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Abstract—We present a new parallel-in-time method de-
signed to reduce the overall time-to- solution of a patient-
specific cardiovascular flow simulation. Using a modified
parareal algorithm, our approach extends strong scalability
beyond spatial parallelism with fully controllable accuracy and
no decrease in stability. We discuss the coupling of spatial and
temporal domain decompositions used in our implementation,
and showcase the use of the method on a study of blood flow
through the aorta. We observe an additional 40% reduction in
overall wall clock time with no significant loss of accuracy, in
agreement with a predictive performance model.
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I. INTRODUCTION

Computational fluid dynamic (CFD) simulations of bio-

logical flows are used for identification of regions of the

circulatory system at risk for the development and progres-

sion of heart disease and have helped yield deep insights

into the underlying mechanisms that experimental measure-

ments alone could not have achieved (e.g. [1], [2], [3], [4],

[5]). Because some circulatory phenomenon manifest over

relatively long time scales, reducing the time-to-solution of

these simulations is an important challenge. Reducing the

run time of these simulations is a more challenging problem

than enabling the modeling of larger fluid systems. There

is a large amount of prior art regarding the exploitation of

spatial parallelism that can be leveraged when increasing the

domain size of the simulated fluid that is not available when

extending a simulation in time (c.f. [6], [7], [8], [9], [10]).

For many fluid simulations, the parallel efficiency saturates

as soon as the size of the fluid domain drops below a

certain threshold. After this point, adding additional cores no

longer improves the overall time-to-solution. Decomposing

the problem in the temporal domain as well as the spatial

can assist in overcoming this inherent strong scaling limit

and significantly reduce the wallclock time if sufficient

computational resources are available.

This paper presents a method for reducing the overall

time-to-solution of a patient-specific cardiovascular hemody-

namics simulation that achieves high-accuracy results using

a coupling decomposition process. Unlike previous work,

our approach exploits both temporal and spatial domain de-

composition while maintaining a stable explicit fluid solver.

We present initial performance and error analysis of applying

the method to the computational hemodynamics application,

HARVEY [11]. We will focus on an adaptation of the

parareal algorithm first introduced by Lions et al., which

combines independent coarse and fine resolutions in time to

reduce the wallclock time of real time problems [12]. The

fine representation is more computationally expensive and

is run in parallel on multiple time intervals to refine the

result of that individual interval. The result for the coarse

resolution is calculated serially and used to initialize the fine

representation, which is in turn calculated in parallel. The

coupling of the two iterators provides a predictor-corrector

scheme that iteratively refines the initial values of the fine

solver and completes the refinement (correction step) in

parallel. The algorithm consists of a series of these iterations

that reach completion when the results converge within a set

tolerance.

One of the main contributions in this paper is the devel-

opment of a multilevel spatio-temporal coupling (MSTC)

that enforces a hierarchical decomposition of the default

communicator and allows seamless communication between

the spatial and temporal decompositions. Introducing such a

scheme into a lattice Boltzmann code such as HARVEY

requires computational and algorithmic developments to

address challenges related to the accuracy, scalability, and

stability of coupling these two fluid representations. We

demonstrate the ability of our method to not only efficiently

produces accurate results, but to recover time-dependent

phenomena like the pulsatile flow imposed by the beating

of the heart. Using 65,536 cores of the IBM Blue Gene/Q

supercomputer, we show a strong correlation between the

predicted and observed parallel speedup and achieve a 40%

reduction in runtime as compared to the optimized spatial

scaling result.
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II. RELATED WORK

Parallel-in-time methods have been investigated as ways

to go beyond the strong-scaling limit of many applications.

