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The cellulose, which is one of the most abundant solid by-products of agriculture and forestry industry,
has been successfully tested for the synthesis of nitrogen and phosphorus co-doped carbon-based metal-
free catalysts (NPC) via freeze-drying the mixture of cellulose crystallite and ammonium phosphate, fol-
lowed by annealing of the hydrogel under nitrogen atmosphere at 800 �C for 2 h. Different techniques
including TEM, SEM, FTIR and XPS spectroscopy have been applied to characterize the as-prepared
NPC, which presents flake-like morphology with N and P doping levels of 4.3 atom% and 10.66 atom%,
respectively. The NPC exhibits excellent catalytic activity for the reduction of p-nitrophenol (p-NP).
The turnover frequency (TOF) of the reduction of p-NP is as high as 2 � 10�5 mmol�mg�1�min�1 and
the apparent kinetic rate constant was calculated as 0.0394 min�1 at room temperature. The catalytic
mechanism is proposed by combining the density functional theory calculation and analysis of the exper-
imental results. These findings open up new possibilities of valorization for cellulose-based by-product
and treatment of p-NP-based wastewater.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

The p-nitrophenol (p-NP), which was widely found in industrial
wastewater, can cause potential damage to vital organs of a human
body such as liver and kidneys even in trace amounts for its toxic,
carcinogenic, and stimulating property [1,2]. However, it is the
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main raw material for the production of its corresponding amino
compound, p-aminophenol (p-AP), an important intermediate for
chemical industry products such as synthetic dyes, pharmaceuti-
cals, and pesticides [3]. Therefore, how to chemical transform of
harmful substances p-NP to p-AP by green and sustainable routes
has attracted much attention [4,5]. In the past few years, many
metal-based materials have been used as high-efficiency catalysts
for p-NP to p-AP, such as silver [6], gold [7] and ultrafine palladium
nanoparticles, etc [8–11]. While, due to the problems of scarce
reserves, inactivation of aggregation, and solid waste pollution,
the use of metal-based catalysts in industrial still facing various
limitations and challenges [12].

Carbon-based metal-free catalysts have recently shown attrac-
tive prospects in many fields [13,14]. Especially, their potential
for replacing traditional metal-based catalysts in many catalytic
reactions was considered to be one of the green and sustainable
routes in industry production [15]. The catalytic activity of
carbon-based materials is particularly relevant with the surface
group types (AOH, ASO3, and so on) and electronic arrangement
state of carbon skeleton. That is, as a metal free heteroatoms (B,
N, P, S, etc.) doping into the carbon skeleton can disorganize the
high symmetry electron arrangement state of intrinsic carbon
structure, the electronic activity was significantly improved, and
thus result in high catalytic performance [16,17]. Particularly, co-
doping with several different heteroatoms into the carbon skeleton
can usually display dramatic performance for special electric redis-
tribution caused by the synergistic effect between different het-
eroatoms [18]. Interestingly, cellulose, which is widely
distributed and abundant polysaccharide in nature, can be used
as a carbon source as more than 50% of carbon content in aban-
doned crops [19]. Although double-doped cellulosic carbon mate-
rials have been extensively studied in electrochemical catalysis
[20,21], there hardly studies focusing on cellulose-based carbon
catalysts for organic catalytic reactions. Although a variety of cat-
alytic mechanisms have been proposed for metal-free catalytic sys-
tems by using a large number of theoretical simulations, the
mechanisms for these reactions still have not been adequately ver-
ified, especially for diatomic doping catalysts. Therefore, the
exploitation of an economic effective dual-doped cellulose-
derived catalyst and its mechanism in organic catalysis remains a
hugely difficult problem.

Here, we reported the preparation of nitrogen and phosphorus
co-doped carbon (NPC) materials by directly annealing the
homogenous mixture of a-cellulose crystallite and ammonium
phosphate ((NH4)2HPO4). Because of the synergistic effect of nitro-
gen and phosphorus heteroatoms doped in the carbon hexatomic
ring skeleton, the as-prepared NPC catalyst exhibits an enhanced
catalytic performance in p-NP reduction reaction. In addition, the
catalytic reaction mechanism, as well as the energy change of each
step in the reaction process, are explored by the thermodynamics
experiment combined with density functional theory (DFT)
calculations.
2. Materials and methods

2.1. 1. Preparation of NPC

10 g of a-cellulose crystallite and 50 mL of (NH4)2HPO4 (1 M)
solution were mixed in a beaker and sonicated for 6 h, after that,
the mixture was freeze-drying overnight to remove water. Then
the obtained solid particles were ground and directly annealed to
800 �C for 2 h with a heating rate of 10 �C min�1 under N2 atmo-
sphere. After cooling down to room temperature naturally, the
obtained carbonized powder was washed by deionized water and
ethanol for 3 times to remove the unreacted ammonium salts,
and then dried in vacuum oven at 80 �C overnight.

