model (9), we can identify Af* and 
ACD* from the observed CD table, as noted above. We identify AB and 
ABD* directly from observed data on the joint distribution of B, C, and 
D. (The associations between B and D1 and between B and Do are 

directly observed when C = 1 and C = -1, respectively. Model (9) 
constrains these two associations to be equal.) We identify AD' and A?? 
using the rules for identification of missing-data models discussed 
above. Under the model, B is conditionally independent of C1 and 

Co, given D1 and Do, and is thus conditionally independent of C, 
which determines whether D, and Do are missing (since C is deter- 
mined by C1, Co, D,, and Do). Thus, B is fully observed and condition- 

ally independent of whether data are missing on D, and Do. Since the 
number of categories of B equals the number of categories in D, and 

Do, the inclusion of B in the model identifies AD1 and AD?. Thus, model 

(9) and its corresponding logit form, model (12), are identified. 

7To see this, write the expected frequencies of the expanded table in 
terms of the parameters of (24) and collapse the expanded table to the observed 
table. If xuv denotes the observed frequency in the 2 x 2 table for the uth level of 
C and the vth level of D (u = 1,2; v = 1,2), then 

XVklr E [exp (A + Akc + Amn + As )] 
XUV - klrnnE UV 

kl mn S 
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In the structural loglinear model for reciprocal effects, model 
(18), we can identify A *D* from the observed CD table, as noted 
above. We identifyA A, A, AAB, ABD , andA AC* directly from the observed r. "I4 jt I "is DI 

data on the joint distributions of A, B, C, and D W n and D. We identify A and 
AD? from the rules for identification of missing-data models. The inclu- 
sion of B, which is associated with D, and Do but conditionally inde- 
pendent of C, identifies these two parameters. Likewise, we identify 
AC1 and Al? by the inclusion of A, which is associated with C1 and CO 
but conditionally independent of D. Thus, model (18) and its corre- 
sponding logit form, equations (23)-(24), are identified. 

Our analysis of the identifiability of models (9) and (18) sug- 
gests that parameters of structural loglinear models can be identified 
by restrictions on the parameters for the effects of the exogenous 
variables. In particular, a sufficient condition for the identification of 
the effect of one endogenous variable on another is that the model 
include an exogenous variable that affects the dependent endoge- 
nous variable but not the independent endogenous variable and that 
the exogenous variable have at least as many categories as the depen- 
dent endogenous variable. This principle is illustrated by the use of B 
to identify AD1 and AD? in (9) and AD1 and A?D and by the use of A to 
identify AC1 and Al in (18). 

These identification conditions resemble those that govern the 
use of instrumental variables to identify conventional simultaneous 
equation models, but they differ in one key respect. In conventional 
simultaneous equation models, instrumental variables are excluded 
from the structural equation of interest but affect the endogenous 
independent variable in the equation. In the models described 
above, however, the exogenous variables are included in the struc- 
tural equation of interest but are conditionally independent of the 
endogenous independent variable. This distinction is operationally 
significant only for the single-equation model. For the two-equation 
model, the same pattern of restrictions on the relationships among 
the four variables applies in the conventional simultaneous equation 
and the structural loglinear models. A single-equation model that 
follows the more usual conventions of simultaneous equation model 
estimation is model i in Figure 1. In this model the exogenous vari- 
able A affects the endogenous independent variable D but not the 
dependent endogenous variable C. It is possible to show that the 
structural loglinear model for i is also identified, using modified 

231 



LOGLINEAR MODELS FOR SIMULTANEOUS EFFECTS 

versions of the arguments presented above. For the sake of brevity, 
we do not present these arguments here. 

6. CONCLUSION 

We have proposed models for jointly determined categorical 
variables that are extensions of loglinear and logit models for cross- 
classified data. We have shown that it is possible to develop loglinear 
models that are analogous to standard linear simultaneous equation 
models. The models proposed here can be estimated using the same 
algorithms and software that are available for loglinear models of 
partially or indirectly observed contingency tables. 

