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Abstract Cigarette smoking is the major environmental

risk factor for chronic obstructive pulmonary disease

(COPD). Genome-wide association studies have provided

compelling associations for three loci with COPD. In this

study, we aimed to estimate direct, i.e., independent from

smoking, and indirect effects of those loci on COPD

development using mediation analysis. We included a total

of 3,424 COPD cases and 1,872 unaffected controls with

data on two smoking-related phenotypes: lifetime average

smoking intensity and cumulative exposure to tobacco

smoke (pack years). Our analysis revealed that effects of

two linked variants (rs1051730 and rs8034191) in the

AGPHD1/CHRNA3 cluster on COPD development are

significantly, yet not entirely, mediated by the smoking-

related phenotypes. Approximately 30 % of the total effect

of variants in the AGPHD1/CHRNA3 cluster on COPD

development was mediated by pack years. Simultaneous

analysis of modestly (r2 = 0.21) linked markers in

CHRNA3 and IREB2 revealed that an even larger (*42 %)

proportion of the total effect of the CHRNA3 locus on

COPD was mediated by pack years after adjustment for an

IREB2 single nucleotide polymorphism. This study con-

firms the existence of direct effects of the AGPHD1/

CHRNA3, IREB2, FAM13A and HHIP loci on COPD

development. While the association of the AGPHD1/

CHRNA3 locus with COPD is significantly mediated by
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smoking-related phenotypes, IREB2 appears to affect

COPD independently of smoking.

Introduction

Genome-wide association studies (GWAS) and integrative

genomics approaches have led to the discovery of novel

susceptibility loci for many complex phenotypes. Identified

variants sometimes overlap between different diseases and

traits, which suggest shared genetic mechanisms and com-

mon biological pathways involved in these processes.

Alternatively, these associations may relate to mediation

events, where a marker indirectly affects disease via a direct

effect on an intermediate phenotype. Chronic obstructive

pulmonary disease (COPD) is an example of a complex

disease that is partially genetically determined. Since a

cigarette smoking history is present in most COPD cases, it

is plausible that genetic determinants of nicotine addiction

significantly contribute to COPD burden. The first COPD

susceptibility markers identified by GWAS (Pillai et al.

2009), located in the aminoglycoside phosphotransferase

domain containing 1 (AGPHD1)/cholinergic receptor, nic-

otinic, alpha 3 (CHRNA3) cluster on chromosome 15q25,

were also confirmed genetic determinants of smoking

intensity (Thorgeirsson et al. 2008, 2010; Saccone et al.

2010; Liu et al. 2010). However, it is unclear whether, and if

so to what extent, association of those markers with smok-

ing explains their association with COPD development.

Furthermore, it is yet unknown whether association of

other postulated COPD susceptibility genes, such as iron-

responsive element binding protein 2 (IREB2) (DeMeo et al.

2009; Chappell et al. 2011), family with sequence similarity

13, member A (FAM13A) (Cho et al. 2010), and hedgehog-

interacting protein (HHIP) (Wilk et al. 2009; Pillai et al.

2009; Van Durme et al. 2010; Hancock et al. 2010; Repapi

et al. 2010; Cho et al. 2010), are independent of smoking

history. Of interest, susceptibility variants in IREB2 and

AGPHD1/CHRNA3 map to the same region on chromosome

15q25, yet are in only modest linkage disequilibrium (LD).

Therefore, we hypothesized that the 15q25 locus contains

independent susceptibility loci for COPD development and

smoking intensity. Standard linear or logistic regression

analysis is unable to dissect indirect effects of single

nucleotide polymorphisms (SNPs) on a primary (e.g.,

COPD) phenotype when a causative association between

the SNP and an intermediate (e.g., smoking) phenotype

exists. To calculate such effects, other methods, such as

mediation analysis, are needed. Mediation analysis, popu-

larized by the Baron–Kenny procedure for linear regression

models and related ‘‘product of coefficient’’ techniques, was

subsumed by Imai et al. (2010a, b) by moving beyond linear

models and using the probability scale for estimation of

direct and indirect effects. However, the underlying defi-

nitions of direct and indirect effects on the causal inference

framework date to earlier papers (Robins and Greenland

1992; Pearl 2001). Mediation analysis allowing for case–

control study design requires special consideration when

obtaining estimates of the association between SNP and

mediator and can be performed on the odds ratio scale

(Valeri and VanderWeele 2012).

