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linear and Heterogeneous Effects.”

The online appendix for “Estimation and Inference on Nonlinear and Heterogeneous Effects.”

contains several sections. Appendix A provides some background information on parametric and

seminonparametrics regression models. Appendix B gives an introduction to using basis functions

for regression modelling. Appendix C discusses the minimal functional form assumptions made

for our model to return consistent estimates. Appendix D discusses pointwise bands and contrasts

them to the uniform bands we use in the paper for uncertainty estimation. Appendix E gives

an exposition of the MDEI algorithm. Appendix F discusses the specific sparse regression model

employed in our estimation steps. Appendix G derives for our variance estimation. Appendix H

gives extensive performance simulation evidence leveraging a variety of different data generating

processes and comparing MDEI to other relevant methodologies. Finally, Appendix I discusses the

case of a binary or categorical treatment variables rather than the continuous treatment variable

context.

A Regression Model Background
In this appendix we provide some background on different types of regression models and work up

to our proposed approach for calculating point estimates. Starting from the simple linear regression,

we progressively relax more and more assumptions until we end up with a specification in which

the impact of the treatment, and both the role of the background covariates and how they (may)

interact with treatment variable, is learned from the data (rather than assumed ex ante). As the

models grow more complex, methods for both point estimation and inference require more nuance.

Existing Models Most published work utilizes some version of the simple regression model above:

the treatment is entered linearly, is simply included additively along with additional covariates in

the outcome and the treatment assignment mechanism is not modeled. This fails to capture what

we are interested in modeling, which is the effect of a fluctuation of ti on yi, at some particular

point (ti, xi).

As a first attempt, we may choose to maintain linearity assumptions, modeling the outcome and
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treatment with a regression model,

yi = θti + x⊤
i γ + ϵi, E(ϵi|ti, xi) = 0

ti = x⊤
i β + ui, E(ui|xi) = 0,

(1)

which we will refer to as the outcome model and treatment model, respectively. With standard

assumptions such as no omitted confounders and no heterogeneity in the treatment effect, we

can interpret θ as a causal effect; absent these assumptions, it is simply an average slope on the

treatment (Aronow and Samii, 2016). While the treatment model in this case is not necessary, in

more advanced settings, modeling the effect of a one-unit move in the treatment on the outcome

will require a flexible model of the treatment variable itself. If we are willing to make narrow

assumptions such as linearity and homogeneity in the partial effect, an outcome model alone will

do; as we want extend this model into more general settings such as the partially linear model, we

will considering the treatment assignment model as well.

A more challenging case emerges when the treatment connects nonlinearly with the covariates

through some known function g:

yi = θti + x⊤
i γ + ϵi, E(ϵi|ti, xi) = 0

ti = g(x⊤
i β) + u, E(ui|xi) = 0.

(2)

Then, we can recover a consistent estimate on θ under the assumption that the model is correct:

the covariates enter the outcome model linearly and enter the treatment model linearly under link

g.1

We model the treatment, either parametrically or nonparametrically, for reasons that arise from

the definition of the partial effect as the effect of a one unit move in the treatment on the outcome

after controlling for covariates. We can work under sets of assumptions, such as linear additivity and

homogeneity in the partial effect, that can allow us to estimate the partial effect without modeling

the treatment. With a more general setting, partialing the covariates out of the treatment will

eliminate the effect of confounders, and also offer efficiency gains, as our estimate at each point

does not depend on a function of only the covariates.
1In the circumscribed case of a binary treatment T ∈ {0, 1} and g() a logit or probit, a well-developed literature

exists using matching and weighting methods. Imbens and Rubin (2015) provide an overview and Sekhon (2009); Ho

et al. (2007) provide excellent introductions for political scientists. Appendix I connects our approach to the binary

treatment setting.
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However, we may not believe that the covariates enter the model in a linear or additive fashion,

or that we even know the function g. In this case, we may turn to a model of the form

yi = θti + f(xi) + ϵ, E(ϵi|ti, xi) = 0

ti = g(xi) + ui, E(ui|xi) = 0.
(3)

We now assume that the function f, g are unspecified and must be learned from the data. This is

referred to as a partially linear model (Chernozhukov et al., 2018; Hardle and Stoker, 1989; Härdle

et al., 2012; Robinson, 1988), since it is linear in ti but nonparametric in the remainder.

The partially linear model improves on the standard practice captured in Model 2, because

it allows for the fact that the confounding variables may not be linear. However, the partially

linear model still assumes that the treatment enters the outcome model linearly, after adjusting for

the covariates nonparametrically. We can relax this assumption, generating a type of generalized

additive model (Wahba, 1990; Hastie and Tibshirani, 1990; Wood, 2006; Beck and Jackman, 1998),

where we replace θti with θ(t̃i), a smooth function of the treatment. Doing so generates the model

yi = θ(t̃i) + f(xi) + ϵ,E(ϵi|xi, ti) = 0;

ti = g(xi) + ui,E(ui|xi) = 0; f, g, θ unknown
(4)

These GAMs, also known as smoothing spline models, are used in political science and other social

sciences (e.g., Beck and Jackman, 1998; Andersen, 2009; Imai, Keele and Tingley, 2010; Carter and

Signorino, 2010; Kropko and Harden, 2020).