An issue for further research on these models concerns the 
robustness of their results to alternative identifying restrictions. In 
estimating structural loglinear models, we have made a number of 
assumptions. The two most important are (a) that the CiC0 and D1Do 
interactions are zero (that is, AlC ADD = 0) and (b) that all the 
nonstructural associations between C and D are equal (that is, A,lDl = 

ACDO = AO = COD) . Some of these restrictions can be relaxed, but the 
model would be underidentified if all were relaxed simultaneously. 
Thus, it is not possible to test individual restrictions when all other 

parameters are unrestricted. As noted in footnotes 4 and 6, our 

empirical results change slightly when C1Co and D1D0 are not re- 
stricted to zero in the examples presented. Analyses of hypothetical 
data not reported here, however, suggest that different specifications 
may produce different estimates of 3Cl - 3co and pD1 - pDO. Thus, our 
models may not always be robust to the specification of the error 
structure. This issue awaits further investigation. 

Our discussion has been confined to models with two dichoto- 
mous endogenous variables, but these methods generalize to models 
with polytomous variables and more than two outcomes. Models 
with more complex dependent variables may require much larger 
expanded tables than the simple case presented here. For example, a 
table that contains one dichotomous and one four-category depen- 
dent variable has 2 x 4 = 8 cells for each unique combination of the 

exogenous variables and 24 x 42 = 256 cells in the corresponding 
expanded table. Larger models obviously require more computation 
than the elementary models presented here. 

The models presented in this paper apply when one is con- 
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cerned only with simultaneous relationships between discrete vari- 
ables. If a discrete variable exerts its effect not only discretely but 
also as an indicator of an underlying continuous variable, then mod- 
els other than those presented here are more suitable (Heckman 
1978; Maddala 1983; Winship and Mare 1983). 

REFERENCES 

Amemiya, Takeshi. 1985. Advanced Econometrics. Cambridge, MA.: Harvard 
University Press. 

Baker, Stuart G., and Nan M. Laird. 1988. "Regression Analysis for Categorical 
Variables with Outcome Subject to Nonignorable Response." Journal of the 
American Statistical Association 83:62-69. 

Bishop, Yvonne M., Stephen E. Fienberg, and Paul W. Holland. 1975. Discrete 
Multivariate Analysis. Cambridge, MA: MIT Press. 

Brier, Stephen S. 1978. "The Utility of Systems of Simultaneous Logistic Re- 

sponse Equations." Pp. 119-29 in Sociological Methodology 1979, edited by 
K. F. Schuessler. San Francisco: Jossey-Bass. 

Coleman, James S. 1961. The Adolescent Society: The Social Life of the Teenager 
and its Impact on Education. Glencoe, IL: Free Press. 

. 1964. Introduction to Mathematical Sociology. New York: Free Press. 
Daganzo, Carlos. 1979. Multinomial Probit: The Theory and its Application to 

Demand Forecasting. New York: Academic Press. 
Duncan, Beverly, and Otis Dudley Duncan. 1978. Sex Typing and Social Roles. 

New York: Academic Press. 
Duncan, Otis Dudley. 1974. "A Model of Interaction Between Spouses." Unpub- 

lished manuscript. University of Arizona, Department of Sociology. 
. 1975. Introduction to Structural Equation Models. New York: Academic 

Press. 
.1985. "New Light on the 16-fold Table." American Journal of Sociology 

91:88-128. 
Duncan, Otis Dudley, Archibald O. Haller, and Alejandro Portes. 1968. "Peer 

Influences on Aspirations: A Reinterpretation." American Journal of Sociol- 
ogy 74:119-37. 

Fay, Robert E. 1986. "Causal Models for Patterns of Nonresponse." Journal of 
the American Statistical Association 81:354-65. 

Fienberg, Stephen E. 1980. The Analysis of Cross-Classified Categorical Data. 
Cambridge, MA: MIT Press. 

Goldberger, Arthur S., and Otis Dudley Duncan. 1973. Structural Equation 
Models in the Social Sciences. New York: Seminar Press. 

Goodman, Leo A. 1973. "Causal Analysis of Data from Panel Studies and Other 
Kinds of Surveys. American Journal of Sociology 78:1135-91. 

. 1974. "The Analysis of Systems of Qualitative Variables When Some of 
the Variables are Unobservable. I. A Modified Latent Structure Approach." 
American Journal of Sociology 79:1179-1259. 

233 



LOGLINEAR MODELS FOR SIMULTANEOUS EFFECTS 

. 1978. Analyzing Qualitative/Categorical Data. Cambridge, MA: Abt 
Books. 

Haberman, Shelby J. 1978-79. Analysis of Qualitative Data. 2 vols. New York: 
Academic Press. 

. 1988. "A Stabilized Newton-Raphson Algorithm for Log-Linear Models 
for Frequency Tables Derived by Indirect Observation." Pp. 193-211 in So- 
ciological Methodology 1988, edited by C. C. Clogg. Washington, DC: Ameri- 
can Sociological Association. 

