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Abstract

This thesis explores multiscale approaches to describe structural and chemical

defects in metals. Particular emphasis is placed on investigating processes involv-

ing grain boundaries (GBs) in combination with impurity and vacancy defects. The

defects and their interactions are calculated to very high accuracy using density func-

tional theory (DFT) and connected to the macroscopic behavior within the two mul-

tiscale formalisms presented here.

We begin with a sequential approach to address chemical embrittlement of nickel

by sulfur impurities. Effects at both a Σ5 (012) symmetric tilt GB and in the bulk

are studied by considering competing mechanisms for ductile and brittle behavior.

For the bulk, this takes the form of Rice’s theory, where the ratio of the surface and

unstable stacking energy is used as a measure of ductility. This is generalized to the

GB by considering GB sliding (GBS) and intergranular decohesion. Clear evidence

that chemical embrittlement of nickel by sulfur is a GB driven effect is found.

Next, the concurrent multiscale approach is described. A small region, containing
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the defects, is treated with Kohn-Sham DFT and coupled to the bulk, described with

the embedded atom method. We apply this novel method to elucidate the chemical

embrittlement of a copper Σ5 (012) symmetric tilt GB. Intergranular decohesion for

three substitutional impurities, bismuth, lead and silver, is investigated by considering

the work of separation (Ws) and the tensile strength (σt). Bismuth and lead show

a significant decrease in Ws and σt, consistent with embrittlement, whilst silver has

only a minor effect.

Then, the concurrent multiscale method is applied to the process of GBS in copper.

It is found that the resistance against sliding increases significantly for bismuth, lead

and silver impurities. The underlying mechanisms for this increase are found to be

dominated by mechanical effects for bismuth and lead. For silver chemical effects are

of greater importance. Similar results are found for the underlying mechanisms of

intergranular decohesion.

The effect of a mono-vacancy on GBS is studied for copper. The multiscale ap-

proach enables improved decoupling of the mono-vacancy. It is found that the mono-

vacancy enhances GBS by 22%.
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Chapter 1

Introduction

There is no doubt that over the last few decades computational methods, and in

particular atomistics approaches, have become of great importance in understanding

the underlying physics of many materials systems. Important contributions have been

made by computational research both in the context of supplementing experimental

work in its understanding but also as predictive approaches in their own right. The

latter is particularly relevant to the many systems that are inherently difficult or

impossible, or simply too expensive to be treated experimentally. Of all computational

approaches, density functional theory (DFT), with its beginning in the 1960’s by the

work of Hohenberg, Kohn and Sham [1, 2], takes a special place. It is a first-principles

or ab-initio method, meaning that it is purely based on the fundamental laws of

physics, rather than being an empirical model that requires fitting or other input in

the form of assumptions of the system. This lends the approach a particular beauty

1
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from a physics perspective. At the same time, from a practical point of view DFT

has established itself as a successful method in the form of several excellent software

packages such as CP2K [3], VASP [4] and Siesta [5], to name but a few. These are

now routinely used by many researchers worldwide.

One of the challenges researchers in the field of DFT face is the large computa-

tional cost associated with performing realistic calculations. Although the compu-

tational power and resources available have steadily increased since its introduction

almost 50 years ago, DFT is realistically limited to hundreds of atoms for most ap-

plications. This can sometimes limit the conclusions that can be drawn about the

macroscopic behavior of materials. Increasing the system sizes that are possible to

be addressed is an area of ongoing research and one possible approach are multi-

scale methods [6, 7, 8, 9, 10, 11, 12]. In general, multiscale methods can be split

into sequential and concurrent approaches. In the former the link to the macroscopic

behavior is made after performing DFT calculations. This often takes the form of

using DFT to determine important quantities for continuum methods. In the latter

the DFT region is concurrently coupled to a more macroscopic model, allowing an

increase of the system size thereby capturing the long-range physics. There is a clear

need to further develop first-principles based multiscale methods to efficiently treat

many long-range systems in materials science and physics. A major part of this thesis

tries to address this issue. Both types of multiscale approaches will be explored and

used in this work, with a particular emphasis on the concurrent multiscale scheme and
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its applications. The specific problem we address in this work within the multiscale

formalism is the mechanical behavior of metals and the effect different defects can

have. These are to a large extent multiscale problems, making a treatment that can

account for different length-scales important.

