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Abstract 

 
Heteroskedasticity and autocorrelation-robust (HAR) inference in time series regression 

typically involves kernel estimation of the long-run variance. Conventional wisdom holds that, 
for a given kernel, the choice of truncation parameter trades off a test’s null rejection rate and 
power, and that this tradeoff differs across kernels. We use higher-order expansions to provide a 
size-power frontier for kernel and orthogonal series tests using nonstandard “fixed-b” critical 
values. We also provide a frontier for the subset of these tests for which the fixed-b distribution 
is t or F. These frontiers are respectively achieved by the QS kernel and equal-weighted 
periodogram. The frontiers have simple closed-form expressions, which show that the price paid 
for restricting attention to tests with t and F critical values is small. The frontiers are derived for 
the multivariate location model that dominates the theoretical literature, but simulations suggest 
the qualitative findings extend to stochastic regressors. 
  
JEL codes: C12, C13, C18, C22, C32, C51 
 
Key words: heteroskedasticity- and autocorrelation-robust estimation, HAR, long-run variance 
estimator 
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1. Introduction 

 

Heteroskedasticity- and autocorrelation-robust (HAR) standard errors are used to 

construct test statistics and confidence intervals for the coefficients in time series regression 

when the regression errors ut are potentially heteroskedastic and/or serially correlated. 

Computing HAR standard errors entails estimating the long-run variance (LRV) Ω, which is the 

sum of the autocovariances of zt = xtut, where xt is the regressor.  

The foundational papers on HAR inference in econometrics are Newey and West (1987) 

and Andrews (1991). The Newey-West/Andrews method estimates the LRV using a kernel-

weighted average of the first S sample autocovariances ˆˆt t tz x u , where t̂u  are the OLS residuals. 

The truncation parameter sequence ST is chosen to ensure consistency, and inference proceeds 

using standard normal or chi-squared critical values. 

The Newey-West and Andrews papers stimulated a large theoretical literature on HAR 

inference, surveyed by Müller (2014). This literature reaches three broad conclusions. First, 

choosing S either by the rule ST = 4(T/100)2/9 suggested by Newey and West (1987), or to 

minimize the mean squared error (MSE) of the LRV estimator as suggested by Andrews (1991), 

produces a value of S that is generally too small from a testing perspective in the sense that it can 

lead to rejection rates under the null that differ substantially from the nominal level.1 The 

asymptotic expansions of Velasco and Robinson (2001) and Sun, Phillips and Jin (2008) show 

that the leading higher order terms of the null rejection rate of the test are a weighted sum of the 

variance and the bias, not the bias2 which enters the MSE. The testing problem calls for less bias, 

and thus a larger truncation parameter, than minimizing the MSE.  

Second, using a large truncation parameter introduces another problem: increasing S 

increases the variance of the LRV estimator, altering the null distribution of the test. Thus 

solving the “bias” size distortion introduces a “variance” size distortion when chi-squared critical 

values are used. Fortunately, this “variance” size distortion can be addressed by replacing chi-

squared critical values by Kiefer and Vogelsang’s (2005) “fixed b” critical values, which are in 

general nonstandard. Fixed-b distributions are obtained by letting ST grow proportionately to the 

sample size, that is, by fixing b = ST/T as T increases. Jansson (2004), Sun, Phillips and Jin 

                                                            
1 Den Haan and Levin (1994, 1997) provided early Monte Carlo evidence of the large size 
distortions of HAR tests computed using the Newey-West/Andrews approach. 
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(2008), and Sun (2014) show that using fixed-b critical values provides a higher-order 

refinement to the null rejection rate of HAR test statistics in the location model.  

Third, numerical results and some theory in the literature indicate that, for a given kernel, 

larger values of S reduce power, and that this tradeoff depends on the kernel. However, formal 

results laying out this size-power tradeoff have remained elusive, as have results on optimal 

choice of kernel for testing. Consequently, no clear guidance exists for HAR kernel choice. And 

the practitioner who chooses a kernel and b still needs to generate (or approximate) nonstandard 

fixed-b critical values. It is unsurprising that despite the substantial theoretical progress in HAR 

testing theory, empirical practice remains dominated by the Andrews/Newey-West methodology 

with small bandwidths and normal/chi-squared critical values. 

This paper characterizes the tradeoff between the size distortion and the power of HAR 

tests. By size distortion, we mean the difference between the null rejection rate and the desired 

nominal significance level .  By power, we mean size-adjusted power, that is, the rejection rate 

under the alternative when the test is evaluated using (generally infeasible) critical values that 

have been adjusted so that the rejection rate under the null is . Using size-adjusted power is the 

standard method for making higher-order comparisons between tests (e.g., Rothenberg (1984)) 

and ensures an “apples to apples” comparison of the ability of two different tests to detect 

violations of the null when the two tests have different unadjusted null rejection rates. 

The class of LRV estimators we consider is the union of two families: the familiar 

positive semidefinite (psd) kernel estimators considered by Andrews (1991) and so-called 

orthonormal series estimators (see for example Grenander and Rosenblatt (1957), also called 

orthogonal multitapers as in Brillinger (1975)). All tests are evaluated using fixed-b critical 

values. Orthonormal series estimators are computed by projecting ˆtz  onto low-frequency 

orthonormal functions, typically the first B terms of a basis of L2[0,1], excluding the constant 

function. Orthonormal series LRV estimators are an attractive family because they are psd and 

inference relies on standard t and F critical values. The leading example of a series LRV 

estimator is the equal-weighted periodogram (EWP) estimator, which equivalently can be 

thought of as a series estimator using the first B Fourier series {sin(2πjt/T),  cos(2πjt/T)}, j = 

1,…, B/2. In the location model, this family includes Ibragimov and Müller’s (2010) subsample 

estimator. To align notation across the two families of tests, for orthonormal series tests we set b 

= 1/B (as discussed further in Section 2). As shown by Brillinger (1975, exercise 5.13.25) for 
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Fourier series in the location model and more generally by Phillips (2005), Müller (2007), and 

Sun (2013), the fixed-b asymptotic distribution of HAR tests using B series is tB or in the case of 

tests of m restrictions is Fm,B-m+1 (after rescaling).  

This paper makes six main contributions. First, using the small-b asymptotic expansions 

of Velasco and Robinson (2001), Sun, Phillips, and Jin (2008), and Sun (2011, 2013, 2014) for 

the Gaussian location model, we derive theoretical expressions characterizing the tradeoff 

between the size distortion and the power loss arising from the choice of b for a given HAR test. 

These results apply when 0b   at the rate for which the size distortion and power loss have the 

same asymptotic order, which coincides with the optimal rate in Sun, Phillips, and Jin (2008). 

Second, we derive the size/power frontier in the Gaussian location model, which is the 

envelope of the size-power tradeoffs in the class of tests we consider, and show that this frontier 

is achieved by the QS kernel. This frontier has a simple form. Let ΔS be the size distortion of the 

test, implemented using fixed-b asymptotic critical values, and let max
P   be the maximum size-

adjusted power loss of the test over all alternatives, relative to the infeasible test with known 

LRV. For a 5% test in the one-dimensional location model (m = 1), this frontier is, 

 

 max 1
(2)

0.3368S
P o T

T


   ,      (1)  

 

where ω(2) is the normalized curvature of the spectral density of zt at frequency zero (the negative 

of the ratio of the second derivative of the spectral density to the spectral density, at frequency 

zero). For the m-dimensional location model, the only change to the frontier (1) is that the 

constant increases with m (the constants are provided in Section 4). The frontier is plotted in 

Figure 1 for 5% tests for m = 1, 2, and 3. Choosing b to equate the rates at which ΔS and ΔP 

converge to zero in (1) yields ΔS, ΔP = O(T-2/3), and this rate is used to derive (1) and to scale the 

axes in Figure 1. For the Bartlett (Newey-West, tent) kernel, equating these rates yields ΔS, ΔP = 

O(T-1/2), so the Barlett kernel HAR test is asymptotically dominated. 

Third, we consider the effect of imposing the additional restriction to HAR tests for 

which the fixed-b distributions are standard t and F, so that the test does not require simulation or 

special tables. For a 5% level test with m = 1, this frontier is given by  
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max 1
(2)

0.3623
( )S

P o T
T


   .      (2) 

 

This bound is plotted for m = 1, 2, and 3 as the dashed line in Figure 1. We also show that this 

frontier is achieved by Brillinger’s (1975) EWP test. As suggested by the numerically close 

constants in (1) and (2) and by Figure 1, the cost of this restriction to t- or F-based fixed-b 

inference is quite small. In a separate result in Section 4, we provide an expression for the power 

difference between two same-sized tests. This expression does not depend on the stochastic 

process followed by zt or on T. For the EWP test with B = 8 (first four sines and cosines) and m = 

1, the power loss, relative to the same-sized QS test, is at most 0.0074. 

Fourth, we propose a feasible higher-order adjustment to the fixed-b critical value which, 

when implemented using a consistent estimator of the normalized curvature parameter ω(2), 

provides a higher-order improvement to the null rejection rate of the test in the location model. 

Because the use of the adjusted critical value does not alter the size-adjusted power, the use of 

the data-dependent adjusted critical value allows for tests that asymptotically improve upon the 

bounds (1) and (2). Notably, for tests with t or F fixed-b critical values, these adjusted critical 

values do not require simulation or special tables. For example, for the EWP test, the adjusted 

critical value is given by   2(2)
, 1ˆ1 / 6 / m B mB T F   

   , where , 1m B mF
   is the -level critical 

value of the , 1m B mF    distribution. 

Fifth, we find that, in Monte Carlo simulations of the scalar and multivariate location 

model, the theoretical size/power tradeoffs provide an accurate description of the size distortions 

and power losses observed in finite samples, for sample sizes and degrees of persistence 

typically found in empirical work. The fit of these bounds breaks down at high levels of 

persistence, as expected based on Müller (2007, 2014). The performance of tests with feasible 

adjusted critical values is mixed at best, with clear improvements relative to the frontier only 

evident in very large sample sizes. We find this unsurprising in light of the difficulty of 

estimating the curvature of the spectral density at frequency zero. 

Sixth, we also perform Monte Carlo simulations of the multiple regression model. The 

theoretical results for the Gaussian location model do not apply here because the process for zt = 

xtut is non-Gaussian even if xt and ut are Gaussian, and we find that the location model frontier is 
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more favorable than the Monte Carlo frontier. Still, the theoretical orderings in the location 

model seem to hold numerically in the regression case, specifically the EWP test has a favorable 

size/power tradeoff, essentially the same as QS and clearly better than Bartlett and related 

competitors. 

This paper relates to a large literature. The starting point for our results is the fixed-b 

asymptotic expansions in Velasco and Robinson (2001), Sun, Phillips, and Jin (2008), and Sun 

(2013, 2014). Relative to these papers, the technical distinction is our focus on size-adjusted 

power rather than unadjusted rejection rates under the alternative. This paper also relates to the 

literature on orthonormal series estimators, see Phillips (2005), Müller (2007), and Sun (2013) 

for multiple references. Relative to this literature, we provide a ranking of small-b performance 

of orthonormal series estimators and unify existing small-b expansions for kernel and 

orthonormal series expansions using what we refer to as the implied mean kernel of orthonormal 

series LRV estimators. Although this paper does not consider bootstrap procedures, some papers 

in the bootstrap literature are germane. In particular, the results in Gonçalves and Vogelsang 

(2011) suggest that tests with critical values from the moving block bootstrap will also satisfy 

our size/power tradeoff expressions and the frontiers (1) and (2), although we do not pursue this 

conjecture. The results of Zhang and Shao (2013) suggest that their Gaussian bootstrap improves 

upon the frontier bounds derived here. There is a growing literature on HAR tests using non-psd 

estimators (e.g. Sun, Phillips, and Jin (2006) and Politis (2011)). Following the empirical 

literature, we restrict attention to tests that are psd with probability one and do not address non-

psd tests. 

