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Abstract 
Each time a learner in a self-paced online course seeks to answer an assessment question, it takes some time for 
the student to read the question and arrive at an answer to submit. If multiple attempts are allowed, and the first 
answer is incorrect, it takes some time to provide a second answer. Here we study the distribution of such “response 
times.” We find that the log-normal statistical model for such times, previously suggested in the literature, holds for 
online courses. Users who, according to this model, tend to take longer on submits are more likely to complete the 
course, have a higher level of engagement, and achieve a higher grade. This finding can be the basis for designing 
interventions in online courses, such as MOOCs, which would encourage “fast” users to slow down. 

 
Notes for Practice 

• Response time is a type of data that complements response correctness (or score) in learning 
analytics. Similar to how response correctness data is transformed into learner’s latent ability or skill 
mastery, response time can be transformed into learner’s slowness (or, alternatively, speed). Recently, 
several learner models have been proposed that make use of response times. 

• We find a way to extract user response times on assessment questions in HarvardX courses and fit 
them using a log-normal model via likelihood maximization. The model quantifies each user’s slowness 
on assessment questions, controlling for each question’s intrinsic time-intensity. 

• We find that a user’s tendency to be slower on assessment items is correlated with higher completion 
rates, higher final grades in the course, and higher certification rates. This provides a basis for future 
interventions in online courses that would encourage fast users to slow down. 

• Our model also outputs characteristics of each assessment item, which are of interest to course content 
creators. 
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1. Introduction 
When users interact with assessment questions in an online course, the data that usually receives the most attention is the 
answers they submit, and sometimes only the correctness of those answers or their received score. But the time the user spends 
on the question is also important: it is arguably the most readily acquired data that reveals something about the process by 
which the user arrived at an answer. Analyzing these “response times” allows one to quantify some properties of the questions 
(how long does a question typically take and how much does it vary?) as well as some properties of the users (how much time 
do they tend to take in answering questions?). The question properties have implications for course design, and user speed 
may be related to the user’s ability and preferred mode of interaction with the course. Extracting such parameters necessitates 
a parametric statistical model for the response times. This is similar to how in IRT (item response theory) an item response 
function is needed for extracting question parameters and user ability from the response correctness data (Hambleton, 
Swaminathan, & Rogers, 1991; Baker & Kim, 2004). 

In this paper, we study “user slowness,” an interesting and little-used parameter that we extract from user response times 
as a measure of how long it takes a user to respond to a question. It can be interpreted in two fundamentally different ways: 1) 
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taking a longer time could be viewed as a sign of lower user mastery, and 2) it could be viewed as a sign of diligence and 
thoroughness. In the first interpretation, longer response times should be associated with lower achievement; in the second, the 
opposite is expected. Which relationship applies in reality is not a priori obvious, most likely depending on the context. If 
users solve problems slowly in a timed test, the first interpretation could be more likely, since they are under pressure to give 
answers as quickly as they can work them out with reasonable certainty. But in a self-paced1 course, such as a MOOC, the 
second could be more applicable. Our findings below demonstrate a correlation between user slowness and success in the 
course. It implies that, if course instructors track learner slowness in responses, the fast-responding learners demonstrate a 
greater cause for intervention than the slow ones. Moreover, the interpretation of slowness as thoroughness suggests causality 
rather than just correlation. If so, user slowness in a self-paced online course is a desirable quality. Furthermore, it is a feature 
that can potentially be manipulated by course instructors who could issue a recommendation to slow down to a student who is 
going fast and not performing well. 

User slowness (or any other way of including the response time data) is a valuable extra dimension in learner modelling. 
It complements the information about response correctness, normally used to estimate a learner’s state of knowledge. It can, 
for instance, expose the distinction between the mastery of a skill and the fluency of the skill application (Wang, Zhang, 
Douglas, & Culpepper, 2018). However, little information is available about using response times in a self-paced course 
environment. We might expect that the pattern of response times should be directly affected by the lack of time pressure and 
the variety of content (not just questions or tasks), as compared to a timed test, or a test in which the learner works through a 
task sequence of escalating complexity. Our study aims to fill both these gaps. 

Furthermore, there is a problem of estimating response times from the event stream. If questions are served one by one, it 
is a trivial matter of taking the difference between timestamps of question loadings and submit events. But in online courses, 
multiple questions may be served on the same page, so that the extraction of raw response times from the event stream data 
becomes a significant methodological step. Below we suggest a simple practical way of estimating response times in such 
cases. 

This paper is organized as follows: Section 2 introduces the model and Section 3 situates it among other related works. 
Section 4 describes the data to which we applied the model. Section 5 discusses how well the model describes the data, as well 
as some insights on the outputs of the model and how they depend on the correctness of the submitted answer or the attempt 
number. In Section 6, we demonstrate that user slowness, extracted by the model, can be used as a predictor of the user’s 
success in the course. In Section 7, we look into the relation of user slowness with user demographics and several other 
variables describing their activity in the course. Section 8 concludes the paper with a discussion and a look forward to future 
research. 