Worth noting is why we model the treatment in this GAM setting. Of course, the researcher

may not, but it will come at some cost. Imagine instead we simply model the outcome, giving us a

reduced-form version

yi = θ(g(xi) + ui) + f(xi) + ϵ,E(ϵi|xi, ti) = 0; (5)

where we have simply substituted our treatment model into the outcome. Our interest is in modeling

the effect of a movement in the treatment that cannot be explained by the covariates on the outcome,

i.e. of ui on yi. Partialing out the covariates from the treatment and the outcome improves the

efficiency of our estimate, see Robinson (1988) for foundational work in the area.

If we allow θ to be a smooth function of the treatment, estimation can occur following the same

cross-fitting described earlier. Rather than simply regressing ỹi on t̃i, we could instead model the

3



relationship using a smoothing spline. Under the assumption that θ(t̃i) is indeed smooth, the errors

are of equal variance, and there are no treatment/covariate interactions, well-established theory

and standard software can return a confidence band with average coverage (see Nychka (1988, ch.

4) and the associated R package mgcv (Wood, 2006)). If the researcher is confident that these

assumptions hold, this is an appropriate method.

The MDEI Model We wish to allow for the background covariate specification to be learned

from the data and the effect of the treatment on the outcome to be nonlinear and moderated by

the covariates. We implement a model of the form

yi = θ(t̃i, xi) + f(xi) + ϵi, E(ϵi|ti, xi) = 0

ti = g(xi) + ui, E(ui|xi) = 0.
(6)

where the functions θ, f, g are all nonparametric.

We want to use this model to learn about how the treatment impacts the outcome. In the most

simple regression model that we started with, this was just the average partial effect of ti on the

outcome ti, which was the slope coefficient θ. We want to do something similar, but in our context

the slope is not a simple constant. Instead, we want θ to depend on both the value of the treatment

and covariates (i.e., θ(t̃i, xi)). That is, the impact of the treatment can be both nonlinear and

moderated by the covariates.

In the continuous treatment case (see Appendix I for discussion of the binary case) our target

of inference is the first partial derivative of the outcome with respect to the treatment, given

background covariates: τ(t̃i, xi) = ∂
∂t

θ(t̃i, xi). This estimand captures the impact of a ceteris

paribus perturbation of the treatment on the outcome.2 Modeling this local confounding returns

an partial effect, an effect for an observation at treatment level ti and covariate profile xi (see e.g.,

Stolzenberg (1980) for an explicitly causal interpretation). This effect can be a curve that varies

across values of the treatment and can depend on values of the covariates.3

2A causal interpretation requires ignorability holds in a continuous, open ball around ti for each xi and a positivity

assumption that ti|xi be nondeterministic. This function τ(t̃i, xi) may be of interest in its own right even in a purely

descriptive setting.
3See Appendix I for the binary treatment case.
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B Introduction to basis functions
We employ a nonparametric regression model that models the outcome as an additive sum of a large

number functions of the covariates, called basis functions. Each basis is a nonlinear transformation

of a covariate, allowing us to model a more flexible set of functions.4 We illustrate this approach

in Figure 1. The top row shows an example of a nonparametric curve with the data (left) and its

first derivative (right). For simplicity, we make the curves only a function of the treatment.5

The middle row shows the true systematic component for the outcome and partial effect and,

below it, a set of basis functions that we use to approximate the curve. MDEI uses 28 for each

covariate: the linear covariate and then B-splines of degree 3, integrated B-splines of degree 3 and 5

(which look like sigmoid functions) then a set of degree 2, 3, and 4 Chebyshev polynomials evaluated

at x, x − s.d.(x) and x + sd(x). These are illustrated below the true curve on the left. Each is

differentiable, so their derivatives are shown on the right. These bases are then interacted with

each other to approximate ever more complex functions, while we use a variable selection method

to select an approximating subset.

Less important than the particular basis functions is that they are able to approximate a broad

set of functions. We illustrate how these basis functions can add up and accurately recover a

complex function in the third row. The left shows the estimated conditional mean; the right, the

estimated partial derivative. A few points are selected as well, with their estimated derivative. We

see that these basis functions can recover the relevant trends in the data generating process.

