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Abstract With the development of carbon catalysts,
graphene-based metal-free catalysts have drawn increasing
attention in both scientific research and in industrial
chemical production processes. In recent years, the
catalytic activities of metal-free catalysts have significantly
improved and they have become promising alternatives to
traditional metal-based catalysts. The use of metal-free
catalysts greatly improves the sustainability of chemical
processes. In view of this, the recent progress in the
preparation of graphene-based metal-free catalysts along
with their applications in catalytic oxidation, reduction and
coupling reactions are summarized in this review. The
future trends and challenges for the design of graphene-
based materials for industrial organic catalytic reactions
with good stabilities and high catalytic performance are
also discussed.
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1 Introduction

In the production of industrial chemicals, more than 85%
of the reactions need to be carried out with a catalyst [1].
Organic synthesis reactions such as the dehydrogenation of
hydrocarbons, the reduction of aromatic nitro compounds
and coupling reactions are all important catalytic reactions
in industry [2]. In the past, these reactions were generally
catalyzed by Al, Mn, Ni, or Cu since these catalysts are
cheap and suitable for industrial mass production [3].
However, due to limited resources and environmental
pollution, the large-scale use of metal based catalysts in

industry is increasingly being subjected to more regula-
tions and experiencing other challenges [4–7]. In recent
decades, the carbon family has gained several new
members such as activated carbon, graphite, graphite
intercalation compounds, and carbon fibers [8–10]. With
the development of green chemistry and sustainable
chemistry, the application of these metal-free carbon-
based materials as catalysts for the production of industrial
chemicals is gradually being explored more and more [11–
13].
Some graphene-based materials synthesized by chemi-

cal oxidation reduction methods have abundant oxygen-
containing functional groups, including hydroxyl, carbo-
nyl, carboxylic acids and epoxy groups [14–16]. These
groups give the graphene-based catalyst excellent catalytic
oxidation performance. In addition, the heteroatom doping
of graphene can alter the electronic and spin structure of
carbon materials, which endows them with better catalytic
activities [17,18]. In fact, graphene-based metal-free
nanomaterials have been applied to many types of metal-
catalyzed processes, and they are expected to replace
traditional metal-based catalysts [19,20]. This is significant
because these substitutions save metal resources and
improve the sustainability of chemical processes.
This short review presents the latest developments in the

use of graphene-based catalysts in industrial organic
reactions. First, a brief introduction of the fabrication and
catalytic active sites of intrinsic graphene, graphene oxide
(GO), reduced graphene oxide (rGO), heteroatom doped
graphene, and macroscopic graphene-based frameworks is
presented. Then recent progress in the design and
fabrication of these graphene-based catalysts and their
catalytic performance in organic reactions, including
oxidation, reduction and other important industrial reac-
tions are summarized. Finally, the future trends, opportu-
nities, and challenges of graphene-based materials for
industrial productions are discussed.
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2 Preparation of graphene-based materials
for metal-free catalysts

2.1 Graphene

Graphene is a two-dimensional layered material obtained
from a repeated arrangement of carbon atoms in a
hexagonal unit [21]. Every carbon atom in the graphene
sheet is bonded to three neighboring carbon atoms and is
sp2 hybridized with the remaining unhybridized pz orbital
oriented perpendicular to the graphene plane. Stacked
rings undergo π-π interactions between the planes. The first
high-quality graphene sheets were obtained via mechanical
exfoliation by Novoselov et al. in 2004 [22]. The advent of
graphene enriched the carbon family and graphene became
the basic unit of other graphite materials [23]. Due to its
unique structural and physicochemical properties, gra-
phene has been widely applied to various fields such as
catalysts, absorbents, sensors, biological applications,
transparent conductive electrodes, and energy storage
[24]. This review focuses on the applications of graphene
to catalysis.
Although the hybrid orbital forms are similar between

graphene and other graphite materials (like graphite,
fullerene and carbon nanotubes), graphene possesses a
huge and open π electronic system, which is beneficial for
interactions between the graphene sheets and the reactant
molecules [25–27]. In addition, the two special edge
structures, armchair and zigzag, provide extra electronic
states for graphene and produce new energy levels at the
Fermi level, which greatly reduce the difficulty for
catalytic reactions proceed [28].
Recently, a great deal of research has focused on

preparing high-quality graphene sheets. In addition to the
already mentioned mechanical exfoliation method, other
commonly used methods include chemical vapor deposi-
tion, oxidation-reduction method, solvothermal and arc
methods [29–32]. Each of these methods has advantages
and drawbacks. Mechanical exfoliation gives high-quality
graphene but with low yields, which is a problem for large-
scale production. Chemical vapor deposition produces
high-quality and high-volumes of graphene, but its high
cost and complex process hinders its industrialization.
Overall oxidation graphite reduction is the best method for
the large-scale preparation of graphene due to its low cost
and simplicity.

