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Motivation: The need for alternative enerqgy sources

Million metric tons of carbon

Global carbon dioxide emissions from human activities, 1750-2004
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The zones in the maps correspond to low temperatures. As warmer zones cover more of the United States, different
types of plants will grow in many areas.
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In the winter, Georgia is Serviceberries and A warmer New York helps In Seattle, it is more
now hospitable to plants dogwoods can be planted  atype of fungus harmful to  difficult to grow black-eyed
like firebush. in Nebraska. Canadian hemlock. susans.

1990 zones are by the United States Department of Agricuiture. 2006 zones are by the National Arbor Day Foundation.

Sources: Nationa! Arbor Dav Foundation: National WikMe Federation The New York Times
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Positive proof of global warming.
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http://www.celsias.com/2007/03/20/channel-4-distances-
itself-from-global-warming-documentary/



The challenge of sustainable energy sources

10 Scenario A3
Traditional renewables . Time and resources
» B running out —
E & - fundamental science
- near can play key role in
. : enabling technology
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Water splitting ¢

CH,OH CO, + H,0

Photocatalytic water splitting system H, production from organic

utilizing Pt/TiO,/IrO,: molecules using TiO, nano-particles
TiO, is light absorber, Pt is the hydrogen as photo-catalysts

evolution catalyst, and IrO, is the oxygen (Argonne National Lab)

evolution catalyst.

(P. Kamat, U. Notre Dame)



Main issue: coupled electron-ion dynamics

Previous work:

-Schroedinger eq. with model Hamiltonian
Thoss, Miller, Stock, JCP (2000);

Rego& Batista, JACS (2003);...

excited states
-semiempirical Hamiltonian (tight-binding)
Allen et al., JIMO (2003);...

-ground state DFT + TDDFT
Prezhdo et al., PRL (2005); JACS (2007)...

Ground state J

Our method:
TDAP: self-consistent TDDFT with atomic motion

Coupled electron-ion dynamics without empirical parameters

Meng & Kaxiras, J. Chem. Phys. (2008).

Similar in spirit to: Miyamoto et al.; Rubio et al.; Tavernelli et al..



Main issue: coupled electron-ion dynamics
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See talks this afternoon by
Kieron Burke (plenary, 14:00)
Leeor Kronik (15:45)
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Titania (TiO,) — prototypical surface for studying
photocatalysis [1]

Bulk Oxygen - 3 sigma bonds, 1 “lone pair”
Surface Oxygen - 2 sigma bonds, 1 dangling bond, 1 “Ip”

[001]

[100] 1.983 A
Rutile bulk crystal

A. Fujishima, K. Honda. Nature, 238:37-38 (1972)
U. Diebold, Surf. Sci. Rep., 48:53-229 (2003)




Water might undergo photodissociation in ultra-high
vacuum study [1] (has not been reproduced by others).

Our goal: confirm or disprove through real-time simulation of
the first step of the water photo-oxidation.

1-S.Tan et al., JACS. 134:9978-9985 (2012)
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Slab (4 - 6 layers thick)

DFT: GGA-PBE, GPAW code [1],
Including DFT+U correction

ASCF approach for simulation of
excitation

Ehrenfest dynamics for time
propagation

1 —J. Enkovaara et al., J. Phys. Cond. Mat. 22:253202 (2010)



Hole on water non-bonding orbital
Excitation energy 9.3 eV

WATER SPLITS!



Hole on surface localized slab eigenstate
Excitation energy 3.5 eV

40 fs

NO SPLITTING



Hole on a MLWF (O-p, orbital)
Maximally Localized Wannier Functions,

Excitation energy 38 eV computed using the Wannier90 code [1]

-6 -5 -4 -3 -2 -1 0 1
Eigenvalues wrt Fermi level

NO SPLITTING [1] A. Mostofi et al. Comput. Phys.

Commun. 178:685 (2008)




Hole on interstitial defect level
Excitation energy 1.7 eV

NO SPLITTING



TDAP: an improved TDDFT
scheme (computationally
efficient)

w/ Ehrenfest dynamics
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Self-consistent

e propagation
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Tonic motion
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Example: ozone photolysis

e Excitation HOMO to LUMO: slow dissociation

2 eV

Matsumi, Y. & Kawasaki, M. Photolysis of atmospheric ozone in the
ultraviolet region. Chemical reviews 103, 4767-4782 (2003).
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GPAW computation
time 37 days (4 cores)

TDAP: 1 hour

Time step: 5 attosec
(both)



Example: ozone photolysis

* Excitation HOMO to LUMO+1: quick
dissociation

8.4 eV
- =




2"d excited state trajectory
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2"d excited state trajectory

“o*

* Movie:
o3split.mov




Methoxy splitting on TiO, surface

* Formaldehyde was photochemically produced
from methoxy on TiO, (110) surface

A, CH,OH+hv > CH,0+H,

Phillips, K. R., Jensen, S. C., Baron, M., Li, S.-C. & Friend, C. M.
Sequential photo-oxidation of methanol to methyl formate on TiO2 (110).
Journal of the American Chemical Society 135, 574-577 (2013).



Hole: HOMO-4 State




LUMO state

Electron
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TDDFT trajectory

* Movie:

mxsplit.mpg



Encouraging results:

* (leardistinction between systems that show reaction
and systems that don’t

* Issue of simulation duration

“Behind the scenes”: Dozens of simulations with varying initial conditions:
* Hole localization

* Initial configuration

« Initial velocities of nuclei, etc.

Additional features that may be necessary for quantitative comparison to

experiment:

* Adsorbate — adsorbate interactions

* Presence of water and changes in the dielectric constant of the
environment

* Presence of types of defects, or complex interplay between defects of
different types on surface

*  Other reactive sites (steps, kinks), other surface orientations (facets)



~9 eV




Computational setup

e Excitation: promoting electron from HOMO-4
to LUMO to model hole on methoxy group

* |[n experiment 3-6 eV UV band was used

E..po €V Eoopr €V
Bulk TiO, Methoxy on (110) TiO,
Experiment 3.03
SIESTA DFT+U 2.8 2.6

TDAP, ASCF - 2.9




TDAP: improved TDDFT (computationally
efficient) + Ehrenfest dynamics

Electrons are propagated according to time-dependent Kohn-
Sham equations

Nuclei are propagated classically
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