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While multiple regression offers transparency, interpretability, and desirable theoretical properties, the method’s sim-

plicity precludes the discovery of complex heterogeneities in the data. We introduce the Method of Direct Estimation and

Inference, which embraces these potential complexities, is interpretable, has desirable theoretical guarantees, and, unlike

some existing methods, returns appropriate uncertainty estimates. The proposed method uses a machine learning re-

gression methodology to estimate the observation-level partial effect, or “slope,” of a treatment variable on an outcome

and allows this value to vary with background covariates. Importantly, we introduce a robust approach to uncertainty

estimates. Specifically, we combine a split sample and conformal strategy to fit a confidence band around the partial effect

curve that will contain the true partial effect curve at some controlled proportion of the data, say 90% or 95%, even in the

presence of model misspecification. Simulation evidence and an application illustrate the method’s performance.

ata analysis in much of political science and other
social sciences is often synonymous with multiple
linear regression. In this project, we assume the re-
searcher confronts an outcome variable, a treatment variable
of central interest, and a set of background “control”/“con-
founding” variables that characterizes each observation’s co-
variate profile. The usefulness of multiple regression in this
context depends in part on correctly modeling the influence of
the treatment variable while adjusting for the confounding
effects of other variables. Typical regression strategies com-
monly ignore complexity in the data, such as the heteroge-
neous effect of the treatment across the sample (a treatment by
covariate interaction), or they assume all effects are linear
(both the treatment and confounders). Departures from typ-
ical practice tend to be ad hoc, with maybe one interaction or
nonlinearity considered. While methods have been intro-
duced for moving beyond multiple regression for finding non-
linearities and interactions, estimating these nonlinearities
and interactions is not the same as also returning appropriate
uncertainty estimates.
We introduce a novel method for finding nonlinear and
heterogeneous effects and focus on how to appropriately

calculate uncertainty in these settings. We propose the
Method of Direct Estimation and Inference (MDEI), which
embraces these heterogeneities and nonlinearities while still
returning appropriate uncertainty estimates on effects. We
focus largely on the case of a continuous treatment variable
but also consider the binary case. As with much work in the
causal inference literature (Aronow and Miller 2018; Ho
et al. 2007; Imbens and Rubin 2015), we focus on reducing
the role of modeling assumptions. However, our approach
minimizes the role of assumptions in estimating both point
estimates and uncertainty estimates.

We introduce a method that estimates the slope of the
treatment variable on the outcome at each datum, the partial
effect (Wooldridge 2002, sec. 2.2.2), allowing this slope to be a
function of background covariates. The proposed method
flexibly adjusts for background covariates while also allowing
for substantial flexibility in the effect of the treatment on the
outcome.

The next step, which is crucial to this article, is to generate
uncertainty estimates and confidence bands for the results.
This is straightforward when there are strong parametric mod-
eling assumptions in place, as with multiple linear regression.
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The task is much more challenging when we want to allow for
more complicated relationships that we do not specify ex
ante. Our goal is to generate a confidence band around any
uncovered nonlinearity that will allow us to assess how the
estimated curve relates to the true curve. Thinking about
uncertainty in this setting requires differentiating between
inference at a particular point and inference over a curve. For
this, we estimate a confidence band with average coverage,
meaning we expect the confidence band for our marginal ef-
fect to cover the true curve at some proportion, say 90%, of
the data. Doing so allows us to use the uncertainty measure
around the curve to deduce features of the true underlying
curve.

In summary, the MDEI framework provides flexible and
reliable estimation and inference. The method consists of two
parts. First, we estimate the partial effect curve, which is the
observation-level effect of the treatment on the outcome. Just
as a regression coefficient is interpreted as a marginal effect
over the sample, the partial effect is interpreted as the “slope”
at a given observation, given the values of observed pretreat-
ment variables. In generating this estimate, MDEI advances
recent machine learning methods by implementing a flexi-
ble, nonparametric regression to model the partial effect. The
model can detect a wide class of nonlinear and treatment/
covariate interactions.

Second, we introduce a confidence band on uncovered
nonlinearities and heterogeneities that the researcher can use
to assess whether a given effect reflects a systematic pattern
in the data. The curve has the average coverage property
(Nychka 1988; Wasserman 2006) that the band will contain
the true partial effect at some chosen proportion, say 90% or
95%, of the observed data. In constructing such a curve, we
rely on conformal inference (Lei and Wasserman 2014). As
discussed below, conformal inference provides a data-driven,
rather than assumption-driven, approach to calculating un-
certainty estimates on predicted values. We extend the method
from predicted values to estimating the partial effect of the
treatment on the outcome at each point. Bringing all of these
things together, researchers can obtain a plot of a partial
effect curve that can vary over the covariate space but with a
confidence band around it that does not rely on various
assumptions.

The MDEI framework draws on tools and ideas that might
be new for many readers in political science. Throughout the
article we try to introduce these ideas in an accessible manner
and refer readers to a more technical appendix. While the
MDEI framework introduced here is new, we relate our ap-
proach to existing methods where relevant. Of course, any
time parametric and inferential assumptions are relaxed, the
importance of having more data increases. Our approach is no

different given the data-driven, rather than assumption-
driven, focus of the method.

The article proceeds as follows. First, we lay out the chal-
lenge of estimating and conducting inference on partial effects
without relying on simplifying assumptions about how the
treatment affects the outcome variable. Next, we introduce our
approach and show how we estimate both point estimates and
uncertainty estimates. The subsequent section provides sim-
ulations to illustrate our approach, while the appendix com-
pares the performance of MDEI to other cutting-edge ap-
proaches. The next article section shows MDEI in action with
an applied example, and then we conclude. Throughout we
discuss related research, but we defer technical details to the
appendix.

THE ESTIMATION AND UNCERTAINTY CHALLENGE
Consider the familiar regression model,

y, = 0t, +x]y + &; Eelt, x;) = 0,

with observations i € {1,2,...,n}, outcome y, a variable of
theoretical interest f, a vector of additional background
variables x; that includes the intercept, and an error term ¢;
that is assumed to be mean independent of the treatment
and background variables. This model is adopted by applied
researchers for several reasons. First, @ measures the average
partial effect, or slope, when characterizing the relationship
between the outcome and treatment. Second, x 7y adjusts for
other variables that affect both the treatment and outcome.
Third, given the observed data, readily available software can
produce an estimate § through the method of least squares.
Fourth, inference on the average partial effect, 6, uses a con-
fidence interval of the form

0 = Ci_yn\/ Var(0),

where C,_,/, is a critical value that controls the false positive
rate (e.g., under mild conditions on the error terms, we can
take 1.64 for o = 0.1 or 1.96 for o« = 0.05) given the variance
of the estimated slope coefficient on the treatment variable, 6.