2.2 Graphene derivatives

2.2.1 Graphene oxide

It is difficult to fabricate graphene with an ideal two-
dimensional structure. As mentioned above, reducing GO
is the most commonly used method for the fabrication of
high quality graphene. The structure of GO is controver-

sial, but currently the structure proposed by Lerf et al.
which is shown in Fig. 1 is the most widely acceptable
[33]. Typically, GO contains a large number of oxygen-
containing functional groups. Most of these groups exist in
the graphene oxide layer in the form of hydroxyl and
epoxy groups, although a small number of carboxyl and
carbonyl groups exist on the lamellar edges of graphene
oxide sheets. However, these oxygen-containing func-
tional groups destroy the intrinsic extensive π electronic
system that an ideal graphene system would possess [34].
Theoretically, the catalytic activity will be lower when

the giant π-conjugated distribution is reduced [35].
However for most oxidation reactions, the radical oxygen
species easily interact with the oxygen containing groups
on the GO sheets, this together with the hydrophilicity and
ready dispersibility in water caused by these groups, gives
GO an excellent catalytic performance in oxidation
reactions [36]. GO is usually prepared via modified
Hummers’ methods by using KMnO4, H2SO4, or NaNO3

as oxidants [37]. Chen et al. fabricated single-layer GO
with a high yield of 171%�4% via a modified Hummers’
method by using small flakes (3–20 µm) as the raw
material. Dispersions of the obtained GO were high purity
and did not require any follow-up procedures such as
centrifugation or dialysis. This method provides an
efficient way for the inexpensive and simple mass-
production of graphene for industrial processes [38]. In
addition to the universal Hummers’ method, Bai et al.
prepared GO with a controllable-oxygen-content by
irradiating graphite with a high energy electron beam
[39]. This beam produced varying degrees of damage in
the graphite structure and the oxygen containing functional
groups on the surface of GO, especially the hydroxyl and
carboxyl groups, increased with increasing irradiation
doses.

2.2.2 rGO

A GO reduction process can restore some of the intrinsic
graphene properties [40]. As shown in Fig. 1, after GO is
reduced, the π electronic structure is enlarged to some
extent. The reduction process eliminates the hydroxyl and
epoxy groups while retaining most of carboxyl and
carbonyl groups at the edges of the GO sheet [41]. So
the reduction is not complete. Chemical reduction, using
reducing agents such as sodium borohydride, hydrazine
hydrate, or hydroquinone, is an efficient and safe way for
reducing GO [42,43]. Nevertheless, the rGO obtained by
this method may not be pure due to the presence of the
reducing agents. For example, when GO is reduced by
hydrazine hydrate, nitrogen from the reducing agent is
introduced into the rGO. In addition, as shown in Fig. 1(b),
many defects are introduced into the rGO basal plane [44].
These defects result in a large mass loss (about 30%) and a
change in the electronic arrangement of the electrons [45].
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2.2.3 Heteroatom-doped graphene

As mentioned above, the armchair and zigzag edge
structures and the huge π electronic system are the main
active sites in graphene. Whereas the main active sites in
GO are the oxygen groups on the defects sites. The
introduction of heteroatoms can also alter the electronic
and spin structures of graphene and as shown in Fig. 2,
these heteroatoms become active catalytic sites [46–48].
Generally, there are two main methods for the fabrication
of heteroatom-doped graphene catalysts, the post-treat-
ment of GO and in situ growth [49].