From a practical point of view, metals are one of the oldest yet still one of the most

important materials for technologies. Metals have been used and studied from the

beginning of human-kind and their use is still ubiquitous in modern-day technologies.

It is reasonable to say that virtually any modern industry and technology relies in

some way or another on metals, ranging from the transport industry, to production

industry, to the high-tech industry. A deep understanding of the physical and me-

chanical properties of metals is crucial, both in terms of the potential financial cost

involved and in the case of material failure the cost of human life.

The properties and behavior of metals, and for that matter materials in general,

are to a large extent determined by the defects they contain. To understand the me-

chanical behavior of metals, defects and defect interactions have to be studied. Which

particular type of defect is of greatest importance strongly depends on the particular

system and phenomenon that is being addressed. In this work, we will concentrate on

grain boundaries and how other defects such as impurities and vacancies can interact

with grain boundaries and thereby change the overall mechanical behavior.

Grain boundaries play an important role in metals. It is for instance believed that

some impurities segregate to grain boundaries [13], weaken the cohesion of the grain
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boundary (GB) and result in brittle intergranular fracture. This process of chemical

embrittlement has been known for over a hundred years in some metals [14], but

the underlying mechanisms responsible for this phenomenon are still under investi-

gation. Another process of importance is that of grain boundary sliding (GBS). This

is known to be of importance for high temperature flow in metals [15, 16, 17]. More

recently, the influence of grain boundaries has also received attention in the context

of nanocrystalline metals [19, 20, 21, 22, 23, 24]. The small grain sizes in nanocrys-

talline metals result in a high number of grain boundaries in comparison to the volume

of the grains and different deformation mechanisms involving the grain boundaries

more directly are thought to become more dominant. This is in contrast to coarse-

grained metals for which grain boundaries are traditionally viewed as static barriers

to dislocation motion. Although nanocrystalline metals have been proposed already

in the late 1980’s by Gleiter [18], the mechanisms involved in their deformation are to

date not fully understood. Recent molecular dynamics simulations suggest that GBS

plays an important role as a plastic deformation mechanism [19, 20, 21, 22, 23, 24].

The study of grain boundaries and gaining a deeper understanding of the physics of

particular types of grain boundaries has increased in importance in the context of

grain boundary engineering (GBE). This technique was proposed to improve the me-

chanical properties of metals [25] and has seen renewed interest in recent years [26].

GBE allows for fabricating different types of grain boundaries, including special grain

boundaries, often with the aim of enhancing the resistance against corrosion, cracking
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or embrittlement. A deeper insight of the atomistic processes of grain boundaries can

help in guiding experiments.

The particular metals that will be considered here are nickel (Ni) and copper (Cu),

both metals of great importance in industry. Ni is for instance used in the aeronautics

industry and oil and gas industry, mostly because of its excellent high temperature

properties. Cu is also found in many technologies, most recently in particular in

the high-tech industry, where it is now the metal of choice for interconnects in state

of the art intergrated circuits. In principle, grain boundaries in such metal systems

can be described with empirical models and there are several excellent embedded

atom method (EAM) studies dealing with Ni and Cu [19, 20, 27]. These studies

exclusively deal with pure metal systems. A treatment of a system with impurities

based on empirical models has several complications associated with it. First, there

is the issue of reliability. Although several very good potentials for pure metals exist,

implementing interactions with other elements is first of all more complicated and

also gives less reliable results. The more important point from a practical point of

view is that every new impurity needs a new potential. This is therefore an issue

of transferability and versatility. Basing the impurities on quantum mechanics in

the form of DFT, circumvents both these issues. At the same time, the multiscale

approach can capture the long-range description that may otherwise be lost. The

aim here is therefore to investigate and establish multiscale approaches in the field of

defects.
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Structure of this thesis

Chapter 2 provides an overview of the relevant theoretical background for DFT

and the EAM. Two different implementations of DFT will be employed in this work.

The methodology and theoretical basis for both will be discussed and differences in

the approaches will be highlighted.