If the hardware is available, the combination of a coarse

and fine solver can converge and enable a shorter time-to-

solution for models of interest. The parareal algorithm was

first proposed in 2001 [12] and solidified in the predictor-

corrector format shortly after (e.g. [13], [14]). It converges

with the same accuracy as would be achieved with the

expensive or fine iterator. Recently, alternate parallel-in-time

methods have been propose such as the parallel implicit

time-integration algorithms (PITA) in which parallelizes the

time-loop of a time-dependent PDE solver without impacting

the serial compo (c.f. [15],[16]). Other studies use intertwin-

ing the iterations of parareal with the spectral deferred cor-

rections, the Parallel Full Approximation Scheme in Space

and Time (PFASST) ([17], [18]). Speck et al. demonstrated

a speedup of 8× in addition to the spatial speedup on up to

294,912 cores [19].

In this paper, we focus on adapting the parareal algorithm

to enable space-time parallel simulation of computational

fluid dynamics (CFD). Previous work has shown the po-

tential for such algorithms in CFD applications like in

recovering time dependent behavior such as the development

of turbulent flow [20], however, most of the literature em-

phasizes the algorithmic aspects of the time-parallel schemes

and there are only a few examples of studies into the

efficiency of spatio-temporal coupling. There has been some

research into the use of the parareal algorithm combined

with spatial decomposition for a Navier-Stokes solver on up

to 2,048 cores modeling flow passed a cylinder [21], but

there are no studies that we are aware of investigating the

coupling of spatial and temporal parallelism at larger scales

for CFD for complex flow in a real 3 dimensional problem.

Here to model patient specific cardiovascular hemody-

namics, we employ the lattice Boltzmann method (LBM),

which we will discuss in the following section.

III. THE LATTICE BOLTZMANN METHOD

Heart disease is still one of the leading causes of death in

the western world. In 50% of these cases, sudden cardiac

death is the first manifestation of the disease [22]. Over

the last few decades, physicians have linked key properties

to the likely development and progression of heart disease

but finding methods to identify and track these quantities

for individual patients remains an outstanding question.

There is a growing literature base of studies of modeling

hemodynamic flows in patient-specific arterial geometries

(c.f. [3], [6]); however, the need to model both a large fluid

system and a long time domain poses significant challenges.

Our approach is based an algorithm that can efficiently

model flow through complex geometries such as those found

in the coronary arteries or the aorta. In order to capture

the flow patterns accurately and efficiently, it is necessary

to use a method that handles complex boundaries well. To

this end, we use an alternative to the traditional Navier-

Stokes equations, the lattice Boltzmann method (LBM)

([23], [24]). The LBM is a low-Mach, weakly compressible

solver that recovers hydrodynamic behavior in the limit of

small Knudsen numbers. A key advantage is the use of

simplified kinetic models that macroscopic quantities like

shear stress and pressure can be calculated without the need

of body-fitted grid or an expensive Poisson solver. Such

explicit finite difference methods are natural to parallelize

and easy to implement at the tradeoff of small time steps

and use of a high resolution discrete grid. The high level of

scalability possible on massively parallel systems with the

LBM (e.g. [7], [25], [26], [27]) makes it a strong option

for large patient-specific blood flow simulations. Relying on

such an explicit solver enables a the implementation of a

spatio-temporal decomposition scheme as will be discussed

in later sections.

The LB formalism comes from kinetic theory and is

a minimal form of the Boltzmann equation based on the

collective dynamics of fictitious particles that represent a

local ensemble of molecules moving between the points

of a regular Cartesian lattice. The fundamental quantity is

the particle distribution function, denoted fi(�x, t), which

represents the probability of finding particles traveling with

velocity ξ at lattice node x and at time t. The velocity space

is discretized and the fluid dynamics are resolved through

the evolution of fi(�x, t) with time as:

fi(�x+ �ciΔt, t+Δt) = fi(�x, t)− ωΔt[fi(�x, t)− feq
i (�x, t)]

(1)

where feq
i (�x, t) is the equilibrium distribution and ω is the

dimensionless relaxation parameter (related to the frequency

of particle collisions) [24]. In this work, we use the 19-speed

cubic D3Q19 lattice connecting each lattice point to its first

and second neighbors [28]. There are two key components

to the algorithm: advection and collision. The advection step

propagates the fluid particles along the discretized velocity

paths defined by the lattice.