For comparison, the synthesis of undoped annealed cellulose
(UAC) was performed in the same method by using a-cellulose
crystallite only. Metal is not involved in the whole process.

2.2. Characterization

The morphology of sample was characterized with transmission
electron microscope (TEM) images, which were taken by Hitachi H-
9500 high-resolution TEM operating in bright-field mode. Scanning
electron microscopy (SEM) imaging and energydispersive X ray
(EDX) mapping was performed on a Hitachi S-4700 field emission
SEM. Fourier transform infrared (FTIR) spectra were measured on a
Thermo Fisher Nicolet 6700 FTIR system. The X-ray diffraction
(XRD) analysis was performed on a Shimadzu XRD-6000 diffrac-
tometer. X-ray photoelectron spectroscopy (XPS) measurements
were performed on a VG Microtech ESCA 2000 instrument using
a monochromic Al X-ray source.

2.3. Catalytic evaluation

The catalytic reduction of p-NP was evaluated using a modified
literature procedure [22]. Typically, 30 mg of NPC catalysts were
dispersed in 30 mL aqueous solution containing 1.5 mmol NaBH4

and 0.015 mmol p-NP. To monitor the reaction process, 3.5 mL
solution was transferred to a quartz cuvette. The absorption spec-
trum of each solution was measured at specific times (0–25 min,
5 min apart) by using a Shimadzu UV2600 UV–vis spectrometer.
According to Beer-Lambert law, the concentrations of p-NP and
p-AP were calculated from the absorbance at the peaks of 400
and 300 nm, respectively [23].

2.4. DFT simulation

First-principle calculations were performed on the Vienna
ab initio simulation package (VASP.5.4.1) based on spin-polarized
DFT [24]. The reparameterized of Perdew-Burke-Ernzerhof
(revPBE) form of the generalized gradient approximation (GGA)
was used to calculate nonlocal gradient corrections to the correla-
tion and exchange energies [25,26]. The wave functions were con-
structed from the expansion of plane waves with an energy cutoff
of 450 eV. The electron-ion interactions in the core region were
described by Vanderbilt ultrasoft pseudopotentials with real space
projection operators [27]. A 1 � 1 � 1 Monkhorst-Pack k-point
sampling in the Brillouin zone was performed for the cube cell of
20 Å length to avoid interactions between the periodic structures.
For accuracy, the density of states (DOS) was calculated at the k-
point of 5 � 5 � 1. To simplify calculations, geometric optimization
was performed using a graphitic carbon skeleton of 28 C atoms and
14 H atoms, in which one or two C atoms are replaced by N/P atom
to represent N/P doped carbon materials. A tight convergence of
0.01 eV/Å on the forces with the wave functions converged to
1 � 10�5 eV was carried out. All calculations were performed using
the Rutgers-Chalmers van der Waals Density Functional (vdw-DF)
method to accurately describe the dispersion interactions between
the adsorbate and adsorbent [28].

The NPC model considers that the N, P, and O elements have
seven possible dopings in the carbon skeleton. The adsorption
energy (Eads) of the p-NP molecule on the surface of catalytic mate-
rial was calculated according to Eq. (1).