While this regression model is useful and versatile, these
results rely on assumptions that the model makes about the
relationship between the outcome, treatment, and covariates.
In this article we move past this ubiquitous implementation to
a more flexible model of the relationship between outcome,
treatment, and covariates." For example, we relax the as-
sumption that the covariates in x enter linearly, and the re-
searcher need not specify how they enter. Rather, we allow this

1. See app. A for an introductory discussion of work on relaxing these
assumptions for the purposes of point estimation.



relationship to be learned from the data. We also relax the as-
sumption that the slope 6 is homogeneous over the sample.
Instead, we allow this value to vary with the value of the treat-
ment variable #; (e.g., the effect could be a curve rather than a
straight line) and pretreatment covariates x.. To do this, we will
replace the linear component 0t; with a flexible, interactive
function that we denote as 0(t,, x;), where t; = t; — E(t,]x,), in
order to isolate the nonsystematic fluctuations in the treat-
ment. Then, we can model the effect of ¢, on y; as the partial
derivative of 6(f;, x;) with respect to ,, denoted 7(;, x;), which
is the slope coefficient at a particular value of the treatment
and covariates.
Doing so will give us a model of the form

y, = 0(t,x) + f(x) + e; (1)

L = g(xi) + v, (2)

where our aim is estimation and inference on the partial
effect function, which at a point (¢, x;) is the function

7(t, x) = %G(t, x| (3)
The partial effect can be thought of as the slope of the treat-
ment at each observed datum, where we allow this slope to
vary and be moderated by the covariates in x..

One existing body of work focuses on estimating the av-
erage partial effect, that is, E(7(#;, x;)) (Newey and McFadden
1994; Robinson 1988).2 We work instead with a literature that
has spent a great deal of time developing and testing machine
learning for predictive models. Examples include neural net-
works (Beck, King, and Zeng 2000), averages of trees (Breiman
2001; Montgomery and Olivella 2018), gradient boosting
methods (Kleinberg et al. 2018), or any average of machine
learning models (Grimmer, Messing, and Westwood 2017),
and, while excellent at prediction, these methods do not return
an estimate of the partial effect curve, 7(,, x;).

Two recent methods have focused on modeling the out-
come nonparametrically, in a way that allows us to estimate
the partial effect curve 7(f;,x,): generalized random forests
(GRF; Athey, Tibshirani, and Wager 2019; Wager and Athey
2017) and kernel regularized least squares (KRLS; Hain-
mueller and Hazlett 2013).

While we achieve competitive performance in terms of
point estimation, our real contribution comes from focus-
ing on uncertainty estimation so as to allow for inference

2. These works estimate the average partial effect E(7(f;,x,)) =
Cov(y,, t|x;)/Var(t;|x,). This can be done through weighting, as in Newey
and McFadden (1994), or through regressing y, — f(x,) on t; — g(x;), as in
Chernozhukov et al. (2018) and Robinson (1988). Neither approach, though,
estimates heterogeneities in 7(;, x;), which is our interest.
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on the underlying partial effect curve. Existing methods pro-
vide confidence intervals that are overly narrow for at least one
of two different reasons. First, they do not account for mis-
specification, so the intervals will not reflect any systematic
error in estimating the underlying partial effect curve. Second,
even if there is no misspecification, the curves are constructed
to allow for inference at each given point rather than on in-
ference over the entire partial effect curve. We discuss these
points in more detail below.

We introduce a confidence interval that can provably and
accurately convey information on the true underlying partial
effect curve. We illustrate below the shortcomings of existing
methods in generating reliable uncertainty estimates and
how our contributions overcome these issues.

We generate a confidence band at each point (, x;) of the
form

%(thi) * Cl—a/z @{%(Z,-,X,-)}, (4)

which can aid the researcher in finding underlying hetero-
geneities and nonlinearities in the data. The confidence band
is constructed to achieve “average coverage” (Nychka 1988;
see also Wasserman 2006, chap. 5.8), meaning that a 100 x
(1 — )% band will cover the true partial effect curve at 100 x
(I — @)% of the observed data. We could use a normal ap-
proximation to generate a critical value such as C,_gs, =
1.96. Instead, we show below the value of estimating this
quantity in a data-driven fashion, so we denote the estimated
critical value as C,_,, /2

We integrate two recent strategies in order to achieve
this band. The first, repeated cross-fitting (Chernozhukov
et al. 2018), uses different subsamples of the data to estimate
the effect and conduct inference. The second, conformal in-
ference (Lei and Wasserman 2014; Lei et al. 2018), uses a data-
driven method to generate the width of the uncertainty in-
terval such that our band will achieve average coverage even if
the model is misspecified.> We next move on to the proposed
method.

THE PROPOSED METHOD

We begin with an overview of our approach, with details
following below. Estimation of the partial effect curve and
its confidence band proceeds in three steps. In the first step,
we generate a set of nonlinear and interactive functions of
the treatment and covariates that are used to model the partial
effect curve, 7(f;, x;). These will come from taking the original
treatment and covariate vector and constructing a large set of

3. For a basic conformal inference tutorial for political scientists, see
Samii (2019).
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interacted linear and nonlinear functions of these variables.
Details are given below, but the goal is to capture any terms
that may be driving heterogeneity in the partial effect. In the
second, we use the covariates from the earlier set to generate a
model for #(%,, x;) and estimate its variance, Var(#(f, x,)). In
the third, we estimate the width of the confidence band, using
conformal inference to estimate a value of C,_,, /» that will give
us average coverage.

Constructing the partial effect curve and a confidence
band that achieves average coverage relies on combining
both the split-sample and conformal strategies. The split-
sample approach involves taking the observed sample of the
data, splitting it into three equally sized subsamples, and
conducting each of the three steps above on a separate sub-
sample of the data. The split-sample approach provides a
crucial guard against the biases induced by using the same
data for each step.* We will refer to these subsamples as the
discovery subsample, the estimation subsample, and the infer-
ence subsample.