Collisions are calculated via a relaxation toward local

equilibrium, as illustrated in the right hand side of Eq.(1).

We use the Bhatnagar-Gross-Krook (BGK) collision op-

erator with a single relaxation time scale [29]. The local

equilibrium is the result of a second-order expansion in the

fluid velocity of a local Maxwellian with speed �u and is

defined by:

feq
i = wiρ

[
1 +

�ci · �u
c2s

+
1

2

(
(�ci · �u)2
(c2s)

2
− u2

c2s

)]
(2)

where rho denotes the density, �u the average fluid speed,

cs the speed of sound in the lattice, and wi the weights

attributed to each discretized velocity as determined by the

lattice structure. A no-slip boundary condition is enforced

at the walls through a full bounce back scheme.
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While all of the key data such as density, velocity, and

pressure can be calculated based only on data from nearest

neighbors, one drawback is that the LBM requires many

small time steps as limited by CFL-type conditions. These

time steps, however, are extremely efficient and make the

method amenable for parallel implementations [11].
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Figure 1. Speedup of LBM simulations using HARVEY for a range of fluid
system sizes on up to 65,536 cores of the IBM Blue Gene/Q supercomputer.

A. Spatial Scaling Limit

While the LBM has been shown to scale with high effi-

ciency up to 294,912 cores [7], there is a limit to the strong

scaling potential when using only spatial decomposition.

As more cores are used, fewer and fewer fluid nodes are

allocated per code. As this ratio diminishes, the cost of the

internode communication starts to overwhelm the runtime

and reduce the scaling efficiency. In this work, we employed

an even spatial decomposition in which the bounding box of

the fluid was broken up into small cubes of equal sizes by

evenly splitting each dimension. Fig. 1 shows the speedup

achieved on up to 65,636 cores of the IBM Blue Gene/Q

supercomputer at Livermore National Laboratory for fluid

systems ranging in size from 5-100 million fluid nodes. As

shown, for fixed-size fluid systems, beyond a certain point,

adding more cores has no benefit and can actually slow

down the simulation. As the number of fluid nodes per core

drops below 5000, the time spent in communication starts

to overwhelm the computation resulting in lower overall

speedup. Fig. 2 highlights this drop-off showing a decrease

in parallel efficiency for three different LBM codes. All of

the scaling studies were completed on IBM Blue Gene/P

supercomputers. The data for the second two applications

were obtained from [7] and [9] respectively. While the

second two codes included red blood cell modeling as well

as the CFD component, all three demonstrate the same

overall decline in efficiency corresponding to the number

of fluid nodes per core. This is the intrinsic spatial scaling

limit and will serve as the baseline for our parallel spatio-

temporal simulations.
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Figure 2. Parallel efficiency in terms of cores per fluid node for three
different lattice Boltzmann codes. HARVEY is the application presented
here. The other two codes include red blood models and the scaling studies
were also completed on IBM Blue Gene/P supercomputers (c.f. [7], [9]).

IV. PARAREAL ALGORITHM

To achieve temporal decomposition, the entire time in-

terval to be covered by the simulation is divided into N
separate intervals of equal size, [tn−1, tn], n = 1 . . . N ,

with n referring to the nth time step. If there is no spatial

parallelization, N is set to the number of cores in the

system. An iteratively refined estimation of the result for

each interval is calculated, denoted UK
n+1 are calculated

where K is the parareal iteration number. For each parareal

iteration, K, U0
n is initialized through the serial application

of the coarse solver for the full time domain, 0 . . . , tN . For

each K > 0, the initial estimation, U0
n, for the time interval

handled be each processor is refined by simultaneously

running the fine solver for each time interval. A serial

correction step is applied by calculating

UK+1
n+1 = G(tn+1, tn, U

K+1
n )+F(tn+1, tn, U

K
n )−G(tn+1, tn, U

K
n )

(3)

and propagating the result to the next processor in line.

Note that the second and third terms on the right-hand side of

this expression have been obtained in previous iterations and

steps. Convergence is checked through the condition | UK
n −

UK−1
n |< ε where ε is the predetermined tolerance value.