The remainder of the paper is organized as follows. Section 2 provides notation and 

describes the family of kernel and series LRV estimators considered. Section 3 collects results 

from the literature on fixed-b asymptotics and asymptotic expansions. Section 4 provides our 

main results. The Monte Carlo study is summarized in Section 5, with additional results provided 

in the Supplement. Section 6 concludes. Proofs are given in the Appendix. 

 

  



8 
 

2. Notation and Class of LRV Estimators 

 

2.1 The HAR testing problem 

Let zt be a m1 time series with autocovariances j = cov(zt, zt-j), j = 0, 1,… and long-run 

variance 

 

Ω = j
j





 .         (3) 

 

In general zt depends on unknown parameters, so that zt = zt(), although after preliminary 

definitions we suppress this dependence. We consider test statistics of the form, 

 

t =  0

ˆ

T z


 if m = 1, and        (4) 

F = 1
0 0

ˆ /Tz z m   if m>1,        (5) 

 

where 1
0 01

( )
T

tt
z T z 


  and ̂  is an estimator of Ω.  

The test statistics (4) and (5) arise in time series regression, in GMM estimation, and in 

the multivariate location model. The time series regression model with dependent variable yt, m 

regressors xt, and potentially heteroskedastic and autocorrelated error ut is, 

 

yt = xt′ + ut, t = 1,…, T.       (6) 

 

In this model, the usual t-statistic (if m = 1) or F-statistic (if m > 1) testing  = 0 is respectively 

(4) or (5), where zt(0) = xt(yt – xt′0). 

In the multivariate location model, yt is m1,  is the vector of means of yt, and ut is m1: 

 

yt =  + ut.         (7) 

 

In this model, zt(0) = yt – 0 and the statistics (4) and (5) test the null hypothesis that  = 0. 
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The class of estimators ̂  considered here is comprised of two families of estimators, the 

family of psd kernel estimators and the family of orthonormal series estimators. These estimators 

are computed using estimated coefficients ̂  and ˆˆ ( )t tz z  . In the multivariate location model, 

ˆt tz y y  , where y  is the sample mean of yt. In the regression model, ˆˆt t tz x u , where 

ˆˆt t tu y x    is the OLS residual and ̂  is the OLS estimator of  in (6). 

 

2.2 Kernel estimators 

Kernel estimators of Ω are weighted sums of sample autocovariances using the weight 

function, or kernel, k(.): 

 

ˆ SC  = k( j / S )̂
j

j(T1)

T1

 ,  where ˆ
j   = 

1

T
ẑ

t
ẑ

t j


tmax(1, j1)

min(T ,T j )

 ,   (8) 

 

where S is the truncation parameter and the superscript “SC” denotes sum-of-covariances. 

Examples of kernels k(v) include the Bartlett kernel used by Newey and West (1987), k(v) = (1 – 

|v|)1(|v|1), and the Bartlett-Priestley-Epanechnikov quadratic-spectral (QS) kernel, k(v) = 

3[sin(πx)/πx – cosπx] /(πx)2 for x = 6v/5; see Priestley (1981) and Andrews (1991) for other 

examples. 

The sum-of-covariances estimator can equivalently be computed in the frequency domain 

as a weighted average of periodogram values: 

 

ˆ WP  = 
1

ˆˆ
1

2 (2 / ) (2 / )
T

T zz
j

K j T I j T  



 ,     (9) 

 

where KT(ω) = 
11

0
( / )

T i u

u
T k u S e  

  and where Izz(ω) is the periodogram of t̂z  at frequency ω, 

 

ˆˆ ( )zzI   = 1
ˆ ˆ(2 ) ( ) ( )z zd d    , where ˆ ( )zd   = 

1

1/2 ˆ i t
t

T

t
eT z  

 .     (10) 
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Kernel estimators are positive semidefinite with probability one if the frequency-domain weight 

function KT(ω) is nonnegative. 

An important special case of kernel estimators is the equal-weighted periodogram (EWP) 

estimator, which is computed using the Daniell kernel which in the frequency domain places 

equal weight on the first B/2 periodogram terms, where B is even: 

 

ˆ EWP  =  
/2

ˆˆ
1

2
/ )(2

B

zz
jB

I j T
 


 = 

/2

ˆ ˆ
1

1
/ ) ((2 2 / )

B

z z
j

j T j Td d
B

 


 .   (11) 

 

2.3 Orthonormal series estimators 

Series estimators are obtained by projecting t̂z  onto B mean-zero low-frequency 

functions of a set of orthonormal functions, typically the first mean-zero elements of a basis for 

L2[0,1].2 The EWP estimator (11) is an orthonormal series estimator using the Fourier basis.  

Following Sun (2013), let {φj(s)}, j = 0, …, B, 0  s  1, denote the first B+1 functions in 

an orthonormal basis for [0,1], where φ0(s) = 1 and 
1

0
( )j s ds  = 0 for j  1. Let  denote the TB 

matrix consisting of {φj(s)}, j = 1,…, B, evaluated at t/T: 

 

 = [1 … B], where j = [φj(1/T)  φj(2/T) … φj(1)]′, ′/T = IB, and T = 0, (12) 

 

where T is the T-vector of 1s. The orthonormal series LRV estimator is, 

 

ˆ OS   = 
1

1 ˆ
B

j
jB 

 , where ˆ
j  = ˆ ˆ

j j
   and ˆ

j  = 
1

1
ˆ( / )

T

j t
t

t T z
T



 .   (13) 

 

Note that  and ˆ OS  omit the j = 0 function, for which 0 =  = (1 1 … 1)′ and 0 = 0. By 

construction, ˆ OS  is psd with probability one. 

                                                            
2 These series estimators are equivalent to estimators referred to in previous literature as 
“orthogonal multitaper” or “multiple window” estimators; see, for example, Brillinger (1975), 
Thomson (1982), and Stoica and Moses (2005) for discussions of properties of these estimators 
in spectral density estimation. 
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The theory in this paper covers all basis functions that have three bounded derivatives, 

plus a non-differentiable basis function based on splitting the sample. The four basis functions 

we examine explicitly are Fourier, cosine, Legendre, and split-sample. 

Fourier basis functions are comprised of the B real-valued sine and cosine series,  

 

{φ2j-1(s), φ2j(s)} = { 2 cos(2πjs), 2 sin(2πjs)}, j = 1, …, B/2.   (14) 

 

Cosine basis functions. Müller (2007) and Müller and Watson (2008) suggested using as 

basis functions the type II discrete cosine transform, which are the eigenvectors of the covariance 

kernel of a demeaned Brownian motion: 

 

      {φTj(s)} = 
1 / 2

2 cos
s

j
T

   
  

 


  



 , j = 1,…, B.    (15) 

 

Hwang and Sun (2015) refer to this as the shifted cosine function. A closely related alternative is 

Phillips’ (2005) proposal of using { 2 sin[πj((s-1/2)/T)]}, j = 1,…, B, which are the eigenvectors 

of the covariance kernel of Brownian motion. Phillips (2005) shows that, for B   and B/T  

0, the sine series estimator is asymptotically equivalent to ˆ EWP  to second order.  

Legendre polynomials can be constructed as the B functions of the Gram-Schmidt 

orthonormalization of {sj}, j = 1,…, B on [0,1]. Abramowitz and Stegun (1965, ch. 8) give 

recursions for Legendre polynomials on [-1,1], which for the purpose here are then shifted to 

[0,1] and renormalized. 

Split-sample step function. Ibragimov and Müller (2010) proposed estimating the long-

run variance by estimating  on B+1 equal-sized subsamples and estimating Ω using the sample 

variance of these subsample estimators.3 For a single coefficient, their split-sample (SS) test 

statistic is, 

 

                                                            
3 This subsample variance estimator is also referred to as the “batch mean estimator” in previous 
literature, for example Song and Schmeiser (1993) compare the batch mean estimator to 
conventional kernel LRV estimators. We thank Yixiao Sun for pointing us to this literature. 
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tSS =   2
ˆ0

ˆ1B S


   , where 2
ˆS
  =  1 2

( )

1

1 ˆ ˆ
B

i

iB
 





 ,    (16) 

 

where ( )ˆ i  is the estimator of  computed using the ith subsample and ̂  = 
1

( )

1

1 ˆ
1

B
i

iB




  .  

In the location model, the SS t-statistic (16) can be written in the standard form (4), 

where the LRV estimator is the series estimator,4 

 

ˆ SS   =    1/2 1/2ˆ ˆ /SS SST z T z B   , where SS  = 1 /( 1)1 B
B T BB I M     , (17) 

 

where r denotes the r-vector of ones, BM  is the (B+1)B matrix of eigenvectors corresponding 

to the B unit eigenvalues of the idempotent matrix M = 1 1 1 / ( 1)B B BI B     , and  is the 

Kronecker product. 

We will refer to SS in (17) as the SS orthonormal series and to ˆ SS  as the SS series LRV 

estimator. The SS basis functions are discontinuous step functions. For B = 2n – 1, where n is an 

integer, the SS and Haar basis functions are equivalent, however for other B the Haar functions 

do not span SS. Although the expression for ˆ SS  in (17) was developed for the location model 

with m = 1, it generalizes directly to m > 1 and to the time series regression model.5 

                                                            
4 Write 

( )ˆ i  = 
[ /( 1)]1

[ /( 1)]( 1) 1
[ / ( 1)]

T B i

tt T B i
T B y


   

   and ̂  = y  (the full-sample mean of yt), so 2
ˆS
  = 

/M B    where   =  (1) ( 1)ˆ ˆ... B   
. Then M    = B BM M

 
    = 

   1 /( 1) 1 /( 1)
B B

B T B B T By I M M I y
 

    
    =    1 /( 1) 1 /( 1)ˆ ˆB B

B T B B T Bz I M M I z
 

    
   , from 

which (17) follows. Note that SS is TB and SS′SS/T = IB as required for series estimators. 
5Both the Ibragimov-Müller test statistic (16) and the test based on ˆ SS  in (17) generalize to 
time series regression with stochastic regressors, however the test statistics are no longer the 
same outside the location model. Mechanically, this distinction arises because the IM t-statistic is 
based on the sample variance of the subsample estimators of  in which both the numerator and 

denominator are computed using the subsample, whereas plugging ˆ SS  into (4) uses the 
subsample estimates of  and the full-sample estimator the xt second moment matrix. This 
distinction prevents giving the IM statistic in (16) an orthonormal series interpretation in the 
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Implied mean kernels of series estimators. Although the only series estimator with an 

exact kernel representation is the Fourier series/EWP estimator, the mean of every series LRV 

estimator has an approximate kernel representation, which becomes exact as T  . We refer to 

the limiting kernel of this mean as the implied mean kernel.  