2. Model Description 
We assume that the response time of any user on any assessment question is a random variable such that its logarithm has 
normal distribution. This is known as a log-normally distributed variable. On a basic level, we choose the log-normal 
distribution for the same reasons one might choose the normal distribution to model any histogram with a relatively un-skewed 
bell shape. The log-normal distribution is a model of some convenience, as it is familiar, easy to work with, and has 
qualitatively correct features: no negative values in the domain, a single peak, and a long tail on the right. But there is a deeper 
reason for log-normality. The central limit theorem (covered in most introductions to probability and statistics, e.g., Grimmett 
& Stirzaker, 2001) states that, under some mild conditions, the sum of a very large number of independent random variables 
approaches normal distribution. This is the reason for the ubiquity of normal distributions in nature, because observed 
quantities are often the sum of many independent random contributions. Should such contributions be multiplicative, rather 
than additive, they would give rise to a log-normal distribution, and this seems a reasonable idea when dealing with response 
times. 

To see the multiplicative nature of the process of responding to assessment questions, suppose there is a certain basic 
response time 𝑡" for a user-question interaction (longer for harder questions and for slower users). The actual response time is 
affected by a large number of diverse factors, such as having to think about different aspects of the question, calculations, 
looking up information, fatigue, distractions, etc. The extra time taken up by any factor should scale with the difficulty of the 
question and with the overall slowness tendency of the user, i.e., with the basic time 𝑡". Therefore, it is natural to assume that 
the effect of each factor is multiplicative: a factor 𝑖 multiplies the basic response time by (1	 +	𝑟)), where 𝑟) is a random 

 
1 By “self-paced,” we mean that the users who submit answers to questions are not subject to the time pressure of a timed test, in which 
students are supposed to perform a certain number of tasks within a set time. None of the HarvardX courses used in this study employed 
such timed tests, although weekly homework deadlines existed in some courses.  
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variable (“rate”), resulting in the response time 𝑡 = 𝑡" ∏ (1 + 𝑟))) . In this setting, the central limit theorem predicts that the 
distribution of 𝑡 will approach the log-normal distribution when the number of contributing factors is large.2 

Following van der Linden (2006) and Bertling and Chuang (2015), we model the response time logarithms as independent 
normally distributed variables with probability density: 

 

𝑃.ln 𝑡123 =
𝛼1
√2𝜋

exp;−
𝛼1=

2 .𝛽1 + 𝜁2 − ln 𝑡123
=
@, 

 
where 𝑞 = 1, 2, . . . 𝑁1 is a question, 𝑢 = 1, 2, . . . 𝑁2 is a user, and 𝑡12 is the response time of user 𝑢 on question 𝑞. The user 

parameter 𝜁2 is the “user slowness.” The question parameters 𝛼1 and 𝛽1 are interpreted as “discrimination” and “time 
intensity.” The question discrimination 𝛼1 measures the size of random fluctuations of the response times around the 
expectation value: high discrimination means small fluctuations and vice versa. In other words, it is the measure of the 
question’s sensitivity to the variability in learner speed. “Time intensity” is a type of difficulty measure for each question. 
Conceptually, this model is somewhat analogous to item response theory (Hambleton et al., 1991; Baker & Kim, 2004). There 
too, the user-question interaction is modelled by combining a set of user parameters (latent ability) and a set of question 
parameters (discrimination, difficulty, and possibly guess and slip probabilities). 

In Eq. 1, there is a freedom of shifting all 𝛽’s and all 𝜁’s by opposite constants without affecting the probability distribution. 
We fix this freedom by imposing the condition ∑ 𝜁22 = 0. Thus, if the response times are measured in seconds, exp(𝛽1) is 
question 𝑞’s characteristic response time in seconds and exp(𝜁2) is the multiplicative factor by which user 𝑢’s response times 
tend to differ from those characteristic response times.3 

In this way, the model is defined by 2𝑁1 + 𝑁2 − 1 free parameters, and the number of observed values 𝑡12 scales as 
𝑁2 × 𝑁1 (more or less, since not all users respond to all questions). For substantial numbers of users and questions, the number 
of observations will be much greater than the number of parameters, making it possible to fit the parameters by maximizing 
likelihood. Namely, given the observed response times 𝑡12 in the set of observations (𝑞, 𝑢) ∈ 𝒪 we find the parameters of the 
questions and the slowness of the users via minimization of negative logarithmic likelihood:4  

 

{𝛼, 𝛽, 𝜁} = argmin R ;
𝛼1=

2
.𝛽1 + 𝜁2 − ln 𝑡123

= − ln 𝛼1@
(1,2)∈𝒪

. 
(2) 

The minimization needs to be restricted to positive values 𝛼1, whereas 𝛽1 and 𝜁2 are unconstrained. 