In chapter 3 the effect of sulfur impurities on the mechanical properties of Ni will

be studied in the context of a sequential multiscale method. This will be treated

both in the context of coarse-grained materials and nanocrystalline materials. The

decohesion energy and unstable stacking energy will be calculated for bulk Ni and

compared to the decohesion and shear behavior of Ni with a GB. The influence of the

S impurities will be assessed. Ideas from Rice’s theory of dislocation nucleation are

employed and generalized for GB shear in the form of a ductility parameter describing

the competition between GBS and intergranular decohesion. We find clear evidence

that chemical embrittlement of Ni by S is a GB driven effect.

In chapter 4 the concurrent multiscale method will be introduced and described.

The methodology of how coupling between the DFT and EAM region is achieved

will be discussed in detail. This also includes several test calculations for Ni and

Cu showing evidence of the validity of the method. A Σ5 (012) symmetrical tilt GB

in Cu is being studied and the behavior of the strain field surrounding it is being

investigated with and without impurities. Evidence for embrittlement in the form

of a decrease of the work of separation for bismuth (Bi) and lead (Pb) impurities is
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found. The tensile strength of the Cu GB is also investigated and found to decrease as

well, giving rise to enhanced crack initiation. As a comparison silver (Ag) impurities

are considered; they have little effect on the decohesion properties of the Cu GB.

Chapter 5 extends the application of chapter 4 by including shear effects in the

form of GBS for the Cu GB. We find that the energy barrier for GBS increases signif-

icantly for Bi, Pb and Ag inclusion at the GB. This implies that plastic deformation

in the form of GBS is suppressed. The particular underlying physical mechanisms for

the changes in the GBS energy landscape are being investigated and found to differ for

Bi and Pb in comparison to Ag. The latter has strong chemical interactions, whereas

the former two are dominated by mechanical size effects. The underlying mechanisms

for the changes in the work of separation of chapter 4 are being investigated in the

same manner. Again, Bi and Pb have a strong size effect component associated with

their decohesion behavior, whereas chemical interactions become very important for

Ag.

Chapter 6 deals with the interactions of the Cu GB and vacancies. The vacancy

formation energy in the vicinity of the GB is investigated and the effect they have on

GBS is studied in detail. This work takes advantage of the large supercells we are able

to employ within our multiscale approach, allowing us to appropriately decouple the

vacancy from its periodic images. Traditionally small supercells have been used for

other first-principles studies, leading to effective vacancy lines or vacancies separated

by only a very small distance. It is found that GBS is enhanced by a mono-vacancy.



Chapter 2

Computational method and

theoretical background

2.1 Overview

This chapter gives a general overview of the relevant theoretical background for the

work presented in this thesis. The chapter begins in section 2.2.1 with a discussion

of the many-body Schrödinger equation and the complications involved in finding

a solution for any but the simplest systems. This is followed by a discussion of

the initial approaches to the many-body Schrödinger equation in the form of the

Hartree and Hartree-Fock approximation in section 2.2.2. This leads to the density

functional theory, as proposed in a series of seminal papers by Hohenberg, Kohn

and Sham [1, 2]. All aspects necessary to understand modern day density functional

8
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theory will be discussed in the remainder of section 2.2. Particular emphasis will

be given to the implementations of DFT used throughout this work. As discussed

in chapter 1, two different approaches will be taken in the context of multiscale

modeling of materials. In chapter 3 we employ a combination of DFT calculations

with results from continuum theory in the context of sequential multiscale modeling.

The DFT calculations are performed using the Vienna Ab-initio Simulation Package

(VASP) [4], an implementation based on a plane wave (PW) basis. This type of

basis will be discussed in section 2.2.6. The particular calculations of chapter 3 use

the generalized gradient approximation (GGA) [28] with projector-augmented plane

wave (PAW) potentials [29], covered in sections 2.2.4 and 2.2.5, respectively.