Using mediation analysis, it has been shown that the

rs1051730 variant in CHRNA3 significantly affects self-

reported, physician-diagnosed COPD directly and indi-

rectly (i.e., via smoking) in a lung cancer case–control

study (Wang et al. 2010), although mediation analysis of

other COPD susceptibility variants has not been previously

reported. The aim of this study was to estimate direct, i.e.,

the effects that do not belong to pathways containing

smoking-related phenotypes studied, and indirect effects of

three established COPD susceptibility loci on disease

development. We analyzed a cohort of 3,424 COPD cases

and 1,872 unaffected controls with data on two smoking-

related phenotypes: lifetime average number of cigarettes

smoked per day (NCPD) and cumulative exposure to

tobacco smoke (pack years). We also sought to investigate

whether mediation analysis helps in dissecting association

signals with COPD and smoking behavior in IREB2 and

CHRNA3.

Methods

Subjects and genotyping

We studied current or ex-smoking Caucasian subjects from

four independent, case–control cohorts: National Emphy-

sema Treatment Trial (NETT) COPD cases (Fishman et al.

2003) and control subjects from the Normative Aging

Study (NAS) (Bell et al. 1972), Evaluation of COPD

Longitudinally to Identify Predictive Surrogate End-points

(ECLIPSE) (Vestbo et al. 2008), GenKOLS cohort from

Bergen, Norway (Zhu et al. 2007), and COPDGene (first
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1,000 subjects) (Regan et al. 2010). COPD cases studied had

at least moderate COPD [Global Initiative for Chronic

Obstructive Lung Disease (GOLD) stage II or higher], while

control subjects had normal spirometry according to GOLD

criteria (Table 1). Spirometry was performed in accordance

with American Thoracic Society criteria in all of the studies

included. All smoking-related phenotypes were self-repor-

ted using either a Case Report Form (NCPD and pack years

in the ECLIPSE cohort only) or modified versions of the

American Thoracic Society/Division of Lung Diseases

Respiratory Disease Questionnaire (Ferris 1978).

Five SNPs, that were highly significantly associated

with COPD in the recent analysis of the pooled NETT/

NAS, ECLIPSE, and GenKOLS cohorts (Cho et al. 2010),

and located in CHRNA3 (rs1051730), IREB2 (rs13180),

and AGPHD1 (rs8034191; r2 = 0.91 to rs1051730 in

CHRNA3) on chromosome 15q25; 50 upstream of HHIP

(rs13118928) on chromosome 4q31; and in FAM13A

(rs7671167) on chromosome 4q22, were selected for

analysis (Supplementary Table 1). All three of these

selected genome-wide significant loci have been replicated

in other COPD studies (Lambrechts et al. 2010; Young

et al. 2011; Van Durme et al. 2010). The 15q25 region is

characterized by a high LD level, and synonymous SNPs in

IREB2 (rs13180) and CHRNA3 (rs1051730) tag numerous

other SNPs in this region as assessed in the entire cohort

studied (Supplementary Figs. 1 and 2). SNPs were geno-

typed as a part of the whole-genome genotyping chips, i.e.,

Illumina Quad 610 (NETT/NAS), Illumina HumanHap 550

(ECLIPSE and GenKOLS), and Illumina Human Omni1-

Quad (COPDGene). Since the SNP in the HHIP locus was

not present on the Illumina Human Omni1-Quad chip, it

was genotyped using a TaqMan assay (Applied Biosys-

tems, Foster City, CA) in the COPDGene cohort as pre-

viously reported (Cho et al. 2010).

Quality control procedures

A single, whole-genome datafile of the ECLIPSE, GenKOLS

and NETT/NAS cohorts, described previously in detail (Cho

et al. 2010), was merged with the COPDGene whole-genome

datafile. After quality control, i.e., minor allele frequency

C0.05, Hardy–Weinberg equilibrium p value in control sub-

jects[0.001, and genotyping call rate C95 %, the final dataset

contained approximately 300,000 SNPs. We excluded sub-

jects based on (cryptic) relatedness using PLINK (ver. 1.07)

(Purcell et al. 2007) with a pi-hat cutoff of 0.125. Principal

component analysis, using Eigensoft software (ver. 3.0) (Price

et al. 2006), was performed following our previously reported

procedure and revealed 27 significant (p \ 0.05 according to

Tracy–Widom statistics) principal components for genetic

ancestry (PCs). Calculation of PCs resulted in exclusion of

subjects based on their ethnic ancestry. Subjects with missing

information on either of the two smoking intensity phenotypes

studied, as well as those with missing genotyping data for at

least one of the polymorphisms of interest, were excluded. In

total, 3,424 COPD cases [Global Initiative for Chronic

Obstructive Lung Disease classification (Rabe et al. 2007)

stage II or higher] and 1,872 unaffected controls remained for

the analysis (Table 1).

