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Global Market Size for Robotics
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“… revenue generated from the robotics market globally, 
both industrial and non-industrial, from 2016 to 2022. In 
2017, the robotics market is estimated to be worth 40 
billion U.S. dollars globally. The industrial robotics 
market, which has traditionally represented the robotics 
industry … is giving way to non-industrial robots, such 
as personal assistant robots, customer service robots, 
autonomous vehicles, and unmanned aerial vehicles 
(UAVs).” 

Source: [ Statista 2018 ]
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What are the challenges facing aerial robots?
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Power Depends on the Physical Form Factor
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Safety Depends on Robustly Accounting for Failures
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What architectural tools are needed to  
enable research on aerial robots?



Traditional Computer Architecture Toolkit
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Challenge with the Traditional Toolkit for Robotics
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There is a continuous feedback loop.
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The “World” of an Aerial Agent
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Abstract—Unmanned Aerial Vehicles (UAVs) are getting closer
to becoming ubiquitous in everyday life. Among them, Micro
Aerial Vehicles (MAVs) have seen an outburst of attention
recently, specifically in the area with a demand for autonomy. A
key challenge standing in the way of making MAVs autonomous
is that researchers lack the comprehensive understanding of
how performance, power, and computational bottlenecks affect
MAV applications. MAVs must operate under a stringent power
budget, which severely limits their flight endurance time. As such,
there is a need for new tools, benchmarks, and methodologies
to foster the systematic development of autonomous MAVs. In
this paper, we introduce the “MAVBench” framework which
consists of a closed-loop simulator and an end-to-end application
benchmark suite. A closed-loop simulation platform is needed to
probe and understand the intra-system (application data flow)
and inter-system (system and environment) interactions in MAV
applications to pinpoint bottlenecks and identify opportunities for
hardware and software co-design and optimization. In addition
to the simulator, MAVBench provides a benchmark suite, the first
of its kind, consisting of a variety of MAV applications designed
to enable computer architects to perform characterization and
develop future aerial computing systems. Using our open source,
end-to-end experimental platform, we uncover a hidden, and
thus far unexpected compute to total system energy relationship
in MAVs. Furthermore, we explore the role of compute by
presenting three case studies targeting performance, energy and
reliability. These studies confirm that an efficient system design
can improve MAV’s battery consumption by up to 1.8X.

I. INTRODUCTION

Unmanned aerial vehicles (a.k.a drones) are becoming an
important part of our technological society. With myriad use
cases, such as in sports photography [1], surveillance [2],
disaster management, search and rescue [3], [4], transportation
and package delivery [5]–[7], and more, these unmanned aerial
vehicles are on the cusp of demonstrating their full potential.

Hence, drones are rapidly increasing in number. Between
2015, when the U.S. Federal Aviation Administration (FAA)
first required every owner to register their drone, and 2017, the
number of drones has grown by over 200%. At the time of
writing, the FAA indicates that there are over 900,000 drones
registered with the FAA drone registry database (Figure 1).
By 2021, the FAA expects this number will exceed 4 million
units [8]. Such an upward trend can be explained by the new
opportunities that unmanned aerial vehicles are enabling.

* These two authors contributed equally.
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Fig. 1: Rapidly growing interest in UAVs. Data mined from FAA
vehicle registration. The number of FAA registrations increased by
2X over the past two years, and it is rapidly growing. The FAA
projects that by 2021 the number will exceed 4M units [9].

The growth and significance of this emerging domain of
autonomous agents call for architects attention. Challenges
such as low endurance (how long the drone can last in the
air) and small battery capacities for drones demand hardware
and system architects’ attention. The limited on-board energy
budget manifests itself in the limited endurance and range of
drones. This can be seen in various off-the-shelf commercial
drones where endurance is typically less than 20 minutes, and
flight range is about 15 miles [6]. To practically deploy drones,
both their endurance and range must be improved.

In this paper, we investigate and show the role of computing
given the endurance and range challenges. For example, we
show how a powerful compute subsystem can be deployed
to mitigate the problem of limited endurance. The drone’s
compute subsystem dictates how fast a drone can maneuver,
fly, and efficiently finish its mission. Hence, a computing
subsystem that takes a long time to do path planning while
the drone is hovering in the air, results in the inefficient
consumption of energy. Furthermore, a more powerful com-
pute subsystem can lead to more intelligent decision making
(e.g., shorter paths to take). It is important to note that
enabling intelligence on drones is challenging because of the
computational power, size, weight, and cooling limitations.

To enable research and investigation, the foremost challenge
to address is the lack of systematic benchmarks and infrastruc-
ture for research. To address this shortcoming, we introduce
MAVBench, the first of its kind, a platform for the holistic
evaluation of aerial agents, involving a closed-loop simulation
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Autonomous navigation is a common kernel across multiple application



Autonomous Navigation - Two Paradigms
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Reinforcement learning based Drone Control 
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AirLearning Demonstration

Demonstrates that the UAV has learned 
to navigate in a narrow passageway 
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Algorithm Performance: Small vs. Large Policy
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MAVBench: Kernel Decomposition
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Identify bottlenecks and accelerate them through domain specific logic.



Summary 
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Closed-loop simulation is important  
for the development of architectural 
solutions for autonomous machines.

End-to-end applications are needed to 
do hardware and software co-design to 
design domain specific accelerators

RISC-V with ROS unlocks the potential of 
designing custom hardware accelerators 
that are open source to drive innovation