3. Related Work 
The use of logarithms of response times (rather than response times themselves) and of fitting the time data with a log-normal 
distribution is at least as old as 1983. In Thissen’s (1983) study, response time logarithms are combined with the parameters 
of the item response theory to model the trade-off between speed and accuracy as well as the relation between the time intensity 
of a question and its difficulty. The idea of incorporating response times (logarithms or not) into the framework of item 
response theory has been investigated.5 Inclusion of response times enriches the IRT model by tracking the fluency of skill 
application in addition to skill mastery (Wang et al., 2018). Further extra variables are also possible: Beck (2005) combined 
item response theory with response time and with question length to model student disengagement. On the other hand, there 

 
2 We assume that the conditions of the theorem are fulfilled. In practice, the most vulnerable condition of the theorem is that the variables 
𝑥) = ln(1 + 𝑟)) should be independent, or at least not universally non-independent (they could form distinct independent groups with high 
internal correlation, but then the number of such groups needs to be large), which is the mathematical expression of the assumption that the 
nature of the variables is diverse.  
3 The mean time intensity across questions equals the mean expected logarithm of response times across all questions and users: 𝑁1TU ∑ 𝛽11 =
𝑁1TU𝑁2TU ∑ (𝛽1 + 𝜁2)1,2 . 
4 The code we used for this on HarvardX data is open source and available at https://github.com/harvard-vpal/log-normal-response-time 
5 For an overview of adding response times to the Rasch model (a variant of item response theory) and an implementation of the speed-
accuracy trade-off function and conditional accuracy functions in the context of timed tests, see Roskam (1987), Roskam (1997), and 
Verhelst, Verstralen, and Jansen (1997). 
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exist studies (Schnipke & Scrams, 1999; van der Linden, Scrams, & Schnipke, 1999) that model response times without 
incorporating any response variables such as IRT parameters. The specific form of the model used here as Eq. 1 was first 
investigated by van der Linden (2006). 

It should be noted that time distributions other than log-normal have also been tried. Notably, in Scheiblechner (1979) and 
Scheiblechner (1985), the distribution is exponential: 𝑃.𝑡123 = 𝜆12 exp.−𝜆12𝑡123, where the distribution parameter is taken 
to be a sum of a question-specific parameter and a user-specific parameter 𝜆12 = 𝜃2 + 𝜖1. The implied assumption is that the 
problem-solving process is modelled as waiting for an epiphany, which is equally likely to occur at any time (probability 𝜆12𝑑𝑡 
for any infinitesimal time interval 𝑑𝑡), and the problem is submitted as soon as it happens. This is appropriate for some types 
of mental activity (e.g., recalling facts or solving riddles), but clearly not for submitting questions in an online course: here, 
the observed distributions of response times invariably have a shape that qualitatively resembles a log-normal distribution 
rather than an exponential one. Maris (1993) proposed a generalization to gamma distributions, which are a family of statistical 
distributions, whose probability density is a product of an exponential and a power-law: ∝ 𝑡[TU exp(−𝛽𝑡), where both 
parameters 𝛼, 𝛽 are assumed positive. The exponential distribution is a special case of gamma distribution with 𝛼 = 1. For 
0 < 𝛼 ≤ 1 the shape of the gamma distribution resembles that of the exponential one, but for higher values of 𝛼 the behavior 
changes and begins to resemble a log-normal one: the probability density increases from 𝑡 = 0 to form a single peak, after 
which it decays in a long tail. In particular, for 𝛼 > 2 both the density and its derivative vanish at 𝑡 = 0, as they do in the log-
normal distribution. 

A simple “binning” approach to response times is also possible, without any assumptions about the shape of their 
distribution. Lin, Shen, and Chi (2016) describe the use of Bayesian knowledge tracing (BKT), to which a binary variable 
(“quick/slow”) is added to describe the response time: for each item, the median of response times is calculated, and responses 
are labelled quick (slow) if they are below (above) the median. This is a simple way of leveraging some information about 
learner speed for estimating their mastery. 

Originally, the log-normal model of response times was developed for test items, and it continues to be applied in this 
setting. Recently, Zhan, Jiao, and Liao (2018) combined it with the DINA model for response correctness in application to the 
PISA 2012 data (computer-based high-school mathematics test). Wang et al. (2018) also studied the application to the spatial 
rotation test, in particular tracing how the slowness (latent speed) changes as the learner goes through the test. As anticipated, 
the learner’s latent speed tends to grow, and can serve as an indicator of developing fluency. To our knowledge, the model was 
first applied to assessment items in MOOCs in the unpublished work of Bertling and Chuang (2015), where the main direction 
of the investigation is in linking user slowness and IRT latent ability. 

4. Methods 
We use a non-linear conjugate-gradient routine (Dai & Yuan, 2001), implemented in the R package “Rcgmin,” to perform the 
minimization from Eq. 2 for 47 HarvardX courses from 2015–2017, which involve more than 34,000 learners and 4,000 
assessment questions in total. Among these, there were 16 STEM courses (natural and health sciences, computing, and 
programming) and 31 non-STEM courses (humanities, law, social sciences). To reduce the number of responses from non-
committed users, we restricted the data to those users who visited at least half of the chapters in the course. It is a standard 
measure in HarvardX data analysis, where such users are said to have “explored” the course (Ho et al., 2014). Further, we 
discard instances when a user submitted more than five answer attempts, as a large or even unlimited number of attempts 
might provoke a different, guess-driven behavior. We also discard questions answered by fewer than 10 users, which provides 
an insufficient amount of data. Similarly, we want to avoid users who respond to only a few questions; to this end, we impose 
a 10-question minimum here as well.6 We can call the questions and users who remain in the data after this procedure 
“qualified.” 