If the difference between the solutions for two successive

parareal K iterations is smaller than ε for all time intervals,

the parareal cycle completes ([30], [31].

We use a pipelined approach in which the fine solver

begins as soon as the coarse approximation is available for

the time interval to be calculated by each core, instead of

waiting for all of the cores in the individual communicator to

complete the G calculation [17], [32]. This ensures that each

step is completed as quickly as possible and further reduces
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the time-to-solution by removing the need for processors to

remain idle while waiting for all of the other processors to

finish calculating G. It should be noted that this scheme is

only advantageous when convergence occurs faster than a

serial run of the fine iterator would take [21].

V. MULTILEVEL SPATIO-TEMPORAL COUPLING

To optimally use the available hardware of massively

parallel supercomputers and ultimately minimize the runtime

of the applications in question, we posit that leveraging both

spatial and temporal domain decomposition is needed for

fixed-size problems. We introduce a general approach for

coupling these decomposition strategies through a multi-

level spatio-temporal coupling (MSTC) scheme. This is

similar to communicator breakdown introduced by Grinberg

et al. in [8] to enable the coupling between physical models.

The key advantage of the MSTC architecture is the hierarchi-

cal decomposition of the default World communicator into

sub-communicators to enable efficient coupling of parallel

decomposition in both time and space. This decomposition

is handled by splitting the World communicator into N
different sub communicators to handle the different time

intervals of equal size. This is handled in a topology aware

manner assigning cores that are physically near each other

to the same Tier 2 (T2) group of cores. If no temporal

decomposition is being used, all cores are assigned to the

same T2 group. These groups are further subdivided through

spatial decomposition strategies defining Tier 3, T3, non-

overlapping groups. The core kernel being modeled in this

framework would be solved within T3 groups.

Figure 3. Multi-level Spatio-Temporal Interface breakdown. For Tier 2, the
World communicator is broken into temporal into separate communicators
handling temporal intervals. For Tier 3, each T2 group is broken up
spatially. Coarse and fine solvers run across T3 groups. The red arrows
indicate the tightly coupled message passing with the LBM and the dashed
lines indicate the communication between T2 groups for the one core of
each.

Fig. 3 shows the layout of the MSTC. At T2, new

communicators are introduced splitting the cores into groups

handling each time interval and at T3, these are each

further decomposed to handle specific spatial regions. The

arrows in T3 give a view of the communication patterns

involved with MSTC. The red bi-directional arrows indicate

the tightly coupled interaction between cores in the same

T3 group. This is defined by the kernel in question and

can involve either point-to-point or global communication

across all cores within that group. The kernel here defines

both the coarse and fine solvers that will be executed within

each T3 group. The dashed arrows indicate the point-to-

point communication between T2 groups. These provide

the interaction between temporal intervals in which the

core handling a set spatial region for a time interval will

inform the estimation of the corresponding core that handles

the same spatial region in the next time interval. This is

implemented through point-to-point communication between

cores that have the same T3 ranks. The communication

shown here simply indicates messages for cores of rank 0 in

each, but similar message patterns occur for each rank. The

bulk of the computational time for the simulation actually

occurs within the T3 groups themselves and the message

passing between T2 groups only occurs N times. As the

calculations in each T3 group need to proceed in sync,

blocking receive protocols are leveraged to ensure this. The

pipelined nature of the parareal algorithm though allows

the use of non-blocking sends to minimize communication

overhead.

The T3 groups are implemented as input variables to the

coarse and fine solvers, so one could envision future methods

where we would redefine the communicators throughout the

coarse of the simulation allowing processors that would

remain idle from K=0 time interval T communicators re-

defining the late communicators, joining them and providing

further spatial scaling (up to the limit of coarse).