Eads ¼ Etotal � Ecatalyst � Emolecule ð1Þ
where Etotal is the total energy of the optimized system, Ecatalyst is
the energy of the catalysts, and Emolecule is the energy of the
adsorbed molecule.
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3. Results and discussion

The synthesis process of the NPC catalyst is shown in Fig. 1.
Briefly, the carbon-based catalysts was achieved by soaking the
a-cellulose crystallite in (NH4)2HPO4 solution, followed by the
freeze drying treatment and then annealing of the powder. The
a-cellulose crystallite serves as a carbon source while (NH4)2HPO4

supply nitrogen and phosphorus atoms for the doping process.
Generally, the oxygen-containing groups (AOH, and ACAOAC) in
a-cellulose crystallites would be destroyed at high temperature
under inert gas atmosphere and causing recombination and car-
bonization reaction to generate defect carbon skeleton [29]. Then
the unstable defect sites on the carbon skeleton will react with
H3PO4 and NH3 obtained from the decomposition of (NH4)2HPO4

to form nitrogen and phosphorus co-doped carbon material.
The surface morphology and microstructure of the as-prepared

NPC was investigated by scanning electron microscopy (SEM), and
transmission electron microscopy (TEM), respectively. As shown in
Fig. 2a, the NPC displays a graphene-like structure with transpar-
ent and ultra-thin nanosheets. Fig. 2b shows that the surface of
the NPC is in wrinkled flake-like morphology. Moreover, as shown
in Fig. 2c–g, the SEM corresponding EDX mapping images indicate
that the carbon, nitrogen, and phosphorus elements are uniform
distribute on the surface of carbon nanosheets, which verifying
the successful doping of nitrogen and phosphorus elements
[30,31].

The chemical bond type of NPC was measured by FTIR. As
shown in Fig. 3a, the peaks at around 2961 cm�1, 1734 cm�1,
1614 cm�1, and 1399 cm�1 correspond to CAH, C@O, C@C, and
CAO stretching, respectively. Especially, NPC has an additional
PAO stretching vibration (1087 cm�1) and APO4 asymmetric
stretching vibration (987 cm�1) when compared with UAC. The
abundant presence of oxygen-containing groups (AOH, PAO,
APO4) also indicates that the hydrophilicity of NPC is much better
than that of UAC (Fig. S1). In XRD pattern of UAC, the broad diffrac-
tion peak at around 24� is indexed to the amorphous carbon plane
while the NPC shows a (0 0 2) plane of graphitic carbon diffraction
peak at about 26� [13,32–38]. This angular migration demonstrates
the formation of a graphitic structure, which attributed to the syn-
ergistic effect of nitrogen and phosphorus doping during graphiti-
zation [31,34].

The chemical structure of NPC is further investigated by the XPS
spectrum, which shown in Fig. 4. The results reveal the distribution
of C, O, P, and N with a proportion of 51.5%, 33.6%, 10.6%, and 4.3%,
Fig. 1. Schematic of the prep
respectively, indicating the formation of N and P dual-doping in the
NPC (Fig. 4a). Furthermore, the high solution XPS of C 1s in NPC
shown in Fig. 4b displays three kinds of carbon bonds in NPC, that
is, graphite sp2 C (284.74 eV), N-sp2 C (285.88 eV), and C@O bond
(288.9 eV) [31,32,37]. As shown in Fig. 4c, the N 1s spectra of NPC
can be divided into three peaks at 398.5 eV, 399.6 eV, and 401.2 eV,
which correspond to pyridinic N, pyrrolic N, and graphitic N,
respectively [39]. For P 2p spectra, there are two peaks with PAC
at 132.86 eV and PAO at 133.6 eV [31,38,40]. These results further
demonstrate that the N and P atoms are incorporated into the car-
bon framework of the NPC (Fig. 4d) [40].

The hydrogenation of p-NP with excess sodium borohydride
(NaBH4), which is a typical organic catalytic reaction, was used
to assess the catalytic performance of NPC. Firstly, 3.48 mg of p-
NP crystal dissolved in 50 mL deionized (DI) water with sonication
for 30 min, and the absorption peak of the original p-NP solution is
about 318 nm detected by UV–visible spectrophotometer. Interest-
ingly, the color of the solution changed from light yellow to bright
yellow after 56.75 mg NaBH4 powder added, also, the UV–vis char-
acteristic peak moves from 310 to 400 nm. The changes in color
and peak were owing to the formation of p-nitrophenolate [5,22].
However, without a catalyst, the peak of the newly prepared
NaBH4/p-NP mixture was consistent after placing for 7 days
(Fig. S2). This phenomenon reveals that this reaction does not
immediately happen in the absence of catalysts because of its high
energy barrier [31]. When the NPC catalysts were added to NaBH4/
p-NP mixture solution, a large number of bubbles are rapidly gen-
erated (Fig. S3a), and the bright yellow color of the solution grad-
ually changes to colorless, which can be one of the obvious signal
of the reduction reaction happens [5,8,31]. In the meanwhile, the
process of the reaction was monitor by UV–Vis, that is, the mixture
solution was scanned every 5 min and the spectra were shown in
Fig. 5a. Obviously, the concentration of p-NP decreased and the
p-AP peak goes up gradually as the reaction proceeds. Under the
same conditions, the UAC was used to catalyze the reduction of
p-NP (Fig. S3b). It was found that the bright yellow color does
not fade away and the UV–visible absorption peak of p-NP hardly
changed without the appearance of p-AP characteristic peak even
react for one week.