We now provide an expression for the implied mean kernel in terms of the underlying 

basis functions. Use the definition of ˆ
j  in (13) and the device in Grenander and Rosenblatt 

(1957, p. 125) to express the mean of the jth contribution to an orthonormal series estimator as, 

 

          ˆ
jE  = 

1 1

1 1
ˆ ˆ( / ) ( / )

T T

j t j t
t t

E t T z t T z
T T

 
 

  
  
  

     

          = 
1 1

1
( / ) ( (/ ) 1 / )

TT

j j s t
t s

t T s T O T
T

  
 

   

=
1

,
( 1)

( / )(1 | / |) (1 / )
T

OS
j T u

u T

k u T u T O T


 

   ,     (18) 

 

where  

 

 , ( / )OS
j Tk u T  = .   (19) 

 

The second equality in (18) follows from jT = 0 (as assumed in (12)). Thus 

 

ÊOS 
1

B
Ê

j
j1

B

  k
B,T
OS (u / S)

u(T1)

T1

 (1 | u / T |)
u
O(1/ T ),   (20) 

 

where , ( / )OS
B Tk u S  = 1

,
1

1 B
OS
j T

j

u
k B

B S




 
 
 

 , and SB = T, so that S corresponds to the usual time-

domain truncation parameter. The change of variables from u/T to u/S in (20) aligns the implied 

                                                                                                                                                                                                

general regression model. In this paper we only consider the orthonormal series version of the 

split-sample test, that is, HAR tests using ˆ SS . 

1

1
( / ) (( ) / ) (1 )

| |

T

j j
t

t T t u T t u T
T u

 


   
  1



14 
 

mean kernel with the usual expression for kernels as a function of u/S, so that (20) matches (for 

example) Priestley (1981, eq. (6.2.120)); also see Brillinger (1975, eq. (5.8.6)).  This definition 

and the fact that S = bT for kernel estimators motivates setting b = 1/B for orthonormal series 

estimators. 

Asymptotically, lim OS
T jTk = OS

jk , so the implied mean kernel generating function is, 

 

( )OS
Bk v  = 1

1

1
( )

B
OS
j

j

k B v
B




 , where ( )OS

jk v
 
= .  (21) 

 

Note that (0)OS
Bk  = 1.   

Equations (20) and (21) show that the mean, and thus bias, of orthonormal series 

estimators have the same approximate form as kernel estimators, and that this form becomes 

exact as T  . Sections 3 and 4 below develop rejection-rate expansions and associated 

theoretical results under the large-B (i.e., small-b) sequence under which B  , and we 

accordingly define ( ) lim ( )OS OS
B Bk k   for orthonormal series estimators.6 Any expressions 

below for ( )OSk   without the subscript B accordingly refer to these limiting implied mean 

kernels.  

In the frequency domain, the implied mean kernels , ( / )OS
B Tk u S  for the Fourier, cosine, 

Legendre, and SS basis functions all concentrate their mass on low frequencies (Supplemental 

Figures S.1 and S.2). Interestingly, in the time domain the Legendre implied mean kernel is 

indistinguishable from the SS implied mean kernel near the origin, a result shown formally 

below; however, the Legendre kernel places weight on more distant autocovariances, whereas 

the SS mean kernel truncates. In the frequency domain both the Legendre and SS implied mean 

kernels have considerably more leakage than the Fourier and cosine kernels. 

  

                                                            
6 More formally, one can define ( )OSk   as the limit of , ( )OS

B Tk   as ,B T   s.t. 0/B T   in the 

space 2 ( , )L    endowed with the sup metric, as implied by Assumptions 2 and 3 in Section 4. 
The validity of the sequential-limit definition given here in the text in the context of these joint-
limit assumptions is verified formally in the proof of Theorem 1(i) in the Appendix, and this 
point is discussed further in Section 4. 

min(1,1 )

max(0, )

1
( ) ( )

(1 | |)

v

j j

v

s s v ds
v
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3. Summary of Fixed-b Asymptotics and Small-b Rejection Rate Expansions 

 

Following Jansson (2004), Sun, Phillips, and Jin (2008), and Sun (2013, 2014), we 

consider HAR tests evaluated using fixed-b asymptotic critical values, and approximate their 

rejection rates using “small-b” asymptotic expansions.  

 

3.1 Fixed-b asymptotics 

Kernel estimators. The earliest fixed-b asymptotic results for kernel estimators were 

provided in the classical spectral density estimation literature for weighted periodogram (WP) 

estimators with truncated frequency-domain weights. For clarity, we begin with the scalar case. 

Consider ˆ WP  in (9), let KjT = KT(2πj/T), and suppose that  KjT = 0 for j > B and that KjT  Kj as 

T  . These assumptions cover many important kernels when the frequency domain 

bandwidth B is fixed, including the QS, Parzen, and Daniell kernels (and thus the EWP 

estimator). For example, for the QS kernel, Kj = (3πB/2)-1(1 – (j/B)2)1( j  B) and for the Daniell 

kernel Kj = (2πB)-11( j  B). Under these conditions, the first-order asymptotic distribution of 

ˆ WP  is the weighted average of finitely many chi-squareds, 

 

ˆ WP  
/2

1

2
B

j j
j

K 


 
 

 
 , where j  are i.i.d. 2

2 / 2 , j = 1,…, B/2 ,   (22) 

  

see Brillinger (1981, p.145) and Priestley (1981, p. 466).  

Kiefer and Vogelsang (2005) obtained the fixed-b asymptotic distribution for kernel 

estimators by working directly with the time-domain representation. They showed that, 

 

ˆ SC d  
1 1

0 0

( ) ( )
r s

k dV r dV s
b

     
  

  ,      (23) 

 

where V is a Brownian bridge. Sun (2014) applies Mercer’s theorem to (23) to represent the 

limiting distribution of  as a weighted average of infinitely many independent chi-squared 

random variables; his representation reduces to (22) for frequency-domain kernels for which Kj = 

d

ˆ SC
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0, j > B/2. This weighted average has a 2
B  distribution if and only if B/2 of the weights equal 1 

and the rest are zero. Thus the EWP/Daniell estimator is unique among WP and SC estimators in 

having a fixed-b asymptotic distribution that is 2( / )B B  . 

To simplify computing fixed-b critical values for (22), Tukey (1949) proposed 

approximating the distribution in (22) by a chi-squared, specifically,  

 

ˆ WP  ~  2 /   , where ν =   1
2 ( )b k x dx



 ,     (24) 

 

where ν is the “equivalent degrees of freedom” of ˆ WP . This approximation is exact only for the 

EWP/Daniell estimator, for which ν = B, 2( )k x dx


  = 1, and b = 1/B. 

Orthonormal series estimators. If |φj| is bounded, then a standard central limit theorem 

for stationary processes shows that   N(0,Ω), e.g. Sun (2013). For B 

fixed, it follows that ˆ OS   in (13) has the fixed B asymptotic distribution,  

 

ˆ OS     ~   2 /B B  , where  j  are i.i.d. 2
1 .   (25) 

 

For orthonormal series estimators, Tukey’s approximation (24) to the asymptotic distribution 

holds exactly with ν = B. 

Fixed-b distributions of HAR t-statistic. The fixed-b asymptotic distribution of the HAR 

test statistic obtains from the fixed-b limiting distributions of ̂  and the asymptotically 

independent normal distribution of  ˆT   . In general, this distribution is nonstandard and 

requires tabulated critical values. 

For LRV estimators with the chi-squared fixed-b asymptotic distribution in (25), the 

fixed-b asymptotic distribution is tB. This result seems to date to Brillinger (1975, exercise 

5.13.25), who considered the fixed-B EWP HAR test in the location model. An implication of 

the discussion in Section 3.1 is that the set of estimators with chi-squared fixed-b asymptotic 

distributions is the set of orthonormal series estimators. Thus, among the family of psd kernel 

1/2

1
( / )

T

j tt
T t T z

 d

d
1

1 B

j
jB
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and orthonormal series HAR tests considered in this paper, orthonormal series tests uniquely 

have exact asymptotic tν fixed-b distributions.  

Multivariate extension. For general p  1, ˆ OS  has the fixed B asymptotic distribution,  

 

ˆ OS  d   Ω1/2 Ω1/2′, where  ~ Wp(I,B),     (26) 

 

where Wp(I,B) denotes the standard Wishart distribution with dimension p and degrees of 

freedom B. Thus m times FT in (5) will have an asymptotic Hotelling T2 distribution.  

As in Stock and Watson (2008) and Sun (2013), it is convenient to rescale FT so that it 

has a fixed-b F distribution. We therefore consider the rescaled F test, 

 

*
TF   = 

1
T

B m
F

B

 
.        (27) 

 

where FT is given in (5). When FT is evaluated using ˆ OS ,  *
TF d  Fm,B-m+1. 

 

3.2 Small-b Rejection Rate Expansions 

Velasco and Robinson (2001), Jansson (2004), Sun, Phillips, and Jin (2008), and Sun 

(2014) (among others) provide higher-order expansions of the rejection rate of HAR tests in the 

Gaussian location model using kernel LRV estimators for small-b sequences satisfying b  0, T 

  , and ST = bT  . Sun (2013) provides small-b rejection rate expansions for orthonormal 

series HAR tests.  

Like classical expansions of the MSE for spectral estimators, the expansions for kernel 

HAR tests depend on the kernel through the so-called Parzen characteristic exponent. We show 

below that the expansions for orthonormal series tests depend on the Parzen characteristic 

exponent of the implied mean kernel. The Parzen characteristic exponent q is the maximum 

integer such that  

 

k(q)(0) = 0

1 ( )
lim

| |x q

k x

x


 <   .      (28) 
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The term k(q)(0) is called the qth generalized derivative of k, evaluated at the origin. For the 

Bartlett (Newey-West) kernel, q = 1, while for the QS and Daniell kernels, q = 2. 

The expansions also depend on the Parzen generalized derivative of the spectral density 

at the origin. Define 

 

ω(q) = 1 1| |q j
j

tr m j


 



 
  

 
 .      (29)  

 

Without Ω-1, (29) is the trace of 2π times the Parzen (1957) generalized qth derivative of the 

spectral density at frequency zero; ω(q) normalizes this by 2π times the spectral density at 

frequency zero. For the case m = 1 and q = 2, ω(2) is the negative of the ratio of the second 

derivative of the spectral density of zt = xjtut at frequency zero to the value of the spectral density 

of zt at frequency zero. If zt follows a stationary AR(1) process with autoregressive coefficient ρ, 

then ω(2) = 22 / (1 )  . 

Sun’s (2013, 2014) small-b expansions of rejection rates for tests using fixed-b critical 

values play a central role in our analysis, so we summarize them here in unified notation. Let *
TF  

denote the modified F statistic in (27), and let c
m
 (b)  denote the fixed-b asymptotic critical value 

for the level  test with m degrees of freedom. In these expressions, k refers to the kernel or 

implied mean kernel, where for orthonormal series estimators b = 1/B. The asymptotic expansion 

of the null rejection rate is  

  

  
Pr

0
F

T
*  c

m
 (b)   =  ( ) ( )( ) (0)( ) ( ) ( )q q q q

m m mG k bT o b o bT         ,  (30) 

 

where Gm is the chi-squared cdf with m degrees of freedom, mG    is the first derivative of Gm, and 

 is the 1- quantile of Gm. As discussed in Sun (2013, 2014) and in the proof of Theorem 1 in 

the Appendix, the term in (bT)-q in (30) arises from the bias of the LRV estimator. 