4KRLS uses “isotropic” bases in that the bases are constructed from all the covariates xi, whereas we use

“anisotropic” bases, where each basis is a function of only one covariate in xi, then we interact them. For more on

this distinction, see Murphy (2012). We follow our approach for mechanical reasons, in that KRLS requires inverting

an n × n matrix whereas we limit ourselves to a few hundred bases.
5For completeness, ti is uniform on [−1, 1] with n = 250 and the outcome is θ(t̃i) = 4πti sin(2πti) and τ(t̃i) =

4π sin(2πti) + 8π2ti cos(2πti) with normal, mean-zero noise with variance 2.
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Figure 1: Combining Basis Functions to Model Nonlinearities.This figure illustrates how
MDEI uses basis functions to approximate an outcome. The left column contains results for the
outcome θ and the right for the partial effect τ(t̃i, xi). For simplicity, we assume both are solely a
function of the treatment. The top row shows the true curves to be estimated, with the data in the
left. The middle middle row illustrates the full set of basis functions that we use to approximate
the true curve and its first partial derivative. The bottom row shows the basis functions that were
selected, such that when added up they produce the fitted outcome (left) and derivative (right).
A set of random points are selected with the estimated derivative at each point in the left figure.
Rather than assuming a functional form, MDEI uses sets of basis functions that can be combined
and interacted to provide an accurate local prediction.
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C Function Classes
In this appendix we lay out additional details about the minimal assumptions we make about the

sets of function our approach can handle. Given these assumptions, our estimator is asymptotically

consistent as we discuss below Appendix C.2.3.

C.1 Moving beyond parametric functions

Extending past the simple linear regression, and more complicated models like the partially linear

model, requires several analytic tools. These tools are necessary to characterize what, exactly, we

mean by a complex model; what it means for the estimates of a complex model to be sufficiently

“close” to the truth to allow for inference; and what sorts of inferential claims we can make about

these curves. Each is crucial in moving beyond the linear model.

For clarity, we illustrate using the function f from our model, which adjusts for covariates in the

outcome model. First, we distinguish between a “parametric” and “nonparametric” model. While

there is no agreed-upon definition (see, e.g. Wasserman, 2006, p. 1), the distinction relies on the

nature of the underlying assumptions. Assuming p elements of xi, say linear terms and any pre-

specified interactions or higher order terms, a parametric model is one where the model is specified

in advance, such as

f(xi) = x⊤
i γ

with p elements in γ. We are assuming, then, that f lives in the space of functions linear in the

elements of xi,

{f : f(xi) =
p∑

j=1
ϕj(xi)cj; ϕj(xi) = xij}

The basis functions of a space, which we denote {ϕj}p
j=1 , are a set of functions which can be

combined to represent any function in the space. In the parametric setting, the basis functions

are simply individual covariates {xij}p
j=1. In the nonparametric case discussed below, the basis

functions can be more complicated but still combine together to represent some target function like

f(xi), or, more generically, a conditional mean or even density. As discussed below, different types

of approaches to constructing basis functions and estimating their parameters will be used.6

6For example, cubic smoothing splines are often used to model time (e.g., Ratkovic and Eng, 2010) and other
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The crucial characteristic of a parametric model is that the number of parameters in the model

(the K parameters ck) are fixed and finite, and we can rely on asymptotics fixed in K with the

sample size n growing. We adopt the intuition that a nonparametric model is one where we do not

assume the model in advance, and instead the model specification is learned from the data. There

are several ways to consider this in a regression setting. We may do so by allowing the number

of basis functions to grow large, and possibly infinite, in order to accommodate a wide variety of

nonlinear, interactive functions in xi.

The basis function approach itself subsumes the linear model, meaning that if the model is

linear, we recover it, but we also allow include a much larger set of covariates in the regression to

pick up unanticipated nonlinearities and interactions. The cost of this added flexibility is that our

asymptotic analysis grows trickier. Since the number of basis functions, pn, may be larger than the

sample size n, or even infinite, we can no longer rely on parametric asymptotic arguments. In order

to conduct inference, we must characterize our model space precisely and guarantee that we can

still recover consistent estimates of the functions within it.

C.2 Functions for the treatment versus covariates

The parametric model will successfully adjust for confounders under the condition that these con-

founders enter the model linearly and additively. In other words, in the parametric model, our

inference requires the conditional mean be in the function space

{f : f(xi) = x⊤
i γ}.

We may want to consider the space

{f : f(xi) =
pn∑

j=1
ϕj(xi)cj},

which is similar to the linear space, except we allow the number of bases pn to grow in n and become

potentially infinite, in the limit.

While certainly more flexible than the linear space, we cannot use a finite dataset to estimate

an infinite number of parameters (Gyorfi et al., 2002). We can, though, retain a growing or infinite

number of basis functions, a nonparametric space, if we constrain the function space in some

continuous covariates (Keele, 2008). Appendix B provides a comprehensive introduction to regression modelling

using basis functions in the present context.
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manner. Perhaps the simplest example is the “sparsity assumption” that only some finite subset

of the parameters {cj}∞
j=1 are not zero, formulating the problem as one where the true model is

parametric but we just do not know which basis functions constitute the true model (Buhlmann

and van de Geer, 2013; Belloni, Chernozhukov and Hansen, 2014).