N-doped graphene was first prepared via an in situ
chemical vapor deposition (CVD) growth method which
used CH4 and NH3 as the C and N sources, respectively
[50]. Most of the N-doped graphene prepared by this
method had structures with only a few layers and the layers
contained some defects. Other heteroatoms such as Si, B,
S, and P can also form covalent bonds with graphene. The
chemical properties of these doped materials are very

different from each other due to the different electro-
negativities of these heteroatoms [51–54]. Xu and co-
workers reported a large-scale production of sulfurized
edge-functional graphene using ball milling methods [55].
The as-prepared metal-free material exhibited excellent
performance in lithium-sulfur batteries with an initial
reversible capacity of 1265.3 mAh∙g–1 at 0.1 C in the
voltage range of 1.5–3.0 V. Other halogenated edge-
functional graphene nanoplatelets (XGnPs, X = Cl, Br, or
I) prepared by the same method have also been reported
[56,57].
The co-doping of two or more heteroatoms has been

found to further enhance the catalytic activity of graphene
due to a synergic effect [58]. Zhang et al. developed a
multifunctional tri-doped graphene electrocatalyst with
nitrogen, phosphorus, and fluorine [59]. The catalyst was
prepared by the thermal activation of a mixture of
polyaniline, GO and ammonium hexafluorophosphate
and was efficient for oxidation reduction reaction, oxygen
evolution reaction, and hydrogen evolution reaction.

2.3 Macroscopic graphene-based frameworks

Macroscopic 3D structured graphene catalysts have higher
specific surface areas than graphene planes so in recent
years their applications as organic catalysts have increased
rapidly [60]. Several methods have been reported for the
manufacture of 3D monolith graphene-based materials and
many of these methods require harsh conditions. For
example, in the earlier years, graphene foam prepared from
polyurethane foam usually required reaction temperatures
up to 3000 °C [61]. However, with the optimization of the
raw and processed materials, graphitization can now be
conducted at temperatures as low as 900 °C [62]. Xia et al.
fabricated three-dimensional porous graphene like sheets
(3DPGLS) directly from biocarbons at 900 °C [63]. The
as-obtained 3DPGLS had a high specific surface area
(1506.19 m2∙g–1) and a low defect density.

Fig. 1 Structure diagram of (a) GO and (b) rGO

Fig. 2 Schematic diagram of active sites of graphene derivatives
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Structured graphene foams can also be prepared by CVD
methods, which are performed at relatively low tempera-
tures (400–800 °C) [64]. Materials obtained by this method
generally retain many of the chemical properties of pristine
graphene. By using a facile one-step plasma-enhanced
chemical vapor deposition method, a hierarchical graphene
foam was fabricated and then utilized as an efficient solar-
thermal conversion medium (solar-vapor conversion
efficiency ≈ 91.4%) [65]. The hydrothermal and freeze-
drying treatment of graphene oxide is an even simpler
method which yields macroscopic columnar rGO aerogels
[66].
Another hot research area is 3D printing technology

since it can print specific three-dimensional structured
materials [67]. Recently, it has been applied to the
preparation of three-dimensional graphene macro bodies
at the centimeter level. In 2015, Zhu et al. were the first to
used 3D printing to fabricate graphene aerogels with
periodic arrays [68]. The 3D printed graphene aerogels
were ultralightweight, highly conductive and super
compressible (up to 90% compressive strain). Sha and
coworkers used a layer-by-layer self-assembly method to
fabricate a multi-layer graphene foam from Ni and a solid
carbon source [69]. A carbon dioxide laser was used as the
heat source. The Ni was simultaneously used as the
template and catalyst for graphene growth and the 3D
printed graphene foam had high porosity (~99.3%), low
density (~0.015 g∙cm–3), high-quality and multilayered
graphene features.

3 Graphene-based materials in catalytic
reactions

3.1 Oxidation reactions

Many industrial chemicals and intermediates are organic
compounds such as acids, aldehydes and ketones all of
which contain oxygen and all of which can be obtained by
oxidation [70]. Oxidation reactions account for the highest
proportion (more than 30%) of chemical reactions used in
the production of organic chemicals [71]. Phenol is one of
the most important intermediates in industrial synthesis
reactions [72]. It is most commonly produced by a three-
step cumene process which has many problems such as
high-energy consumption, metal solid waste pollution, and
low yield [73]. To address these problems, a chemically
converted graphene (CCG) prepared by the exfoliation of
graphite has been used as a metal-free catalyst for the
oxidation of benzene to phenol in the presence of hydrogen
peroxide (Scheme 1) [74]. The conversion of benzene was
18% and no byproducts were formed. The outstanding
catalytic performance is believed to be related to the
decomposition rate of H2O2, the adsorption ability of the
reactant, and a balanced kinetic control process. The CCG

could be reused seven times with no obvious decrease in
the catalytic performance.