Because questions in HarvardX courses often allow multiple submit attempts, we attempted to fit the model in each course 
on first and second submits separately. In doing so, we take care to include second submits only if the response on the first 
submit was incorrect (second responses after correct first responses are understandably rare, but they do occur, so we remove 
them from the data and keep only the user’s first response for that question). It should be remembered that the data on second 
responses entails selection bias: not all questions allowed multiple submits; when they did, the submits occurred only after the 
incorrect first response. 

 
6 In a few courses, we found fewer than 10 questions in total, for any user, so we lowered the cut-off to the maximum encountered value. In 
such a course, we assume that an engaged user should submit all of the available questions, and in fact, a large proportion of users do. 
Simply removing all such courses from our dataset does not affect our findings. 
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Our model deals only with the times of responses, not with their correctness. Whether the response was right or wrong 
should not significantly affect the outcome of the model. In order to check that, we fitted our model separately to three groups 
of submit events: 1) all submits regardless of their correctness, 2) only correct responses, and 3) only incorrect responses. The 
first group is the intended way of applying the model; the other two are for comparison only. Repeating this process for first 
and second submits, we produce up to six model fits for each course. 

Because our interest here is in response time, the decision about how to measure this variable is critical. In principle, this 
is the difference between 1) the time the question appears on the screen and 2) the timestamp of the first submit click. The time 
the question appears can be determined by the timestamp of the user loading the question page. The challenge is that sometimes 
multiple questions are served on the same page, and because a typical user works through them in sequence, the page-loading 
timestamp of these questions will artificially lengthen the first response time for all the questions on the page except the first 
one responded to. Our strategy to resolve this problem can be described as follows: in case of multiple questions on a page, 
assume that the user starts working on a question after the chronologically last submit click for a different question from the 
same page. Namely, suppose we observe in the data that, for a given user, a group of questions has the same page-loading 
timestamp 𝑡_, and the submit timestamps are arranged and indexed chronologically as 𝑡_ < 𝑡U < 𝑡= < ⋯ < 𝑡a. These submit 
events belong to different questions, possibly with multiple submits on a question, and it is not assumed that the user works on 
questions completely sequentially (e.g., it can be that 𝑡U is the first submit on question A, 𝑡= is the first submit on question B, 
𝑡b is the second submit on question A again). If the timestamp of the first submit for one of the questions is 𝑡) (𝑖 > 0), then the 
first response time for this question is calculated as 𝑡) − 𝑡)TU.7 

Our definition of the second response time is simply the difference between the timestamps of the first and the second 
submit clicks, which assumes that the user starts thinking about the second answer immediately after seeing that that first one 
was incorrect. The learning platform does not insert a pause or an intermediate step (such as, providing a hint or modifying the 
question) before the user can make another submit. 

After preparation, the data for each of the 6 model fits (correct/incorrect/any responses on first/second attempts) in a course 
is in the form of an 𝑁2 × 𝑁1 matrix, where each row is a qualified user, each column is a qualified question, and the entries 
are the natural logarithms of times in seconds (except where data is missing). Since the measurement of second response times 
uses fewer assumptions, it may seem more reliable. However, second responses occur only when the question allows more 
than one attempt and the first response was incorrect (which in the case of a partially correct answer involves an extra 
dichotomizing step), meaning a smaller and possibly biased data sample. For these reasons, we regard first response times of 
any correctness as the most valuable subset of data. Its data matrix is guaranteed to have the biggest dimensions and the most 
data. Other matrices contain fewer observations. Convergence on the data from first responses of any correctness was achieved 
in 45 out of 47 courses, but only in 21 courses on the data from second responses of any correctness. When aggregating the 
data across courses, we include only the converged fits. Table 1 lists some parameters related to the amount of data available. 

Table 1: Dataset Parameters for First and Second Responses of Any Correctness across Courses 
 Question 
response Statistic min median max total 

 First Number of users (𝑁2) 13 567 3,055 34,105 

  Number of questions (𝑁1) 7 61 447 4,020 

  Missingness (𝑚) 0.03 0.25 0.72 N/A 

   𝑟 0.009 0.035 0.171 N/A 

 Second Number of users (𝑁2) 13 674 7,628 27,118 
  Number of questions (𝑁1) 17 63 316 2,107 

  Missingness (𝑚) 0.62 0.76 0.89 N/A 

   𝑟 0.035 0.085 0.674 N/A 

Note:  𝑵𝒖 is the number of users (rows) in the data, 𝑵𝒒 is the number of questions (columns), 𝒎 is missingness (the fraction 
 

7 We do not impose any timeout cut-off on the response times, as the model is supposed to make sense of any time-values without 
supervision. Only about 7% of first response times and 0.9% of second response times in our entire dataset exceed 24 hours. The median 
response times in the dataset are 112 seconds for first responses and 17 seconds for second responses.  
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of missing matrix entries), and 𝒓 = (𝟐𝑵𝒒 + 𝑵𝒖 − 𝟏)/(𝑵𝒖𝑵𝒒(𝟏 −𝒎))	is the ratio of the number of fit parameters to the 
number of observations. The last column provides the total numbers of learners and questions from all courses. Only the cases 
where convergence was reached are included. 

