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Choices

Suppose we see an agent’s choices from the menu A = {`, r}.

Sometimes she chooses `, sometimes she chooses r .

How to model?

• choice correspondence: the agent is indifferent, regardless
of the relative probabilities

• stochastic choice function: treat choice probabilities as data



Decision Times

New Variable: How long does the agent take to decide?

Time: T = [0,∞)

Observe: Joint distribution P ∈ ∆(A× T )

Question:

• Are fast decisions “better” or “worse” than slow ones?



Behavioral Story

System I is instinctive and fast, System II is deliberative and slow,
so fast decisions are worse (Kahneman)

• we will ignore this and have a one-system story



Are quick decisions better than slow ones?

Informational Effect:

• More time ⇒ more information ⇒ better decisions

– if forced to stop at time t, make better choices for higher t
– seeing more signals leads to more informed choices

Selection Effect:

• Time is costly, so you decide to stop depending on how much
you expect to learn (option value of waiting)

– Want to stop early if get an informative signal
– Want to continue if get a noisy signal

• This creates dynamic selection

– stop early after informative signals
– informative signals more likely when the problem is easy



Decreasing accuracy

The two effects push in opposite directions. Which one wins?

Stylized fact: Decreasing accuracy: fast decisions are “better”

• Well established in perceptual tasks (dots moving on the
screen), where “better” is objective

• Also in experiments where subjects choose between
consumption items



When are decisions “more accurate?”

In cognitive tasks, accurate = correct

In choice tasks, accurate = preferred

p(t) := probability of making the correct/preferred choicce
conditional conditional on deciding at t

Definition:

P displays


increasing

decreasing

constant

 accuracy iff p(t) is


increasing

decreasing

constant





Experiment of Krajbich, Armel, and Rangel (2010)

• X : 70 different food items

• Step 1: Rate each x ∈ X on the scale -10, . . . , 10

• Step 2: Choose from A = {`, r} (100 different pairs)

– record choice and decision time

• Step 3: Draw a random pair and get your choice



Decreasing Accuracy

based on data from Krajbich, Armel, and Rangel (2010)
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* Probability and statistics: optimal stopping
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Learning Model

• unknown utility θ = (θ`, θr ) ∈ R2; prior belief on θ

• observe a two-dimensional signal for i = `, r

Z i
t = θi t + αB i

t

B i
t are independent Brownian motions

let Zt := Z `t − Z r
t

• examples of prior/posterior families

• “certain difference”

– binomial prior: either θ = (1, 0) or θ = (0, 1)
– binomial posterior: either θ = (1, 0) or θ = (0, 1)

• “uncertain difference”

– Gaussian prior: θi ∼ N(X i
0, σ

2
0)

– Gaussian posterior: θi ∼ N(X i
t , σ

2
t )



Interpretation of the Signal Process

• recognition of the objects on the screen

• retrieving pleasant or unpleasant memories

• coming up with reasons pro and con

• introspection

• signal strength depends on the utility difference or on the ease
of the perceptual task

In animal experiments, some neuroscientists record neural firing
and relate it to these signals

We don’t do this, treat signals as unobserved by the analyst



Learning Model

• τ is a stopping time (measurable w.r.t Zt)

• conditional on stopping, the agent maximizes expected utility

choiceτ = argmax{Eτθ`,Eτθr}

Example: If stopping is exogenous (τ is independent of signal Zt),
and prior is symmetric, there is increasing accuracy: waiting
longer gives better information so generates better decisions



Exogenous vs Endogenous Stopping

• Key assumption above: stopping independent of signal

• If stopping is conditional on the signal, this could get reversed

• Intuition: with endogenous stopping you

#1 stop early after informative signals (and make the right choice);
wait longer after noisy signals (and possibly make a mistake)