We use the discovery subsample to learn a potential set of
nonlinearities and heterogeneities, the estimation subsample
to estimate the curve and its variance at each point, and then
the inference subsample to estimate the width of the confi-
dence band. This three-sample approach combines methods
from two existing literatures that have each implemented a
split-sample approach and rely on these methods as a guard
against biases that arise when learning and fitting complex
models to the same data. The discovery/estimation split allows
us to use one subsample of the data to learn the model and
another to estimate heterogeneous effects (Wager and Athey
2017). Athey et al. (2019) follow a similar strategy; see also
Chernozhukov et al. (2018). The estimation/inference split
allows us to use a split-sample conformal so that we can cal-
ibrate the width of our band without making distributional
assumptions (Lei et al. 2018).

Of course, splitting the data into thirds raises real efficiency
concerns, so we implement a repeated cross-fitting strategy,
where the roles of the subsamples are swapped, such that all
the data are used in each step at some point. This process is
then repeated, and the final estimate comes from averaging
over this process.

In generating the width of the confidence band, we do not
rely on a normal approximation, taking critical values of 1.96
or 1.64 for a 95% or 90% interval. Rather, we rely on con-

4. Particularly, as described in Athey and Imbens (2016), Chernozhukov
etal. (2018), and Wager and Athey (2017), a split-sample approach can reduce
the biases introduced by using the same data to learn a model and estimate a
partial effect. Lei et al. (2018) describe a method for using a split-sample ap-
proach to develop a valid conformal interval.

formal inference to provide a data-driven means to estimate
the width of the confidence interval (Lei and Wasserman 2014).
The basic idea is to expand the interval using the estimates
from the second subsample until it contains a set percentage,
again say 90% or 95% of the data in the third subsample. We
then use this predictive bound to generate a bound on the
partial effect curve, 7(f;, x;). We show that integrating con-
formal inference with our split-sample approach for esti-
mating the partial effect and its variance results in asymp-
totically valid bands; see the estimation subsample section
below and appendix G.

To summarize, we are going to use each subsample to
perform a different element of our estimation and inference.
We will use the discovery subsample to learn a set of possible
interactions and heterogeneities in the partial effect curve, the
estimation sample to estimate the magnitude of these effects,
and the inference subsample to construct a confidence inter-
val around the whole curve. Upon conducting each element
of our estimation in each subsample, we swap the roles of each
subsample so as to generate a fitted value at each datum. This
is termed cross-fitting. Then, to guard against our results being
driven by a particular split of the data into subsamples, we
repeat this cross-fitting multiple times, termed repeated cross-
fitting (Chernozhukov et al. 2018).

THE METHOD OF DIRECT ESTIMATION

AND INFERENCE

The discovery subsample: Generating nonlinear
and interactive covariates

We use the discovery subsample to construct a set of basis
functions that can model the outcome and, hence, partial
effect curve. The process proceeds in two steps. In the first,
using only data in the discovery subsample, we estimate the
functions [AE(yi\x,-), [AE(l‘,v|x[).5 Using these estimated condi-
tional means, we generate the outcome and treatment with
the covariates partialed out as

}N’,v =J),— E()/,»|Xi)§ Ei =1 - E(ti|xi)7

where the conditional expectations are done using only data
in the discovery subsample.

In order to characterize any nonlinearites and interac-
tions in the data, we generate a large set of basis functions,
which we denote {¢, (Zi, x,) 1

i=1- A basis function is simply a

function, possibly nonlinear and interactive, of the treatment
and the covariates. See appendix B for an introduction to
basis functions.

Different choices of basis functions lead to different classes
of estimators, including spline models, regularized regression,

5. For speed, we use a random forest at this step (Breiman 2001).
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Figure 1.

or neural networks. At this point, less important is the partic-
ular choice of basis functions but simply that they are suffi-
ciently numerous to approximate a wide array for nonlinear-
ities and interactions between the treatment variable and the
covariates.

We show the particular set of basis functions we implement
in figure 1. These bases are a combination of both B-spline
bases and orthogonal polynomials in the variable and were
selected to account for a wide set of possible nonlinearities in
the conditional mean and partial effect, as evident in the
density of the bases in the figure. For a precise characterization
and discussion of classes of basis functions, see appendix B.

To generate the set of considered bases, we then interact
one of the bases applied to the partialed-out treatment ,, a
potentially different basis of one of the covariates, and a po-
tentially different basis of, potentially, a different covariate.
We will use these basis functions to model the function 6(t;, x;)
and then use the partial derivative of these basis functions to
construct 7(t;, X;).

We then implement a marginal correlation screen (Fan
and Lv 2008) in which, again, restricting ourselves to data
in the discovery sample, we calculate the correlation between
the partialed-out outcome, y, and each basis. We provide de-
tails in appendix E, but this is the most computationally in-
tensive element of the algorithm; with five covariates, we end
up calculating 675,000 correlations, and with 10 covariates,
2.7 million correlations are calculated. We then maintain a
set of these bases with the largest absolute correlation with
the partialed-out outcome.® We save these selected bases and

6. We maintain a proportion of bases growing in sample size, but for
sample sizes of {100, 250, 500, 1,000, 10,000} we maintain 25, 63, 125, 250,
and 731 bases. See app. E for details.
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Basis functions of (A) conditional mean 6(t, x) and (B) partial effect 7(t,x) = 9,0(t,x). See equations (5)-(7) for details.

bring them to the estimation subsample and will denote the
indexes of the selected bases as 7.7 We take these maintained
bases and bring them to the estimation subsample.

Estimation subsample: Coefficient

and variance estimation

We use the estimation subsample to generate coefficients, to
estimate the partial effect curve, and variance estimates to
capture our uncertainty in this estimate. We turn to each.

Coefficient estimation. Given the bases from the previous
subsample, we assume the model

y, = E (t.,x)c + e

¥ jej¢,( ,X)g + e, (5)
with mean parameters {Cf}je s~ We then use a Bayesian re-
gression model to recover estimates, {¢},_."

We are not interested in modeling 0(f;, x;) but 7(#;,x,), its
partial derivative with respect to the treatment. We have
modeled 6(f,, x;) in terms of basis functions that are differ-
entiable in the treatment,

. d
q',)j(tiyxi) = ad)j(ta X;) t=N’ (6)

£,

which allows us to generate the partial effect function

7(t,x) = j€2]¢j(tia Xi)Cj’

(7)

7. Importantly, we save these bases at each iteration of the repeated
cross-fitting algorithm, so the maintained bases vary over the course of the
entire estimation process.