We implement methods that do not require the sparsity assumption, but constrain the function

space so we can still fit models much more complex than a linear model while also recovering a

consistent estimate.7 Below we consider two different classes of functions. We will use the first

to model our partial effect, and it will consist of smooth, differentiable functions of the treatment

and covariates interacted together. We will fit this component using a high-dimensional regression

model. The second class we consider is, roughly, functions that we can approximate well using

a random forest. We will use this class to model any confounding or bias introduced from the

covariates.8

C.2.1 Modeling θ(t̃i, xi) and τ(t̃i, xi)

We first consider modeling θ(t̃i, xi), the part of the outcome explained by the treatment variable.

In order to estimate the parameters, we constrain the full function space such that the functions

vary, but not too wildly as to render estimation and inference impossible. We do so in three steps.

First, we require ϕj(yi, xi) to be bounded in the data. This allows us to guarantee that no one basis

function goes off to infinity, which would leave inference untenable. Second, since we are interested

in modeling ceteris paribus shifts in the treatment on the outcome, we require the basis functions

to have a bounded partial derivative in the treatment. Third, we require the function to be “simple

enough” that we can recover it from the data. We do so by requiring the sum of the absolute values

of the parameters {cj}∞
j=1 to be finite. This gives our space for θ as

Θ = {θ : θ(t̃i, xi) =
∞∑

j=1
ϕj(ti, xi)cj; ϕj(ti, xi) and ∂

∂t
ϕj(t, xi)

∣∣∣
t=ti

bounded;
∞∑

j=1
|cj| < ∞}.

7Any consistent regression based method will work within our framework. A regression framework is necessary,

since taking a derivative is straightforward. We utilize a sparse regression model and give conditions for its consistency

below.
8We do not use the same function classes for each since recovering the partial effect with respect to the treatment

requires restricting attention to differentiable functions. We use the random forest for the covariates due to the

method’s speed and well-established accuracy.
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Taking the partial derivative, we can get the space containing τ(t̃i, xi).9

Importantly, this subspace subsumes the linear model.10 For example, if the true model were

parametric and linear in basis functions, we would recover the parametric model.

Before continuing, it is worth a brief mention of what sorts of functions are not in this space. First

are those that are discontinuous functions of smooth covariates, since we only consider smooth bases.

We present just such an example in Section 3.2 of the manuscript. We also do not accommodate

complex, erratic functions, meaning those such that the sum of the absolute values of the parameters

diverges. For example, if we take cj = 1/j, so the parameters have a long heavy tail, our results

would not hold. The closer the model is to sparse, meaning |cj| decays quickly or even becomes

zero, the better we expect our method to perform.

C.2.2 Modeling the functions f, g using a Lipschitz Space

We turn next to modeling how the covariates affect the outcome and treatment, as represented by

the functions f, g respectively. Here, we simply assume that these functions can be well-estimated

using a random forest, which places them in a Lipschitz space.11 In essence, by using random forests

to partial out the covariates–as part of an estimation and inference procedure–we can be operating

in the seminonparametric framework.

This Lipschitz assumption is necessary to allow us to use random forests to adjust for the

covariates. It is also more general than the space we use for treatment × covariate interactions,
9

T = {τ : τ(t̃i, xi) =
∞∑

j=1

∂

∂t
ϕj(t, xi)cj

∣∣
t=ti

; ϕj(ti, xi) and ∂

∂t
ϕj(t, xi)

∣∣
t=ti

bounded;
∞∑

j=1
|cj | < ∞}.

10This space is a subspace of L1(P ), the space of bounded functions with finite L1 length of the parameters,

consisting of functions partially differentiable in t. We note that standard results normally require working in L2(P ),

which contains L1(P ). We use L1(P ) since it leads to “sparser” estimates and handles the setting with a large

number of basis functions better than working in L2(P ). In practice, it is the difference between choosing a LASSO

prior and a ridge prior on the basis functions.
11This is the space of functions where the slope of any secant line between any two points is bounded by some

constant, say C. To formalize, this space can be characterized as

Lipschitz(α) = {f : |f(xi) − f(x′
i)| ≤ C|xi − x′

i|α for some C < ∞},

This is the most general space we use, where Linear spaces ⊂ Θ ⊂ Lipschitz functions.
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since Lipschitz functions are continuous but need not be differentiable. We add more structure to

the space where we look for partial effects, which we operationalize as a derivative in the case of

continuous treatment variable.