#2 probably faced an easier problem if you decided quickly



Optimal Stopping

The agent chooses a Zt-measurable stopping time τ to optimize:

max
τ

[
max{Eτθl ,Eτθr} − cτ

]
(we focus on the “minimal optimal” stopping time)



The “certain difference” model

* Assumptions:

– binomial prior: either θ = (1, 0) or θ = (0, 1)
– binomial posterior: either θ = (1, 0) or θ = (0, 1)

* Key intuition: stationarity

– suppose that you observe Z l
t ≈ Z r

t after a long t
– you think to yourself: “the signal must have been noisy”
– so you don’t learn anything ⇒ you continue

* Formally, the option value is constant in time



The “certain difference” model

Theorem: (Wald, Arrow, Blackwell, Girshick, Shiryaev)
When the prior is symmetric, the optimal stopping time is

τ∗ = inf{t ≥ 0: |Zt | ≥ b}

where b > 0.



τ∗ = inf{t ≥ 0: |Zt | ≥ b}



τ∗ = inf{t ≥ 0: |Zt | ≥ b}



τ∗ = inf{t ≥ 0: |Zt | ≥ b}



Hitting Time Models

• can use this algorithm to generate a distribution
P ∈ ∆(A× T ) without worrying about optimality

• closed forms for choice probabilities and mean stopping time

• used extensively for perception tasks since the 70’s; pretty well
established in psych and neuroscience

• more recently used to study choice tasks by a number of
teams of authors including Colin Camerer and Antonio Rangel

• Many versions of the model

• ad-hoc tweaks (not worrying about optimality)

– assumptions about the process Zt

– functional forms for the time-dependent boundary

• much less often, optimization used:

– time-varying costs (Drugovitsch et al, 2012)
– endogenous attention (Woodford, 2014)



Hitting Time Models

* Definition:

– stochastic process Zt starts at 0

– time-dependent boundary b : R+ → R+

– hitting time τ = inf{t ≥ 0 : |Zt | ≥ b(t)}

– choice =

{
` if Zτ = +b(τ)

r if Zτ = −b(τ)



Drift Diffusion Model (DDM)

Special case where the process Zt is a diffusion with constant
drift and volatility

Zt = δt + αBt

(could eliminate the parameter α here but it’s useful later)

Definition: P has a DDM representation if it can be represented
by a stimulus process Zt = δt + αBt and a time-dependent
boundary b. We write this as P = P(δ, α, b).



average DDM

Definition: P has an average DDM representation P(µ, α, b)
with µ ∈ ∆(R) if P =

∫
P(δ, α, b)dµ(δ).

• in an average DDM model the analyst does not know δ, but
has a correct prior

• intuitively, it is unknown to the analyst how hard the problem
is for the agent



Hitting Time Model

Proposition: Any Borel P ∈ ∆(A× T ) has a hitting time
representation where the stochastic process Zt is a
time-inhomogeneous Markov process and the barrier is constant

Remarks:

– this means that the general model is without loss of generality

– in particular, it is without loss of content to assume that b is
independent of time

– however, in the general model the process Zt may have jumps

– From now on we focus on the DDM special cases



DDM

Definition: Accuracy in DDM is the probability of making the
choice which agrees with the signal

p(t) = P [sgnZτ = sgn δ | τ = t] .

• In DDM p is the probability of making the modal choice.

• If the correct choice is part of the data, this is the probability
of making the correct choice



Accuracy in DDM models

Theorem: Suppose that P = P(δ, α, b).

P displays


increasing

decreasing

constant

 accuracy iff b is


increasing

decreasing

constant


Intuition for decreasing accuracy: this is our selection effect #1

• higher bar to clear for small t, so if the agent stopped early,
Z must have been very high, so higher likelihood of making
the correct choice



Accuracy in DDM models

Theorem: Suppose that P = P(µ, α, b), with µ = N (0, σ0)

P displays


increasing

decreasing

constant

 accuracy iff b(t) · σt is


increasing

decreasing

constant


where σ2t := 1

σ−2
0 +α−2t

Intuition for decreasing accuracy: this is our selection effect #2

• σt is a decreasing function; this makes it an easier bar to pass



selection effect #2

Proposition: Suppose that µ = N (0, σ0), and b(t) · σt
non-increasing. Then |δ| decreases in τ in the sense of FOSD, i.e.
for all d > 0 and 0 < t < t ′

P [ |δ| ≥ d | τ = t] > P
[
|δ| ≥ d | τ = t ′

]
.