8. We use a version of the Bayesian LASSOplus model of Ratkovic and
Tingley (2017); see app. F.
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Variance estimation. We turn next to constructing an un-
certainty band around our estimated partial effect curve. We
formalize below, but the band is constructed around the es-
timated curve and is designed to inform the researcher on the
likely location and characteristics of the true curve. Specifi-
cally, we produce a confidence band with the average coverage
property that the 100 x (1 — «)% curve will contain the true
curve at 100 x (1 — a)%. Doing so allows the researcher to
explore the curve and band visually, with confidence that the
band will contain the true curve over some proportion of
the data.” This band has the nice property that it will contain
the true curve at a high percentage of the observed data. It
is also narrow enough for applied work but with provable
average coverage properties. Formal derivations of this aver-
age coverage can be found in appendix G.

Constructing the band requires accounting for two sep-
arate forms of error: sampling error and misspecification
error. The first error captures sample-specific fluctuations of
the estimate, and this is the type accounted for in most
methods. Importantly, this type of error goes to zero as sample
size increases, since more data means our estimate gets more
and more precise. The second form of error, misspecification
error, has been largely ignored. This is the sort of error that
does not go away in sample size, meaning as we get more and
more data, the estimate converges but to the wrong function.

To illustrate this distinction, denote as 7(f;, x;) the limit
of our estimator as the sample size grows; that is,

7(t,x) = lim 7(¢,x,). (8)
n—>oo
In this setting, then, we can decompose the approximation
error into sampling error and misspecification error, as

%(Eiaxi) - T(thi) = %(Eiaxi) - %(thi) + 7~'(Zfaxi) - T(thi) .

Approximation Error Sampling Error Misspecification Error

)
Considering the squared error at each point gives us
(%(wai) - T(Ziaxi))z = (%(thi) - %(%iaxi))z
Total Variance Sampling Variance
+ 2(%(&7’(:) - %(thx’))(%(zhxi) - T(Ziaxf)) (10)

Cross-Term

+ (%(Zivxi) - T(Ei7xi))z ’

Misspecification Variance

from which we will construct our confidence bands.

9. Rather than relying on claims across repeated samples, we follow
Nychka (1988; see also Wasserman 2006, chap. 5.8) and consider average
coverage, which is the proportion of the sample over which the confidence
band contains the true value over the observed sample. A valid band with
this property can be written as lim,,_,ml/nzrzll{T(f”xf) e 7(t,x;) +
Croae JE{(H(Ex) — 7))} 21— o

Estimating the variance of 7(f;, x;) involves handling three
terms. The first, the sampling variance, is the component used
to generate the pointwise standard errors returned by most
existing methods. These can be recovered through standard
regression calculations. Existing methods generally ignore the
latter two terms, and we illustrate the implications of doing so
below.

In handling the final two terms, we need to address both
misspecification error and the cross-term. We address mis-
specification error through modeling the squared residuals,
with details in appendix G. By capturing systematic patterns
in the magnitude of the residuals, we can incorporate model
misspecification into our variance estimate.

The cross-product term, though, requires a little more
finesse, as it cannot be modeled directly. Instead, we turn to
a third subsample, the variance subsample, to evaluate our
variance estimates and construct our confidence interval. The
cross-product term is a product of two error terms, 7(£;, X;) —
7(t;,x;) and 7(t;, x;) — 7(£;,X,). Any variance in the first term
arises from variance in the estimation subsample (this section),
so we evaluate them on the next subsample, the inference sub-
sample. Given the bases and partialing out done in the discovery
subsample, these two terms will be uncorrelated as they come
from the next two subsamples, driving this term to zero. To
complete a single fit, we turn next to the inference subsample.

The inference subsample: Conformal inference
We finally turn to the inference subsample in order to gen-
erate our estimated critical value, Cl_a/z, where we use con-
formal inference to generate a curve with average coverage
(Lei and Wasserman 2014; Lei et al. 2018). Conformal in-
ference methods give a means to produce a predictive in-
terval, which will contain a future realization of the outcome
some controlled proportion of the time, around a single point.
Importantly, it does so through using the estimated residuals
in order to construct a band, rather than make distributional
assumptions the error terms. The MDEI algorithm innovates
here by extending this predictive interval, guaranteed to
contain future values of y, with some a controlled probability
(say, 90%), to one containing the true partial effect curve,
7(t;,x;), at a controlled proportion of the data (say, 90%).
The insight of the conformal approach comes from using
estimated residuals to estimate the critical value on a pre-
dictive interval. The method is entirely data driven, and
rather remarkably it achieves finite-sample coverage rates on
predictive intervals.'

10. Interest in the approach is increasing in other domains of interest
to social scientists (e.g., Chernozhukov, Wuthrich, and Zhu 2021; Lei and
Candes 2021).



We extend this band to cover not just predicted values
but the true conditional mean (A(f;,x;)) and partial effect
(7(t;,x,)). This contribution is original to this work. In es-
timating the critical value, we are not relying on a normal
approximation to achieve valid coverage, allowing our bands
to reflect the underlying distribution of the data. We show
that these bands, while wide at each data point, can be used
to recover valid estimates of the partial effect curve, and that,
when aggregated over the sample, gives estimates of an av-
erage effect competitive with existing methods.

Our use of conformal inference methods proceeds in two
steps. In the first, we select a value around 6 denoted C’. 2
such that it will contain the value y, with probability 1 — c:

Pr <y,. €bi.x)=C, ., \/[E{(é(z,., x) — 0(F,, x[))2}>
=1—-oa.
Note that this is purely a prediction problem, in that the
values of y, come from the inference subsample, but the point
and variance estimates are constructed from the estimation
subsample.

This will allow us to construct a band around 8 such that
it will contain values of y, with probability 1 — «. Instead, we
are interested in constructing a bound on 7(f;, x,) that is likely
to contain the true 7(;, ;). We show in appendix G that if we
take as our critical value

. N
Ciap=1+C (11)

1-a/2?

then the interval

o~ A ~ ~ 2
HE,x) = Cua\E{Gx) — G, x)}
will contain the true 7(f;, x;) with probability at least 1 — cv.

Repeated cross-fitting
While asymptotically valid, splitting the data into thirds
raises efficiency concerns, as we only use a third of the data in
each step, as well as concerns that our results are driven by a
particular split of the data into three subsamples. In order to
address these concerns, we follow a repeated cross-fitting
strategy, recently put forth by Chernozhukov et al. (2018).

Addressing the first concern, we implement a cross-fitting
strategy in which, given a discovery/estimation/inference split,
we swap the roles of the three such that we can recover a point
estimate and confidence band at every datum. By rotating each
subsample through each role in the estimation process, we can
generate a point estimate and band for the estimated partial
effect at every datum.