Under the local alternative δ = T 1/21/2
XX
 , the rejection rate using the fixed-b critical 

value has the expansion,  

 


m
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*Pr ( )T mF c b
    = 2 2

( ) ( )

, ,
[1 ( )] ( ) (0)( )q q q

m m mm m
G G k bT  

 
        

 
 2

2 1

2,

1
( ) ( ) ( )

2
q

m mm
G o b o bT 


     


   ,       (31) 

 

where 2,m
G

  is the noncentral chi-squared cdf with m degrees of freedom and noncentrality 

parameter δ2, 2,m
G


  is its first derivative, and ν =   1

2 ( )b k x dx


  for kernel estimators and ν = 

1/b for orthonormal series estimators.7 This expression depends on both the bias of the LRV 

estimator, as reflected in the second term on the right hand side of (31), and on its variance, as 

reflected in the third term (the term in  1 ). This latter term is the power loss analogous to that 

from using a t distribution when the variance is estimated in the i.i.d. location model, relative to 

Gaussian inference with a known variance. 

 

4. Main Results  

 

This section provides our theoretical results describing the size and size-adjusted power. 

The class of tests considered is comprised of tests using psd kernel LRV estimators and tests 

using orthonormal series LRV estimators. Unless stated otherwise, all HAR tests are evaluated 

using fixed-b critical values.  

 

4.1 Assumptions 

We make the following assumptions throughout, which restate assumptions in Sun (2013, 

2014) and derive from and extend those in Sun, Phillips, and Jin (2008) and Velasco and 

Robinson (2001). 

Throughout, we refer to the O((bT)-q) term in (30) as the higher-order size distortion, and 

to this term plus  as the higher-order size. For kernel estimators, k refers to the kernel. For 

                                                            
7 As noted below, these expressions hold in the context of the Gaussian location model. In a 
slightly more general Gaussian GMM setting, equation (31) would include a term in 

(log / )O T T , but as in Sun (2014) this term would not depend on b and can therefore be 
ignored for our purposes. 
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orthonormal series estimators, k refers to the implied mean kernel, for which b = 1/B. For both 

families of tests, q is the Parzen characteristic exponent of the kernel or implied mean kernel. 

 

Assumption 1 (stochastic processes).  

(a) The spectral density of zt, denoted ( )zs   at frequency  , is twice continuously 

differentiable, and ( )0 zs     in a neighborhood around 0  . 

(b) 
u

u

r
u





   for [0,2 ]r   , for some 0  . 

(c) A functional central limit theorem holds for zt: T 1/2

t1

[T ] zt
d 1/2Wp (), where 

[] is the greatest lesser integer function and Wp is a p-dimensional standard 

Brownian motion on the unit interval. 

(d) zt is a stationary Gaussian process, and it is generated according to the multivariate 

location model (7). 

 

Assumption 2 (kernels). The kernels k( ) : [1,1] are piecewise smooth, satisfy k(v) 

= k(–v), k(0) = 1, | | ( )v k v dv




   , and have Parzen characteristic exponent q  1. 

 

Assumption 3 (orthonormal series). The orthonormal series {φj}  L2[0,1] have three 

continuous derivatives, j = 1, …, B, such that the nth derivative ( ) ( )n
j x  is  nO j , and 

their limiting implied mean kernels satisfy Assumption 2. 

 

Assumption 4 (rates). The sequence b is assumed to satisfy, bqTq-1 + (bT)-1  0. 

 

Assumptions 1(a)-(c) provide conditions under which the bias expressions and fixed-b 

distributions hold. Assumption 1(a) (or (b)) further implies that ω(q) in (29) is finite for q  2.   

Assumption 1(d) assumes the multivariate Gaussian location model.  

Assumption 2 states standard conditions on kernel estimators. 



21 
 

Assumption 3 strengthens slightly the conditions in Sun’s (2013) Assumption 3.1 so that 

the basis functions have three derivatives, each of the order nj . All basis functions discussed 

above aside from the SS basis functions meet this assumption, so the SS basis functions are 

treated separately. The further assumption that the basis functions’ implied mean kernels meet 

Assumption 2 is not restrictive, as it follows directly from the form of the implied mean kernel in 

(21). 

Assumption 4 is stronger than needed for some of the results. For example the expansions 

for kernel HAR tests in Sun, Phillips, and Jin (2008) require only that b  0 and bT   (i.e., b 

+ (bT)-1  0), which are implied by Assumption 4.  The more restrictive rate condition in 

Assumption 4 is used to express the expansions for orthonormal series estimators in terms of the 

implied mean kernel when q = 2.  

 

4.2 Results 

Theorems 1-5 and Corollary 1 provide our main theoretical results.  

 

Theorem 1. Under Assumptions 1–4, 

(i) For orthonormal series estimators, the scaled asymptotic bias of the LRV estimate 

is, 

                 

           1 ( ) 1ˆ (0)
q q

qOS OS q
j

j

B
k j o

T T
E

B
 



                
 

 
 ,               (32) 

 

with
2 2

(1)
2

1

(0) (1)1
(0) lim

2

B
j jOS

B
j

k
B

 





   and 

1

(2) 0
3

1

( ) ( )1
(0) lim

2

B
j jOS

B
j

s s ds

B
k

 





   . 

If kOS(1)(0)  0, then q = 1; otherwise, q = 2. 

(ii) For both psd kernel and orthonormal series HAR tests, the small-b asymptotic 

expansions (30) and (31) apply. These expansions also hold for the SS series 

estimator although it does not satisfy Assumption 3. 
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Theorem 2. Let , ( )m Tc b  be the size-adjusted fixed-b critical value, that is, the critical 

value such that *
0 ,Pr ( )T m TF c b   =  ( ) ( ) qo b o bT   , and assume that Assumptions 

1-4 hold. Then for a test that is either a psd kernel HAR test or an orthonormal series 

HAR test,  

 

, ( )m Tc b  = ( ) ( )1 (0)( ) ( )q q q
mk bT c b    ,     (33) 

 

and the higher order size-adjusted power of the test is, 

 

*
,Pr ( )T m TF c b

     = 2 2

2 1

, ( 2),

1
1 ( ) ( )

2 mm m mm
G G

 
     


        

    
 ( ) ( ) qo b o bT   .                 (34) 

 

Theorem 3. Consider two tests *
1F  and *

2F  based on different kernels or implied mean 

kernels with the same value of q, which have equivalent degrees of freedom respectively 

given by ν1 and ν2, and which have fixed-b critical values respectively given by 11 ( )mc b  

and 22 ( )mc b . Choose b1 and b2 such that *
1F  and *

2F  have the same higher-order size. 

Then, under Assumptions 1-4, the difference between their higher-order rejection rates 

under the local alternative δ is, 

Prδ[ F1T
* > 11 ( )mc b ] – Prδ[ F2T

* > 2 ( )m sc b ]  =    

+ o(b1) + o((b1T)-q) + o(b2) + o((b2T)-q).    (35) 

 

 

Our main results concern the tradeoff between size and size-adjusted power. The size 

distortion ΔS of the candidate test is, 

 

ΔS = *
0Pr ( )T mF c b     .       (36) 

 

1

2
 2 G

(m2), 2 (
m
 )

m
 

2
1 

1
1 



23 
 

The power of the oracle test, in which Ω is known, is 2,
1 ( )

m mG


 . Let ΔP(δ) denote the 

power loss of the candidate test, compared to the oracle test, under the local alternative δ, and let 

max
P  denote the maximum such power loss, so that max

P  is the maximum gap between the 

power curves of the oracle test and the candidate test. Then, 

 

ΔP(δ) = 2
*

,,
1 ( ) Pr ( )m Tm m TG F c b 


        , and     (37) 

 max
P  = supδ Δp(δ) .        (38) 

 

Because ν can be expressed in terms of b for both families of tests, equations (30) and 

(34) constitute a pair of parametric equations that determine ΔS and ΔP for a given sequence b. 

Both expressions are monotonic in b so the sequence b can be eliminated to obtain expressions 

for the higher-order tradeoff between the size and power of a given test. The manner in which b 

enters into those two expressions restricts the rate of the sequence b such that ΔS and ΔP are of 

the same order. Corollary 1 provides that restriction, which meets Assumption 4, and which is 

then used in Theorem 4 to provide the higher-order tradeoff between size and power.  

 

Corollary 1. ΔP(δ) and ΔS are of the same asymptotic order if and only if 1~
q

qCTb


  for 

some positive constant C. 

 

Theorem 4. For a given HAR test evaluated using fixed-b critical values, if 
1q

qb CT


  as 

in Corollary 1, then: 

(i) The small-b asymptotic tradeoff between the size distortion ΔS and the power loss 

against the local alternative δ is, 

 

 1/ 1/1/ ( ) 2 ( )
, ,( ) ( ) (0) ( ) (1)

q qq q q
p S m qT a k k x dx o  





         (39) 

 

for kernel tests, and 
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 1/ 1/1/ ( ) ( )
, ,( ) ( ) (0) (1)

q qq q q
p S m qT a k o          (40) 

 

for orthonormal series tests, where in both cases , , ( )m qa    = 

 2

1/2

( 2),

1
( ) ( )

2 m

q

m mmm mG G 


     


  , and k is the kernel or implied mean kernel. 

(ii)  The small-b asymptotic tradeoff between ΔS and the maximum power loss max
P  is, 

 

     

 1/ 1/1/max ( ) 2 ( )
, , (0) ( ) (1)

q qq q q
p S m qT a k k x dx o 





          (41) 

 

for kernel tests, and 

 

     

 1/ 1/1/max ( ) ( )
, , (0) (1)

q qq q q
p S m qT a k o          (42) 

 

for orthonormal series tests, where in both cases , ,m qa   = , ,sup ( )m qa   . 

(iii)  The size/power tradeoffs of tests based on LRV estimators with Parzen 

characteristic exponent q = 2 dominate the tradeoffs for tests with q = 1, both 

within and across the two families of tests. 

 

Theorem 5 provides the size/power frontier, which is the envelope of the tradeoffs given 

in Theorem 4. 

 

Theorem 5.  

(i) For psd kernel and orthonormal series HAR tests, under the sequence for b in 

Corollary 1, 

 

max
, ,2(2)

3 10
(1)

25
S

P mT a o





        (43) 
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where , ,2ma   is given in Theorem 4. This frontier is achieved by the QS kernel. For 

tests with  = .05, , ,2 3 10 / 25ma     0.3368 for m = 1, , ,2 3 10 / 25ma     

0.6460 for m = 2, and , ,2 3 10 / 25ma     0.9491 for m = 3. 

(ii) For psd kernel and orthonormal series HAR tests with exact t- and F- asymptotic 

fixed-b distributions, under the sequence for b in Corollary 1,  

 

max
, ,2(2)

(1)
6

S
P mT a o





    (exact t or F critical values).   (44) 

 

This frontier is achieved by the EWP test. For  = .05,  , ,2 / 6ma     0.3623 for 

m = 1, , ,2 / 6ma     0.6950 for m = 2, and , ,2 / 6ma     1.0211 for m = 3. 

 

4.3 Remarks 

1. For a given  and m, the frontier depends only on the sample size and the average curvature 

of the spectral density at frequency zero. As a result, the scaled fixed-b frontier plotted in 

Figure 1 is universal and applies to all psd kernel and orthonormal series HAR tests 

evaluated using fixed-b critical values under the asymptotic sequence given in Corollary 1. 

