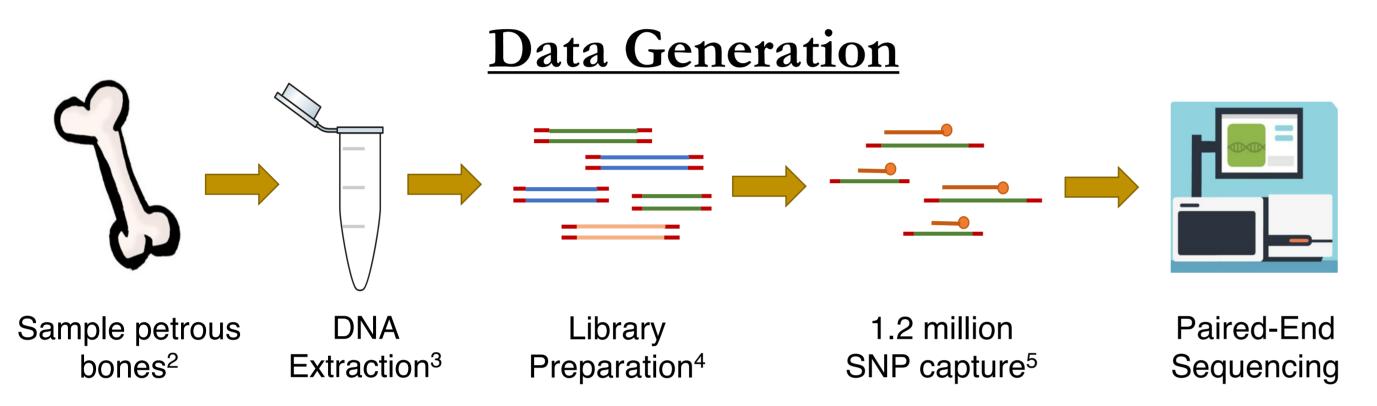
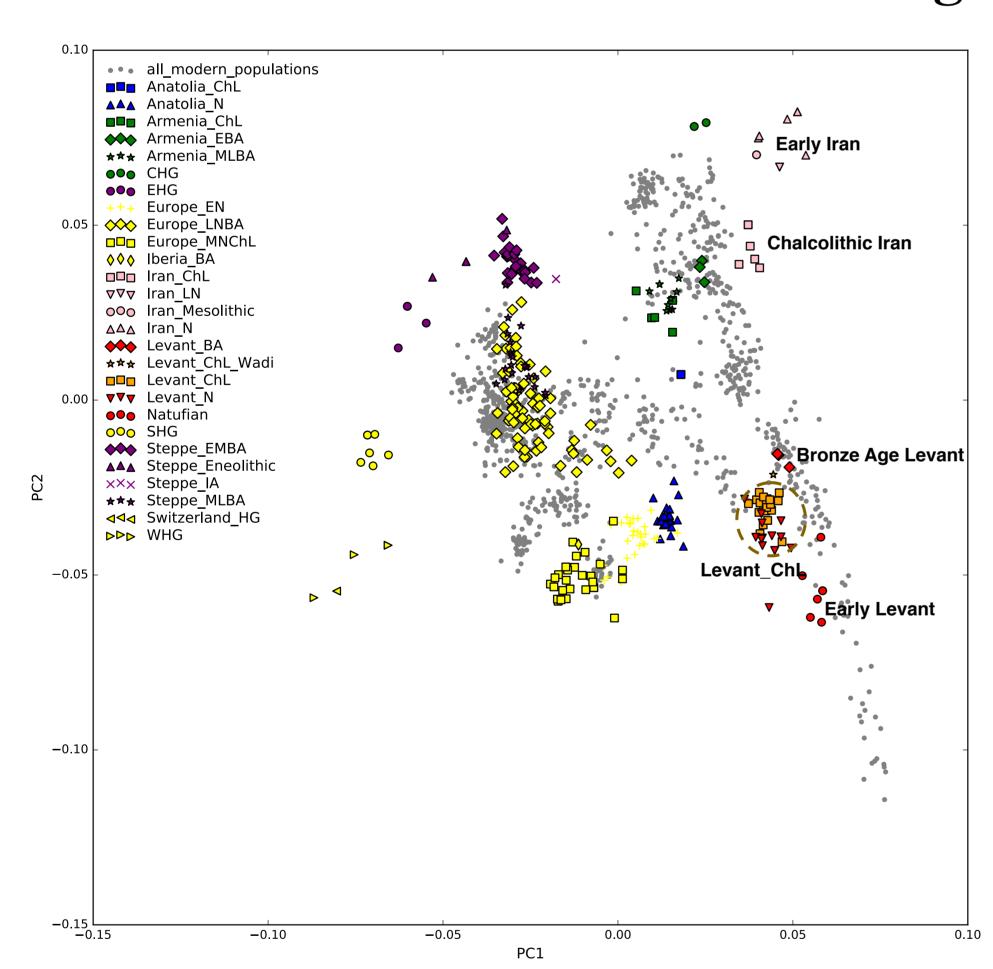
The Role of Migration in Cultural Changes during the Chalcolithic period in the Levant