In chapters 4, 5 and 6 a concurrent multiscale method is presented and used that

couples DFT to the embedded atom method (EAM). This method was chosen to

be implemented using CP2K [3], a suite of programs employing Quickstep (QS) to

perform DFT calculations. QS employs a Gaussian Plane Wave (GPW) basis, a com-

bination of the PW approach described in section 2.2.6 and the Gaussian-type orbital

(GTO) approach described in section 2.2.6; this mixed basis will be introduced in

section 2.2.6. The calculations using CP2K will be based on separable and norm-

conserving pseudopotentials by Goedecker-Teter-Hutter (GTH) [30, 31]; this will be

reviewed in section 2.2.5 and contrasted to the PAW method. The necessary funda-

mentals for the embedded atom method (EAM) will be introduced in section 2.3 to

give a complete overview of the theoretical basis for the concurrent multiscale method.
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2.2 Density Functional Theory

2.2.1 The many-body Schrödinger equation

A full quantum mechanical treatment of the electrons and the nuclei of a piece of

matter would involve solving the time independent Schrödinger equation,

HΨ ({RI ; ri}) = EΨ ({RI ; ri}) , (2.1)

with the Hamiltonian given by

H = −
∑

I

h̄2

2MI
∇2

I −
∑

i

h̄2

2me
∇2

i +
e2

2

∑

I

∑

J(J 6=I)

ZIZJ

|RI − RJ |

+
e2

2

∑

i

∑

j(j 6=i)

1

|ri − rj|
+ e2

∑

I

∑

i

ZI

|RI − ri|
, (2.2)

where {RI} are the set of nuclear coordinates, {ri} is the set of coordinates of the

electrons, MI the mass of the nuclei, me the mass of an electron, ZI the nuclear

charge, e the charge of an electron and h̄ given Planck’s constant is h̄ = h/2π. The

five different terms in eq. 2.2 correspond to the following physical quantities and in-

teractions: the first and second term are the kinetic energy operators for the nuclei

and electrons, respectively. This is followed by the potential energy interaction of

individually the ionic system and the electrons in terms three and four, respectively.

Finally, the last term is the interaction energy between the electrons and the ions.

In its most general form as given in eq. 2.1, the full many-body Schrödinger equa-

tion involves all interactions of electrons and nuclei. To make headway in finding a

solution, at this point it is useful to notice that the motion of electrons and nuclei



Chapter 2: Computational method and theoretical background 11

occur on a very different time-scale, with the nuclei being much slower. The mass

of an electron is significantly smaller than the mass of a typical nuclei considered in

this work. Taking this into consideration, it is possible to make the approximation

that the wavefunction Ψ is dependent only on the electronic degrees of freedom and

the nuclei are treated classically. This is known as the Born-Oppenheimer approxi-

mation [32, 33]. This approximation amounts to the assumption that the electrons

remain in a given state while they instantaneously follow the motion of the nuclei.

Within the Born-Oppenheimer approximation the velocities and the history of the

nuclei hence have no effect on the total energy.

2.2.2 Hartree and Hartree-Fock approximation

Despite the significant simplification provided by the Born-Oppenheimer approxi-

mation, finding solutions of the full many-body Schrödinger equation of the electrons

is still a formidable challenge. A solution exists only for a few special cases, and

even then only numerical approaches tend to exist. The main problem that has to

be overcome is the many-body nature of the hamiltonian. This clearly has to be ad-

dressed with further approximations. One such approximation was proposed early on

by Hartree in 1928 [34]. This approach involves treating the electrons as independent

particles and taking the Ansatz for the many-body wavefunction as a product of one

electron wavefunctions φi,

ΨH ({ri}) =

N
∏

i

φi (ri) . (2.3)
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By employing the method of Lagrange multipliers one can then show that the Hartree

single-particle equation takes the form,

[

− h̄
2∇2

r

2me
+ Vion (r) + e2

∑

j 6=i

〈φj

∣

∣

∣

∣

1

|r − r′|

∣

∣

∣

∣

φj〉
]

φi (r) = ǫiφi (r) . (2.4)

The Hartree term,

V H = e2
∑

j 6=i

〈φj

∣

∣

∣

∣

1

|r − r′|

∣

∣

∣

∣

φj〉. (2.5)

only includes the repulsive Coulomb interactions of the electrons. The Hartree equa-

tion can be solved iteratively, that is assuming a given initial set of {|φi〉}, the density

ρ and hence the hamiltonian can be calculated, which in turn gives a new set of {|φi〉}.