The frontier furthermore applies to all processes satisfying Assumption 1. In practice, the 

quality of this approximation to the frontier presumably depends on the properties of the 

stochastic process and on the sample size, and this quality is explored in the Monte Carlo 

analysis in the next section. 

2. The sequence given in Corollary 1, 1~
q

qCTb


 , is of the same order as the sequence found in 

Sun, Phillips, and Jin (2008) and Sun (2014) to minimize a weighted average of type I and 

type II testing errors in the case that ΔS > 0. Although we derive the frontier only for this 

sequence, we conjecture that it holds more generally. Inspection of the proof reveals that 

strengthening terms in o(b) and o((bT)-q) in the underlying Edgeworth expansions, to O of 

any higher order, would broaden the range of sequences for which this frontier holds. This 
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conjecture is supported by the generally good ability of the frontier to describe simulation 

results as discussed below. 

3. Because the sign of the size distortion and the sign of ω(2) are the same, the absolute values in 

(41) are eliminated in Theorem 5 by expressing the tradeoff for q = 2 tests in terms of the 

ratio ΔS/ω
(2), which in the case m = 1 yields (1).  

4. To gain some intuition into the overall frontier (43), note that the frontier for kernel tests is 

achieved by the q = 2 HAR test for which the term (2) 2(0) ( )k k x dx


  in (41) is minimized. 

This minimization problem turns out to be the same problem that gives rise to the 

QS/Bartlett-Priestley-Epanechnikov kernel (Priestley (1981, pp. 569-70)), for which

(2) 2(0) ( )k k x dx


  = 3 10 / 25 . This frontier then can be shown to dominate the frontier 

for orthonormal series tests (see Remark 5 below), so that it is in fact the overall frontier 

across both families. 

5. The proof for the restricted frontier in part (b) entails expressing a candidate set of q = 2 

orthogonal series in terms of Fourier coefficients, computing their implied value of (2)(0)k , 

and concluding that it must be larger than the orthogonal series that places all weight on the 

first B/2 Fourier terms. But that dominating series delivers the Daniell kernel, that is, the 

EWP estimator. 

6. The price one must pay for the convenience of exact t or F fixed-b critical values can be 

computed from Theorem 3 by letting F1 be the QS test and F2 be EWP. Suppose the EWP 

test is computed using B/2 periodogram ordinates (B Fourier basis functions). Then, from 

(35), the power cost of using EWP relative to the higher-order best test (QS) with the same 

higher-order size is, neglecting the remainder terms, 

 

Prδ[ FQS ,T
* > cQS,(bQS)] – Prδ[ FEWP,T

* > cEWP,(bEWP)]    
1

2
 2 G

(m2), 2 (
m
 )

m
 

EWP
1 

QS
1    

=  
1

2
 2 G

(m2), 2 (
m
 )

m
 1

6 3

5 5









 B1,      (45) 

 



27 
 

where νEWP = B and the final expression is derived in the Appendix. Note that (45) holds 

under the more general rate condition of Assumption 4, not just under the optimal rate 

condition of Corollary 1. 

The maximum higher-order power loss from using EWP over all alternatives δ (that 

is, (45) maximized over δ) is tabulated in Table 1 for various values of B and m = 1, 2, 3, and 

4. It is apparent that the cost of using EWP relative to QS is small: for B = 8 and m = 1, the 

maximum size-equivalent power gap is 0.0074 over all alternatives. And while the maximum 

power loss increases in m, for B = 8 it remains small, approximately 0.02, even when testing 

m = 4 restrictions. Figure S.3 in the Supplement plots the final expression in (45) as a 

function of δ for various values of B and m = 1. 

7. The expressions for the generalized derivatives of the implied mean kernel at the origin in 

Theorem 1(i) are displayed as a sequential calculation (letting T    to obtain (21), then 

differentiating). However, the theorem is proven under the small-b sequence in Assumption 

4, then it is shown that this result coincides with the sequential heuristic. We also obtain the 

generalized derivative of the implied mean kernel (and thus the bias) of the SS series 

estimator without appealing to the derivative expressions in Theorem 1(i).  

8. Theorem 1 allows us to assess the effect of a given choice of orthogonal series on the bias of 

the LRV estimator by calculating the generalized derivatives given in those expressions. 

a. q = 1 implied mean kernels. It is shown in the Appendix that: the Legendre basis 

function has q = 1; by a direct calculation, the SS-basis also has q = 1; and, 

surprisingly, the generalized first derivative at the origin of the two bases is the 

same for small b (large B): kLeg(1)(0) = kSS(1)(0) =  1. Thus for small b, k Leg (1) (0)  = 

k SS (1) (0) = kNW(1)(0). Because Legendre, SS, and Bartlett are all q = 1 kernels or 

implied mean kernels, their size distortion/size-adjusted power tradeoffs are given 

by (39)-(40) with q = 1. Assessing the second term in those tradeoffs, for 

Legendre and SS, k (1) (0)  = 1 while for Bartlett, (1) 2(0) ( )k k x dx


  = 2/3. Thus 

NW dominates Legendre and SS: the NW small-b tradeoff curve is strictly below 

the Legendre and SS tradeoff curves. Surprisingly, the Legendre and SS share a 

common tradeoff curve. 
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b. q = 2 implied mean kernels. The Fourier and cosine bases both satisfy 

Assumption 2, and by calculations in the Appendix, are both q = 2 and are 

asymptotically equivalent: 
2

(2) (2)(0) (0)
6

EWP cosk k


 . The higher-order term in 

the bias expansion is smaller for the cosine than for the Fourier basis, as it can be 

seen in the Appendix that for finite B, 
2

(2)
2

( 1)( 2)
(0)

6
EWP
B

B B
k

B




 
 while 

2
(2)

2

( 1)( 1 / 2)
(0)

6
cos
B

B B

B
k




 
. This suggests that for small B, the cosine basis 

might slightly outperform the Fourier basis. 

9. Theorem 1(i) has several precedents in the literature. In a slightly different context, 

Brillinger (1975, Theorem 5.8.1) provides a result similar to the first part of our Theorem 

1(i), but does not provide expressions for the generalized derivatives of the implied mean 

kernel. Theorem 1(i) extends the results of Theorem 1(i) in Phillips (2005), Theorem 2(a) 

in Sun (2011), and Theorem 4.1 in Sun (2013) to the case of a general orthonormal series 

estimator (some of those results apply only to q = 2 or to specific kernels). Our result 

unifies the asymptotic bias for kernel and orthonormal series LRV estimators by 

expressing the asymptotic bias in both cases in terms of the Parzen characteristic 

exponent and the generalized derivatives of the kernel or implied mean kernel. 

10. An implication of Theorem 2 and Assumption 4 is that use of the infeasible adjusted 

critical value (33) provides a higher-order improvement to the null rejection rate of the 

test, so that the null rejection rate is *
0 ,Pr ( )T m TF c b      = o((bT)-2) + o(b) = o(T-2/3) 

under the Corollary 1 sequence. This improvement is a refinement over the fixed-b 

critical value. It is also an improvement over the results provided by Gonçalves and 

Vogelsang (2011) for the moving block bootstrap applied to a HAR test evaluated using 

the asymptotic Gaussian/chi-squared critical values, which they showed to provide a 

critical value equivalent to the fixed-b critical value. The improvement from using 

, ( )m Tc b  appears not to be as good as the refinement from using Zhang and Shao’s (2013) 

Gaussian dependent bootstrap, however their Gaussian bootstrap entails generation of 

bootstrap samples from a consistently estimated autocovariance function whereas the 
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adjusted critical values , ( )m Tc b  depend on the process solely through ω(2). In addition, 

Zhang and Shao’s (2013) expansion is around the fixed-b limiting distribution, not 

around its small-b chi-squared limit, so their results are not directly comparable to those 

here. 

11. The preceding remark suggests considering a feasible version of the adjusted critical 

value, in which ω(2) is replaced with a consistent estimator: 

 

,ˆ ( )m Tc b  = ( ) ( )ˆ1 (0)( ) ( )q q q
mk bT c b    .     (46) 

 

For the EWP estimator, the feasible higher-order adjusted critical value is  

 

,ˆ ( )m Tc b  = 
22

(2)
, 1ˆ1

6 m B m

B
F

T
   

    
   

  (EWP),   (47) 

 

where ,m B mF
  is the -level critical value for the Fm,B-m distribution. The results in 

Theorem 2 suggest that these feasible higher-order adjusted critical values provide size 

improvements that will place the test below the size/power frontier of Theorem 5, 

because they have better asymptotic size control with the same size-adjusted power. 

 

 

 

5. Monte Carlo Analysis 

 

The purpose of this Monte Carlo analysis is threefold. First, we assess the quality of the 

small-b approximations to the size/power tradeoffs in the Gaussian location model. Second, we 

examine whether the empirically adjusted critical values proposed in (46) and (47) actually 

provide improvements in relevant sample sizes in the Gaussian location model. Third, we 

investigate the extent to which the theory derived for the Gaussian multivariate location model 

generalizes to time series regression with stochastic regressors.  
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5.1 Estimators and Design 

For a given kernel or orthonormal series estimator, we use four values of b, chosen so 

that ν = 8, 16, 32, and 64. The tests are labeled accordingly, for example NW16 is the Newey-

West (Bartlett) test with ν = 16 equivalent degrees of freedom. As a reference, for T = 200, 

NW32 has a truncation parameter of (3/2)T/ν, which rounds up to 10. For the orthonormal series 

estimators, ν = B. Tests use fixed-b critical values unless explicitly stated otherwise. 

We examine the following HAR tests: 

 

1. NW: Kernel estimator with Bartlett/Newey-West kernel, k(v) = (1-|v|)1(|v|1) 

2. KVB: The Kiefer-Vogelsang-Bunzel (2000) test, which is NW with S= T (so ν = 3/2). 

3. QS: k(u) = 3[sin(πx)/πx – cosπx] /(πx)2 for x = 6u/5. 

4. EWP: Orthonormal series estimator using Fourier basis in (11). 

5. cos: Orthonormal series estimator using Type-2 cosine basis (15). 

6. Legendre: Orthonormal series estimator computed using Legendre polynomials. 

7. SS-basis: Split-sample orthonormal series estimator using (17). 

 

We also consider three estimators of ω(2) for use in computing empirical higher-order 

adjusted critical values, using the formula in (46).We only investigated these adjusted critical 

values in the m = 1 case so the estimators are given for scalar ω. The first estimator is the sample 

analog of (29): 

1

(2) 2
ˆ ˆ, ,

1 1

ˆ ˆˆ
S S

z j z j
j j

j


 

 
   

 
  , where S = 10(T/200)1/3. The second estimator is 

obtained from the coefficients of a quadratic estimator of the spectrum fit to the first M 

periodogram ordinates: (2) 1
ˆ ˆ

ˆ ˆˆ ˆ ˆˆ (0) (0)z zS S    , where ˆ
ˆ̂

(0)zS  and ˆ
ˆ̂

(0)zS  are the estimated 

coefficients in the regression, 2
ˆˆ ˆ ˆ(2 / ) (0) (2 / ) (0)zz z zI j T S j T S error     , j = 1,…,M, where 

M is chosen to be 10(T/200)1/3 . The third estimator is a plug-in parametric estimator based on 

estimating an AR(1) using ˆtz : (2), 2
ˆ ˆˆ ˆ ˆ2 / (1 )plugin
z z    , where ˆˆ z  is the AR(1) coefficient. 