C.2.3 Consistency

We establishing consistency in our for the curve τ(t̃i, xi) by appealing to a sparsity condition in

this class of models. We rely on the condition in Chernozhukov et al. (2018) Remark 4.3, which

requires that the number of bases required to approximate the true curve is much less than sample

size; formally if stheta,n is the number of bases needed to approximate our θ function uniformly, then

we require sθ,n << n.12 Under these conditions, then θ̂(t̃i, xi) and hence τ̂(t̃i, xi) is consistent. The

B-spline bases will give us consistency in L1(P ) for functions of the form, with p the number of

covariates,

θ(t̃i, xi) =t̃iγ0+
p∑

k=1

p∑
k′=k

27∑
j=1

27∑
j′=1

27∑
j′′=j′

ϕj(t̃i)ϕj′(xik)ϕj′′(xik′)ckk′jj′j′′ ;
∑ ∣∣∣ckk′jj′j′′

∣∣∣ < ∞
(7)

When combined with our algorithm, several issues come into play. First is requiring that the

number of retained bases will, in the limit, contain the truth. We have selected this number to

grow in sample size, be large, but not so large as to slow down our algorithm (as we will have to

invert this matrix). Formal work by Fan and Lv (2008) on the Sure Independence Screen sets up

conditions where retaining n bases can capture the true model with high probability, in a world

where the outcome and bases are all jointly multivariate normal. This creates computational issues

for us, as matrix inversion of an n × n is one of our bottlenecks.

So as to allow the number of bases to grow, but not to choke our algorithm, we retain min(100×

(1 + n.
02), n0/4) bases where n0 is the number of observations in the discovery subsample n0 ≈ n/3.

Over the course of all three cross-fits in a single iteration of our algorithm, for the full sample

n ∈ {100, 250, 500, 1000, 5000, 100000} we retain {9, 21, 42, 84, 417, 607} bases at each cross-fit; i.e.

this many bases is retained three times for each split of the data, and then the whole process is
12For a deeper conversation explicitly connecting consistency in nonparametric function spaces, particularly L1(P )

considered here, see Buhlmann and van de Geer (2013), esp. Ch 6,8. We note that we have selected differentiable

bases, so that the functions we fit are all differentiable, which is a smaller space than Lipschitz spaces (we will do

worse on fitting, say, yi = |xi| + ei relative to a random forest), but we do note that we could include bases to

accommodate in space.
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repeated a number of times. The retained bases are then brought to the estimation subsample and

used for estimating τ̂(t̃i, xi), as described in Section 2 of the body.

D Coverage and Pointwise Confidence Band Concepts
Uncertainty intervals, like confidence intervals and confidence bands, are designed to have specific

coverage properties. For example, in the linear model with a single slope coefficient, then the

coverage probability is the proportion of times, over repeated samples that the interval contains

the true value.13 This is the standard confidence interval, as taught in the context of the regression

and other parametric models.

There are multiple ways to achieve coverage on a nonparametric curve. Coverage can be achieved

pointwise, uniformly, and on average. We turn to each in turn. The first, and most commonly

encountered, is the pointwise confidence interval. This is the one returned by existing software

(e.g., Hainmueller and Hazlett, 2013; Wager and Athey, 2017; Athey et al., 2019). In this case, at

any given point (ti, xi), the interval will cover the true value at least (1 − α) × 100% of the time.14

This pointwise property carry through to averages via a central limit theorem.

The pointwise interval does not contain information on the whole curve. For example, from a

multiple testing perspective, a 95% confidence interval at every single point is not the same as a

95% band over all points. It is likely too narrow, as we show below in an illustrative simulation.

Correcting this, and allowing for more informative and honest graphical displays, is a central goal

of the project.

The second type, the uniform confidence band, will contain the whole curve (1 − α) × 100% of

the time over repeated sampling. This band does contain information on the whole curve, since it

will contain the full curve over repeated samples.15 Uniform nonparameteric confidence bands have

been constructed in several specific settings (e.g., Genovese and Wasserman, 2005) but cannot, in
13For a single parameter τ ∈ ℜ, then, a valid 100 × (1 − α)% confidence interval given data Dn and critical value

C can be characterized as

limn→∞ supτ∈ℜ Pr(τ ∈ CI(τ̂ , V̂ar(τ̂), Dn, C, α)) ≥ 1 − α

where the standard critical values of C = 1.64 and C = 1.96 give the 90% and 95% intervals.
14For any given τ(t̃i, xi) that can be well-approximated by the model, this interval can be characterized as:

For any given point (ti, xi), limn→∞ Pr(τ(t̃i, xi) ∈ CI(τ̂(t̃i, xi), V̂ar(τ̂(t̃i, xi)), Dn, C, α)) ≥ 1 − α
15For any τ(t̃i, xi) that can be well-approximated by the method, this curve can be characterized as

limn→∞ Pr(For all points (ti, xi), τ(t̃i, xi) ∈ CI(τ̂(t̃i, xi), V̂ar(τ̂(t̃i, xi), ), Dn, C, α)) ≥ 1 − α
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general, be constructed. Even when feasible they shrink slowly in sample size and are too wide to

be usable (see, e.g., Wahba, 1983).

