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Introduction

Soft spots are structurally different.

These differences could not be used to identify
soft spots*.

We propose a method that can efficiently
predict regions vulnerable to rearrangement
purely from local geometric quantities.

We look at where rearrangements occur, and ask
what was structurally different before the
rearrangement.

*L. Manning & A. Liu, PRL 107, 108301 (2011)
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We propose to identify soft spots by supervised learning:
* calculate many descriptors for every particle’s
local environment
* observe the system and record plastic behavior
learn (from examples) the structural quantities
that make up a soft spot

Particle 1 3.2,4515......
Particle 2 1.35.6,7.2 ...... 0.6 No
Particle 3 1.2421.4 ...... 0.2 No



We propose to identify soft spots by supervised learning:
* calculate many descriptors for every particle’s
local environment
* observe the system and record plastic behavior
* |earn (from examples) the structural quantities
that make up a soft spot

Potential advantages of this method:
« Extremely fast, O(N) scaling
* Does not need vibrational modes
* The system does not need to be quenched
* Does not require the Hamiltonian



The local descriptors

» Calculate descriptors for each particle |
* They are sums over neighbors j and k of i

« Constants u, A, ¢ and & are variec
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Sheared glass

Simulation of a 2D glass being
sheared (LJ temperatures 0.1 to
0.4).

MD simulations done by
Joerg Rottler.



Sheared g\ass

Simulation of a 2D glass being
sheared (LJ temperatures 0.1 to
0.4).

MD simulations done by
Joerg Rottler.

Blue >machine learning soft spots

Red = phonon method soft spots

Our soft spots are very robust until
rearrangement.




Results (sheared system)

« For the simulation of a sheared glass,
(for T =0.1,0.2, 0.3 and 0.4) we correctly predict
« 78% of the rearrangements
* with a 24% soft spot coverage

20K training samples
20M test samples
Tg =0.33
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Results (sheared system)

« For the simulation of a sheared glass,
(for T =0.1,0.2, 0.3 and 0.4) we correctly predict
« 78% of the rearrangements

+ with a 24% soft spot coverage
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Soft spots predict rearrangements just as well for T>Tg as for T<Tg 111!



Results (sheared system)

* Results are transferable:
trainon T=04,testonT=0.1,0.2,0.3and 0.4

P(Soft Spot)
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Results (granular pillar

compression

¥ speed
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Cannot be analyzed with the phonon method! Jennifer Rieser
Doug Durian




Results (granular pillar)

* Train on 10 pillars.
 For 10 test pillars, we correctly predict
« 80% of the rearrangements

* with a 22% soft spot coverage
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Results (granular pillar)

* Train on 10 pillars.

 For 10 test pillars, we correctly predict
« 80% of the rearrangements

* with a 22% soft spot coverage
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Summary

« Very efficient method for identifying soft
spots.

* Only requires observation of

representative plastic behavior (training
set).

« Can be applied to a large variety of
systems (experimental/computational,
quenched/thermal, 2D/3D).

Ongoing work

« What in the structure determines if a
spot is soft?

* Use the hyperplane to explore new
physics.

email: cubuk@fas.harvard.edu



Summary

Very efficient method for identifying soft
spots.

Only requires observation of
representative plastic behavior (training
set).

Can be applied to a large variety of

systems (experimental/computational,
quenched/thermal, 2D/3D).

Ongoing work

What in the structure determines if a
spot is soft?

Use the hyperplane to explore new
physics.
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