In the location model, the data are generated according to (7), where uit, i = 1,.., m are 

independent and follow either a Gaussian AR(1) or an ARMA(2,1), with all m disturbances 

having the same parameter values. For the regression model, the data are generated according to 

(6), with xit, i = 1,…,m and ut being independent Gaussian AR(1) processes. Under the null,  = 



31 
 

0. Under the local alternative,  = 1/2 1 1/2
XXT    , where δ is the local alternative (in the location 

model, ΣXX = I). 

 

5.2 Monte Carlo Results 

This section presents a small number of representative Monte Carlo results; additional 

results are contained in the Supplement. All results are displayed on a finite-sample counterpart 

of Figure 1. For these figures, the axes are not scaled, so that the units are the size distortion and 

the power loss. The theoretical tradeoffs (39) and (40) are shown as lines, and the Monte Carlo 

results are presented as scatter points.  

Location model. Figure 2 presents results for QS, EWP, and NW tests in the location 

model with Gaussian AR(1) disturbances in the m = 1 case with AR parameter ρ = 0.5 and T = 

200. The Monte Carlo results for QS and EWP are close to their theoretical curves. The small-b 

approximation is less good for Newey-West: the NW Monte Carlo scatter appears to follow a 

curve that has the same shape as the theoretical curve, but is shifted out. KVB is a limiting case 

of Newey-West with ST = T (so b = 1 and ν = 1.5), that is KVB is NW1.5, so KVB lies on the 

NW Monte Carlo curve.  

Figure 3 presents results for m = 2 with AR(1) errors, ρ = 0.5, and T = 200. The results 

are much the same as for m = 1, except that the theory actually fits better for the NW kernel with 

m = 2 than with m = 1. 

The supplement provides additional results for the location model for other AR(1) 

parameters, other sample sizes, ARMA(2,1) disturbances, and other kernels and orthogonal 

series. Those results indicate that the fit (distance from the scatter points to their theoretical 

tradeoff) improves with T, deteriorates as ω(2) increases, is better for q = 2 kernels than q = 1, and 

does not appreciably deteriorate as process parameters are changed holding ω(2) constant. The 

first two results are unsurprising. Our interpretation of the third finding is that the order of 

approximation of the expansions is o((bT)-q), so the remainder is of a smaller order for q = 2 than 

for q = 1 kernels. Overall, the simulation results accord with the theory. 

Stochastic regressor. Figure 4 shows the QS, EWP, and NW tests on a the coefficient on 

a single stochastic regressor, where both the regressor and dependent variable have AR(1) 

disturbances with ρ = 0.5 and T = 200 (intercept included in the regression but not tested). In this 

DGP, zt is AR(1) but non-Gaussian. For reference, the theoretical tradeoff curves are shown for 
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the Gaussian location model. It appears that this departure from Gaussianity results in poor 

approximations of the Gaussian small-b asymptotic approximation and that there are missing 

terms in the expansion as suggested by the calculations in Velasco and Robinson (2001). This 

said, several key qualitative results in the theory continue to apply to the single stochastic 

regressor. First, for a given estimator, the Monte Carlo results map out a size-power tradeoff that 

has a shape similar to the Gaussian theoretical shape, just shifted out. Second, the tradeoff for the 

QS and EWP estimators are very close to each other. Third, the ranking across estimators is the 

same as suggested by the theory and confirmed in the Monte Carlo analysis of the location 

model, that is, the q = 1 tests are outperformed by the q = 2 tests. These findings reflect results 

for other designs, kernels, and m = 2 in the Supplement. 

EWP with data-dependent critical values. Figure 5 shows the performance of the data-

dependent critical value refinements proposed in (47) in the location model, using the three 

estimators for ω(2) discussed in Section 5.1 for m= 1, ρ = 0.5 and 0.7, and T = 200. Analysis is 

limited to the EWP estimator. The plug-in estimator performs well, offering excellent size 

control. This is confirmation of the applicability of the theory but is not a realistic test of the 

estimator because the parametric plugin estimator matches the AR(1) DGP. The two 

nonparametrically-adjusted critical values perform worse than the fixed-b critical values in all 

cases, and in some cases they perform so poorly that they are (literally) off this chart (also, 

compare the scales in Figure 5 v. Figure 2). These results do not suggest optimism about higher-

order refinements being useful. Results in the Supplement are similar for an ARMA(2,1) DGP, 

except that the AR(1) plug-in adjustment now joins the other adjustments in being either 

matched or outperformed by the unadjusted fixed-b critical values. 

Overall, we can draw four conclusions. First, the theoretical frontiers provide a good 

description of estimator performance in the Gaussian location model. The fit is better for q = 2 

kernels than q = 1. Second, consistent with the theory, the performance of q = 2 kernels is 

superior to that of q = 1 kernels. In particular QS and EWP estimators outperform Newey-West, 

whose curves are shifted outwards in the figures, and this ranking is also found with stochastic 

regressors. Third, the data-dependent critical value refinements considered do not in general 

improve upon the performance of t critical values for EWP, in fact, outside the case that the 

plug-in adjustment is correctly specified, the adjusted critical values produce larger Monte Carlo 

size distortions than the fixed-b asymptotics. Fourth, the qualitative results for stochastic 
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regressors are consistent with the theory for the location model, however the Monte Carlo points 

no longer lie on the tradeoff derived for the Gaussian location model. We attribute this 

divergence of the theory and Monte Carlo results to the non-Gaussianity of zt in the stochastic 

regressor case. 

 

6. Conclusions 

 

By combining new theoretical results with previous results from the associated literature, 

we characterize optimal HAR tests that are implemented using fixed-b critical values. Tests 

using the QS kernel achieve the size distortion/power loss frontier for all psd kernel tests and 

orthonormal series tests, but they require nonstandard critical values. Restricting attention to tests 

admitting exact fixed-b t- and F-distributions entails a very small sacrifice in the size/power 

frontier. Among tests using t- or F- fixed-b critical values, the test using the equal-weighted 

periodogram estimator achieves the size/power frontier. Our Monte Carlo experiments confirm 

that the theory works well in the Gaussian location model, confirm the theoretical rankings of the 

tests, confirm the finding that tests with large bandwidths and fixed-b critical values provide 

meaningful size improvements over tests with small bandwidths and/or asymptotically normal 

critical values while sacrificing little power, and suggest that these qualitative results extend 

outside the Gaussian location model to tests involving stochastic regressors. These results lead us 

to recommend using the EWP test in empirical work.  
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Appendix 

 

Proof of Theorem 1:      (i)   This part of the theorem extends Theorem 1(i) of Phillips (2005) 

and Theorem 2(a) of Sun (2011), among others, to the case of a general orthonormal series 

estimator. We note that rather than taking sequential limits to prove this result as done in the 

heuristic derivation of the implied mean kernel in Section 2, we must obtain results in which the 

relevant limits have been taken jointly according to the sequence in Assumption 4. 

 First, using the same steps as for equation (18), we can write, 

 

                        Ê
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where the O(1/T) term in the second line arises due to the approximation of ẑ
t
 with z

t
 under 

Assumption 1 (see, for example, the proof of Theorem 2 in Sun (2011)). Thus, 
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For the last non-approximation-error term, 

 

 
u

u T
  

u
u T
 

1

T q
u

q


u
u T
  o T q   o (B / T )q  ,  (50) 

  

by Assumptions 1(b) and 4, so that we may focus on the first summation. (Here, q = 1 or 2, and a 

more rigorous definition for this value will be provided below following (28).) 

 Following the proof of Theorem 1(i) in Phillips (2005), we may then write 
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where L
T
 T  is a positive integer sequence chosen such that 
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where   is as in Assumption 1(b). Similar to the steps taken in (50), we have that 
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for some constant C, by Assumptions 1(b) and 3, and where the fact that L
T
(q )  o (B / T )q   

follows from the sequence (52). 

 We may accordingly focus attention on the terms in (51) for which u  L
T , and can thus 

write that equation as 
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u LT

LT


1

B j1

B


1

T tmax(1,u)

min(T ,Tu)

  j

t

T






 j

t

T


u

T


















1












u  o

B

T







q







 O

1

T







.  (54) 

 

We now consider the value in square brackets in the first term in this equation (or in  
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(49)). This value is similar to, but defined slightly differently than, the implied mean kernel in 

(20); accordingly, define 
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Using a mean-value expansion, we have, for some values h
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where 
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t
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2

1tu |TutT
  refers to the sum over either the indices 1 t  u  (if u  0) or the 

indices T  u  t  T  (if u  0). 

 Note that for the last term in (56), 
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for some constant C, where the first inequality uses that 
j
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 O(B3) by Assumption 3 and 

the second line uses Assumption 1(b) and (52). We accordingly do not consider this term in (56) 

when evaluating (54), given that this introduces an error only of order o (B / T )q  .  
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where the second line conducts a Taylor expansion of  j
()  around 0 and 1, respectively, in the 

two sums, and the last line uses that u  L
T
 o T 1/2 , by (52) and Assumption 4.  

We now consider the second term in (56). Assume for now that u > 0. We first note that,  

 



41 
 

     
1

T t1

T


j

t

T







 j

t

T







u

T


1

T tu

T


j

t

T







 j

t

T







u

T


1

T t1

u1


j

t

T







 j

t

T







u

T
,   (59) 

 

and further that, 
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where the second line uses that 
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constant C by Assumption 3, and further uses Assumptions 1(b) and 4. The same logic applies 

for u < 0. We need not worry about u = 0, since this value is fixed; these calculations are simply 

meant to show that approximating the sum 
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where []  is the greatest lesser integer function, and the approximations in the second and third 

equalities hold by Assumption 3 and (52). 

For the third term in (56), by similar steps as in (59)–(60), we can approximate the sum 
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2

. Further, as in (61), we can 

approximate this latter value with the integral 
1

2

u
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2


j
(s)  j

(s)ds
0

1

 . 

Combining all the results above, we can thus write (54) as, 
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 Integrating the second term by parts, 
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 We can use this to write the first two terms in (62) as follows, for each value j: 
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Thus (62) becomes, 
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which further uses that 
  
O(1/ T )  o (B / T )q   from (52). Thus, 

 

 
2 2

21
2

1 1

1

0
( )(0) (1)1 1 1 1ˆ

( )

2 2

T T

T T

L LB B
j jj jOS

u u
j u L j u L

q

s ds
E u u

s

B T B T

o
B

T

  

   





      

 
 


 
   

 

   
  

  
2 2 2 2

1

0

2 2
1 1

2 2
2

3
1

(0) (1) (0) (1)1 1
if lim 0

( )1
 other

,
2 2

( )
,

2
wise.

B B
j j j j

u
B

j u j

B
j j

u
j u

B B

T B T B

sB B

T B T

u o

s ds
u o

   

 




  



 

 
                   


           

 


           

  

 

  (66) 

 

 Equation (32) in the theorem follows from these expressions. These expressions and their 

relation to equations (54)–(55), along with the definition of the generalized derivative in (28), 

make clear that in the limit, we have 
2 2
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( 0
3

1

1

2)
( )1 ( )

2
(0) lim

B
j jOS

B
j

s ds
k

s

B

 





    , where k  is as in (55). We note further that in a 

neighborhood around 0   and with Tu L , it must be the case in the limit that 

( ) ( ) 0OS OSkk     given the definitions in (20) and (55), so that these definitions hold as well 

for k. 