In industrial processed, phenol is often further oxidized
to other useful products. Indrawirawa and co-workers
fabricated nitrogen-doped reduced graphene oxide (N-
rGO) at low temperatures using ammonium nitrate as the N
source [75]. The N-rGO was then used directly as a metal-
free catalyst for the oxidation of phenol and it had a
significantly better catalytic activity for the degradation of
phenol than rGO (90% versus 50% within 2 h). The
catalytic activity of N-rGO was related to the annealing
temperature and it can be improved as the temperature
increasing. In addition, the effect of the reaction tempera-
ture on the phenol oxidation rate constant was investigated
and this catalytic system was shown to follow a first-order
reaction when activated by peroxymonosulfate (PMS). The
activation energy was calculated to be 31.6 kJ∙mol–1.
Besides monatomic doped graphene, a sulfur and

nitrogen co-doped graphene (SNG) was also applied to
the same reaction system [76]. The PMS activation process
was studied using electron paramagnetic resonance (EPR)
in order to obtain the catalytic reaction mechanism. As
shown in Fig. 3(a), SNG efficiently activates PMS to
generate active radicals. The number of SO4

�– and �OH
active radicals in the mixture both increased during the first
five minutes and then decrease as the phenol was
consumed by the oxidation process (Fig. 3(b)). This
radical generation process with PMS is much different
from that the processes catalyzed by metal-based material,
which only actives PMS generating �OH initially in the
first few minutes and the concentration of SO4

�– climbed
up afterwards [77].
The selective oxidative dehydrogenation of ethylben-

zene to styrene is another widely used industrial chemical
process for the synthesis of resins, rubbers, and dyes
(Scheme 2) [78]. A metal-free rPGO catalyst with a high
specific surface area (2613 m2∙g–1) was prepared by a
microwave assisted exfoliation method and then used in
the catalytic oxidative dehydrogenation of ethylbenzene
(EB) to styrene (ST). The conversion of EB and the
selectivity of ST were 65% and 93%, respectively. When
rPGO was compared to other carbon catalysts (oxidized
carbon nanotubes, rGO, and graphite powder), it showed
the best catalytic performance for the oxidative dehydro-
genation of EB reaction (Fig. 4). This is due to its high
porosity and novel pore structure. These features enhance
the mass and heat transfer during the reaction and lead to a
high ST selectivity.

Scheme 1 Oxidation of benzene using CCG as catalyst [74]
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ST can be further oxidized to the corresponding
benzaldehyde by using sulfur doped graphene (SG) as
the catalyst. However, in contrast, rGO exhibits negligible
activity under the same reaction conditions [79]. Other 3D-
structured carbon catalysts with higher specific surface
areas than CNTs and graphene planes have also been
developed for use as organic reaction catalysts. Gonçalves
and co-workers found that a three-dimensional graphene
oxide foam (3DGO) was more efficient than two-
dimensional graphene oxide sheet (2DGO) when used as

a metal-free catalyst for the oxidation of thioanisole
(3DGO: conversion 87% and S = O selectivity 91.2%
versus 2DGO: conversion 65% and S = O selectivity
60.5%) [80]. A representative group of graphene-based
materials that have been used for oxidation catalytic
reactions are summarized in Table 1.