VI. SPACE-TIME PARALLELISM FOR THE LBM

To define our coarse and fine solvers, we use a two-

level hierarchical refinement of coarse and fine grids in

which a coarse grid covers the entire spatial domain and a

finer grid is superimposed [33]. The coarse iterator models

fluid moving using the coarse grid and similarly the fine

iterator is solved across the fine grid. Unlike traditional mesh

refinement methods, we cover the entire spatial domain with

both the coarse grid and an overlapping superimposed finer

grid. Each iterator models the fluid on its corresponding grid

points separately for the entire spatial domain. To ensure

accuracy and minimize communication overhead, we map

the coarse and fine grid points for the same spatial region

to the same core.

In the LBM, the resolution of the imposed grid spacing

determines the time step size and contributes to the calcu-

lation of the kinematic viscosity of the fluid. The size of a

time step, dt, is related directly to the square of the grid

resolution, dx in the LBM: dt = dx2(ν/νo) where ν is

the viscosity of the fluid in dimensionless lattice Boltzmann

units and νo is the viscosity in terms of physical units
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(m2/s). The kinematic viscosity of the fluid is determined

as v = (2/ω − 1)dx · (c/6) where dx is the lattice spacing

and c = dx/dt. It is the impact on these two quantities that

makes the adaptation of parareal for the LBM a challenging

task and not a straightforward implementation. The coupling

for the fluid model on the coarse and fine grid introduces

potential accuracy and stability issues to the method that

need to be addressed.

As in our initial studies applying simply temporal de-

composition to laminar flow in a tube [34], we use a

local second-order refinement solution for coupling between

the grids that relies on different relaxation parameters and

lattice spacing to transition between the grids. The relaxation

parameter ω in Eq. (1) must be rescaled to keep the viscosity

constant across both the coarse and fine grids to ensure a

stable coupling mechanism [33]. We redefine ω as:

ωf =
Δxc

Δxf

(
ωc − 1

2

)
+

1

2
,

where Δxc and Δxf are the spatial discretization size

for the coarse and fine grids, respectively, and ωc and ωf

are the corresponding relaxation parameters [35]. This both

addresses the stability concern and imposes an upper bound

on N by requiring ωc to remain close to 2 and ωf to

be greater than 1 [33]. Moreover, the use of this modified

definition of ω for each grid imposes a finite limit on the

disparity between the two iterator’s resolutions.

Building on this we can then adapt the MSTC to this

locally embedded version of the LBM using the following

steps:

0. (K = 0)
Initialize T2 and T3 groups.

Define neighbors between T2 groups.

In each T3 group, initialize the coarse estimation

with serial LBM simulation for the time domain

[tn−1, tn] for the assigned spatial region.

Interpolate to initialize the fine solver.

For (K = K + 1)

1) F is across all T3 groups starting with the initial

values provided by the previous iteration for tn−1

to determine the distribution function at tn for its

respective interval of time and space.

2) In each T3, G is applied. The correction to F is

calculated via Eq. (3).

3) This result is coarsened and propagated between T2
groups to update the initial conditions for G.

4) Convergence is checked: if all intervals of time have

converged, exit the cycle; else, return to Step 1.

The key components to this scheme are the steps required

to link the two different grid resolution levels in the coarsen-
ing and the interpolation steps. On each core, a coarsening

function in which the distribution function at each velocity

for the fine grid is averaged and rescaled is required to

move data between the two grid levels. This operates on

conserved values and introduces no further truncation error.

Similarly, an interpolation method is required to address the

new lattice sites required by the fine iterator. It is in both

of these functions that the rescaling of ω is employed to

maintain a constant kinematic viscosity across the spatio-

temporal decompositions.

To enable the pipeline approach in a spatio-temporal

coupling, we employ non-blocking sending of messages but

have the receivers leverage blocking calls. This prevents

cores from within one sub communicator to get out of

sync. All cores in the sub communicator must handle the

advection and collision within one step sequentially as the

following step relies on data from its nearest neighbors from

the previous step.

It is worth noting that even as larger fluid systems are

modeled, the overhead of the message passing between T2
groups will remain constant. This is due to the fact that

the gain from spatial speedup should always be maximized

before using temporal decomposition. In the case of lattice

Boltzmann, this means that temporal decomposition will

only be employed when the number of fluid nodes per core

drops below the cutoff defined by Fig. 1. Adhering to this

drop off imposes a fundamental limit to the potential number

of fluid nodes to be handles on each core within a T2 group

and subsequently a limit to the potential message size being

sent between K iterations.