Statistics

We considered both NCPD and cumulative exposure to

tobacco smoke (i.e., pack years) as phenotypes potentially

mediating associations between investigated SNPs and

COPD development. We used Box–Cox transformation to

transform both phenotypes as dependent variables in linear

regression adjusted for 27 PCs and gender in control sub-

jects, using the R package car (Fox and Weisberg 2011).

Transformed NCPD and pack-years variables were used in

all subsequent analyses. Calculation of indirect-effect odds

ratios was performed using a SAS macro recently developed

by Valeri and Vanderweele (2012) specifically for case–

control studies. We assumed lack of exposure-mediator

interaction, since all SNP 9 smoking-related phenotype

interaction terms were not significant in logistic regression

Table 1 Characteristics of the genotyped subjects (n = 5,296)

COPD cases

(GOLD stage II

or higher)

n = 3,424

Unaffected

controls

n = 1,872

Males, n (%) 2,136 (62.4) 1,167 (62.3)

Age in years, mean (SD) 64.7 (8.0) 60.2 (10.5)

Post-bronchodilator FEV1 %

predicted,a mean (SD)

46.5 (17.2) 98.3 (11.8)

Post-bronchodilator

FEV1/FVC, mean (SD)a
0.45 (0.13) 0.79 (0.05)

NCPD, mean (SD) 24.1 (12.6) 21.0 (12.5)

Number of pack years,

mean (SD)b
48.1 (27.8) 30.6 (22.8)

GenKOLS subjects, n (%) 838 (24.5) 784 (41.9)

NETT/NAS subjects, n (%) 370 (10.8) 431 (23.0)

ECLIPSE subjects, n (%) 1,735 (50.7) 176 (9.4)

COPDGene subjects, n (%) 481 (14.0) 481 (25.7)

FEV1, Forced expiratory volume in 1 s; FVC, forced vital capacity;

SD, standard deviation; NCPD, lifetime average number of cigarettes

smoked per day; NETT, National Emphysema Treatment Trial; NAS,

Normative Aging Study; ECLIPSE, Evaluation of COPD Longitudi-

nally to Identify Predictive Surrogate End-points; GOLD, Global

Initiative for Chronic Obstructive Lung Disease
a Except for eight subjects from the ECLIPSE study and a subset of

control subjects from the Normative Aging Study who underwent

only pre-bronchodilator FEV1 and FVC measurements
b One pack year corresponds to a cumulative exposure due to active

smoking of 20 cigarettes per day for 1 year
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analyses on COPD. Proportion of the total effect due to

mediation was estimated on a risk difference scale (Van-

derWeele and Vansteelandt 2010). Since SNPs in CHRNA3

and IREB2 were in significant (r2 = 0.21, D’ = 0.77), yet

not complete, LD, we also performed analyses of the

CHRNA3 variant conditioned on the IREB2 variant (i.e., the

latter used as a covariate), and vice versa. To further explore

relationships of both chromosome 15q25 variants with

COPD, we performed logistic regression analyses for sub-

groups of COPD subjects, corresponding to tertiles of pack

years smoked, using all available control subjects as a ref-

erence group. All statistical analyses were performed in R

(R Development Core Team 2010) and SAS (ver. 9.2).

We considered p \ 0.05 as nominally significant and

p \ 5 9 10-8 as genome-wide significant (Dudbridge and

Gusnanto 2008).