5. Assessing Model Quality 
After the fit, we check how closely our model approximates the response times and the extent of the influence of response 
correctness on the model outputs. 

The model assumes that the variables 𝑥12 = 𝛼1.ln 𝑡12 − 𝛽1 − 𝜁23 should be standard normal variables, and so we can plot 
the observed cumulative distribution (percentile curve) CDF(𝑥) vs. the cumulative distribution of the standard normal variable 
𝛷(𝑥). The result is shown in Figure 1, where we list the first four moments with respect to the origin: 𝑚p =
(1/|𝒪|)∑ .𝑥123

p
(1,2)∈𝒪  (the standard normal distribution has 𝑚U = 0, 𝑚= = 1, 𝑚b = 0, 𝑚r = 3). Although the deviations are 

noticeable, it should be kept in mind how large the range of times is: the interquartile range is from 30 to 670 seconds for first 
response times and from 6 to 44 seconds for second response times. It is clear that time-logarithms are suitable variables for 
analysis: the skewness of distribution of response times themselves is extreme, but logarithmic transformation accounts for 
virtually all of it. 

 
 

Figure 1: Comparison of the observed cumulative distribution of the values 𝒙𝒒𝒖 to the standard normal distribution 𝜱(𝒙), predicted by 
Eq. 1. The identity line (shown in dashed black) represents the ideal agreement with the model. The listed distribution moments are 

calculated with respect to the ideal mean 0. 

The curves in Figure 1 appear to form two groups based on the submit number, whereas the submit correctness has a lesser 
effect. In essence, we can focus on the data coming from first and second submits of any correctness, and use the correctness-
specific data to get the idea of the uncertainty size. The distribution of the first response times has a much smaller excess 
kurtosis and skewness than the distribution of the second response times, and almost perfect first and second moments. In all 
cases, the skewness and the excess kurtosis are positive (meaning that the sample distribution has heavier tails than the model 
predicts). 

Selecting one row or column in the data matrices gives the distributions of 𝑥12 by question or by user. To quantify how 
frequently large deviations from Eq. 1 occur, we calculate the deviations of the first four moments of the distributions by 

question from the standard normal distribution, namely the quantities 𝑑p = (𝑚p)U/p − .𝑚p
(_)3

U/p
 for 𝑘 = 1, 2, 3, 4, where 

𝑚p
(_) = (0,1,0,3) are the central moments of the standard normal distribution. Thus, 𝑑U is the mean, 𝑑= is the excess of standard 

deviation, 𝑑b is skewness, and 𝑑r is a measure similar to excess kurtosis. In Figure 2, we plot the percentile curves for these 
quantities. 
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Figure 2: Parameters of distributions observed for response time logarithms for each question. Ideal agreement with the model would mean 

all curves collapsing onto unit-step functions. In fact, the 𝒅𝟏 (mean) and 𝒅𝟐 (excess standard deviation) curves for the first submits of any 
correctness and for the first correct submits (blue and orange) are so close to the step function that the deviations are hard to notice in the 

image. 

Let us now investigate the outputs of the model: the user slowness 𝜁2 and the question parameters 𝛼1 and 𝛽1. How do they 
depend on the response correctness and on the attempt number? Before aggregating across courses, it is instructive to examine 
one course as an example. In a given course, there is some overlap in users and questions in the data of first and second 
responses of different correctness, which allows comparing the parameters 𝛼1 and 𝛽1 for the same question (or the slowness 
𝜁2 for the same user) but obtained from different subsets of data. Using a STEM course with high degree of such an overlap 
in the data as a representative example, we plot its model parameters from first responses of different correctness, and from 
first and second responses (Figures 3 and 4). Here again, submit correctness is not a major factor: the points in Figure 3 cluster 
around the 𝑦 = 𝑥 line and show substantial correlation, although the correlation of 𝛼1 always proves to be the lowest of the 
three (hence, whatever effect the correctness has, it is primarily on the degree of variability of the response times). Correlations 
between second correct and incorrect submits are lower, but otherwise the picture is similar. On the other hand, the difference 
between the models estimated on first and second submits is big (Figure 4). We expect that the typical time spent on the second 
submit is much shorter than on the first, so it is no surprise that the points for time intensity cluster well below the 𝑥 = 𝑦 line. 
More surprisingly, the discrimination tends to increase on the second responses (less variability in the second response times). 