Fig. 5b displays that the ln (C/C0) is linear dependent on the
reaction time, indicating that the reduction of p-NP catalyzed by
NPC follows pseudo-first-order kinetics with excess NaBH4

[12,22,41]. The apparent rate constant, kapp, can be calculated as
the following equation:
aration process of NPC.



Fig. 2. (a) TEM image, (b) SEM image, and (c) SEM corresponding EDS mapping of (d) carbon, (e) nitrogen, (f) oxygen, (g) phosphorus elementals of NPC.

Fig. 3. (a) FTIR spectrum of NPC and UAC, (b) XRD patterns of NPC and UAC.
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ln
A
A0

� �
¼ ln

C
C0

� �
¼ kappt ð2Þ
where A and A0 are the absorbance of p-NP at 400 nm at time of t,
and 0 min, respectively, C and C0 are the corresponded concentra-
tion of p-NP obtained from A and A0.

For a first-order reaction, the activation energy reflects the dif-
ficulty of the chemical reaction happens, while activation enthalpy
(DH) and entropy (DS) are important state parameters in thermo-
dynamics that characterize the energy and chaos of a material sys-
tem. Thus, the reduction of p-NP to p-AP by NPC catalyst was
conducted under several different reaction temperature (303 K,
313 K, 323 K, and 333 K) to obtain thermodynamic parameters
according to Arrhenius equations (Eq. (3)) and Eyring equation
(Eq. (4)).

lnkapp ¼ lnA� Ea

RT
ð3Þ
lnðkapp
T

Þ ¼ DS
R

� DH
R

ð1
T
Þ þ lnðkB

�h
Þ ð4Þ

where A is the pre-exponential factor, Ea is apparent activation
energy, T is thermodynamic temperature, R is the molar gas con-
stant (R = 8.314 J K�1 mol�1). Besides, kB (kB = 1.38 � 10�23 J/K),
and ⁄ (⁄ = 6.63 � 10�34 J) represent Boltzmann, and Planck con-
stants, respectively.



Fig. 4. (a) XPS spectrum of NPC sample and the corresponding core-level spectrum of (b) C 1s, (c) N 1s, and (d) P 2p.

Fig. 5. (a) Catalytic reduction of NaBH4/p-NP by NPC for various times, with inset showing the standard UV/vis characteristic peaks of p-NP, p-NP with NaBH4, and p-AP, (b)
The linear fit of ln (C/C0) versus time. (Reaction conditions: room temperature, 30 mg NPC powder, 1.5 mmol NaBH4 powder 30 mL p-NP solution (0.5 mM)).

104 X. Xie et al. / Journal of Colloid and Interface Science 571 (2020) 100–108
Fig. 6a shows the relationship between ln(C/C0) and times at dif-
ferent reaction temperatures. Apparently, the linear slope increased
as temperature goes up, indicating the reaction proceeds at a higher
rate when the temperature is higher. As a typical surface reaction,
the transfer rate of p-NP is related to effective collision chance
between reactant and catalyst. In this condition, a higher tempera-
ture of the system can cause more intense of the molecular motion,
which will increase the number of effective collisions, and then
resulting in a faster reaction rate. Fig. 6b displays the ln(kapp) and
ln(kapp/T) versus 1000/T. According to Eqs. (3) and (4), the Ea of
reductionofp-NPbyNPCcatalyst canbecalculatedas21.55kJmol�1,
which is lower than the value of previously reported SG catalyst (Ea =
24.21 kJ mol�1) [22], indicating the NPC can accelerate the reaction
rate at extremely low reaction energy barrier. In addition, the values
of DS and DH are calculated as �203.18 kJ mol�1 K�1, and
18.91 kJ mol�1, respectively.
In a heterogeneous catalytic reaction, turn over frequency
(TOF), defined as the number of the molecules of substrate
converted to products by unit mass of catalyst, is used to assess
the catalytic activity of the catalyst [42]. The TOF (mmol
p-NP/(mg catalyst min)) value of the reduction of p-NP catalyzed
by NPC is calculated as 2 � 10�5 at room temperature,
which is comparable to the TOF values of previously
reported noble metal supported carbon-based catalysts and
conventional graphene-based catalysts, such as nitrogen-
doped graphene (6.65 � 10�5) [43], Au/graphene (2.2 � 10�5)
[44], CMF@PDA/Pd (8.13 � 10�5) [45], calcium alginate/Ag
(1 � 10�5) [46], and so on [47,48] (Table 1). It should also be
noted that the raw material of NPC prepared in this work is
one of the most abundant solid by-products of agriculture and
forestry industry, which is widely available carbon source and
an rich polysaccharide in nature.