Addressing the second concern, we implement a repeated
cross-fitting strategy, where we repeatedly implement our
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cross-fitting strategy over multiple possible discovery/esti-
mation/inference splits. We then report these aggregated re-
sults by simply taking the average of the point estimates and
band over all repetitions of the cross-fitting.

While a single cross-fit estimate has the asymptotic prop-
erties we desire, the repeated cross-fitting strategy increases
the accuracy of our estimates. It does so by averaging over the
choice of which bases to include, so our results are not driven
by a particular set of selected bases. Averaging over discrete
modeling choices, like inclusion or exclusion of bases, leads to
predictive gains (Buhlmann and Yu 2002). Doing so reduces
any subsample-particular idiosyncrasies in our estimation,
again increasing the predictive accuracy of our estimates.'

Modeling the standard errors as a guard

against misspecification

Modeling the standard errors as we do serves as a guard
against model misspecification. The rationale can be found
in the idea that misspecification in the conditional mean may
result in systematic patterns in the residuals (see, e.g., King
and Roberts 2015; Ratkovic and Eng 2010). If the model is
misspecified in some manner, we have a second chance to get
our intervals correct, through using a nonparametric model
of the conditional variance. By combining the split-sample
approach with the conformal interval, we are able to guar-
antee that our band will have average coverage.

While our estimation strategy works hard to find the right
model—considering nonlinear and interactive effects of a
potentially large number of variables—we of course cannot be
guaranteed that there will not be some model misspecification.
But when we miss, our approach inflates our confidence band
so as to maintain average coverage. To see this, recall that we
estimate our conditional variance @(%(fi, x;)) from the es-
timation subsample but evaluate it on the inference subsam-
ple, using the data-driven conformal approach in the infer-
ence subsample to calculate critical values. By modeling the
error variance, we are able to recover bands that are robust to
model misspecification (see app. G). By construction, this band
guarantees us average coverage, as model misspecification will
simply generate wider bands around the misspecified com-
ponent. Existing methods do not do this and instead use
auxiliary assumptions, including asymptotic normality and a
properly specified model, to reduce the width of their confi-
dence intervals.

One consequence of our approach is that our intervals will,
in general, be wider than the intervals returned by other

11. There is no theoretical guidance on how many repeated cross-fits
to implement. We recommend 20 for an initial fit, which is the default of
our software, but then moving it to at least 100 for publication grade results.
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methods (see app. G). We could make these intervals shorter
by assuming our model is properly specified or assuming the
errors are normal.”> Making these strong assumptions pro-
duces more narrow intervals but comes at the cost of being
overly precise if one of the assumptions does not hold.

ILLUSTRATIVE SIMULATIONS

We next move to two simulations illustrating the need and
decisions underlying the proposed method. In the first sim-
ulation, we show that several existing methods produce in-
accurate point estimates and overly narrow uncertainty esti-
mates, even in a relatively simple setting. The point estimates
and confidence band from the proposed method have the
expected properties. In the second simulation, we consider a
complex functional form that our model was not designed to
estimate, and we show how the constituent pieces of cross-
fitting and conformal inference combine to still return a band
with average coverage.

Illustration 1: Existing methods in a simple setting
For this setting, we consider a simple simulation setting in
order to evaluate two performance metrics, accuracy and
providing an uncertainty interval that captures the distance
between the estimated and true curve. Specifically, we gen-
erate data as

Vi = lt'Z _l+ei; tz‘»ez‘i"i:’i.N(Ovl)a (12)
! 20 2

where our treatment variable is itself standard normal but
enters the outcome nonlinearly (as a quadratic). In this simple
case we have no covariates or interactions. We illustrate the
setup in figure 2, which plots the data around the true con-
ditional mean (0(f,, x,) = t*/2; dashed line) and the partial
effect curve (7(t;,x;) = t; solid line).

We compare performance of three different methods that
return an estimate of the partial effect curve: the proposed
method (MDEI), GRF (Athey et al. 2019; Wager and Athey
2017), and KRLS (Hainmueller and Hazlett 2013; Mohanty
and Shaffer 2018). GRF and KRLS are prominent and com-
monly used in the machine learning space.”” Each method is
given the outcome y, treatment #, and five noise covariates
(also independent standard normal) x. We report results
for n = 1,000, in order to give a sense of the large-sample
behavior.

12. This is what other cutting-edge methods like KRLS (Hainmueller
and Hazlett 2013) and GRF (Athey et al. 2019) do.

13. For KRLS, we used the software with all tuning parameters set at
their defaults. For GRF, we increased the number of trees to 10,000, as
suggested by the documentation, in order to recover accurate estimates of
the standard errors over the partial effect curve.

2 -
w0 - * ) ’.
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Figure 2. Data-generating process for illustrative simulation

We evaluate each method along two dimensions: point
estimation and inference. The accuracy of point estimates is
simple to assess: in this example, the closer the point esti-
mate (black dots) to the solid line on figure 3, the better the
point estimate. The second dimension, inference, asks not
how close the point estimates are but whether the uncer-
tainty bands carry some information on the true underlying
curve. Is there fidelity between the uncertainty band around
our estimated partial effect curve 7(£,, x;) and the true curve
7(t;, x,)? We will begin with an intuitive approach, assessing
performance graphically. Figure 3 displays the ability of each
method to capture 7(;, x;), reporting results for the proposed
method (MDEI), GRF, and KRLS.

Diagnosing existing methods: Point estimation. Clearly,
these existing methods fail in one manner or another. GRF
returns inaccurate point estimates, wholly missing any cur-
vature in the treatment variable (i.e., any linearity in the partial
effect curve). KRLS returns accurate point estimates, but its
confidence intervals are notably narrow. We turn now to a
description of why each method performs poorly in this
simple simulation and our proposed fixes for each.

The generalized random forest (GRF) provides an estimate
of the average partial effect using a forest-based method. The
method uses trees constructed from the covariates in order to
generate a partialed-out y and t, and then the partialed-out
outcome is regressed on a partialed-out treatment in the ter-
minal leaf. Results are then aggregated up to a forest.

Mechanically, GRF uses the covariates to fit a tree when
all background covariates are noise and then regresses the
outcome on the treatment at each leaf. For a simple example,
imagine it splits on the first variable at zero, so it regresses the
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Figure 3. Effect estimates across (A) MDEI, (B) GRF, and (C) KRLS for a quadratic treatment model. Results are of each method in estimating the partial effect
function given in figure 2. Black dots are point estimates, with gray bars denoting the uncertainty interval at each point. MDEI is the only method of the three

to reliably capture both point estimates and uncertainty.

outcome on the treatment for observations with x;; > 0 and
uses a separate regression for observations with x;, < 0. The
covariates, though, are pure noise, so it is in effect fitting two
lines to a quadratic curve, which the linear terms will miss."*
GREF estimates the slope at each point, but it can only handle
the case in which (7(,, x;)) is a function of covariates. In the
example above, where 7(¢;,x;) = t;, GRF will miss the partial
effect entirely, as shown in figure 3B.