A. Speedup Calculation

To obtain a quantitative understanding of the potential

performance improvement to be gained from applying this

spatio-temporal parallelization technique to the LBM, we

must assess the upper bound on the method’s strong scaling

capabilities. Here we assume that the cost of communication

between processors is negligible and that the cores are

homogenous. We define the computational cost for the fine

solver as the cost per time step multiplied by the number of

time steps in one K iteration, denoted by γF . Similarly, we

use γG to indicate the cost of the coarse solver. Following

the procedure outlined by Minion et al., we calculate the

parallel speedup, S, for pipelined parareal calculations using

S =
NγF

NγG +K(γG + γF )
=

1

α+ K
N (α+ 1)

(4)

with N the total number of cores and K the number of

parareal iterations, and we have defined α = γG/γF . This

model was used to demonstrate the speedup at different K
iterations on 32,768 cores in Fig. 7.

Eq. 4 allows the estimation of speedup achieved by simply

the temporal component of the space-time coupling. It can be

taken alongside the speedup from spatial scaling to provide

the predicated total speedup. Extending the model itself to

calculate the combined speedup, we need to define SF and

SG as the parallel speedup of the spatial decomposition on
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P cores for each respective iterator. In this instance, the

total number of cores in the system is N ∗ P where each

N time interval is divided into P spatial domains. In the

work presented here, the resolution of the fine grid is twice

that of the coarse grid. This variance corresponds to the fine

iterator having four times as many time steps as the coarse.

This imposes a limit of 32 to the cost ratio of the coarse

to fine iterators. This limit appears in Eq. 5 defining the

speedup from the spatio-temporal scheme.

SMSTC =
1

SF

32SG
+ K

N ( SF

32SG
+ 1)

(5)

In both temporal and spatio-temporal decomposition, the

potential speedup can be optimized through the minimization

of K
N .

VII. NUMERICAL RESULTS

In this section, we present results of experiments on

the accuracy and speedup obtained from the application of

the MSTC method to modeling hemodynamic properties in

a patient suffering from co-arctation of the aorta (CoA).

Personalized computer simulations can provide an insightful

study of the flow under stress conditions that would oth-

erwise require difficult stress tests that have potential side

effects. In the following studies, we use patient data from

an 8-year old female with moderate aortic co-arctation (65%

area reduction). Gadolinium-enhanced MR angiography was

performed using a 1.5-T GE Sigma scanner to obtain the

arterial geometry as shown in Fig 5 (a). We assume rigid

walls and Newtonian flow behavior for the blood, with a

density r = 0.001 gr/mm3 and a dynamic viscosity m =

0.004 gr/mm/sec [36]. All of these studies were completed

using an IBM Blue Gene/Q supercomputer.

The simulation is setup with a 100 μm resolution Carte-

sian grid for the coarse iterator and a 50 μm resolution

grid for the fine iterator. The fine grid corresponds to the

fluid system size matching the red line in Fig. 1 allowing us

to focus on reducing the time-to-solution for simulations in

which adding more cores to a spatial parallelization will no

longer improve the parallel performance. Unless otherwise

noted, the following simulations were conducted on 65,536

cores of the IBM Blue Gene/Q supercomputer. We selected

N = 8 as the number of temporal domains so that we would

be maximizing the strong scaling potential for this fluid

system. By using 8 time intervals, each sub communicator

consists of 8,192 cores. The time duration simulated was

0.7 seconds or the average length of one human heartbeat.

The goal of this work was to shorten the overall time-to-

solution, so we focus on the strong scaling capabilities in

which a fixed system size is used as we increase the number

of processors.