• larger values of |δ| more likely when the agent decides quicker

• problem more likely to be ”easy” when a quick decision is
observed

• this is a selection coming from the analyst not knowing how
hard the problem is



Microfounding the Boundary

* So far, only the constant boundary b was microfounded

* Do any other boundaries come from optimization?

* Which boundaries should we use?

* We now derive the optimal boundary



The “uncertain difference” model

* Assumptions:

– Gaussian prior: θi ∼ N(X i
0, σ

2
0)

– Gaussian posterior: θi ∼ N(X i
t , σ

2
t )

* Key intuition: nonstationarity

– suppose that you observe Z l
t ≈ Z r

t after a long t
– you think to yourself: “I must be indifferent”
– so you have learned a lot ⇒ you stop

* Formally σ2t = 1
σ−2
0 +α−2t

so option value is decreasing in time

* Intuition for the difference between the two models:

– interpretation of signal depends on the prior



The “uncertain difference” model

Theorem:

1. There is a strictly decreasing, strictly positive k∗ : R+ → R+

such that

τ∗ = inf{t ≥ 0: |X l
t − X r

t | ≥ k∗(t)}.

Moreover limt→∞ k∗t = 0.

2. If X l
0 = X r

0 , there is a strictly positive b∗ : R+ → R+ such that

τ∗ = inf{t ≥ 0: |Z l
t − Z r

t | ≥ b∗(t)},

where b∗(t) = α2σ−2t k∗(t). Furthermore, we have the
following bounds on the slope of b∗

−b∗(t)σ2t ≤ b∗′(t) ≤ 1

2
b∗(t)σ2t



Part 1. follows from the principle of optimality for continuous time
processes and the shift invariance property of the value function,
which is due to the normality of the posterior.

Part 2. describes the optimal strategy τ∗ in terms of stopping
regions for the signal process Zt := Z l

t − Z r
t . This facilitates

comparisons with the simple DDM, where the process of beliefs
lives in a different space and is not directly comparable.



Intuitions

• k∗ strictly decreasing because belief updating slows down

• k∗ decreases all the way to 0 because otherwise the agent
would have a positive subjective probability of never stopping
and incurring an infinite cost

– note: in the simple DDM, the agent is sure that the absolute
value of the drift of the signal is bounded away from 0, so she
believes she will stop in finite time with probability 1 even
though the boundaries are constant



Proposition: The average “uncertain difference” DDM has
decreasing accuracy, i.e. the probability that the agent makes the
correct choice

P
[
sgn (X l

τ∗ − X r
τ∗) = sgn δ | τ∗ = t

]
decreases in t.



Endogenous Attention

• The agent can choose attention levels

βlt , β
r
t ≥ 0

• Attention influences the signals Z 1
t ,Z

2
t

dZ i
t = βit θ

idt + dB i
t .

• Fixed attention budget βlt + βrt ≤ 2

• βlt = βrt = 1 leads to the same signal process as before

• α = 1 for simplicity here



Endogenous Attention

Theorem: The optimal attention strategy pays equal attention to
both signals

βlt = βrt = 1

and thus leads to the same choice process as the exogenous
attention model.

Intuition: This strategy minimizes the posterior variance of the
difference in posterior means X l

t − X r
t at every point in time t and

thus maximizes the speed of learning.



Endogenous Attention

Theorem: The optimal attention strategy pays equal attention to
both signals

βlt = βrt = 1

and thus leads to the same choice process as the exogenous
attention model.