The next method, KRLS, does a better job of recovering
an estimated partial effect curve 7(t;,x,). KRLS is an ex-
ample of a nonparametric regression, when it assumes the
model

P
Y, = p§=:1¢p(ti7xi)cp + e,

where each function ¢, is a smooth, nonlinear function of
(t, x;), and P is some large number, possibly as large or
larger than the sample size n. Differences arise in terms of
what sorts of basis functions are used and how, precisely,
the coefficients are estimated, but the important issue is that
these functions are constructed to be differentiable in the
treatment."

14. Using our notation, GRF are fitting a model of the form y, =
7(x)t; + f(x;) + e; t; = g(x;) + v,, where the slope on ¢, is allowed to vary
in the covariates, parameterized as 7(x;). This model will clearly miss data
generated as y, = £ + e; t;, & "% Af(0,1) as in our simulation here. The
core reason is that this model only captures heterogeneities moderated by
a linear treatment variable, rather than a nonlinear function of the treat-
ment. Appendix A is provided for readers who wish additional develop-
ment of these differences

15. KRLS, in particular, uses Gaussian radial basis functions, while we
use interactions among B-splines and orthogonal polynomials, but for the
purposes of our method any set of smooth functions that can approximate
a wide class of functions will work. See app. B for more discussion.

From a high-level vantage, estimation via KRLS shares
some similarity with our estimation strategy. Both are non-
parametric regression methods that simply differ on which
basis representation is implemented, although the bases are
all differentiable in the treatment. In this setting, standard
regression calculations can be used to estimate the sampling
variance of the coefficients and, hence, of the partial effect
curve. The regression approach, given by KRLS and MDEI,
captures the curvature in this simple setting accurately.

Diagnosing existing methods: Generating uncertainty
bands. At an intuitive level, we want our estimates of the
partial effect curve to be as close as possible to the true curve,
and we want our uncertainty estimates to give us a reasonable
idea of how far we expect our estimated curve to be from the
true curve. We construct intervals with the average coverage
property, such that we can expect that the (1 — o) x 100%
interval will contain the true partial effect curve at (1—
o) % 100% of the observed data, asymptotically. For assess-
ing an entire curve, we work with this property because it gives
an intuitive way of capturing where we suspect the true partial
curve may be, given our estimate.

The reasons for the pronounced gap between the con-
fidence intervals and the true partial effect curve returned
by KRLS are twofold. These reasons are not peculiar to the
particular method but instead stem from two problems
endemic to many machine learning methods. Importantly,
both are addressed through our conformal strategy.

The first reason is the assumption required by existing
methods that the model is properly specified. We do not make
this assumption, instead using the estimated errors themselves
to determine the width of our band. Any misspecification will
show up as inflated residuals, relative to the residuals under a
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properly specified model, and this will just lead us to a wider
confidence band.

The second reason is the particular nature and statistical
properties of the returned band. For the sake of this point,
assume that the model is properly specified. Even if prop-
erly specified, existing methods generate what are referred
to as pointwise confidence intervals. These have a particular
property that, given a particular point (¢, x;), the interval

#E, %) = CropV Var(7(t, x,))

will contain the true value 7(f, x;) at the point (¢, x;) over
(I — a) x 100% of repeated samples.'®

Pointwise confidence intervals at every point do not allow
for any claims about the whole curve. To see this, imagine the
problem from a multiple testing perspective. A 90% confi-
dence interval at every single point is not the same as a 90%
band over all points. It is likely too narrow; in this simulation,
the 90% bands for KRLS and GRF contain the true partial
effect curve at only 22.3% and 10.4% of the observed data,
respectively. In figure 3, the confidence intervals for GRF and
KRLS are clearly concentrating on the wrong partial effect
function and, in this example, are too small to be visible to
the eye.

We correct these issues endemic to pointwise curves and
produce informative graphical displays using conformal in-
ference. We turn next to a more complete development of how
our strategies combine via a second illustrative simulation.

Illustration 2: Combining repeated cross-fitting
and conformal methods
We next illustrate the role of repeated cross-fitting and con-
formal inference in achieving average coverage. Each has a
role in achieving coverage: repeated cross-fitting in guarding
against overfitting, and conformal inference in using the ob-
served data to determine the width of our band. As we show
next, the two work in conjunction to achieve average coverage.
For this simulation, we draw five covariates from a stan-
dard multivariate normal equicorrelated at 0.5. The first two
covariates are used in the model, and the last three are noise.
From the first covariate, x,,, we generate a new variable s, =
sgn(x;) € = 1. This sign function, a discontinuous function
of a continuous covariate, will serve to govern the effect het-
erogeneity: the impact of the treatment on the outcome will

16. Note that we will not achieve average coverage over every subset of
the band. For example, in fig. 3, we achieve coverage near 100% in the
middle of the data but lower coverage toward the edge. Different parts of
the data and model will likely have different average coverage, but it will
achieve the desired proportion over the whole of the data. See Nychka
(1988) for more.

vary with whether this first variable is positive or negative. The
outcome and the treatment are generated as

_ (x, — 1)’

t, + u; u; ~N(0,1); (13)

(x; 1)2
=252+ —
y, =2t

1
+ ve;: &~ 0 14
ve; € ]\/’<71+X?2), (14)

where v is a scalar selected so that the true R* = 0.5. This
target function is 7(t;,x;) = 4s;t; for which we want to use
our interval to conduct inference. We vary the sample size,
n € {250,500, 1,000, 2,500, 5,000, 10,000}, and simulations
were run 500 times each.

Importantly, our model was not designed to estimate this
sort of function: we assume the conditional mean is a smooth
function that can be represented by some combination of
interacted functions from figure 1."” The function in this
simulation is outside of this space due to the discrete break
in the first covariate. As a consequence, we developed this
to be a challenging case.

Our first step is to vary whether we implement our repeated
cross-fitting and conformal strategy. When not implementing
the repeated cross-fitting strategy, we simply conduct the
entire estimation process on the whole of the data. When not
implementing the conformal strategy, we simply take our
critical value as 1.64, generating a pointwise interval.