These two claims, pointwise and uniform, regularly diverge in nonparametric estimation for

a subtle reason: not every point along a nonparametric curve will converge at the same rate in

sample size. Recall that in order to identify the model, we need to restrict our attention to a

particular space. The estimate will converge faster in areas where it is closer to our assumed space,

and slower in other spaces. For one example, Leeb and Potscher (2008) show that if you work

under a sparsity assumption–that only a finite number of the parameters cj are non-zero–you can

recover standard parameteric pointwise confidence intervals on each coefficient that shrink at the

rate n−1/2. These intervals are only valid if the model is in-truth sparse, but fall apart otherwise.

If there are parameters that converge to zero at a rate of n−1/4, the pointwise confidence interval

can be arbitrarily misleading, since it may be missing parts of the true curve by a non-negligible

amount that will leave our inference asymptotically invalid. Driving the distinction is that, while

we may be able to make inferential claims about a given point on a curve, this is not the same as

making such a claim along the curve.

We move onto our proposed band which implements the third type of coverage, average coverage.

Rather than relying on claims across repeated samples, we instead follow Nychka (1988) (see also

Wasserman (2006) ch. 5.8) and consider average coverage, which is the probability that a confidence

band contains the true value over the observed sample.16 This band has the nice property that it

will contain the true curve at a high percentage of the observed data. It is also narrow enough for

applied work, but with provable average coverage properties.17

E Technical Details for Algorithm
In this section, we present technical details of our algorithm that we have not placed in the body.

E.1 Algorithm Diagram

We outline three algorithms that we use to implement our method. In the first, Algorithm 1, we

generate a set of bases that model heterogeneity. The second, Algorithm 2, details how we construct
16This property can be written as:

limn→∞
1
n

∑n
i=1 1(τ(t̃i, xi) ∈ CI(τ̂(t̃i, xi), V̂ar(τ̂(t̃i, xi)), Dn, C(Dn), α)) ≥ 1 − α

17Formal derivations of this average coverage can be found in Appendix G.
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our intervals, given fitted values and standard errors at each point. The third, Algorithm 3, uses

the first two to construct our estimates.
Algorithm 1: Generating Candidate Bases

Data: Outcome vector yi, treatment vector ti, length p coveriate vector xi with intercept

in first column, all in the discovery subsample, n0 observations in this subsample

Functions: 28 basis functions denoted ϕjwherebydefaultϕ0(z) = 1, ϕ1(z) = z

ρ(a, b) the correlation of a and b.

Result: A set of indices generating nonparametric bases for modeling treatment ×

covariate interactions

Using the discovery subsample, generate ỹi = yi − Ê(yi|xi), t̃i = ti − Ê(ti|xi) using random

forests

for j in 1 to p do

for j′ in 1 to p) do

for d in 2 to 28 do

for d′ in 1 to 28 do

for d′′ in d′ to 28 do
Save ρ(ỹi, ϕd(t̃i) × ϕd′(xij) × ϕd′′(xij′))

Return indices corresponding with bases with top min(100(1 + n.2
0 , n0/4)) values of ρ

14



Algorithm 2: Generating Critical Value

Data: Matrix of fitted values and estimated standard errors at each point;

False positive rate α

Result: Fitted values, first derivative, variance estimates, and uniform confidence interval

for i in 1 to numsplits do
Find smallest critical value such that symmetric confidence interval contains

100 × (1 − α)% of the data
Return critical value for ỹi and add one to generate critical value for τ̂(t̃i, xi).

Algorithm 3: Estimation Algorithm
Data: Outcome yi, treatment ti, covariates xi, indices I for selected interactive splines,

data split into discovery/estimation/inference subsamples.

Result: Fitted values, first derivative, variance estimates, and uniform confidence interval

for 1 in 1 to numsplits do
Using the discovery subsample, generate partialed-out outcome ỹi, partialed-out

treatment t̃i, and retained bases bases I from Algorithm 1;

Using data from the estimation subsample, model θ̂(t̃i, xi) from regressing ỹi on the

retained bases using a sparse regression; Using data from the estimation subsample,

model conditional variance by regressing the squared errors on covariates using

random forests; Evaluate point estimate, first derivative, and variance of fitted and

first derivative at each point in the inference subsample;

Cross-fit until fitted values, first derivative estimates, variance estimates generated for

every datum
Calculate conformal confidence intervals using confidence interval using Algorithm 2.

F Sparse Regression Model
Even after screening, we still have hundreds of nonparametric bases. Regressions of this magnitude,

though, can be estimated reliably using existing high-dimensional regression methods. We imple-

ment the high-dimensional regression described by Ratkovic and Tingley (2017). This work was

focused on variable selection, estimating a subset of bases that are likely non-zero. Our problem is

subtly different: we want the best predictive model.

High dimensional regression requires a tuning parameter, λ, that controls the level of shrinkage.