Results

Associations of genetic variants with smoking intensity

SNPs in CHRNA3 (rs1051730) and AGPHD1 (rs8034191)

were significantly associated with higher NCPD

(p = 7.6 9 10-5 and p = 3.4 9 10-4, respectively) and

pack years (p = 0.005 and p = 0.012, respectively) in

control subjects using linear regression adjusted for PCs

and gender. Simultaneous analysis of the CHRNA3 and

IREB2 SNPs did not change significance of the association

of the CHRNA3 SNP with either NCPD or pack years

(p = 3.0 9 10-5 and p = 0.004, respectively). No other

significant associations between SNPs and smoking-related

phenotypes were observed (Supplementary Table 1).

Mediation analysis

All investigated polymorphisms showed at least nominally

significant direct effects on COPD development, and

variants in FAM13A, AGPHD1 and CHRNA3 achieved

genome-wide significance level with NCPD set as mediator

(Tables 2, 3). As expected, indirect-effect odds ratios of

variants in AGPHD1 and CHRNA3 were nominally sig-

nificant irrespectively of mediator specified, while other

SNPs showed no significant indirect-effect odds ratios

(Tables 2, 3). Proportions of the total effect of AGPHD1

and CHRNA3 SNPs on COPD due to mediation were

approximately 2–3 times higher for pack years as com-

pared to NCPD set as mediator (Tables 2, 3). Analysis of

the CHRNA3 marker conditioned on the IREB2 marker

resulted in an increase in the proportion of the effect on

COPD due to mediation via either of the smoking intensity

phenotype (Tables 2, 3).

Associations of CHRNA3 and IREB2 variants

with COPD across tertiles of pack years smoked

The variant in CHRNA3 showed an increase in odds to

develop COPD across tertiles of pack years smoked among

COPD cases, suggesting that at least part of the COPD

susceptibility association was related to increased smoking

intensity related to this SNP (Fig. 1). In contrast, the IREB2

variant showed a similar effect on COPD across tertiles of

pack years among COPD cases (Fig. 1). After conditioning

on rs1051730, the IREB2 SNP (rs13180) had the most

protective effect at the lowest smoking intensity, which

suggests a genetic effect on COPD susceptibility that is

independent of smoking.

Table 2 Direct and indirect (mediated by NCPD) effects of COPD susceptibility loci

SNP Chromosome Gene MAF Minor/major

allele

Direct Effect Indirect effect Proportion of

total effect due

to mediation (%)OR p OR p

rs7671167 4q22 FAM13A 0.490 C/T 0.781 8.2 9 10-9 0.996 0.610 –

rs13118928 4q31 HHIP (50 region) 0.409 G/A 0.805 3.4 9 10-7 1.004 0.633 –

rs8034191 15q25 AGPHD1 0.383 C/T 1.321 4.0 9 10-10 1.030 0.0012 10.8

rs1051730 15q25 CHRNA3 0.381 A/G 1.305 2.2 9 10-9 1.032 0.00044 12.1

rs1051730 adjusted

for rs13180

15q25 CHRNA3 0.381 A/G 1.212 1.2 9 10-4 1.039 0.00024 18.2

rs13180 15q25 IREB2 0.362 C/T 0.779 1.4 9 10-8 0.996 0.597 –

rs13180 adjusted

for rs1051730

15q25 IREB2 0.362 C/T 0.850 9.8 9 10-4 1.013 0.160 –

NCPD, Lifetime average number of cigarettes smoked per day; OR, odds ratio (additive model) for the major allele set as a reference; SNP,

single nucleotide polymorphism; MAF, minor allele frequency in the whole cohort; FAM13A, family with sequence similarity 13, member A;

HHIP, hedgehog-interacting protein; AGPHD1, aminoglycoside phosphotransferase domain containing 1; CHRNA3, cholinergic receptor, nic-

otinic, alpha 3; IREB2, iron-responsive element binding protein 2

Bold values indicate indirect effect of p values \0.05

434 Hum Genet (2013) 132:431–441

123



Discussion

By applying mediation analysis, this study confirmed that

all of the analyzed susceptibility loci for COPD possess

direct effects, independent of smoking, on disease devel-

opment. Simultaneous analyses of 15q25 variants sug-

gested that the IREB2 rs13180 variant associates with

COPD via pathways other than smoking intensity, while a

substantial proportion of the effect of the CHRNA3

rs1051730 variant on COPD is mediated by the cumulative

amount of tobacco smoked.