Results appear in figure 4. For each run of the simulation,
we calculate a 90% band and assess at what proportion of the
data the true partial effect curve is contained in the con-
structed band. The Y-axis presents average coverage, with
sample size on the X-axis. The solid horizontal line at 90% is
the expected coverage. Each of the four lines corresponds with
the four possible settings for how we construct our confidence
bands: with neither a conformal critical value nor repeated
cross-fitting, with either repeated cross-fitting or a conformal
critical value of 1.64, and with both the conformal and re-
peated cross-fitting strategy.

The figure shows that the estimate without cross-fitting or
a conformal critical value, labeled “neither” on the graph, will
be quite narrow and hence not actually contain the true curve
at the majority of the data.'® This band gets worse in sample
size, since its overfitting is causing it to converge on the wrong
function. The conformal critical value helps somewhat, but it
still results in low average coverage. Using repeated cross-
fitting with the critical value of 1.64 helps get closer to 90%

17. See app. C regarding model spaces.

18. If the model is correctly specified and hence the third term in the
variance decomposition goes to 0, then the MDEI algorithm without split
sample/repeated cross-fitting and without a conformal critical value will
produce a pointwise interval.
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coverage, but it is only when both are combined that we see
average coverage achieved.

Next, we analyze the results using the full MDEI approach
for a single draw of the simulation data at two different sam-
ple sizes.” As a reminder, the function we are trying to fit
is outside of the class of models we can handle due to the
discontinuity. The result of this discontinuity is that our
misspecification error will be higher, the farther away we get
from t; = 0, because this is where the largest gap due to the
discontinuity will be. Because of how we construct our con-
fidence bands, this means they should be wider in this re-
gion.”® And furthermore, unlike existing methods, they should
not appreciably tighten if we increase the sample size.

Figure 5 displays the results for a case with a sample size
of 5,000 in the top row and 50,000 in the second row. We
present results for s; = 1; they are qualitatively similar to
s; = —1. The partial effect curve (7(t;,x,)) is plotted against
its estimate and interval in the left-hand panels. Intervals
that contain the truth are in gray, and those that do not are
in black. The 90%-band-returned MDEI covers the true
value at 92.78% and 89.2% of the data, for the 5,000 and
50,000 sample sizes, respectively.”’ The middle panels plot the

19. Estimation with MDEI is done in R through one line of code, s1 «—
sparseregTE(Y =y, treat=treat, X=x), where X is simply a matrix of pre-
treatment covariates. No additional inputs are required from the user.

20. Our particular manifestation of heteroskedasticity in this simulation—
where variance is smaller at the extremes—will cut against this, making sim-
ulation results consistent with this observation even more striking.

21. Inthe n = 5,000 case, for KRLS and GRF, those numbers are 21.7%
and 13.6%. The root-mean-square error on 7(f;, X;) across the methods reveals
asimilar patternatn = 5,000 (MDEI: 3.46, KRLS: 5.81, GRF: 7.97). GRF uses
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absolute approximation error for each point. As expected, the
average approximation error increases, the farther away from
t; = 0 we get.

The right-hand panels of figure 5 present the width of the
confidence bands. Because of our approach, these bands should
be wider in the presence of misspecification error that becomes
more extreme, the farther away from t = 0 we get. Indeed,
looking at the data and a loess line to illustrate the pattern, we
see this result. This is despite the fact that the simulations
heteroskedasticity shrinks the variance at the extremes. Im-
portantly, these wider bands at the extremes do not radically
shrink in the n = 50,000 case.

APPLIED EXAMPLE

Bechtel and Hainmueller (2011) explore the impact of an
effective policy response to a natural disaster in Germany.
They estimate the effect of the government’s successful re-
sponse to the 2002 flooding of the Elbe River on support
for the incumbent party, the Social Democrats, in the 2002
federal elections. Using a difference-in-difference design with
a regression specification, the authors estimate an impact of
approximately 7 percentage points on the Social Democrats’
vote share. Here, the unit of analysis is the district, the out-
come is the change in vote share for the Social Democrats, the
treatment variable is whether the region was flooded, and the
controls include a battery of covariates that adjust for socio-
demographic and economic factors (see Bechtel and Hain-
mueller 2011, 857, table 1).

In a pure difference-in-difference design, the authors could
simply estimate the effect as the change in vote share before
and after the flooding of the Elbe, between the flooded and
unflooded districts. Covariates can then adjust for district-
level confounders not eliminated through the randomness in
the flooding (Angrist and Pischke 2009, sec. 5.2.1). Bechtel
and Hainmueller implement estimate the effect in a regression
framework, combining the standard difference-in-difference
specification with a smoothing spline in distance from the Elbe
with a set of linear, additive controls.

The validity of the results, then, is dependent on a rea-
sonable control specification. To illustrate, we consider the
average partial effect on the treatment, that is, the impact of
flooding on those districts that were flooded. We start by
analyzing this situation, with a binary treatment variable (was
a district flooded or not?) in order to build faith in the method
(see app. I for estimation details in this binary setting).

a split sample approach, while KRLS does not but still achieves a higher error
and lower coverage because, as mentioned above, GRF cannot capture cur-
vature in the treatment variable well. KRLS cannot be run at a sample size of
50,000, so we omit comparisons at this sample size.
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Figure 5. (A) Partial effect estimates, (B) approximation error, and (C) confidence band width for 5,000 (top) and 50,000 (bottom) simulations. Left, partial

effect estimates. Solid diagonal lines represent the true partial effect, and vertical lines represent the 90% uncertainty bands. Middle, approximation error at

each point, with a loess line describing the pattern. Right, band width at each point in the curve with a loess line describing the pattern.

MDEI returns both a point and uncertainty estimate for
each datum, but these can be aggregated over the flooded
districts only.”* Estimates of the average effect on change in
vote using Bechtel and Hainmueller’s data appear in table 1.
The first row contains the results using the control set in
Bechtel and Hainmueller (2011). The results from MDEI
appear in the third row, using the same control set, outcome,
and treatment. To calculate the effect, we took the average
effect on all flooded districts, averaged their variances, and
used the critical value returned by the method. We find a point
estimate lower than the original analysis, although still sig-
nificant. We find that the discrepancy between the original
results in Bechtel and Hainmueller (2011) and MDEI is likely
due to covariate imbalance between treated and untreated
regions. If we trim districts farther from the Elbe than the
treated districts and then run Bechtel and Hainmueller’s spec-
ification, we recover an estimate that is much closer to that
from MDEIL For further verification, we compare the results
to GRF as well as the authors’ original specification on the
trimmed data, but using a smoothing spline in distance from
the Elbe (generalized additive model; GAM). We see that all of

22. Formally, let F denote the flooded districts and N the number
of flooded districts. The average effect on flooded districts (7;) and its
standard error (65) are calculated as 7, = I/N;Efgf%(17x,); 0y =

Ney Zier )

the methods apart from the original regression agree on the
magnitude of the effect.