3.2 Reduction reactions

The hydrogenation reductions of nitro compounds to
corresponding aromatic amines are important organic
reactions both in industrial applications and in academic
research. The reaction products are intermediates for many
chemicals such as pharmaceuticals, dyes, and plastics. The
reduction process of nitroarenes by borohydride in
aqueous solution can be measured directly by UV-vis
spectroscopy, and the reaction only takes several minutes
[84]. Therefore, this reaction is often used for the
determination of catalyst activity and kinetic studies.
The reaction mechanism for the reduction of nitroarene

catalyzed by carbon-based materials has been extensively
studied. By using an in situ infrared characterization
technique, Kong and coworkers showed that 4-nitrophenol
(4-NP) ions tended to interact with NG via the O atom of
the hydroxyl group [46]. The rate determining step of the
reaction is the adsorption of the 4-nitrophenol ions giving
the reaction pseudo-zero-order kinetics. This is completely
different from the pseudo-first-order reactions catalyzed by
metal nanoparticles.
Wang and coworkers studied the reaction mechanism for

the reduction of 4-NP catalyzed by edge SG [85]. The
reductant was first adsorbed on the surface of the catalyst
because the adsorption capacity of SG for NaBH4 is greater
than that of 4-NP (as determined by the first principle
based on the density functional theory). The adsorbed
NaBH4 was then transformed into active hydrogen species
which reacted with the adsorbed 4-NP molecules to
generate the products on the surface of SG (Scheme 3).
A three-dimensional nitrogen-doped graphene foam

Fig. 3 (a) EPR spectra of PMS activation under different conditions (♥: DMPO-OH, ♦: DMPO-SO4); (b) radical evolution during the
PMS activation on SNG (catalyst: 0.2 g∙L–1; PMS: 6.5 � 10–3 mol∙L–1; phenol: 20 mg∙L–1; T: 25 °C; DMPO: 0.08 mol∙L–1) [76]

Scheme 2 Selective oxidative dehydrogenation of ethylbenzene
to the styrene [78]

Fig. 4 Catalytic performance of different carbon materials
during the oxidative dehydrogenation of EB, after 30 h on stream.
Reaction conditions: 50 mg of the catalyst, 3% EB with He
balance, O2-EB = 1, total flow rate = 10 mL∙min–1, T = 400 °C
[78]
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(3D-NGF) was prepared via a one-step hydrothermal
method and used as the reduction catalyst in the same
reaction system [86]. The 4-NP was completely converted
within 18 min at room temperature. The specific rate
constant and apparent rate constant of 3D-NGF were
calculated to be 4.94 � 10–4 mol∙L–1∙s–1$g–1 and 0.2391
min–1, respectively. The 3D-NGF catalyst was easily
separated for reuse an exhibited excellent durability with

a decrease of only 4% in catalytic activity after seven
cycles. A S-N-codoped hollow carbon nanosphere/gra-
phene aerogel (SNC-GA-1000), which was fabricated
using a facile and clean solid ion transition route,
completely converted 4-NP to 4-AP within 7 min after
five cycles [87]. These results show that the catalytic
activity of multi-heteroatom doped carbon-based materials
is higher than that of single heteroatom doped catalysts.

Table 1 Graphene-based materials used in oxidation catalytic reactions

Catalyst Reaction system

Reaction conditions Level

Ref.Cat. dosage
/mg

Capacity
/mmol

Temp.
/K

Time
/h

Conv.
/%

Select.
/%

Graphene
Benzyl alcohol oxidation to

benzaldehyde

30 0.1 313 10 0.4 100

[81]N-doped graphene (NG) 30 0.1 313 10 3.5 100

30 0.1 343 10 3.5 100

CCG Oxidation of benzene to phenol 20 1.67 333 8 18 97 [74]

2DGO
Oxidation of thioanisole to sulfoxide

4 0.3 298 24 65 60.5
[80]

3DGO 4 0.3 298 24 87 91.2

Porous rGO Oxidativedehydrogenation of
ethylbenzene to styrene

50 0.025 673 30 65 97 [78]

SG Oxidation of styrene to benzaldehyde 10 8.7 373 7 13 70 [79]

GO Oxidation of 5-Hydroxymethylfur-
fural into 2,5-diformylfuran

50 1 373 12 67.4 98.4 [14]

NG Glucose oxidation to succinic acid 25 0.5 433 20 100 68 [82]

rGO Oxidative thiophene desulfurization 5 0.32 413 6 100 ‒ [83]