 
Figure 3: A STEM course example. Model parameters obtained from first submits, correct vs. incorrect submits. Blue points are question 

discriminations 𝜶𝒒, multiplied by 10 for better visibility. Yellow points are question time intensities 𝜷𝒒. Green points are user slownesses 𝜻𝒖, 
multiplied by 0.5. The 𝒓 values are the correlations of values on the 𝒙 and 𝒚 axes. 
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Figure 4: A STEM course example. Model parameters obtained from first submits and second submits of any correctness. Blue points are 

question discriminations 𝜶𝒒, multiplied by 10 for better visibility. Yellow points are question time intensities 𝜷𝒒. Green points are user 
slownesses 𝜻𝒖, multiplied by 0.5. The 𝒓 values are the correlations of values on the 𝒙 and 𝒚 axes. 

While the differences between first and second submits may seem moderate in the plots, they translate into very sizeable 
time differences: in this course data, the median response time was 123 seconds on the first submit and 4 seconds on the second 
submit. 

Figures 5 and 6 show the distribution densities for 𝛼1 and 𝛽1 obtained from all converged data subsets from all courses. 
The densities are calculated by Gaussian-kernel smoothing. They reiterate the conclusions drawn from Figures 3 and 4: the 
time intensity tends to be smaller for the second submit (i.e., the second responses tend to be much quicker) but the 
discrimination is higher (although it has a broader distribution across questions). The distributions of time intensities on second 
submits are bimodal, with smaller peaks at 𝛽 = 2 for STEM and 𝛽 = 3 for non-STEM courses. Exponentiated, these 
correspond to typical response times of 7 and 20 seconds. These peaks are due to questions where users tend to make a small 
change in the answer and quickly resubmit (e.g., changing the sign in the numeric answer in a STEM course). The main 
distribution peaks lie near 𝛽 = 3.5 (exp𝛽 ≈ 33 seconds) for all courses.8 

Table 2 summarizes the correlations between model parameters, as obtained from different subsets of data. This is 
analogous to the correlation coefficients in Figures 3 and 4, but for all courses in the dataset. The observed pattern is the same. 
Slowness and time intensity are not very sensitive to response correctness (high correlation, especially on first submits), but 
the correlation between the data from first and second submits is lower. 

 
Table 2: Pearson Correlation Coefficient of Model Parameters Obtained from Different Data Subsets, All Courses 

  
User slowness 𝜁2 

Question 
time intensity 𝛽1 

Question 
discrimination 𝛼1 

 Correct vs. incorrect, 
first submits 0.656 ± 0.012 0.698 ± 0.014 0.281 ± 0.026 

 Correct vs. incorrect, 
second submits 0.605 ± 0.007 0.869 ± 0.008 0.406 ± 0.027 

 First vs. second submits, 
any correctness 0.469 ± 0.006 0.186 ± 0.018 –0.139 ± 0.019 

Note: One standard error of the correlation coefficient is shown after “±.” 
The median time intensity of a question across all courses is 5.098 and 3.155 on the first and second responses, respectively 

(of any correctness). Exponentiated, these become the user-averaged typical response times of 164 seconds and 23 seconds, 

 
8 We also repeated the data analysis using the page-load timestamp to calculate first response times, i.e., ignoring the fact that this extends 
the response times when multiple questions are served on the same page. In this case, the first response time intensity distribution also 
becomes bimodal, but for a different reason. The main peak is around 𝛽 = 8 and the secondary peak was around 𝛽 = ln(24 ⋅ 3600) ≈ 11.4, 
due to users loading a page with multiple questions and working on some of them the next day.  
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respectively. The median question discriminations on first and second responses (of any correctness) are 0.511 and 0.691. As 
a reminder, discrimination is the inverse standard deviation of the distribution of time logarithms on a given question. 
Exponentiating the inverses of these values, we find 7.08 on the first submits and 4.25 on the second. For instance, we can 
describe in rough terms (made precise by Eq. 1 and the medians of distributions in Figures 5 and 6) the situation for second 
submits as follows: after an unsuccessful first submit on a typical question, a typical user is expected to spend 23 seconds 
before submitting a second answer. The user variability is such that for most users the actual time lies in the range between 
23/4.25 ≈ 5 seconds and 23 ⋅ 4.25 ≈ 98 seconds. Obviously, this is a broad range, which after all is the reason that we choose 
time logarithm, rather than time itself, as the model variable. 

 
Figure 5: Distribution density of question discriminations 𝜶𝒒. Responses of any correctness. 

 
Figure 6: Distribution density of question time intensity 𝜷𝒒. Responses of any correctness. 

Finally, it is interesting to analyze the relationship between α_q and β_q: what part of the observed increase in α_q is due 
specifically to the second attempt on the question and what part is a simple corollary of the lower β_q (observable for quicker 
questions even on the same submit attempt)? Indeed, we find in our data (Figure 7) that on first responses β_q and 1/α_q are 
positively correlated (ρ=0.63). In other words, if a question’s response times are shorter on average, so is the multiplicative 
spread. A likely explanation is that quicker questions are not just scaled-down versions of slower ones. They are of a simpler 
nature, less open-ended or with fewer alternative solution paths, which decreases the variability in response times. 
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Figure 7: A plot of 𝜷𝒒 vs. 𝟏/𝜶𝒒, for all courses. Data from first responses of any correctness. 
 

