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This supplement provides additional figures and Monte Carlo results. 

 

Figures S.1 plots the implied mean kernel for the Fourier, cosine, Legendre, and SS basis 

functions for B = 8 and T = 200. The Fourier transforms of these implied mean kernels, that is, 

the frequency-domain implied mean kernel, are plotted in Figure S.2 at the frequencies 2πj/T, j = 

1, …, 32. The EWP (Fourier) estimator is the only one of these four that has an exact kernel 

representation, and its frequency-domain kernel is the familiar flat (Daniell) kernel that gives 

equal weight to the first B/2 periodogram ordinates. The remaining three implied mean kernels in 

the frequency domain also concentrate their mass at low frequencies. 

 

Figure S.3 shows the power difference, as a function of the standardized local alternative δ, 

between the EWP and QS test, for B = 8 for EWP and b for QS chosen so that the two tests have 

the same size-adjusted power. This curve is computed using the expression in Theorem 3 and 

Remark 6. 

 

Figure S.4 shows additional Monte Carlo results for different values of T for 6 tests: QS, EWP, 

Cos (type II cosine basis function), NW, Legendre basis function, and SS.  

 

Figure S.5 shows the spectral density for the AMA(2,1) process. The parameters are calibrated 

so that ω
(2)

 = 4 and with a spectral density approximately symmetric around π/2, with a 

minimum at π/2 (the coefficients are ρ1 = 0.048, ρ2 = 0.248, θ = –0.064).  

 

Figure S.6 shows results for the ARMA(2,1) disturbances, m = 1. 

 

Figures S.7 and S.8 show additional results for m = 2. 

 

Figure S.9 shows results in the location model, feasible higher-order corrected critical values, 

ARMA(2,1) errors. 
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Figure S.1. Implied mean kernel of basis function estimators with B = 8, time domain: 

Fourier/EWP (dark blue, solid), cosine (light blue, dash), Legendre (red, dot), and split-sample 

(teal, dash-dot).  

  

 

Figure S.2. Implied mean kernel of basis function estimators with B = 8, frequency domain:  

Fourier/EWP (dark blue, solid), cosine (light blue, dash), Legendre (red, dot), and split-sample 

(teal, dash-dot). The frequency domain kernel is normalized to 1 at ω = 0 and computed over the 

periodogram ordinates (so the horizontal axis value j corresponds to 2πj/T, etc.) 
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Figure S.3. Small-b approximation to power loss for EWP test, compared to QS test, for different 

values of B in the EWP test and with b for the QS test chosen so that the EWP and QS test have 

the same higher-order size when evaluated using fixed-b critical values. The figure plots the final 

expression in (45) as a function of δ. Gaussian location model, m=1, 5% significance level. 
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Figure S.4. Location model, AR(1), m = 1, ρ = 0.5 

Theoretical size distortion/power loss trade-off curves for each estimator with Monte Carlo 

results for T ranging from 50 to 1600. 
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Figure S.5. Spectral density of calibrated ARMA(2,1), ω

(2)
 = 4 
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Figure S.6. Location model, ARMA(2,1), m = 1, T = 200 

Theoretical size distortion/power loss trade-off curves for QS, Newey-West, and EWP estimators 

with Monte Carlo results. ARMA(2,1) parameters fixed such that ω
(2)

 = 4, equivalent to AR(1) 

with  = 0.5 (parameter values as in Figure S.5) 
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Figure S.7. Location model, AR(1), m = 2, ρ = .5 and .7, T = 200 

Theoretical size distortion/power loss trade-off curves for each estimator and Monte Carlo results 

(dots) 
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Figure S.8. Stochastic regressor, AR(1), m = 2, ρ = 0.5, T = 200 

Theoretical size distortion/power loss trade-off curves for QS, Newey-West, and EWP estimators 

with Monte Carlo results. Note: curves are for the Gaussian location model. 
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Figure S.9. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss curves for 

the EWP estimator using feasible higher-order adjusted critical values:  

Location model, m = 1, ARMA(2,1), parameter values as in Figure S.5, T = 200. 

 