The reason for the improved performance is implicit in the
method. The estimand for the difference-in-difference design
is the average effect on the treated districts. The difference-in-
difference regression coefficient, though, is a weighted average
of the difference between treated and untreated units. If the
untreated units are not directly comparable with the treated
units, the coefficient may be biased. This is what we see here.
In contrast, MDEI returns an estimated effect for each point,
and then we aggregate only over the treated units in order to
estimate the treatment effect on the treated. Doing so reduces

Table 1. Estimates across Model Specifications

95% Confidence

Point Estimate Interval
Original regression 6.91 5.43, 8.40
Trimmed regression 4.89 1.77, 8.01
MDEI 4.87 2.96, 6.78
GRF 4.57 3.67, 5.47
GAM 4.55 .94, 6.72

Note. Estimated effect on the Social Democrat’s vote share in flooded regions
from the original specification in Bechtel and Hainmueller (2011), a trimmed
regression, MDEIL, GRF, and a GAM using a trimmed regression but adding
a smoothing spline in distance from the river.
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Figure 6. A, Estimated effect of distance to the Elbe on vote share using the specification from Bechtel and Hainmueller (2011). Analyzing residuals, flooded
districts (solid black dots) are systematically above the trend. Regions with flooding exhibit a negative trend, suggesting that the effect is due to flooding and
not some other confounding event. B, MDEI is able to recover similar results as in Bechtel and Hainmueller (2011) but in one step and with uncertainty bands.

concerns over imbalance. Although we use the full data to fit
the model and generate confidence bands, we are only eval-
uating the treatment effect on those observations that were in
fact treated.

We next estimate the effect of a continuous treatment on
an outcome. Bechtel and Hainmueller argue that the effect
of policy response on vote share decays as the distance from
the Elbe increases for regions in which there were flooded
districts, which they argue is further evidence that the dis-
covered effect is attributable to disaster response. We reeval-
uate both claims and present results in figure 6. We begin
with their analysis (see Bechtel and Hainmueller 2011, fig. 5),
which we present in figure 6A.* The authors fit a smoothing
spline (GAM), smooth in distance to the Elbe, with the same
set of linear controls included as before. Examining the re-
siduals, flooded districts (solid black dots) are systematically
above the trend, suggesting that these observations are sys-
tematically high. Then, the authors fit lines to the residuals
by regions containing districts that flooded, which we present
as the open circles. The slopes of four of these lines are neg-
ative, which they argue suggests the effect is due to flooding
and not some other confounding variable or concurrent po-
litical event.

In figure 6B, we present the fitted values from MDEI in
which we take each district’s distance to the Elbe as the
treatment. We include Bechtel and Hainmueller’s (2011)

23. We combine both halves of their fig. 5 into one plot for parsimony.

covariates and add in controls for whether the district
flooded and whether the district is in a region that had at
least one flooded district. We find similar trends in regions
where districts were flooded, but we find them in the fitted
values rather than the residuals. Bechtel and Hainmueller
analyzed residuals, after taking out a smooth trend in distance
and additive covariates. Figure 6B, using MDEI, uncovers the
same effects through the model and the covariates.

Exploring the fitted values is preferable, because we can
attribute their values to observed covariates, as compared to
estimating with residuals, which are, by design, noisy. It also
allows us to estimate and analyze effects in one step, looking
at fitted values and bands, rather than the two-step process of
estimating fitted values and looking at the residual. Using our
method, we find a similar pattern: flooded districts are sys-
tematically above zero, meaning the vote share for the Social
Democrats went up, and there is less variance in the segments
fit to regions where there was flooding than to unflooded
regions.

Although we find a similar pattern in the data as Bechtel
and Hainmueller, we now want to know whether it is distance
from the Elbe, or simply having been flooded, that is driving
the estimated effect on vote share. Figure 7 presents the esti-
mated effect of distance on vote share at each point, with
flooded districts black and nonflooded gray. After adjusting
for the other covariates, we find no effect at any observation.
Our analysis seems to suggest that the relationship between
distance to the Elbe and vote share is null, after adjusting
for flooding and other covariates. The estimated effect seems
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Figure 7. Point estimates and confidence intervals of the marginal effect on
distance to Elbe on support for Social Democrats, by observation. Point
estimates for districts in flooded regions are in black; the rest, gray. Distance
has no discernible effect on support for Social Democrats.

attributable to whether the district was flooded, not to its
distance from the Elbe.

Our reanalysis has recovered the central finding of Bechtel
and Hainmueller, that flooded districts rewarded the Social
Democrats. At the same time, we found the effect to be some-
what overstated, likely due to the inclusion of nonflooded dis-
tricts that were not directly comparable to the flooded districts.
We then found evidence that the result is being driven by
whether a district is flooded, not by its distance from the Elbe.
Throughout we are able to entertain nonlinear effects as well

as recover uncertainty estimates.

CONCLUSION

A central challenge in regression analysis is correctly mod-
eling how a treatment variable affects an outcome. Is the effect
nonlinear? Does it depend on the values of other variables,
or is it a combination of both? Traditional regression models
grow increasingly unhelpful given these challenges, especially
as the number of variables and potential nonlinear relation-
ships increases. We introduce an estimation process that al-
lows for the semi-non-parametric estimation of a partial effect
and robust uncertainty estimates.

We hone in on the type of inference that is appropriate
when estimating nonlinear relationships when we do not ex
ante specify nonlinear relationships. The method we propose
builds on recent work involving iterated cross-fitting and

conformal inference. Simulation evidence shows that the pro-
posed method performs very well.

While we dramatically reduce reliance on ex ante model-
ing choices, we do of course retain other assumptions required
for making causal claims (e.g., no omitted confounders). The
approach presented in this article also does not deal with other
challenges to causal inference (e.g., improper confounding
strategies such as controlling for posttreatment variables or
certain types of pretreatment variables (Acharya, Blackwell,
and Sen 2016; Glynn and Kashin 2018), which are research
questions that precede the choice of model. In a separate
paper we discuss how to extend our framework to the in-
strumental variables and causal mediation frameworks.
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