6. User Slowness as a Predictor of Course Outcome 
Once we obtain the slowness value for each course user, we want to investigate how this variable is connected to the user’s 
success in the course. Our three main measures of user success are the final grade (a numeric score on 0-to-1 scale), course 
completion (defined as achieving a final grade not lower than the passing grade, which is set for each course by the course 
instructors), and earning the course certificate. We trained a set of mixed-effect linear regression models, one with each of 
these as the outcome variable (for an introduction to such models, see Goldstein, 2011). For the final grade (models “Grade 
1” and “Grade 2”), we fit linear models by restricted maximum likelihood; the p-values are obtained with the t-test in 
Satterthwaite’s (1946) approximation. Completion and certification are binary outcomes fitted to generalized linear models 
by maximum likelihood in Laplace approximation, with the logistic link function.9 The models allowed for random effect of 
courses, thus accounting for the diversity of courses in our data set. Our key independent variables of interest are 𝜁(U) and  
𝜁(=): user slowness, obtained from either the first or the second submits of any correctness. To control for the user’s proficiency 
in the course, we included the fraction of correct responses on the first submit (“Correctness”) and the self-declared level of 
education (“Education”). The level of education was an ordinal variable formed as follows: 0 indicates no education (<1% of 
users); 1 indicates elementary school (<1%); 2 indicates junior high school (2%); 3 indicates high school (13%); 4 indicates 
associate degree (4%), 5 indicates bachelor’s (31%); 6 indicates master’s (38%); 7 indicates PhD (7%). The results are 
summarized in Table 3. 

The effect of the education level turns out to be either small or statistically insignificant. The most important predictor in 
all three models is, unsurprisingly, the correctness fraction: people who do well on assessments are more likely to finish the 
course with a good grade. But after that is taken into account, slowness has a sizeable and positive effect, meaning that users 
who take more time to submit an answer are more likely to complete the course with a higher grade and to get a certificate. 
The coefficient on 𝜁(=) is particularly large (in models “Completion 2,” “Certification 2,” “Grade 2”), while is 𝜁(U) small or 
even negative (most pronounced in “Completion 2”). This negative effect of 𝜁(U) does not contradict the positive effects in 
“Completion 1,” “Certification 1,” and “Grade 1,” since the models with 𝜁(=) are trained on the data events when the second 
attempt was submitted after an incorrect first attempt, which is a biased subset of the full data on which the models with only 
𝜁(U) are trained. It can be interpreted as follows: if a user submitted a wrong answer on a first attempt and then made a second 
attempt at a question, it is more likely for course-completers that this happened because the first wrong answer was given 

 
9 Coefficients of logistic regression (used in the models for completion and certification) can be interpreted in terms of the outcome odds 
(defined as 𝑝/(1 − 𝑝) where 𝑝 is the outcome probability). For instance, coefficient 0.102 for 𝜁(U) in the model “Completion 1” means that, 
all other variables being equal, increasing slowness by 1 is associated with multiplying the odds of completion by exp(0.102) ≈ 1.107, i.e., 
an increase of about 11%. 
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relatively quickly (perhaps, rashly?) and the second answer was provided slowly. We have already excluded users who did not 
explore courses or interacted with few questions, so the results are not dominated by users who are not committed to learning 
and who simply click through. 

Table 3: Summary of Course Outcome Models: All Models Allow for Random Effect of Diverse Courses in Addition to 
the Predictors Listed 