We demonstrated that, in contrast to the IREB2 SNP, the

odds for COPD development for the CHRNA3 SNP are

higher while analyzing COPD subjects with a large

smoking history as compared to those with a lower

smoking history. Since the subset of COPD cases with the

Table 3 Direct and indirect (mediated by pack years smoked) effects of COPD susceptibility loci

SNP Chromosome Gene MAF Minor/major

allele

Direct effect Indirect effect Proportion of

total effect due

to mediation (%)OR p OR p

rs7671167 4q22 FAM13A 0.490 C/T 0.783 9.5 9 10-8 1.004 0.899 –

rs13118928 4q31 HHIP (50 region) 0.409 G/A 0.797 5.8 9 10-7 1.011 0.701 –

rs8034191 15q25 AGPHD1 0.383 C/T 1.273 3.3 9 10-7 1.077 0.013 26.4

rs1051730 15q25 CHRNA3 0.381 A/G 1.256 1.4 9 10-6 1.085 0.0056 29.5

rs1051730 adjusted

for rs13180

15q25 CHRNA3 0.381 A/G 1.163 4.5 9 10-3 1.101 0.0038 42.0

rs13180 15q25 IREB2 0.362 C/T 0.788 3.8 9 10-7 0.988 0.668 –

rs13180 adjusted

for rs1051730

15q25 IREB2 0.362 C/T 0.844 1.2 9 10-3 1.031 0.345 –

OR, Odds ratio (additive model) for the major allele set as a reference; SNP, single nucleotide polymorphism; MAF, minor allele frequency in

the whole cohort; FAM13A, family with sequence similarity 13, member A; HHIP, hedgehog interacting protein; AGPHD1, aminoglycoside

phosphotransferase domain containing 1; CHRNA3, cholinergic receptor, nicotinic, alpha 3; IREB2, iron-responsive element binding protein 2

Bold values indicate indirect effect of p values \0.05

Fig. 1 Additive effects of

variants in IREB2 and CHRNA3
on COPD development

according to tertiles of pack

years smoked among COPD

cases *p \ 0.05

**p \ 5 9 10-8. Graph
demonstrates the odds for

COPD for specific tertiles of

pack years smoked among

COPD cases. All the unaffected

control subjects (n = 1,872)

were set as a reference group.

Analyses were adjusted for 27

PCs and gender. PCs, Principal

components for genetic

ancestry; CHRNA3, cholinergic

receptor, nicotinic, alpha 3;

IREB2, iron-responsive element

binding protein 2; COPD,

chronic obstructive pulmonary

disease
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highest smoking history is likely enriched with risk vari-

ants for phenotypes related to nicotine addiction, this

strongly suggests that CHRNA3, rather than IREB2, affects

COPD via smoking-related pathways.

Identification of genetic markers associated with com-

plex traits in the presence of strong environmental or

behavioral risk factors may not be straightforward when a

high genetic predisposition to exposure to such factors

occurs. Variants in the 15q25 locus, containing nicotinic

acetylcholine receptor genes CHRNA3, CHRNA5 and

CHRNB4, were identified in GWAS on lung cancer

(Thorgeirsson et al. 2008; Amos et al. 2008; Hung et al.

2008). Subsequent multi-cohort studies showed that these

same markers determine level of smoking intensity and

were associated with the development of COPD (Pillai et al.

2009; Liu et al. 2010; Thorgeirsson et al. 2010). Thus, it is

tempting to conclude that smoking mediates the association

of the 15q25 locus with both COPD and lung cancer. The

extent to which such mediation occurs has been addressed

by Wang et al. (2010), who found both a significant direct

and indirect (i.e., via pack years) effect of rs1051730 on

lung cancer and COPD using a mediation analysis

approach. Our study showed a slightly higher proportion

(30 %) of the total effect of this variant on COPD being

mediated by pack years compared to the study of Wang and

colleagues (23.6 %), which may be a consequence of larger

sample size and different disease definition in the present

study. Importantly, our analysis clearly showed that pack

years rather than NCPD possess more pronounced potential

to mediate genetic associations with COPD. This may seem

intuitive given the cumulative nature of pack years,

although it is important to acknowledge that pack years are

determined by other, possibly genetically determined, traits,

i.e., age at smoking initiation and cessation (or current age).