 Further, as in Priestley (1981, p. 460), it is apparent from the definition of the generalized 

derivative that if (1) (0)0 OSk   , then 2

1 ( )OSk 



  as 0  , so that q = 1. If not, note that 

as after equation (11), the frequency-domain weight function  for a kernel estimator must 

be nonnegative in order to guarantee positive semidefiniteness of the LRV estimate. Priestley 

(1981, p. 568) provides a proof that this implies that the Parzen characteristic exponent of the 

kernel (or, in the current case, implied mean kernel) must be no greater than q = 2, so that in our 

case q = 2 if (1) (0) 0OSk  . Assumption 3 then guarantees the finiteness of ( ) (0)OS qk .  

Finally, as noted in Remark 6, while the above proof proceeded under the small-b 

sequence in Assumption 4, we can also show that using the heuristic sequential-limit definition 

of the implied mean kernel in Section 2 in fact yields the same result as in the theorem, despite 

not being formally justified under the assumed sequence. To see this, first note that the condition 

that  in Assumption 2 gives that  for any kernel or implied mean kernel. 

Then using equation (21) and differentiating with respect to v for v > 0, 
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where the final expression uses kj(0) =  = 1 and integrates by parts, as in (63). (The 

same expression for kj′(0) obtains starting from the expression for k(v), v  0.) Plugging this into 

(21) and taking the limit as  yields the same result as stated in the theorem for q = 1 

estimators. 

Priestley (1981, p. 460) also shows that for q even, , yielding 

the relation . Then for , differentiating the expression in (67) again 

yields 

         

,  (69) 

  

so that 

 

 ,   (70) 

 

and again the same expression obtains starting from . It follows from (21) that  =

, and substituting (70) into this final expression and taking  yields the same 

result as stated in the theorem for q = 2 estimators. 

 To complete the heuristic re-derivation of the result in the theorem under the sequential 

limit, using the implied mean kernel representation for ˆ OSE  in equation (20), we can follow 

Priestley (1981, p. 459) and write 
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1 1
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( 1) ( 1)

( / ) 1
1
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T T

OS OS
B T u B T u u

Tu T uu T

k u S u k u S
T

 

   

        . (71) 

 

For the last term,  

 

   (72) 

 

by Assumptions 1(b) and 4. For the second term, given a bounded implied mean kernel (as in 

Assumption 3), similar steps to those taken for the last term give that 
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Finally, considering the first term in the bias expression, we can write 
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                   ( ) ( )( / ) (0) 2 1 (1)(0)q OS q q
zsB T k o     , (74) 

 

where the second equality holds from the definition SB = T, from Parzen (1957) Theorem 5B or 

Priestley (1981, p. 459) under the assumed sequence, and ( ) (0)q
zs  is the qth generalized derivative 

of the spectral density at frequency zero. This completes the heuristic re-derivation of the more 

formal proof above for the result in Theorem 1(i), and note that in this case we did not require 

differentiability of the basis functions in order to obtain this result (so that the heuristic 

derivation applies to the SS basis functions, as will be confirmed more formally below in the 

derivation for Remark 6). 

(ii)   For orthonormal series estimators with basis functions meeting Assumption 3, 

inspection of the proof of Theorem 2 in Sun (2014) or Theorem 4.1 in Sun (2013) shows that the 

u
|u|T
  u

|u|T
 

1

T q u
q u

|u|T
  o T q   o (B / T )q ,
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higher-order size distortion is equal to , where  as 

 such that . Theorem 1(i) then gives that 

  
A  (B / T )q kOS (q) (0) 2s

z
(q) (0)   o (B / T )q  . (While this expression has not been shown 

formally for the SS series estimator, it is shown below in the derivation of Remark 6, which does 

not use this theorem in the case of the SS estimator.) Using  then yields equation  

(30). Note that in the scalar case of , we have that this higher-order size distortion (in 

both the kernel and orthonormal series case) is proportional to , so that all results 

below hold uniformly over all stochastic processes satisfying Assumption 1 with  

κ for finite κ. 

For equation (31), the above steps carry through for the bias term, and the variance term 

follows from Theorem 5 and the proof of Theorem 2 in Sun (2011), with  as in equation 

(25). The remainder terms follow from this theorem as well. 

For kernel estimators, given Assumptions 1 and 2, equation (30) follows from Sun (2014) 

equation (16), along with the approximation  as given on page 

665, where  is the fixed-b asymptotic distribution for kernel estimators. Equation (31) 

follows directly from the proof of Sun (2014) Theorem 5 for the case of the Gaussian location 

model.          

 

Proof of Theorem 2:      We can define the size-adjusted critical value as 
, ( )m Tc b = 

c
m
 (b)

m,T
 (b), where cm

 (b) is the fixed-b critical value as in equation (30) and m,T
 (b) is 

defined implicitly by *
0 ,Pr ( )T m TF c b    =  ( ) ( ) qo b o bT   . Taking a Taylor expansion of 

the null rejection rate around cm
 (b),  
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where the fact that Pr
0
 F

T
*  c

m
 (b)    G

m
(

m
 ) 1O(b)O (bT )q 



  o(b) o (bT )q  , 

follows from Sun (2014) Theorem 2 and p. 665. Using this and *
0 ,Pr ( )T m TF c b    = 

 ( ) ( ) qo b o bT    by definition, we can solve for 
m,T
 (b) as m,T

 (b)  k (q) (0)(bT )q m
 (q ) , 

from which (33) follows directly. 

Then taking a similar Taylor expansion, size-adjusted power is  
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          , 

  (76)  

 

which analogously uses Sun (2014) Theorem 5. We have m,T
 (b) G

m, 2 (m
 ) 

k (q) (0)(bT )q G
m, 2 (m

 )m
 (q )  from the solution for m,T

 (b) above. Thus the second and fourth 

terms in (76) cancel, and using this along with m,T
 (b) O (bT )q  yields the size-adjusted 

power relation given in equation (34).             

 

Proof of Theorem 3:      This follows directly from equations (30) and (31). Fix a sequence b1 

for test F1. Given equivalent values of q for tests F1 and F2, equation (30) gives that we must set 

 in order to obtain equivalent higher-order size. We thus have that 

 

 
  
G
m, 2 (
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 )

m
 (q)k

2
(q) (0)(b

2
T )q  G

m, 2 (
m
 )

m
 (q)k

1
(q) (0)(b

1
T )q  ,  (77) 

 

so that the corresponding second terms in the power expression (31) for F1
*

 and F2
*

 are 

equivalent. Using this along with equation (31) yields the desired relation.            

 

Proof of Corollary 1:      Using equation (30) and the definition of the size distortion ΔS, that 

size distortion can be written as follows: 

b2 
k2

(q) (0)

k1
(q) (0)







1/q
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                      ( ) ( )( (0)( ) ( )) ( )q q q q
S m m mG k bT o b o bT        . (78) 

 

For kernel tests, using the definition of the size-adjusted power loss ΔP(δ) and the fact 

that ν =   1
2 ( )b k x dx



 , we also have, 
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2 2

( 2),
(

1
( )) ( )

2
() q

P m mm
x dG b k b o Tx bo 


   

 
 

    .  (79) 

 

 We can see that the leading terms in (78) and (79) are of equivalent asymptotic order if 

and only if b is of equivalent asymptotic order as ( ) qbT  , requiring that ( 1) )( )(q qO b O T   , or 

equivalently that 1~
q

qCTb


  for some constant 0C  , as stated. 

 Further, given that  ( ) ( ) qO b O bT   under this sequence, the o(b) remainder term in 

(78) is also  ( ) qo bT  , confirming that the leading term in (78) is in fact the first term. The same 

applies to the remainder terms in (79). These same steps apply for orthonormal series tests as 

well.             
 

Proof of Theorem 4:      (i) Under the assumed sequence, we can rewrite the size distortion in 

(78) as 

 

      1/ 1/1/1/ 1/( ) ( ) 1)( (0) ( ) 1 (1)
q qqq qq q

S m m mG k bT o         

                  1/ 1/1/( ) ( ) 1 1( (0) ( ) ( ))
q qqq q

m m mG k bT o bT       ,  (80) 

 

where the first equality uses the argument in the last paragraph of the proof of Corollary 1, and 

the second equality uses that 
1/

1 (1) 1 (1)
q

o o   for 2q  . This can be rewritten further as 
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Similarly, rewrite (79) (for kernel tests) as 
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Multiplying (81) and (82), and defining , , ( )m qa    =  2
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we obtain 
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  ,            (83) 

 

as stated. Identical steps for orthonormal series tests (using ν = 1/b in that case) then yield the 

tradeoff given in equation (40). 

 (ii) For kernel tests, we can express the maximum size-adjusted power loss max
P  using its 

definition in (38) and equation (79) as, 

 

       
 2

max 2 2

( 2),

1
(sup ) ( )

2P m mm
G b d bx xk o 

 
  





 

  
 

   ,         (84) 

 

since   does not enter into the term b k 2





 (x)dx . Thus following the same steps as in part (i) 

above, multiplying (81) and (84) yields equation (41). Identical steps for orthonormal series tests 

using the frontier in part (i) then yield equation (42). 

 (iii) Again using equation (30) and the same steps as in parts (i)-(ii), we can express 


S

 for any test (q = 1 or q = 2) as, 

 

      1/ 1/21/2( ) ( ) /2 /2( ( )) ( ( )0)
w q q q q

S m m mG k bT o bT       .  (85) 

 

Multiplying this by (84), under the assumed sequence for b, 
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P
max 

S
 a

m, ,2
k (q) (0) k 2(x)dx





   (q)
1/2

T 1 bT 1q/2 3/2( )o b . (86) 

 

We can observe from this equation that 
P
max 

S
 tends to zero at a slower rate for q = 1 than 

for q = 2 given that bT , and that this finding would hold as well in the orthonormal-series 

case (in which the expression would be identical but without the constant k 2(x)dx




 ). Thus 

comparing arbitrary kernel or orthonormal series tests with q = 1 and q = 2, for any two sets of 

values k (q ) (0) and 
  
 (q) , it must be that  b , T  such that b  b , T  T , the q = 2 test dominates 

the size/power tradeoff of the q = 1 test (i.e., 
P
max,q2 

S
q2  

P
max,q1 

S
q1 ). This proves the 

stated result.             
 

Proof of Theorem 5:     (i) As in the proof of Theorem 1(i) above, we can confine our analysis 

to kernels (or implied mean kernels) with q  2 , and given that q = 2 kernels dominate q = 1 

kernels from Theorem 4(iii), we focus on the q = 2 case. 

 We first consider kernel estimators. From Theorem 4, the lower envelope of the 

size/power frontier is achieved for any data-generating process by minimizing 

k (2) (0)




 k 2(x)dx . As in Priestley (1981, pp. 569-70), this is equivalent to minimizing 





  2K j ( )d 1/2





 K j
2 ( )d  , where K j  is the frequency-domain weight function 

corresponding to k. And for psd kernels, this minimum is in fact achieved exactly by the QS 

estimator, as proven in Priestley (1981, p. 571). Thus the QS estimator’s size/size-adjusted 

power tradeoff defines the frontier for kernel tests. 

