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Introduction 

•  Soft spots are structurally different. 
•  These differences could not be used to identify 

soft spots*. 
•  We propose a method that can efficiently 

predict regions vulnerable to rearrangement 
purely from local geometric quantities. 

•  We look at where rearrangements occur, and ask 
what was structurally different before the 
rearrangement. 
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We propose to identify soft spots by supervised learning: 
•  calculate many descriptors for every particle’s 

local environment 
•  observe the system and record plastic behavior 
•  learn (from examples) the structural quantities 

that make up a soft spot 

Descriptors (t0) D2
Min (t0,ΔT) Rearranged? 

Particle 1 3.2,4.5,1.5 …… 1.8 Yes 

Particle 2 1.3,5.6,7.2 …… 0.6 No 

Particle 3 1.2,4.2,1.4 …… 0.2 No 



We propose to identify soft spots by supervised learning: 
•  calculate many descriptors for every particle’s 

local environment 
•  observe the system and record plastic behavior 
•  learn (from examples) the structural quantities 

that make up a soft spot 

Potential advantages of this method: 
•  Extremely fast, O(N) scaling 
•  Does not need vibrational modes 
•  The system does not need to be quenched 
•  Does not require the Hamiltonian 



The local descriptors

•  Calculate descriptors for each particle i 
•  They are sums over neighbors j and k of i 
•  Constants μ, λ, ζ and ξ are varied 
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Sheared glass 
Simulation of a 2D glass being 
sheared (LJ temperatures 0.1 to 
0.4). 
 
 
MD simulations done by  
Joerg Rottler. 
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Blue àmachine learning soft spots 
Red à phonon method soft spots 
 
 
Our soft spots are very robust until 
rearrangement. 


 



Results (sheared system) 
•  For the simulation of a sheared glass,  

(for T = 0.1, 0.2, 0.3 and 0.4) we correctly predict 
•  78% of the rearrangements 
•  with a 24% soft spot coverage 
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20M test samples 
Tg = 0.33 
 



Results (sheared system) 
•  For the simulation of a sheared glass,  

(for T = 0.1, 0.2, 0.3 and 0.4) we correctly predict 
•  78% of the rearrangements 
•  with a 24% soft spot coverage 

20K training samples 
20M test samples 
Tg = 0.33 
 
 

0 5 10 15 20 25 300.0

0.2

0.4

0.6

0.8

1.0

Dmin2 êsAA2 T

PHIn
So
ft
Sp
ot
L

P(
So
9	
  
Sp
ot
)	
  



Results (sheared system) 
•  For the simulation of a sheared glass,  

(for T = 0.1, 0.2, 0.3 and 0.4) we correctly predict 
•  78% of the rearrangements 
•  with a 24% soft spot coverage 

20K training samples 
20M test samples 
Tg = 0.33 
 
 

0 5 10 15 20 25 300.0

0.2

0.4

0.6

0.8

1.0

Dmin2 êsAA2 T

PHIn
So
ft
Sp
ot
L

So&	
  spots	
  predict	
  rearrangements	
  just	
  as	
  well	
  for	
  T>Tg	
  as	
  for	
  T<Tg	
  !!!!	
  	
  

P(
So
9	
  
Sp
ot
)	
  



Results (sheared system) 
•  Results are transferable: 
    train on T = 0.4, test on T = 0.1, 0.2, 0.3 and 0.4
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Results (granular pillar) 

Jennifer Rieser 
Doug Durian 

Cannot be analyzed with the phonon method! 



Results (granular pillar) 
•  Train on 10 pillars. 
•  For 10 test pillars, we correctly predict 

•  80% of the rearrangements 
•  with a 22% soft spot coverage 
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Summary 
•  Very efficient method for identifying soft 

spots. 
•  Only requires observation of 

representative plastic behavior (training 
set). 

•  Can be applied to a large variety of 
systems (experimental/computational, 
quenched/thermal, 2D/3D). 

Ongoing work 
•  What in the structure determines if a 

spot is soft? 
•  Use the hyperplane to explore new 

physics. 

 email: cubuk@fas.harvard.edu 
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