 
Model Predictor St. dev. Coef. ± Std. err. 𝑝 

Completion 1: 
Completion~ζ(U) + Correctness

+ Education 

ζ(U) 1.162 0.102 ± 0.011 <10-10 

Correctness 0.366 4.098 ± 0.189 <10–10 

Education 1.289 –0.002 ± 0.010 0.865 

Certification 1: 
Certification~ζ(U) + Correctness

+ Education 

ζ(U) 1.162 0.133 ± 0.012 <10–10 

Correctness 0.366 3.065 ± 0.206 <10–10 

Education 1.289 –0.055 ± 0.011 8×10–7 

Grade 1: 
Final	grade~ζ(U) + Correctness

+ Education 

ζ(U) 1.162 0.003 ± 0.002 0.056 

Correctness 0.366 0.633 ± 0.022 <10–10 

Education 1.289 0.001 ± 0.001 0.384 

Completion 2: 
Completion~ζ(U) + ζ(=) + Correctness

+ Education 

ζ(U) 1.083 –0.113 ± 0.018 5×10–10 

ζ(=) 1.046 0.515 ± 0.021 <10–10 

Correctness 0.261 3.495 ± 0.276 <10–10 

Education 1.243 0.008 ± 0.014 0.567 

Certification 2: 
Certification~ζ(U) + ζ(=) + Correctness

+ Education 

ζ(U) 1.083 0.005 ± 0.018 0.801 

ζ(=) 1.046 0.334 ± 0.019 <10–10 

Correctness 0.261 2.156 ± 0.289 <10–10 

Education 1.243 –0.032 ± 0.015 0.029 

Grade 2: 
Final	grade~ζ(U) + ζ(=) + Correctness

+ Education 

ζ(U) 1.083 –0.022 ± 0.002 <10–10 

ζ(=) 1.046 0.068 ± 0.002 <10–10 

Correctness 0.261 0.545 ± 0.031 <10–10 

Education 1.243 –0.001 ± 0.002 0.490 

7. User Slowness in Relation to Other User Variables 
We explore the correlation of user slowness with other user variables available to us, again by fitting mixed-effect linear 
models with random effect of courses, but this time using slowness as the outcome variable. Some of the predictor variables 
are the descriptors of the level of engagement in the course: number of videos viewed in the course (“Videos”), number of 
“play video” clicks (“Play clicks”), and the number of forum posts (“Posts”). We also add two demographic variables: the 
self-reported level of education (“Education,” same as we used before) and age at the start date of the course (“Age”). The 
mean age of users in our data was 38 years, with a standard deviation of 15 years. 

Because different courses contain different numbers of videos and encourage forum use to different degrees, we normalized 
the variables “Videos,” “Play clicks,” “Posts” to unit mean value across users in each course prior to fitting the model. 
Furthermore, to make the coefficients of the model easier to interpret as correlations, we rescale all the variables in the model 
to unit variance within each course. The results are summarized in Table 4. 
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Table 4: Summary of User-Slowness Models 
Model Predictor Coef. ± Std. err. 𝑝 

Slowness 1: 
ζ(U) ~Education + Age + Videos +
Play	clicks + Posts 

Education –0.015 ± 0.009 0.093 

Age 0.112 ± 0.009 <10–10 

Videos 0.044 ± 0.009 8×10–7 

Play	clicks 0.129 ± 0.007 <10–10 

Posts 0.086 ± 0.008 <10–10 

Slowness 2: 
ζ(=) ~Education + Age + Videos +
Play	clicks + Posts 

Education –0.011 ± 0.011 0.345 

Age 0.195 ± 0.011 <10–10 

Videos –0.042 ± 0.011 2×10–4 

Play	clicks 0.074 ± 0.009 <10–10 

Posts 0.083 ± 0.011 <10–10 
 

The level of education turns out to have no significant effect on slowness. But we see that slowness has a mild positive 
correlation with the user’s age and, in case of slowness on the first attempt, with the number of “play video” clicks, which 
implies that users who take longer on assessment questions also have a tendency to pause-and-play videos more. 

The overall conclusion is that greater slowness is associated with higher achievement (measured by final course grades) 
and engagement (measured by completion, certification, and watching videos). Moreover, there is a small positive correlation 
of slowness with user age but not with level of education. 

8. Discussion and Future Work 
The described log-normal model of response times can be used to estimate the characteristics of both the learners (slowness) 
and the assessment questions (discrimination and time intensity). In contrast to earlier findings in similar models as applied to 
test data, we find that in self-paced online courses from our dataset that higher user slowness is linked to higher achievement 
levels: students who take their time tend to do better. Since slowness (or some other metric reflecting learner response times) 
can be tracked by the course instructor in the course analytics in addition to other performance metrics with the goal of flagging 
struggling learners, our result suggests that faster and low-performing learners are of greater concern than slower ones. We 
also find that user slowness and time intensity of questions can be estimated from response times regardless of response 
correctness, since the separate estimates from correct and incorrect responses turn out to be strongly correlated. 

It is worth noting that the response times, which we model in this work, are distinct from the concept of time on task, which 
is much harder to estimate, or even define precisely (Cetintas, Si, Xin, & Hord, 2010; Grabe & Sigler, 2002). It is not necessary 
to assume that the response time is spent entirely in the “on task” mode. In fact, we assume (although this is not a required 
assumption either) that distractions are one of the sources of variability in response times. 

The question characteristics, extracted from the model, may be useful in course design. Questions are commonly 
transferred, with no or minimal alterations, from one version of a course to the next. Examining the time intensity and 
discrimination of each question in previous iterations of the course can alert instructors to questions that are outliers either in 
time intensity or in discrimination, which may suggest that certain questions are too hard or too easy. 

The discovered relation between user slowness and success brings up several questions, which we hope to investigate in 
future, that have to do with the practice of online learning. The most straightforward one is to track learner slowness and design 
an intervention for those who move fast without achieving high assessment scores, suggesting that they should take more time 
on questions. A/B testing with such an intervention would clarify the causal direction of the relationship between slowness and 
success. Another interesting research question is to clarify the possible reasons, and their relative importance, for users taking 
an unusually long or short time on a question. Learners can be asked to select from a list of possible explanations in a survey. 
A third future direction of study is the application of our model to course design. The time-intensity (and, possibly, 
discrimination as well) of assessment items offer the course team insight into the way learners interact with the assessment. 
For instance, items that are outliers in terms of time-intensity would be flagged. So, if a question intended by the authors as a 
quick check turns out to have a large time-intensity, that question could be reviewed or even replaced. 
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