DeMeo et al. (2009) suggested that marker rs1051730 in

CHRNA3 and linked SNPs may not be the only independent

genetic associations with COPD in the 15q25 region. Using

an integrative genomics approach, they identified IREB2 as

a novel susceptibility gene for COPD in this locus, which

was subsequently replicated by an independent multi-

national study (Chappell et al. 2011). Our analyses of the

IREB2 variant suggested that the association with COPD is

not mediated by pack years, and this lack of mediation by

pack years persisted after conditioning for the CHRNA3

variant as well. Furthermore, the proportion of the total

effect on COPD due to mediation for the rs1051730 variant

in CHRNA3 increased from 30 to 42 % while conditioning

for the IREB2 variant, which strengthens the hypothesis that

CHRNA3 affects COPD primarily via smoking intensity-

related pathways. On the other hand, our conclusion that the

effect of the CHRNA3 variant is not entirely mediated by

smoking-related phenotypes supports recent GWAS on

COPD, which found similar, statistically significant, odds to

develop COPD both among never and ever smokers for the

rs1051730 CHRNA3 variant (Wilk et al. 2012).

Our study additionally investigated other variants pre-

viously shown to be valid susceptibility loci for the

development of COPD. Not surprisingly, results for the

rs8034191 SNP in AGPHD1 were very similar to those for

rs1051730 due to high level of LD between these two

SNPs, while variants in FAM13A and HHIP showed no

significant indirect effects. Given the fact that previous

independent GWAS associated the FAM13A locus with the

level of lung function (Hancock et al. 2010; Repapi et al.

2010; Van Durme et al. 2010), we believe that the inves-

tigated FAM13A and HHIP SNPs, or linked variants,

influence COPD susceptibility through pathways other than

the phenotypes studied, which were related to nicotine

addiction.

There are some limitations to our study that need to be

addressed. PCs and gender were considered as common

factors influencing NCPD, pack years and COPD devel-

opment; however, there may be other unmeasured factors

(such as exposure to stress, educational status or socio-

economical status) that affect these phenotypes. However,

if these factors are affected by the genetic variants studied,

other methods, such as causal modeling (Vansteelandt et al.

2009) or G-estimation (Vansteelandt 2009) approaches, are

necessary to estimate direct effects. Likewise, if the

interaction between exposure and the mediator occurs, e.g.,

in the lung cancer study where 15q25 variants significantly

interacted with smoking (VanderWeele et al. 2012), this

should be taken into account in the mediation analysis

(Valeri and VanderWeele 2012). The genetics of complex

diseases, such as COPD, should be preferably investigated

using large cohorts. Although we pooled four available

genome-wide association datasets, which resulted in a

sample size of 5,296 subjects, we may have not achieved

sufficient statistical power to detect genome-wide signifi-

cant associations concerning direct or indirect effects. The

intermediate smoking intensity phenotypes studied were

characterized by a limited assessment. Self-reporting of

smoking behaviors in our study could have been affected

by a low accuracy, and especially while reporting lifetime

average smoking intensity or age at smoking initiation or

duration of smoking variables, which were used to calcu-

late pack years. This phenomenon has been observed for

the rs1051730 variant, which showed stronger association

with objective, as compared to self-reported, measures of

smoking intensity, i.e., plasma/serum cotinine level

(Munafo et al. 2012).

In addition to the three genetic loci which we analyzed,

there are likely multiple additional COPD susceptibility

loci. Previous reports have suggested genetic determinants

of COPD based on candidate gene studies [e.g., SFTPD

(Foreman et al. 2011)], fine mapping studies [e.g., XRCC5

436 Hum Genet (2013) 132:431–441
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(Hersh et al. 2010)], GWAS of other phenotypes [e.g.,

BICD1 for emphysema (Kong et al. 2011)], and GWAS

loci of COPD which have not yet been replicated [e.g.,

CYP2A6 region on chromosome 19 (Cho et al. 2012)]. If

the evidence supporting these or other novel COPD sus-

ceptibility loci improves, mediation analysis to determine

direct versus indirect effects of smoking would be

beneficial.

Using a large population of well-characterized COPD

patients and unaffected controls, we demonstrated that

variants in AGPHD1, CHRNA3, IREB2, HHIP and

FAM13A have significant direct effects, i.e., independent of

smoking, on the development of COPD. Simultaneous

analysis of the 15q25 locus shows no significant effect of

IREB2 on COPD that is mediated by smoking, while a

variant in CHRNA3 affects COPD predominantly via

association with cumulative exposure to tobacco smoke.
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