Figure 4. Pulsatile Flow. Test to recover time dependent phenomena
for a system broken into N = 8 temporal domains simulated on 65,536
cores. The blue line shows the magnitude of the velocity over time at point
(16,16,32) after the first K iteration. The green line and red line represent
K = 3 and K = 5 respectively. The black circles indicate the result of
the fine solver which is equivalent to K = 8. The vertical dashed lines
indicate the break point between regions of time handled by each core.
The block arrows indicate the time points at which the accuracy is later
assessed across the aorta in Fig. 5.

A. Time Dependent Phenomena

In order to determine if use of MSTC could accurately

recover time dependent phenomena, we introduced pulsatile

flow via the Zou-He boundary conditions [37]. To this end,

a patient-specific inflow velocity was prescribed at the inlet

and a constant pressure gradient was applied out the outlets.

The inflow velocity was obtained via a 2D, phase-contrast

(PC) MRI sequence with through-plane velocity encoding

[36]. In order to enable continuous flow throughout the

heartbeat, we use a sum of sine functions to the data to

determine the equation of the pulse. The fit procedure was

performed in MATLAB using a non-linear least squares

method and a trust region algorithm [38]. Using a Pearson

correlation, there was a statistically significant agreement

between the phase contrast data and the equation derived

velocity values (r = 0.981, p < 7 ∗ 10−15). Fig. 4 shows

that the spatio-temporal framework in HARVEY starts to

recover the pulsatile behavior with greater accuracy at each

K iteration.The magnitude of the fluid velocity at point

(16,16,32) for a range of K levels of a simulation with

8 temporal domain slices using 65,536 cores is presented.

As the K iteration level increases, the result gets nearer

and nearer to the solution of the full fine solver which is

equivalent to the K = 8 depicted by the black circles. Even

at K = 5, the time dependent behavior is fully recovered,

as shown by the red lines. The dashed black vertical lines

indicate the break point between regions of time handled by

different time intervals or sub communicators.
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Figure 5. Accuracy at different K levels. (a) The mesh defining the arterial geometry from patient specific data is shown. The red rectangle depicts the
section across which velocity is assessed. (b) The three vertical rectangles correspond to the time points marked in Fig. 4 and identify the time points that
the error tests were imposed over the coarse of one heartbeat. The relative error in velocity as compared to the solution of the fine iterator, F, is shown at
four different K levels at each time point identified in 4. The error variation across the section is highlighted.
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Figure 6. Accuracy test for a patient model broken into N = 8 temporal
domains simulated on 32,768 cores.

B. Accuracy

Full convergence with machine accuracy to the F solution

defined in Section IV requires K = N iterations when

using N processors. The results presented and discussed in

this section are intended to show that convergence within

a set tolerance can be achieved with fewer K iterations

than the number of processors (K < N ). Fig. 5 shows the

change in accuracy across the slice at the red plane within

a real patient’s arterial geometry as shown in Fig. 5(a). The

relative error in velocity as compared to the solution of the
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Figure 7. Performance tests demonstrating the strong correlation between
the theoretically expected performance and experimental results. The black
line depicts the simulation results and the red circles indicate the theoretical
speedup added from the temporal component as calculated from Eq. (4).

fine iterator, F, is shown at three different time points from

within a heartbeat. The pulsatile nature of the flow causes

a variation in the error. At each K iteration, the overall

accuracy increases. When K > 5, the relative error across

the entire slice is approximately zero. The fact that the

initial time intervals reach convergence first is highlighted

by K = 3 in which the error is greatly reduced for the first

two time points. Of further note, the greatest error is at the

center of the tube. The calculated velocity at the wall of the
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tube converges to the result of the fine iterator at a faster rate.

This is significant in selecting the desired K level as it can

depend on the research question and disease targeted. Often

when assessing risk for a disease like atherosclerosis, one

is concerned with the magnitude of the endothelial shear

stress on the wall of the vessel [1]. In this case a lower

K iteration may provide the accuracy desired. Conversely,

when trying to understand the pressure gradient associated

with co-arctation of the aorta, the pressure at the center of

the vessel is equally as significant.