<u>Éadaoin Harney</u>*1, Hila May*2, Israel Hershkovitz2, Dina Shalem3, Nadin Rohland4, Swapan Mallick⁴, Iosif Lazaridis⁴, Nick Patterson^{4,5} and David Reich^{4,5,6}

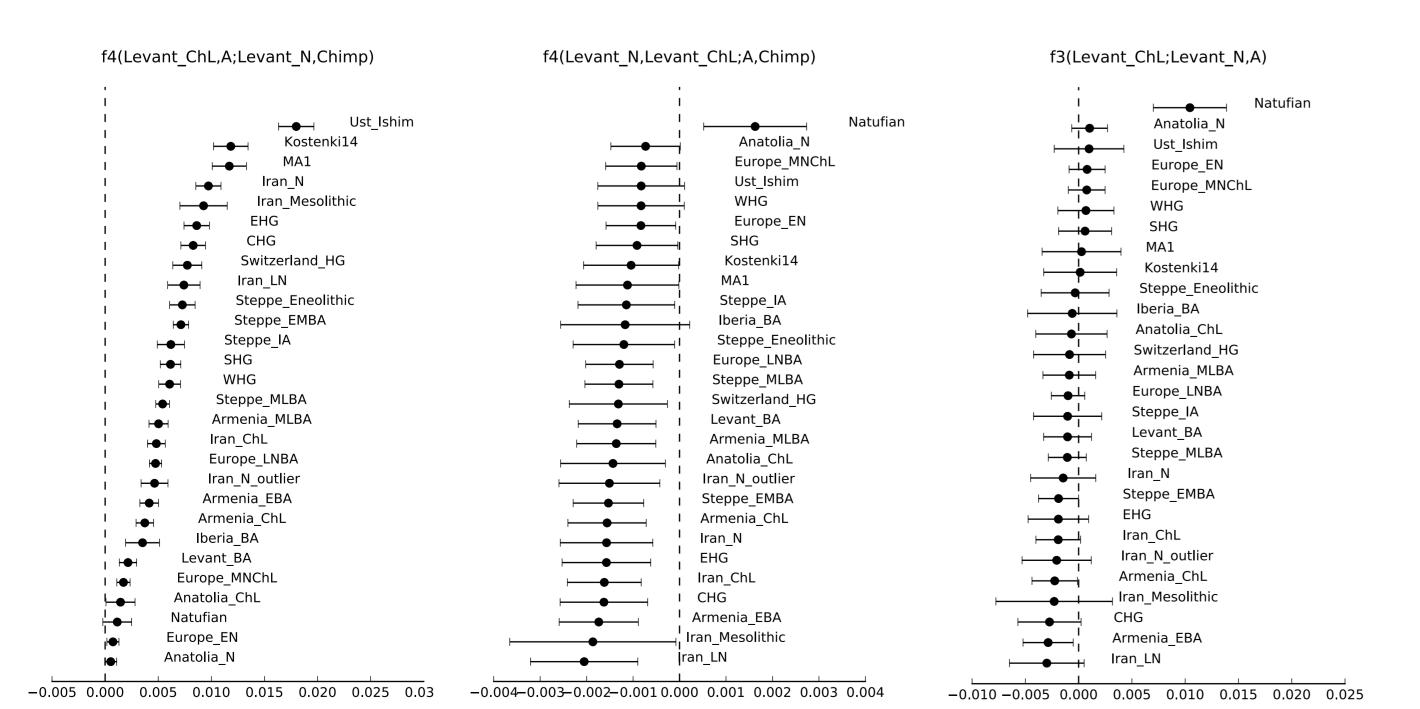
¹Organismic and Evolutionary Biology, Harvard University ²Anatomy and Anthropology, Tel Aviv University ³The Institute for Galilean Archaeology ⁴Genetics, Harvard University ⁶Howard Hughes Medical Institute