We implement an adaptation of the Bayesian sparse regression, from Ratkovic and Tingley (2017).
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For completeness, we present the full model hierarchy,

yi|xi, β ∼ N (X⊤
i β, σ2) (8)

βk|λ, wk, σ ∼ DE (λwk/σ) (9)

λ2|n, p ∼ Γ (α, ρ) (10)

wk|γ ∼ generalizedGamma(1, 1, γ = 2) (11)

(12)

though we return point estimates via an EM algorithm.

We take ρ = 1 but have found our results sensitive to α. Ratkovic and Tingley (2017) took γ

as to be estimated, but we instead take γ = 2 as it leads to tractable updates and then select α via

generalized cross-validation (Wahba, 1990).

G Variance Derivation

G.1 Deriving the Conformal Bound

We assume we have a valid conformal bound. Then, for some future value y′
i at t̃i, xi, variance at

this point σ̂
θ̂
(t̃i, xi), and critical value Ĉ1−α/2, we get

Pr(|y′
i − θ̂(t̃i, xi)| ≤ Ĉ1−α/2σ̂θ̂

(t̃i, xi)) ≥ 1 − α. (13)

Now, we bound the inequality inside the probability from the left using |a + b| − |b| ≤ |a| where

a + b = θ̂(t̃i, xi) − θ(t̃i, xi), a = y′
i − θ̂(t̃i, xi) b = θi − y′

i. So, with a conformal band, we can ensure

the following event occurs with probability at least 1 − α

Ĉ1−α/2σ̂θ̂
(t̃i, xi) ≥ |y′

i − θ̂(t̃i, xi)′| (14)

≥ |θ̂(t̃i, xi) − θ(t̃i, xi)| − |θ(t̃i, xi) − y′
i| (15)

and rearranging, then bounding the term on the right gives

|θ̂(t̃i, xi) − θ(t̃i, xi))| ≤ Ĉ1−α/2σ̂(t̃i, xi) + |θ(t̃i, xi) − y′
i| (16)

≤ (Ĉ1−α/2 + 1)σ̂
θ̂
(t̃i, xi) (17)
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since σ̂(t̃i, xi) ≤ |θ(t̃i, xi) − y′
i|, in expectation.

Thus, we should expect the confidence band

θ̂(t̃i, xi) ± (Ĉ1−α/2 + 1)σ̂
θ̂
(t̃i, xi) (18)

to have at least 100 × (1 − α)% average coverage of the systematic component θ(t̃i, xi). We replace

the conformal critical value Ĉ1−α/2 with Ĉ1−α/2 + 1, which has to be widened to better include θ,

rather than a future predictive value.

Since our bounds are not exact, we expect it to be conservative for θ(t̃i, xi). The predictive bound

is exact, asymptotically, but our bound on the true systematic component comes from bounding

this conformal band. Therefore, we expect the coverage of the 100 × (1 − α)% band to be greater

than 100 × (1 − α)%, but this is the cost we had to incur in moving from bounding the predictive

value to the systematic component.

We then use this critical value to construct a band around τ̂ as

τ̂(t̃i, xi) ± (Ĉ1−α/2 + 1)σ̂τ̂ (t̃i, xi) (19)

We estimate the variance using the law of total variance

σ̂2
θ̂
(ti, xi)︸ ︷︷ ︸

Total Variance

= ŝ2
θ̂
(t̃i, xi)︸ ︷︷ ︸

Sampling Variance

+ σ̂2
θ(t̃i, xi)︸ ︷︷ ︸

Error Variance

(20)

We calculate the sampling variance as the variance in the fitted values over repeated cross-fits. We

then estimate the error variance using a random forest on the squared residuals, and these estimates

are also averaged over split-samples.

We then construct our error on τ̂(t̃i, xi) using the same formula. The sampling variance can be

calculated from the cross-fit sample variance over the estimates. For the second variance term, we

estimate the variance of yi attributable to t̃i, but not xi, which we estimate as

σ̂2
τ̂ (̃ti,xi)

= V̂ar(yi|xi) − V̂ar(yi|t̃i, xi) (21)

where the estimates are constructed using random forests on the estimation subsample. In the

limit, this estimate should be nonnegative; in practice, we instead take its absolute value.
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H Performance Simulations

H.1 Data Generating Processes

We next present simulation evidence illustrating MDEI’s utility in estimating a partial effect. We

include four sets of simulations presented in increasing complexity, a linear model, a low-dimensional

interactive model, a high-dimensional interactive model, and a model with a nonlinearity, respec-

tively:

In each setting, we generate five covariates xi1, . . . , xi5 from a standard multivariate normal with

correlation 0.5.

In the first four settings, we take

ti = (xi2 − 1)2

4 + ϵT
i ; ϵT

i
i.i.d.∼ N (0, 1) . (22)

In the fifth setting, we introduce a discontinuity by using

ti = sign (xi1) × (xi2 − 1)2

4 + ϵT
i ; ϵT

i
i.i.d.∼ N (0, 1) (23)

where

sign (a) =


−1; a ≤ 0

1; a > 0
(24)

Note that this is outside our model space and a more complex setting than that in our second

illustrative simulation in Section 3.2 of the main body.