Fig. 6. (a) ln(C/C0) versus time under different reaction temperature. (b) ln(kapp) and ln(kapp/T) versus 1000/T.

Table 1
Catalytic activity comparison of different metal-based and metal-free carbon-based catalysts for hydrogenation of p-NP.

Catalyst mcatalyst (mg) Molars of p-NP (mmol) Reaction time (min) TOF (mmol/mg min) Ref.

Nitrogen-doped graphene 0.137 1.76 � 10�4 21 6.65 � 10�5 [43]
Au/graphene 1.06 2.8 � 10�4 12 2.2 � 10�5 [44]
pH-mediated graphene 2.5 5 � 10�4 60 3.33 � 10�6 [47]
CMF@PDA/Pd 492 1 � 10�2 0.25 8.13 � 10�5 [45]
Au@C 5.0 3 � 10�4 5 1.2 � 10�5 [48]
Calcium alginate/Ag 3.0 2.5 � 10�4 8 1 � 10�5 [46]
NPC 30 1.5 � 10�2 25 2 � 10�5 This work
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Furthermore, durability is one of the most important indicators
for evaluating catalysts’ performance. In this work, the catalyst
powder was obtained after each reaction and then used for the
next cycle test. Fig. 7a shows the catalytic performance variations
during the continuous four cycles and Fig. 7b displays the ratio of
kapp for each cycle to the first time. Apparently, the rate perfor-
mance can still maintain over 90% after 4 cycles, which indicates
the significant durability of the NPC catalyst.

In fact, the mechanism of metal-based or metal supported
carbon-based catalysts catalytic p-NP/NaBH4 has been reported
in many literatures. However, the process of hydrogenation of p-
NP by cellulose-derived carbon-based catalyst is rarely explored,
especially nitrogen-phosphorus co-doped carbon material. Herein,
we proposed reaction routes of reducing p-NP/NaBH4 by NPC cat-
alyst (Fig. 8). Firstly, NaBH4 is hydrolyzed in water to form borohy-
dride ions, which are then passed to the NPC carbon skeleton. At
the same time, the p-NP molecules diffuse and adsorbed on the
Fig. 7. (a) The curves of ln(C/C0) as a function of time for four
active sites on the surface of the NPC carbon skeleton, such as
the exposed N, P defect sites and large p bonds. Finally, p-NP is
converted into p-AP, which is then desorbed from the active site.
The nitrogen and phosphorus elemental are co-doped in the gra-
phite carbon skeleton, causing synergistic effects between C, N,
O, and P electronic properties, creating a large number of active
sites, which greatly improves the catalytic performance of NPC.
This work will provide a good research prospect for the application
of cellulose materials in organic catalytic reactions.

In order to further study the catalytic reduction performance of
NPC, the configuration of NPC adsorption p-NP was optimized by
DFT (Fig. 9). Seven possible doping types of the NPC were explored.
Fig. 9b–h shows the morphology of seven doped materials and the
configuration of the adsorbed p-NP and the corresponding bond
length. The OH bond length of p-NP before adsorbed (Fig. 8(a)),
adsorbed by C3P (Fig. 9b), and C3PO (Fig. 9e) is 0.974 Å, 0.981 Å,
and 1.001 Å, respectively, which means that C3P and C3PO have a
cycles (b) The ratio of kapp for each cycle to the first cycle.