Based on this new set of wavefunctions, usually determined by combining it with the

old input wavefunctions, yet a new set of {|φi〉} can be constructed. This is iterated

until the output equals the input, up to some accuracy. This self-consistency approach

will be of importance for later methods as well. Although eq. 2.3 is numerically solv-

able, there are significant issues with the Hartree approximation. These can be traced

to the inappropriate Ansatz in eq. 2.3, namely that the wavefunction neglects any

exchange effects. The electrons, being fermions, have to satisfy Pauli’s principle and

hence under exchange the wavefunction has to change sign. This is not satisfied by

the Hartree approximation but can be addressed by ensuring that the Ansatz taken

leads to an antisymmetric wavefunction. This is the basis of the Hartree-Fock ap-

proximation [35, 36], where now the Ansatz for the wavefunction takes the form of a
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Slater determinant,

ΨHF ({ri}) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 (r1) φ1 (r2) . . . φ1 (rN)

φ2 (r1) φ2 (r2) . . . φ2 (rN)

...
...

...
...

φN (r1) φN (r2) . . . φN (rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.6)

This ensures that on exchange of two electrons the wavefunction behaves appropri-

ately. By variational treatment, this leads to the single-particle Hartree-Fock equa-

tions of the form,

[

− h̄
2∇2

r

2me

+ Vion (r) + V H
i (r) + V X

i (r)

]

φi (r) = ǫiφi (r) , (2.7)

which again can be solved iteratively. In comparison to the Hartree approximation,

this was a major step forward, as it adds the exchange term,

V X
i (r) = −e2

∫

∑

j 6=i

φi(r
′)φ∗

i (r)φj(r)φ
∗

j (r′)

φi(r)φ∗

i
(r)

|r − r′| . (2.8)

Although this method improves the Hartree approximation, it still leaves the problem

of including correlations between electrons unresolved.

2.2.3 Modern density functional theory

Density functional theory tries to approach the problem of the many-body Schrödinger

equation in a different manner altogether. Whereas for the Hartree and Hartree-Fock

approximation, the approach is to try to get an approximate expression of the many-

body wavefunction, the main underlying idea of DFT is that any property of the
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interacting system can be solely described by its ground state density. Thus the

difficulty of finding a very complicated many-body wavefunction to the Schrödinger

equation is altogether circumvented.

The main underlying ideas of DFT were proposed as early as in 1927 and 1928 by

Thomas [37] and Fermi [38], later extended by Dirac [39, 40] in 1930. In their theory,

they intuitively formulated the functional relationship between the energy and the

ground state density. They proposed functionals for each term of the Schrödinger

equation, neglecting correlations, and then used the density of the uniform electron

gas of non-interacting electrons. This clearly simplifies the many-body Schödinger

equation tremendously in comparison to the approaches taken in the previous sections.

However, the approximations for the functionals turn out to be too crude and are

therefore not able to give accurate enough results for most systems.

The major breakthrough came with the ground-breaking work of Hohenberg and

Kohn [1] in 1964 and the work by Kohn and Sham [2] in 1965. The work by Hohenberg

and Kohn rigorously established the functional relationship between the density and

energy in what is now known as the Hohenberg-Kohn theorems. The work by Kohn-

Sham was equally important in that it allowed for practical calculations. Both will

be outlined briefly in what follows.
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Hohenberg-Kohn theorems

A more complete discussion including the proofs of the Hohenberg-Kohn theorems

can be found in any number of books on DFT ([41, 42, 43, 44]) and is only summarized

as follows:

Theorem 1: For any system of interacting particles, the ground state particle

density n (r) uniquely determines the external potential V , apart from a constant.

A uniquely determined external potential in turn implies that the Hamiltonian and

hence the set of ground state wavefunctions are determined, meaning that the ground

state density uniquely determines all properties of the system.

Theorem 2: Based on the previous theorem, the energy can now be defined to

be a universal functional of the ground state density. Minimizing this functional for

a given external potential then gives the ground state energy. The associated density

at the minimum gives the ground state density.

Although, the work by Hohenberg and Kohn rigorously proofed the intuitive as-

sumptions of Thomas and Fermi and as such lay the ground-works for modern-day

DFT, it made no attempt at formulating the exact functional form of the energies.