We then use the following outcome models,

1 Linear: yi = yi + xi1 + xi2 − 1
4 + +ϵi (25)

2 Partially Linear: yi = ti + xi1 + (xi2 − 1)2

4 + ϵi (26)

3 Additive Linear: yi = 4 sin(ti) + xi1 + (xi2 − 1)2

4 + ϵi (27)

4 Interactive: yi = 4 sin(ti) × xi1 + (xi2 − 1)2

4 + ϵi (28)

5 Discontinuity yi = 4 sin(yi) × sign (xi1) + (xi2 − 1)2

4 + ϵi (29)

where the the error is independent, identical Gaussian such that the true R2 in the outcome model

is 0.5. We consider n ∈ {250, 500, 1000, 2000}.
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We continue to contrast with the kernel regularized least squares model (Hainmueller and Ha-

zlett, 2013) and Generalized Random Forests (Athey et al., 2019). We select these two models for

comparison because they offer both point estimates and uncertainty estimates for the partial effect

curve, τ(t̃i, xi).18

H.1.1 Evaluation Metrics

We assess methods across two dimensions, each commensurate with our two estimation contribu-

tions: point estimation and coverage rates on τ(t̃i, xi). For the former, we use the mean absolute

error,

MAE = 1
n

n∑
i=1

|τ̂(t̃i, xi) − τ(t̃i, xi)| (30)

and the sample average coverage probability,

SACP = 1
n

n∑
i=1

1
{
τ(t̃i, xi) ∈ CBτ,Dn(ti, xi)

}
.

All simulations were run 500 times.

H.1.2 Results

Results from the simulations can be found in Figure 2. Each row corresponds with our simulation

setting, from the additive linear model in row one to the complex, discontinuous model in row 5.

In each figure, the x-axis shows outcomes by sample size. The first column presents the bias on

the average partial effect, by method. Across settings, all methods do well, with GRF doing the

best overall. KRLS misses the average effect in the simplest model, due to its shrinkage, but with

any complexity, all models do well. The second column presents mean absolute error, a measure of

accuracy of our estimates over the whole of the curve. All methods perform well in the simplest
18We also do not include other candidate approaches. Many existing models focus on uncertainty and estimates

for the fitted values, not the partial effect curve; for example, POLYMARS (Stone et al., 1997), Sparse Additive

Models (Ravikumar et al., 2009), Bayesian additive regression trees (Chipman, George and McCulloch, 2010) and

boosting (Ridgeway, 1999), and the SuperLearner (Polley and van der Laan, N.d.). Any of these could have been

used for partialing out the covariates; we implemented random forests for simplicity. Other possible sparse estimators

could have included the horseshoe, and Bayesian Bridge (Carvalho, Polson and Scott, 2010; Polson, Scott and Windle,

2014); we found our EM implementation to offer a more stable estimate than the variational implementation of these.

Cattaneo, Farrell and Feng (Forthcoming) offer an alternative estimtation strategy, though it does not accommodate

more than a handful of covariates.
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settings, but KRLS and MDEI perform the best in the most complex settings. We suspect that there

are conditional mean specifications where any of the methods presented will outperform others; our

take away here is that all three methods perform passably well.

The third column, presenting the sample coverage, is the most important. The horizontal line

at 0.9 is the nominal rate, so values above this line are denote conservative bands and values below

it denote an invalid band. In the simplest settings, all methods are valid, and MDEI is quite wide.

This is to be expected, of course, since we construct our bands to be valid even if the model is

wrong. As the models get more complex, in rows 3-5, we see that coverage plummets for KRLS

and GRF. Basically, in settings 3 and 4, and especially 5, the confidence bands returned by these

method provide little information on the location of the true curve. The cost of this coverage shows

in the last columns, which contains the average width of the interval, by method. We see that the

our confidence intervals are notably wider, as expected. Narrower bands can be achieved, but at

the cost of only covering simple models.

I Binary and Categorical Treatment Regimes.
In the paper we focus on the continuous treatment case. A mature literature examines the case

with binary and categorical treatments. This manuscript does not treat the binary or categorical

treatment regime as a separate setting. Instead, we note that our approach carries through to the

binary treatment setting. Rather than modeling the propensity score, or conditional probability of

treatment, we instead model the conditional mean of the treatment. The key distinction is that

the former is constrained to fall in [0, 1], and the probabilites are used to match or generate inverse

probability weights.

Rather than adjust through matching or weighting, we are instead adjusting the conditional

mean. So, instead of fitting a logistic or probit regression, we are instead fitting using nonlinear

least squares. The benefit is that we are not working with inverse probability weights, which can

be unstable, nor relying on distributional assumptions of the treatment variable or outcome. We

lose, though, efficiency gains that come from making distributional assumptions.
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Figure 2: Performance Simulation Results
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