 Equation (45) (whose derivation does not use this theorem) then shows that the QS 

tradeoff dominates the tradeoff for EWP, which defines the frontier for orthonormal series tests, 

as shown in part (ii) of this theorem below. Thus we can conclude that the QS tradeoff defines 

the frontier for both kernel and orthonormal series HAR tests, as stated.  
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For the QS kernel, k (2) (0)




 k 2(x)dx  = 3 10 / 25 , since Priestley (1981) gives that

k (2) (0)   2 / 10 (Table 7.1) and 




 k 2(x)dx  6 / 5 (Table 6.1). Combining this with (41) yields 

(43) up to higher-order terms. Numerically calculating , ,m qa   = , ,sup ( )m qa    for q = 2 and  = 

.05 yields 
, ,2 3 10 / 25ma     0.3368 for m = 1, 

, ,2 3 10 / 25ma     0.6460 for m = 2, and 

, ,2 3 10 / 25ma     0.9491 for m = 3, as stated.  

 (ii) As in equations (22) and (25) (and discussed after (25)), only orthonormal series 

estimators yield fixed-b asymptotic distributions that are exact t (or exact F in the multivariate 

case). (As discussed after equation (23), the EWP estimator is unique among WP/SC estimators 

in having a fixed-b asymptotic distribution that allows for exact t- or F-based inference, but it too 

has an orthonormal series representation using the Fourier basis functions.) Thus we aim to 

achieve the size/size-adjusted power frontier, or equivalently to maximize higher-order power 

given equivalent higher-order size, among orthonormal series tests.  

 We can again confine the analysis to the q = 2 case. To fix higher-order size at a common 

value across all orthonormal series estimators, we can arbitrarily fix a value (or sequence) 

B
EWP

 1/ b
EWP

 for the EWP test. Theorem 3 then gives that the higher-order power gap between 

any alternative estimator alt (with q = 2) and EWP is given by 
1

2
 2 G

(m2), 2 (
m
 )

m
 B

alt
1  B

EWP
1  , 

which follows from   B for orthonormal series estimators in equation (25). Thus having 

BEWP  Balt  for all alternatives with q = 2 such that EWP and alt have equivalent higher-order 

size is necessary and sufficient to prove the result that the exact t or F frontier is achieved by the 

EWP test. 

 From equation (30), having equivalent higher-order size requires setting 

     

 Balt 
k EWP(2) (0)

k alt (2) (0)
BEWP .  (87) 

 

Thus in order for BEWP  Balt  for all alternatives, it must be the case that k EWP(2) (0) is the 

minimum second generalized derivative value for the limiting implied mean kernel across all 
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orthonormal series satisfying Assumption 3. (This is also apparent from the form of the tradeoff 

in (42).) From Theorem 1(i), a sufficient condition for this result can be obtained by showing that 

for any given value of B along the sequence, k EWP(2) (0) minimizes B1 k j
 (0)

j1

B ,  where

k
j
(0)  B2 

j0

1

 (s)  j
(s)ds, across orthonormal series estimators. 

 Given that the Fourier basis functions span L2[0,1], we can write any basis function as 

 

  j (s)  ajl
l1



 e i2ls ,  (88) 

 

where the ajl  values are as-yet undetermined projection coefficients. We know that for any 

orthonormal series, 
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and similarly 
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 We then wish to minimize 
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subject to the two constraints (89) and (90). But given the constraints, this is trivially solved by 

setting ajj  1, aj ,l j  0; that is, looking at the representation in (88),  j (s)  ei2 js , so that we 

have in fact selected the Fourier basis functions themselves. Further, given that, as above, all 

orthonormal series in L2[0,1] are spanned by the Fourier basis functions, there is no such basis 

function for which k (2)(0)  0, which is a restatement of the Priestley (1981, p. 568) result 

discussed in the proof of Theorem 1(i) (i.e., that the Parzen characteristic exponent of a psd 

kernel or implied mean kernel must be no greater than q = 2). We conclude that the EWP test 

achieves the frontier for size/size-adjusted power among tests with exact t- and F- asymptotic 

fixed-b distributions.           

Priestley (1981) Table 7.1 gives that k (2) (0)   2 / 6 for the Daniell kernel, which is 

equivalent to the EWP estimator; see also the derivation for the second part of Remark 6 below. 

(Note further that 




 k 2(x)dx  1 for that kernel from Priestley, 1981, Table 6.1, as should be 

expected given that 




 k 2(x)dx  does not enter into the expression for the orthonormal series 

size/power tradeoff despite the fact that the EWP estimator can be expressed as a kernel 

estimator.) Thus we have that k (2) (0)   / 6  for the EWP estimator. Combining this with 

(42) yields (44) up to higher-order terms. Again using numerical calculations for , ,m qa   = 

, ,sup ( )m qa    for q = 2 and  = .05, we obtain 
, ,2 / 6ma     0.3623 for m = 1, 

, ,2 / 6ma     

0.6950 for m = 2, and 
, ,2 / 6ma     1.0211 for m = 3, as stated.            

 

Derivation of Equation (45):      As in the proof of Theorem 5, fix a sequence B  1/ b
EWP

. To 

obtain equivalent higher-order size using the QS test, equation (30) gives that we must set 

 

 bQS 
kQS (2) (0)

k EWP(2) (0)
bEWP 

 2 / 10

 2 / 6
B1 

3

5
B1,    (92) 
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where the k (2) (0) values for the two tests are as in the proof of Theorem 5. That proof also uses 

that 
  



 k 2(x)dx 
6

5
 for QS, so that given equivalent higher-order size, we have 

1 1 1 16 3

5 5EWP QS B B       . Plugging this into the higher-order power difference in equation (35) 

(Theorem 3) yields the desired result. 

 

Derivations for Remark 8:      a. For the Legendre basis, let the shifted (to [0,1]) but non-

normalized jth Legendre polynomial be p
j
(s). Then p

j0

1

 (s) p
k
(s)dx 

1

2k 1
1 j  k  

(Abramowitz and Stegum (1965)), so that the jth normalized shifted Legendre polynomial is 


j
(s)  p

j
(s) 2 j 1. Because p

j
(0)  (1) j  and p

j
(1)  1, we have 

j
(0)  2 j 1(1) j , 


j
(1)  2 j 1. Thus from Theorem 1(i), abusing notation slightly, we have 

(1)
2 2

1 1 2 1
(0) 2(2 1)

2
Leg
jk

j
j

B B


    for each j, and thus 

(1) 2

1

(0) (2 1) ( 2 1) /
B

Leg
B

j

k B j B B



      as B  , as stated. As in Theorem 1(i), this also 

implies that q = 1 for the Legendre polynomials. 

For SS, we can calculate ÊSS  directly (without appealing to Theorem 1(i)) to observe 

that the SS implied mean kernel is similar to the Bartlett kernel on a subsample of T/(B+1) 

observations. First, note that x
i
 x 

1

T
i

x
t

tTi

 
1

T
x

t
t1

T

  (where, abusing notation, T
i
 denotes both 

the number of observations in subsample i and the subsample that t indexes) can be written as 

ix x  =   
1

( 1)1 1
1 T

i t
t

B t
T

xT


   
B 1

T t1

T

 1 t T
i   1

B 1







x
t
. Thus summing over 

subsamples and squaring, we have, 
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B
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 x )2
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B1

 
1

B i1
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B 1
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s1
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 1 t T
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1 sT
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x
t
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s
. (93) 
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Taking the expectation of this value and performing the same change of variables as in (19),  

   

  

E
1

B
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i
 x )2

i1

B1

 
B 1

B

1

T / (B 1) u(T1)
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 1
u

T / (B 1)
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B 1

T u(T1)
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B 1

B


B 1

B

u
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1 u 

T

B 1










1

B


1

B

u
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u. (94)     

 

Converting E
1

B
(x

i
 x )2

i1

B1

 to ÊSS  requires multiplying by T/(B+1) given the form of the 

statistic given in (16) as compared to the usual t-statistic in (4). Thus in this case defining S such 

that T = S(B+1) given that there are B+1 subsamples and setting v = u/S, we can write the SS 

implied mean kernel (i.e., the expression in brackets in (94)) as  

 

k
B
SS ( ) 

B 1

B


B 1

B








1  1   1

B


1

B(B 1)
 .      (95) 

 

Thus using the definition of the generalized first derivative in (28), we have k
B
SS (1) (0) = 

B 1

B


1

B(B 1)
 = 

  

B  2

B 1
  1 as B  . Because (1) (0)SSk   0, q = 1 for the SS estimator. 

Further, comparing  with   using (94) makes apparent that the stated result in the proof of 

Theorem 1(ii) above holds for the SS estimator as well. 

For the Bartlett/Newey-West test, Priestley (1981) Table 7.1 gives that k(1)(0) = 1 and q = 

1, while Table 6.1 gives that 2 ( )k x dx


  = 2/3, so that (1) 2(0) ( )k k x dx


  = 2/3 for the Bartlett 

test, as stated. 

 b. For the Fourier basis functions, we have 
2 j1

(s)  4 2 2 j2 cos(2 js)  and 


2 j

(s)  4 2 2 j2 sin(2 js) . Thus 
1

2 1 2 10
( ) ( )j js s    = 

1 2 2
2 20

4( ) ( )j js s j     . Summing 

over j and using Theorem 1(i), we have  

ÊSS
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k
B
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1

B j1
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1

B2
2 4 2 j2   

2 2

2

( 1)( 2)
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 .   (96) 

  

Similarly for cosine basis functions, using their limiting implied mean kernel form, we 

have 
j
(s)   2 2 j2 cos( js) and 

j
(s) 

j
(s)

0

1

   2 j2 . Summing over j yields,  

 

k
B
cos(2)  

1

2

1

B j1

B


1

B2
 2 j2     2 2

2

1 1 /

6

2

6B

B B

B

 


 
 .   (97) 

 

Results (96) and (97) and Theorem 1(i) further imply that q = 2 for the Fourier and cosine 

estimators.  
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Table 1. Maximum power loss of same-sized EWP (with B series) compared to QS. 
 

B 
m 4 8 16 
1 0.0147 0.0074 0.0037
2 0.0247 0.0123 0.0062
3 0.0335 0.0168 0.0084
4 0.0419 0.0209 0.0105

 
Note: b for QS is chosen so that its higher order size is the same as EWP with B terms. 
 
 
 
 
 
 
 

 
Figure 1. Higher-order frontier between the size distortion ΔS and the maximum power loss 

max
P  of HAR tests in the Gaussian location model with dimension m , for stationary processes 

with average normalized spectral curvature ω(2). Solid line: all kernel- and orthonormal series 
HAR tests; dashed: tests with standard t and F critical values. 
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Figure 2. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss curves for 
QS, Newey-West, and EWP estimators: Location model, m = 1, AR(1), ρ = 0.5, and T = 200.  

 

 
Figure 3. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss curves for 

QS, Newey-West, and EWP estimators: Location model, m = 2, AR(1), ρ = 0.5, T = 200. 
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Figure 4. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss curves for 
QS, Newey-West, and EWP estimators: Stochastic regressor, m = 1, AR(1), ρ = 0.5, T = 200. 

Theoretical curves are for the Gaussian location model. 
 

 
Figure 5. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss curves for the 

EWP estimator using feasible higher-order adjusted critical values:  
Location model, m = 1, AR(1), ρ = 0.5 and ρ = 0.7, T = 200. 

 