Fig. 8. Proposed reaction mechanism of p-NP reduction by cellulose-derived metal-free catalyst.

Fig. 9. (a) The p-NP molecular model. The calculated structures of (b) P-doped graphite carbon skeleton, (c) N, P co-doped (in adjacent positions) graphite carbon skeleton, (d)
N and P co-doped (separated by one carbon atom) graphite carbon skeleton, (e) O@P-doped graphite carbon skeleton, (f) N and O@P co-doped (in the ortho-position) graphite
carbon skeleton, (g) N and O@P co-doped(in the meta-position) graphite carbon skeleton, (h) N-doped graphite carbon skeleton.
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strong adsorption force on the OH group of p-NP, resulting in elon-
gation of the OH bond. In addition, the O atom in the adsorption
structure of C3PO is 1.726 Å away from the H atom of OH in p-
NP, while that for P atom in adsorption structure of C3P is
2.715 Å, which means that the adsorption force of C3PO on p-NP
is stronger than that of C3P. Table 2 shows the Eads of these adsorp-
tion structures and the charge of the N, P, and O elements. Among
them, the absolute value of the Eads of C3PO + N2.0 is 0.9254 eV,
which means it has the strongest adsorption effect on p-NP, con-
firming the catalytic performance of nitrogen and phosphorus
Table 2
The Eads of p-NP absorbed on seven different sites and the electric charge of N, P, and O e

Structure C3N C3P C3P+N1.0 C

Eads �0.612 �0.453 �0.456 �
Electric charge N �1.176 – �1.392 �

P – 1.60 1.686 1
O – – – –
co-doped material is superior to nitrogen or phosphorus mono-
doped. This conclusion is consistent with the previous literatures
[31,49].

As reported in the previous literature [19,50], the catalytic
properties of non-metallic atom (B, N, P and S)-doped graphitic
carbon skeleton are closely related to the electron orbital distribu-
tion on the carbon skeleton. Therefore, the partial density of states
(PDOS) further explains why the catalytic performance of
C3PO + N2.0 is better than C3P. Fig. 10 shows PDOS of
C3PO + N2.0 and C3P, respectively. The PDOS of the remaining
lements in different materials.

3P+N2.0 C3PO C3PO+N1.0 C3PO+N2.0 p-NP

0.441 �0.904 �0.893 �0.925 –
1.18 – �1.397 �1.183 0.308
.605 3.045 3.091 3.044 –

�1.394 �1.404 �1.398 �1.145
�0.457
�0.449



Fig. 10. (a) Partial density of states (PDOS) of C3PO + N2.0, (b) PDOS of C3P.
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materials is shown in Fig. S4. Fig. 10a shows the overlap of the s
orbital electrons of the H atom in p-NP and the p orbital electrons
of the O atom in C3PO + N2.0. Fig. 10b shows the overlap between
the s orbital electrons of the H atom in p-NP and the p orbital elec-
trons of the P atom in C3P. It can be seen that the orbital electron
coincidence portion of C3PO + N2.0 is more than C3P. This means
that the adsorption capacity of C3PO + N2.0 for p-NP is stronger
than that of C3P, which is consistent with the Eads by DFT.

4. Conclusions

In summary, we reported a green and economical method for
the preparation of NPC catalysts with a-cellulose crystallite as car-
bon source and (NH4)2HPO4 as both nitrogen and phosphorus
source. The NPC presented flake-like morphology with N and P ele-
mental doping level of 4.3 atom% and 10.66 atom%. The NPC can be
used as efficient metal-free catalyst for the reduction of p-NP. The
TOF (mmol p-NP/(mg catalyst min)) of the reduced p-NP is
2 � 10�5, which is comparable to those of noble metal-based cat-
alysts and conventional graphene-based catalysts. The activation
energy (Ea) of the reduction of p-NP by NPC was measured as
21.55 kJ mol�1 at several different temperature conditions. The
reaction mechanism is proposed according to both thermodynamic
studies and DFT calculations. Moreover, the DFT calculation reveals
the adsorption activation mechanism of the cellulose-derived N/P-
doped metal-free carbon material for the catalytic reduction of p-
NP, and points out that the main source of the catalytic activity
of the metal-free carbon material prepared in this work is nitrogen
and phosphorus co-doped. These findings broaden the range of
applications of cellulose-derived carbon-based metal-free catalysts
in organic catalysis.
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