Background and Aims

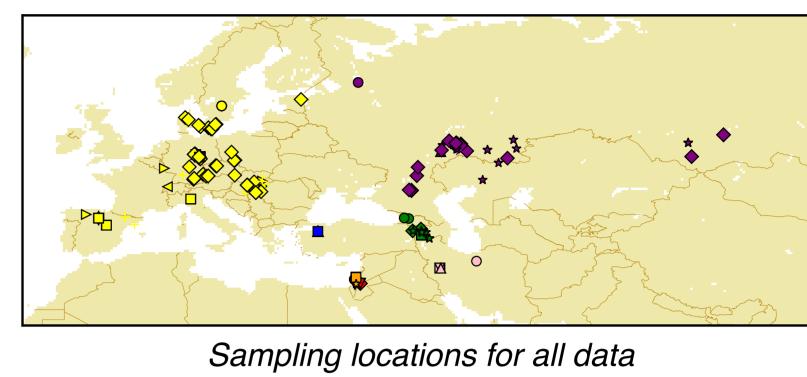
We report on the genetic history of a Chalcolithic population from Peqi'in Cave in Northern Israel, dating to 4,500-3,500 BCE. Archaeological excavations at Peqi'in Cave revealed dozens of large ossuaries, containing an estimated total of 600-1,000 individuals¹. A number of the artifacts in Peqi'in are unique to this site, but there are also similarities in the artifact styles to contemporary and earlier cultures from Anatolia and Iran, and differences from earlier Levantine sites. This study aims to:

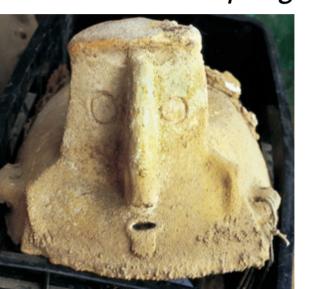

- Determine the genetic relationships between the individuals buried in Peqi'in Cave and other ancient groups.
- Test the hypothesis that the Chalcolithic culture of the Levant may have been affected by movements of people from outside the region.

Ancient DNA data from 22 individuals from Peqi'in Cave was recovered.


- Population name: Levant_ChL
- Average of 0.65x coverage & 340,047 SNPs hit at least once
- sample excluded due to IBD
- Combined with the dataset from [6]

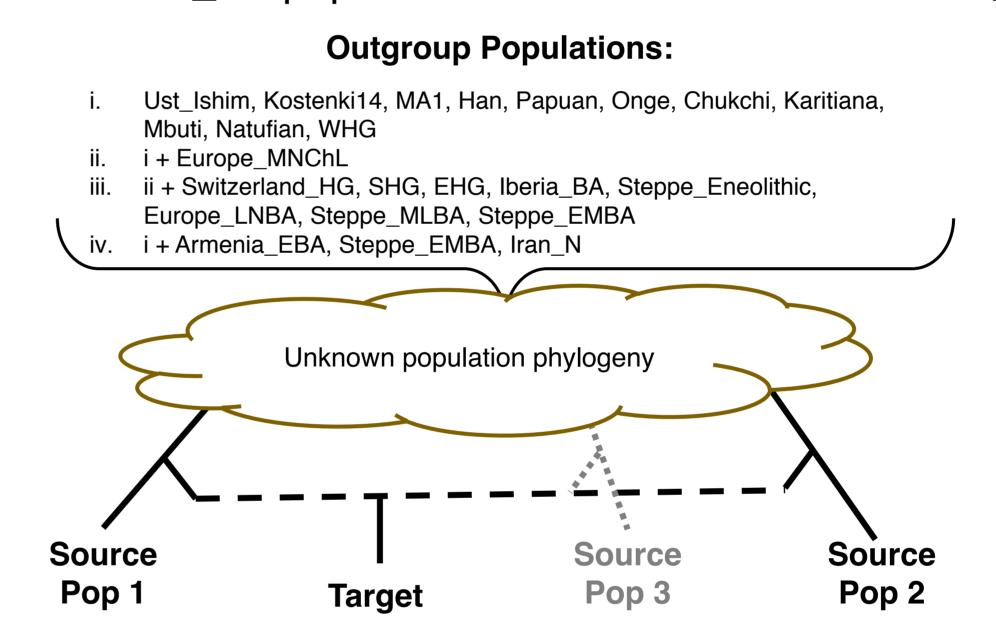
PCA shows Levant ChL falls on genetic cline




Levant_ChL falls along a gradient of populations from Early Levant to Early Iran. This may reflect an admixture event, as the Levant Bronze Age (Levant_BA) has been shown to be admixed between Levant Neolithic (Levant_N) and Iran Chalcolithic (Iran_ChL) like populations⁶.

f-statistics indicate Levant ChL is admixed

 f_{4} -statistics indicate that Levant_ChL and Levant_N are closely related (left), but that Levant_ChL possesses additional ancestry related to non-Levantine populations (middle). Negative f_3 -statistics confirm that Levant_ChL is admixed (right).



