Efficient determination of soft spots in amorphous solids <u>only</u> using local structural information

Ekin Dogus Cubuk

Samuel Schoenholz, Jennifer Rieser, Brad Malone, Joerg Rottler, Doug Durian, Andrea J Liu, Efthimios Kaxiras

Introduction

- Soft spots are structurally different.
- These differences could not be used to identify soft spots*.

Introduction

- Soft spots are structurally different.
- These differences could not be used to identify soft spots*.
- We propose a method that can efficiently predict regions vulnerable to rearrangement purely from local geometric quantities.

Introduction

- Soft spots are structurally different.
- These differences could not be used to identify soft spots*.
- We propose a method that can efficiently predict regions vulnerable to rearrangement purely from local geometric quantities.
- We look at where rearrangements occur, and ask what was structurally different before the rearrangement.

- calculate <u>many</u> descriptors for every particle's local environment
- observe the system and record plastic behavior

- calculate <u>many</u> descriptors for every particle's local environment
- observe the system and record plastic behavior (use $\mathsf{D}^2_{\mathsf{min}}$)

- calculate <u>many</u> descriptors for every particle's local environment
- observe the system and record plastic behavior
- learn (from examples) the structural quantities that make up a soft spot

	Descriptors (t ₀)	D^2_{Min} (t ₀ , Δ T)	Rearranged?
Particle 1	3.2,4.5,1.5	1.8	Yes
Particle 2	1.3,5.6,7.2	0.6	No
Particle 3	1.2,4.2,1.4	0.2	No
:	:	:	:

- calculate <u>many</u> descriptors for every particle's local environment
- observe the system and record plastic behavior
- learn (from examples) the structural quantities that make up a soft spot

Potential advantages of this method:

- Extremely fast, O(N) scaling
- Does not need vibrational modes
- The system does not need to be quenched
- Does not require the Hamiltonian

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

- Calculate descriptors for each particle i
- They are sums over neighbors j and k of i
- Constants μ , λ , ζ and ξ are varied

$$G^{1}(i;\mu) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sum_{j} e^{-(R_{ij}-\mu)^{2}/2\sigma^{2}}$$

$$G^{2}(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-\xi(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

• A simple supervised learning model.

• A simple supervised learning model.

 Find the hyper-plane that separates the two different classes for future predictions

• A simple supervised learning model.

 Find the hyper-plane that separates the two different classes for future predictions

• A simple supervised learning model.

 Find the hyper-plane that separates the two different classes for future predictions

Sheared glass

Simulation of a 2D glass being sheared (LJ temperatures 0.1 to 0.4).

MD simulations done by Joerg Rottler.

Sheared glass

Simulation of a 2D glass being sheared (LJ temperatures 0.1 to 0.4).

MD simulations done by Joerg Rottler.

Blue → machine learning soft spots
Red → phonon method soft spots

Our soft spots are very robust until rearrangement.

- For the simulation of a sheared glass, (for T = 0.1, 0.2, 0.3 and 0.4) we correctly predict
 - 78% of the rearrangements
 - with a 24% soft spot coverage

20K training samples 20M test samples Tg = 0.33

- For the simulation of a sheared glass, (for T = 0.1, 0.2, 0.3 and 0.4) we correctly predict
 - 78% of the rearrangements
 - with a 24% soft spot coverage

20K training samples 20M test samples Tg = 0.33

- For the simulation of a sheared glass, (for T = 0.1, 0.2, 0.3 and 0.4) we correctly predict
 - 78% of the rearrangements
 - with a 24% soft spot coverage

20K training samples 20M test samples Tg = 0.33

Soft spots predict rearrangements just as well for T>Tg as for T<Tg !!!!

• Results are transferable: train on T = 0.4, test on T = 0.1, 0.2, 0.3 and 0.4

Results (granular pillar)

Jennifer Rieser Doug Durian

Cannot be analyzed with the phonon method!

Results (granular pillar)

- Train on 10 pillars.
- For 10 test pillars, we correctly predict
 - 80% of the rearrangements
 - with a 22% soft spot coverage

Jennifer Rieser Doug Durian

Results (granular pillar)

- Train on 10 pillars.
- For 10 test pillars, we correctly predict
 - 80% of the rearrangements
 - with a 22% soft spot coverage

Jennifer Rieser Doug Durian

Summary

- Very efficient method for identifying soft spots.
- Only requires observation of representative plastic behavior (training set).
- Can be applied to a large variety of systems (experimental/computational, quenched/thermal, 2D/3D).

Ongoing work

- What in the structure determines if a spot is soft?
- Use the hyperplane to explore new physics.

email: cubuk@fas.harvard.edu

Summary

- Very efficient method for identifying soft spots.
- Only requires observation of representative plastic behavior (training set).
- Can be applied to a large variety of systems (experimental/computational, quenched/thermal, 2D/3D).

Ongoing work

- What in the structure determines if a spot is soft?
- Use the hyperplane to explore new physics.

email: cubuk@fas.harvard.edu