Scheme 3 The reaction mechanism for the reduction of 4-NP to 4-AP catalyzed by SG metal-free catalyst [85]
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Catalysts fabricated by self-assembly methods without
hard templates often have fluffy carbon framework
structures so they cannot meet the high strength and
mass transfer requirements of traditional industrial reactors
[88]. So, Wang and coworkers used nickel foam as a
skeleton and via a hydrothermal method fabricated 3D
structured nitrogen doped graphene coated nickel foam
(NG/NF) [89]. The NG/NF is an efficient catalyst for the
reduction of nitrobenzene to aniline which can be
attributed to the strong van der Waals adhesions of GO
to the surface of the nickel metal. The mass loss of NG/NF
was below 1 wt-% throughout sonication treatment (up to
30 min), which illustrates the excellent stability of NG/NF.
The kinetics of the catalytic process was studied under
various conditions and the data fit well to a Langmuir-
Hinshelwood model with an error ratio below 10%.
Representative graphene-based materials that have been
used in catalytic reduction reactions are summarized in
Table 2.

3.3 Coupling reactions

In addition to oxidation and reduction reaction, there are
some other important industrial reactions that have been
catalyzed by graphene catalysts. For example, Friedel-
Crafts alkylation reactions can be directly catalyzed by
graphene oxide (Scheme 4) [92]. This reaction has a high
conversion of arenes and excellent regioselectivity of the

corresponding products. It is believed that both coupling
partners are probably activated because of the abundant
polar oxygen groups and holes in the graphene layers. Gao
et al. also reported graphene oxide as a metal-free catalyst
for the direct alkylation reaction of iodobenzene and
benzene [93]. There was a linear correlation between the
yield of the target products and the oxygen content of
graphene oxide.
Another important addition reaction, the Michael

addition (Scheme 5), can be catalyzed by diethylenetria-
mine modified graphene oxide (GO-DETA) [94]. The
catalytic activity was evaluated using (E)-chalcone and
malononitrile and the (E)-chalcone was entirely trans-
formed to the corresponding product within 2 h.
Li and Antonietti developed a boron and nitrogen

codoped holey graphene monolith (BNHG) via the
copolymerization of glucose and boric acid [95]. The
BNHG exhibited an efficient conversion (91%) and
excellent selectivity (> 99%) for the oxidative coupling
of amine into imine (Scheme 6). Theoretical calculations
were used to show that the high catalytic activity of BNHG
was due to the introduction of boron and nitrogen atoms,
which induced electron rearrangements in both the
conduction and valence bands.
Yang et al. found that a phosphorus-doped nanomesh

graphene (PG) catalyzed the coupling of amines via an
unexpected mechanism [96]. When phosphorus atoms
were doped into graphene sheets, the P was more likely to

Table 2 Graphene-based materials in reduction catalytic reactions

Catalyst Reaction system
Reaction conditions

Yield/% Ref.
Cat. dosage/mg Capacity/mmol Reductant/mL Time/min

rGO Hydrogenation of nitrobenzene 10 4 2 240 94.2 [90]

NG Reduction of 4-nitrophenol to 4-aminophenol 0.137 5 � 10–4 2 21 100 [46]

NG Reduction of 4-chloronitrobenzene 2 0.5 5 180 98 [91]

3D-NGF Reduction of 4-nitrophenol to 4-aminophenol 0.15 2 � 10–4 0.5 18 100 [86]

SG Reduction of 4-nitrophenol to 4-aminophenol 1 0.02 2 60 100 [85]

3D SNC-GA-1000 Reduction of 4-nitrophenol to 4-aminophenol 3.572 0.002 3 7 100 [87]

Scheme 4 GO-catalyzed Friedel-crafts alkylation of arenes with alcohols [92]

Scheme 5 Michael addition catalyzed by GO-DETA [94]
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be the catalytic site than the C because of its lower
electronegativity (2.19 for P versus 2.55 for C). This is
much different from N-doped graphene materials, whose
active sites are the C atoms that are adjacent to the doping
points since N (3.04) has a higher electronegativity than C
(2.55). Table 3 summarizes the graphene-based materials
that have been applied as metal-free catalysts in other
organic catalytic reactions in recent years.