Intuition: This strategy minimizes the posterior variance of the
difference in posterior means X l

t − X r
t at every point in time t and

thus maximizes the speed of learning.



The Chernoff (1961) model

Regret Minimization: for any stopping time τ the objective
function is

Ch (τ) := E
[
−1{x lτ≥x rτ}(θ

r − θl)+ − 1{x rτ>x lτ}(θ
l − θr )+ − cτ

]
the agent gets zero for making the correct choice and is penalized
the foregone utility for making the wrong choice



The Chernoff (1961) model

Theorem: For any stopping time τ

Ch (τ) = E
[
max{X l

τ ,X
r
τ } − cτ

]
+ κ,

where κ is a constant independent of τ ; therefore, these two
objective functions induce the same choice process.

Intuition: Subtracting the expected value of the optimal choice
E[max{θl , θr}], using that τ is a stopping time and applying the
law of iterated expectations conditional on either choice being
correct yields the result.



The Chernoff (1961) model

Theorem: For any stopping time τ

Ch (τ) = E
[
max{X l

τ ,X
r
τ } − cτ

]
+ κ,

where κ is a constant independent of τ ; therefore, these two
objective functions induce the same choice process.

Intuition: Subtracting the expected value of the optimal choice
E[max{θl , θr}], using that τ is a stopping time and applying the
law of iterated expectations conditional on either choice being
correct yields the result.



Non-linear cost

Theorem: Consider either the Certain or the Uncertain-Difference
DDM. For any finite boundary b and any finite set G ⊆ R+ there
exists a cost function d : R+ → R such that b is optimal in the set
of stopping times T that stop in G with probability one

inf{t ∈ G : |Zt | ≥ b(t)} ∈ argmaxτ∈T E
[
max{X 1

τ ,X
2
τ } − d(τ)

]
.



Application/Experiment

• data of Krajbich, Armel and Rangel (2010)

• 39 subjects making choices between food items

• asked to refrain from eating for 3 hours before the experiment

• each subject asked to make 100 pairwise choices

• also separately elicited ratings of these items (on the scale
from -10 to +10)



Fitting to a closed-form boundary

• We consider two functional forms:

• b(t) = 1
g+ht which is the approximately optimal boundary

• b(t) = g exp(−ht) used in Milosavljevic et al. (2010)

• In any case, the parameters are (δ, α, g , h)

• δ is the drift; we take it to be the difference in the numerical
ratings of the two items in the choice set

• α is the volatility of Zt

• (g , h) are the parameters of the boundary



Fitting to a closed-form boundary

• For each (δ, α, g , h) need to compute the joint probability
density of stopping and choice (the likelihood function)

• to compute the distribution of hitting times, we used Monte
Carlo simulations with 1 million random paths (this takes
about a week on a cluster)

• the conditional choice probabilities as a function of stopping
time are given in closed form

• Then use the gradient descent algorithm to find maximum

• Findings: for 30 out of 39 subjects the approximately optimal
boundary is a better fit than the exponential boundary



Fitting to the optimal boundary

• Additional computation: the optimal boundary

• We computed this by imposing a large finite terminal time,
discretizing time and space on a fine grid, and solving
backwards. This computation only needs to be done for a
single parameter constellation, due to a result in the online
appendix, and takes less than two hours on a laptop

• Then compute the likelihood function as above

• Findings:
• there is substantial heterogeneity between the subjects

• two out of 39 subjects have a non-monotone boundary
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Recap

• Observables: joint distribution over choices and decision times

• General DDM: Brownian signals and arbitrary boundary

– characterize when earlier decisions better

• DDM derived from optimal stopping: Gaussian prior

– allows agent to learn the choice is a toss-up

– resulting boundary better fits the data than the constant
boundary of simple DDM

– explains why quicker choices are often better



Thank you!