Peqi'in Cave, Israel

Artifacts from Peqi'in Cave

qpAdm identifies plausible admixture models

qpAdm is used to identify plausible admixture models and estimate admixture proportions for Levant_ChL. Additionally, we attempt to model the Levant_BA population as descended from Levant_ChL.

Source Populations

Iran_Mesolithic **Anatolia ChL** Anatolia_N Iran_N Armenia ChL Levant_BA Armenia_EBA Levant_ChL Armenia MLBA Levant_N Natufian CHG SHG EHG Europe_EN Steppe_EMBA Steppe_Eneolithic Europe_LNBA Europe_MNChL Steppe_IA Iberia_BA Steppe_MLBA Switzerland_HG Iran_ChL

*For 3-way admixture models, source population combinations are restricted to those that contain at least 2 bolded populations.

Iran_LN

WHG

Target: Levant_ChL

Levant_ChL is modeled as the result of a 2- or 3-way* admixture between all combinations source populations, with i outgroup populations

Source Populations						Admixture Proportions			
Target	Source 1	Source 2	Source 3	Outgroup Pops	p-value rank = 2	Source 1	Source	Source 3	
Levant_ChL	Levant N	Iran ChL	Anatolia N	i	0.0578	0.60±0.04	0.16±0.03		
Levant_ChL	-	-		ii	0.087742	0.60±0.03	0.16±0.02	0.25±0.03	
Levant_ChL	Levant_N	Iran_ChL	Anatolia_N	iii	0.181919	0.58±0.03	0.17±0.02	0.25±0.03	
Levant_ChL	Levant_N	Iran_ChL	Europe_EN	i	0.079538	0.64±0.03	0.19±0.03	0.17±0.03	
Levant_ChL	Levant_N	Iran_ChL	Europe_EN	ii	0.044794	0.64±0.03	0.16±0.02	0.20±0.03	

2-way models: all rejected 3-way models: 2 plausible

 Additional outgroups are included to identify best model

Target: Levant_BA

Levant_BA is modeled as the result of a 2-way admixture between either Levant_N or Levant_ChL and another source, with i outgroup populations.

	Admixture Proportions					
Target	Source 1	Source 2	Outgroup Pops	p-value rank=1	Source 1	Source 2
Levant_BA	Levant_N	Iran_ChL	i	0.987662	0.55±0.03	0.451±0.03
Levant_BA	Levant_N	Iran_ChL	iv	0.513973	0.57±0.03	0.43±0.03
Levant_BA	Levant_ChL	Iran_ChL	i	0.238498	0.71±0.04	0.29±0.04
Lovent DA	Lavant Chl	Iron Chi	i.,	0.014002	0.72±0.02	0.27±0.02

Best plausible model for each case shown

 Inclusion of additional outgroups excludes all Levant_ChL models

qpWave supports 3 sources of ancestry in the Levant

qpWave is applied to determine the number of source populations required to model Levant_N, Levant_ChL, and Levant_BA with i outgroups

199.278 35.155 0.000

A minimum of three source populations (rank = 2) are required

Conclusions

We find that the individuals from Peqi'in derive ~58% of their ancestry from populations related to those of the local Levant Neolithic, ~17% from populations related to the Iran Chalcolithic, and ~25% related to the Anatolian Neolithic, supporting the hypothesis that this population was formed in part by migration from the North. We show that population turnover continued after the Chalcolithic, as the population from Peqi'in did not contribute to later Levantine populations from the Bronze Age.

References

(1) Gal et al., Atiqot, 1999, 37(1):16 (2) Pinhasi et al., PLOS ONE, 2015, 10(6) (3) Dabney et al., PNAS, 2013, 110(39):15758-15763 (4) Rohland et al., *Phil. Trans. R. Soc.* B, **2015**, 370(1660):20130624 (5) Mathieson et al., Nature, **2016**, 528(7583):499-503 (6) Lazaridis et al., Nature, **2016**, 536.7617:419-424