4 Summary and prospects

This review gives a brief overview of the fabrication
methods for graphene-based catalysts and their catalytic
performance for industrial oxidation, reduction and other
important organic catalytic reactions. Graphene-based
catalysts exhibit many advantages such as super-high
specific surface areas, excellent heat and mass transfer
performances, and good recoverabilities. However, there
are still several challenges to the large-scale application of
graphene-based catalysts in industry. So there is a need for
continued research in this area. Three areas of particular
need are: (1) although a variety of catalytic mechanisms
have been proposed for metal-free catalytic systems, the
mechanisms for these reactions still have not been
adequately experimentally verified. Methods are needed
to do this so because a proper understanding of the
catalytic mechanisms will help guide the design of more
efficient graphene-based catalysts. (2) The stability of
current graphene-based catalysts is too poor to meet the
high strength demands of industrial reactors. Although
graphene materials can be used directly as catalysts, there
is still a catalytic efficiency gap between metal-free
catalysts and metal catalysts. Many researchers have
tried to enhance the catalytic activity of graphene catalysts

by heteroatom doping or functional modification, but the
stability of these catalysts decreases as the number of
defects in the intrinsic carbon material increases. This
results in poor recycling and the need for large amounts of
catalyst material. (3) Three-dimensional graphene-based
metal-free catalysts have excellent heat and mass transfer
performances and so these catalysts will continue to attract
great attention. However, in order to meet the heat and
mass transfer requirements of traditional industrial reac-
tors, catalysts must have structural stability. Thus improv-
ing the physical strength of three-dimensional materials is
an urgent problem that needs to be solved. Silicon carbide
has often been used as a framework material because of its
high strength, high rigidity, dimensional stability and
excellent heat resistance [98]. Li et al. have fabricated
silicon carbide-derived carbon nanocomposites and used
them as a metal-free catalyst in the catalytic hydrochlor-
ination of acetylene [99]. The acetylene conversion and
vinyl chloride selectivity were 80% and 98%, respectively.
This work demonstrated that a metal-free catalyst is a
potential substitute for traditional mercury-based catalysts.
However, the preparation process for this silicon carbide/
carbon composite material is very complex. Better 3D
structured metal-free catalysts with high stability and high
catalytic performance still need to be developed.
In addition, the effective use of catalyst materials in

traditional reaction equipment often creates problems
resulting in sub-standard performances. A three-dimen-
sional structured monolithic catalyst can effectively
improve heat and mass transfer efficiency. However, the
catalytic activities of many industrial catalysts do not
achieve their theoretical mass transfer efficiencies when
used in traditional reaction equipment, such as fix bed,
trickle-bed, and batch reactors [100–102]. Recently, a
rotating packed bed (RPB) reactor attracted much attention

Scheme 6 Oxidation of benzylamine to N-benzylidene benzylamine [95]

Table 3 Graphene-based materials in other catalytic reactions

Catalyst Reaction system
Reaction conditions Level

Ref.
Cat. dosage/mg Capacity/mmol Temp./K Time/h Conv./% Select./%

GO Alkylation of arenes 0.3 0.144 373 15 98 100 [92]

GO C-H arylation of benzene 0.3 0.4 393 2 100 87.6 [93]

BNHG
Aerobic oxidative coupling

of amines
30 1 358 4 91 99 [95]

PG
Aerobic oxidative coupling

of amines
4.3 0.4 373 12 100 82 [96]

Multi-functional
graphene oxide

Cycloaddition reaction 100 28.6 393 3 89.5 99.7 [97]

Amine modification of
graphene oxide

Michael addition 0.21 0.48 353 2 100 90 [94]
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for its excellent performance in micromixing and mass
transfer rates [103]. In the high-gravity field of a RPB
reactor, the liquid was cut to liquid filaments, films, and
droplets, which resulted in a large mass-transfer interfacial
area and weak surface tension. Thus, this combination of a
three-dimensional material and a RPB reactor shows
promise for solving the mass transfer problem in both
material and industrial aspects.
Looking forward to the future, the field of carbon based

materials science is currently facing great challenges as
well as unprecedented opportunities. We sincerely hope
that this review can give some inspiration in the next few
years for research that focus on the application of
graphene-based catalysts in industrial catalytic reactions.
From the perspective of development, the design of
excellent performance graphene-based metal-free catalyst
will take a fairly long time and require constant effort. But,
one thing is certain that, with the development of
multidisciplinary knowledge and the demand for green
chemical industry, we have reason to believe that
graphene-based materials will continue to open up wide-
spread applications for the production of industrial
chemicals and greatly replace traditional metal-based
catalysts in the near future.
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