Heckman, James J. 1978. "Dummy Endogenous Variables in a Simultaneous 
Equation System." Econometrica 46:931-59. 

.1978. "Sample Selection Bias as a Specification Error." Econometrica 
47:153-61. 

Heckman, James J., and V. Joseph Hotz. 1989. "Choosing Among Alternative 

Nonexperimental Methods for Estimating the Impact of Social Programs: 
The Case of Manpower Training." Journal of the American Statistical Associa- 
tion 84:862-74. 

Little, Roderick J. A., and Donald B. Rubin. 1987. Statistical Analysis with 

Missing Data. New York: Wiley. 
Maddala, G. S. 1983. Limited-Dependent and Qualitative Variables in Economet- 

rics. Cambridge: Cambridge University Press. 
Mallar, Charles D. 1977. "The Estimation of Simultaneous Probability Models." 

Econometrica 45:1717-22. 
Mare, Robert D., and Christopher Winship. 1988. "Endogenous Switching Re- 

gression Models for the Causes and Effects of Discrete Variables." Pp. 132- 
60 in Common Problems/Proper Solutions: Avoiding Error in Quantitative 
Research, edited by J. S. Long. Beverly Hills: Sage University Press. 

Marini, Margaret M. 1984. "Women's Educational Attainment and the Timing 
of Entry into Parenthood." American Sociological Review 49:491-511. 

Muth6n, Bengt. 1984. "A General Structural Equation Model with Dichoto- 
mous, Ordered Categorical, and Continuous Latent Variable Indicators." 

Psychometrika 49:115-32. 
Rubin, Donald B. 1978. "Bayesian Inference for Causal Effects: The Role of 

Randomization." Annals of Statistics 6:34-58. 

Stolzenberg, Ross M., and Linda J. Waite. 1977. "Age, Fertility Expectations, 
and Plans for Employment." American Sociological Review 42:769-82. 

Winship, Christopher, and Robert D. Mare. 1983. "Structural Equations and 
Path Analysis for Discrete Data." American Journal of Sociology 89: 54-110. 

. 1989. "Loglinear Models for Missing Data: A Latent Class Approach." 
Pp. 331-67 in Sociological Methodology 1989, edited by C. C. Clogg. Ox- 
ford: Basil Blackwell. 

234 


	Article Contents
	p.199
	p.200
	p.201
	p.202
	p.203
	p.204
	p.205
	p.206
	p.207
	p.208
	p.209
	p.210
	p.211
	p.212
	p.213
	p.214
	p.215
	p.216
	p.217
	p.218
	p.219
	p.220
	p.221
	p.222
	p.223
	p.224
	p.225
	p.226
	p.227
	p.228
	p.229
	p.230
	p.231
	p.232
	p.233
	p.234

	Issue Table of Contents
	Sociological Methodology, Vol. 21, 1991
	Front Matter [pp.i-xi]
	Prologue [pp.xiii-xx]
	Theoretical and Methodological Issues in Analysis of Density-Dependent Legitimation in Organizational Evolution [pp.1-42]
	Going up the Ladder: Multiplicity Sampling to Create Linked Macro-to-Micro Organizational Samples [pp.43-79]
	Open Survey Questions as Measures of Personal Concern with Issues: A Reanalysis of Stouffer's Communism, Conformity, and Civil Liberties [pp.81-96]
	Reliability of Attitude Scores Based on a Latent Trait Model [pp.97-123]
	Correcting Measures of Relationship between Aggregate-Level Variables [pp.125-165]
	Statistical Power in Nonrecursive Linear Models [pp.167-197]
	Loglinear Models for Reciprocal and Other Simultaneous Effects [pp.199-234]
	Observational Residuals in Factor Analysis and Structural Equation Models [pp.235-262]
	Time-Aggregation Bias in Continuous-Time Hazard-Rate Models [pp.263-290]
	Statistical Models and Shoe Leather [pp.291-313]
	Toward a Methodology for Mere Mortals [pp.315-324]
	Are There Really Any Constructive Alternatives to Causal Modeling? [pp.325-335]
	Freedman is Right as Far as He Goes, but There is More, and It's Worse. Statisticians Could Help [pp.337-351]
	A Rejoinder to Berk, Blalock, and Mason [pp.353-358]
	Back Matter [pp.359-377]