These results are congruent with results found for other

domains. Baffico et al. showed that K = 4 of a domain

broken into six temporal intervals provided accurate results

for a molecular dynamics code [14] and Fisher et al.
demonstrated high accuracy at K = 2 for a Navier-Stokes

simulation with ten temporal intervals [21].

We then assessed the additional speedup provided by our

method above and beyond that achieved by the spatial par-

allelization and investigated how close our implementation

comes to meeting the theoretical performance prescribed by

Eq. (5). Fig. 7 shows the correlation between the theoretical

performance model previously discussed for speedup, Eq.

(4), and the experimental results of the simulation. The

previously mentioned resolutions (Δxf = 50 μm and

Δxc = 100 μm resolution) were used to determine the value

of α and consequently the overall computational costs. Any

change to either grid resolution would impact the associated

speedup that can be achieved.

C. Time-to-Solution

We evaluate the performance of our implementation of

our MSTC scheme with LBM on a 65,536-core system. Our

approach sees a reduction in the time-to-solution at each K
level (Fig. 8). The black line depicts the results from simply

using spatial decomposition while the red and green lines

show the runtime using K = 5 and K = 3 respectively.

While the minimal runtime for the spatial decomposition

is achieved with only 4,096 processors, the spatio-temporal

decomposition extends the scalability limit and provides

even lower runtimes at 65,536 cores. For example, the result

at 65,536 cores for K = 5 demonstrates a 40% reduction in

runtime as compared to the minimal time achieved through

spatial decomposition alone.

Table I shows the relative error in velocity at both the

wall of the vessel and the center. The significance of this

data is that we can more efficiently use available hardware

by combining the use of temporal and spatial scaling. As

the data shows, for all iterations with K ≥ 5, the relative

error is less than 1%.

VIII. CONCLUSIONS

For many fluid problems even beyond the medical ap-

plications discusses in this paper, there is a strong need

to model longer time durations for fixed system sizes. In
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Figure 8. Time-to-solution for different levels of K when using MSTC
as compared to a simulation using only spatial decomposition.

Table I
PERCENT ERROR

K level At Wall At Vessel Center

1 401% 823%
2 56% 225%
3 9% 31%
4 2% 5%
5 <1% <1%
6 <1% <1%
7 <1% <1%
8 <1% <1%

these instances, there is often a fundamental limit to the

benefits that can be obtained through conventional spatial

scaling. Through the careful coupling of temporal with

spatial parallelization, we have shown that we efficiently use

available parallel resources to reduce the time-to-solution

for real problems and real data. As wallclock time plays a

crucial role in the potential impact of these methods, the re-

sults presented above show that spatio-temporal parallelism

is has the potential to extend scaling possibilities beyond

the scaling limit imposed by traditional strong scaling. We

have demonstrated that parallelizing the lattice Boltzmann

method in both time and space is a successful method for

time dependent blood flow in the arterial system. Using

patient specific data reconstructed from Magnetic Resonance

Angiography, we have recovered steady and pulsatile flow

fields within an acceptable accuracy.

We showed that implementing the MSTC method in

HARVEY resulted in a 40% reduction in the overall wall-

clock time for the simulation of a real problem. This

minimization of the overall time-to-solution was achieved

using software approaches that exploited the hardware’s

low latency communication mechanisms and tight, fine-

grained coupling between grid levels. As a result, the

coupling method presented in this paper allows researchers
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to overcome the fundamental strong scaling limit imposed

by spatial scaling alone. We believe that use of the MSTC

mechanism will enable simulations of longer physical time

periods in shorter wallclock times, enabling the study of

phenomena outside the reach of traditional CFD methods.

Moreover, the techniques presented in this paper are agnostic

to the scaling limit itself in the sense that they would

continue to add the same speedup factor above the spatial

limit no matter where the spatial limit is place. This is allows

the MSTC scheme to continuously extend the potential of

new developments improving the spatial scaling limit. As

systems with millions of cores become more prevalent, these

methods provide a new way for more codes that traditionally

could not make use of the full system to effectively scale to

large core count and enable science of unprecedented scale.
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