Although the problem of having to find the full many-body wavefunctions has been

circumvented it seems at first glance that no headway was made, as the exact func-

tional form of the energy is not known. This was addressed by Kohn and Sham.
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Kohn-Sham equations

The approach taken by Kohn and Sham is to introduce a fictitious reference system

that consists of non-interacting electrons, with the condition that this system has to

have the same ground state density as the system of interacting electrons we are

trying to solve. The second part of their Ansatz is that the reference Hamiltonian is

to have the usual kinetic operator and an effective local potential VKS. An essential

ingredient in their treatment is that the orbital wavefunctions are (re-)introduced.

This allows for exact evaluation of the kinetic energy term, which does not explicitly

depend on the density. To be precise the specific form of the wavefunctions of the

fictitious electrons are that of the Slater determinants introduced earlier for the HF

approximation (eq. 2.6). Within the Kohn-Sham Ansatz it is then possible to write

the ground state energy functional as,

EKS = Ts [n] +

∫

drVext (r)n (r) + EHartree [n] + EII + Exc [n] , (2.9)

where the independent particle kinetic energy is given by,

Ts [n] = − h̄
2

m

Ns
∑

i=1

〈φi

∣

∣∇2
∣

∣φi〉. (2.10)

The Hartree energy is given by

EHartree [n] =
1

2

∫

d3rd3r′
n (r)n (r′)

|r − r′| . (2.11)

EII is the energy due to the interacting nuclei, which can be evaluated using the

Ewald method, and Vext is the external potential due to the nuclei. Finally, Exc
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includes all the many-body effects that were neglected for the fictitious system. This

can be realized by comparing to the interacting system,

Exc [n] = 〈T 〉 − Ts [n] + 〈Vint〉 −EHartree [n] , (2.12)

where 〈T 〉 and 〈Vint〉 are the kinetic and interaction energies of the interacting sys-

tem. The ’mistake’ one makes by assuming non-interacting particles for the kinetic

term, is essentially added to the other interactions into the correlation term. If the

functional Exc [n] was known, then one could easily calculate the ground state energy.

However, this universal functional is not known and has to be approximated. To pro-

ceed in finding a solution to the many-body Schrödinger equation by employing the

Kohn-Shan Ansatz it is therefore necessary to find the Kohn-Sham Schrödinger-like

equations via variational treatment of the Kohn-Sham energy functional. This gives,

(HKS − ǫi)φi (r) = 0, (2.13)

where the Hamiltonian is given by,

HKS = −1

2
∇2 + VKS (r) . (2.14)

with,

VKS = Vext (r) + VHartree (r) +
δExc

δn (r)
. (2.15)

Up to this point no approximations have been made and the equations are exact.
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2.2.4 Exchange Correlation Potential

For practical calculations one has to approximate the exchange-correlation func-

tional Exc [n]. Since most long-range effects are already in the kinetic and Hartree

terms above, it is reasonable to assume a local approximation, where one can then

write,

Exc [n] =

∫

drn (r) ǫxc ([n] , r) . (2.16)

This becomes the basis for the local density approximation and its extension the

generalized gradient approximation.

Local density approximation

In order to proceed in the discussion of the LDA it is helpful to consider that

the exchange correlation in eq. 2.16 can be split up into two separate parts for the

exchange and the correlation energy,

Exc [n] = EX [n] + EC [n] . (2.17)

In principle the exchange part is known exactly as a function of single-electron or-

bitals, but these calculations are exceedingly expensive. In addition, the functional

of the correlation energy is impossible to determine exactly, and it was found that it

is beneficial to treat the exchange and correlation part to the same level of approxi-

mation. If this is not done, beneficial cancelation terms do not naturally evolve. The

next step in finding an approximate expression for the exchange correlation energy
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is to consider the results from the homogeneous electron gas. Since eq. 2.16 already

assumes only a local dependence, it is logical to use the homogeneous electron gas.

This should give good results for any system that does not have a density that is

too inhomogeneous. The exchange part is known exactly from the extension of the

Thomas-Fermi theory by Dirac [39, 40],

ǫx [n] = −3

4

(

3

π
ρ

)
1
3

= −3

4

(

9

4π2

)
1
3 1

rs
, (2.18)

where rs =
(

3
4
πρ

)
1
3 is the Wigner-Seitz radius defining the mean interelectronic dis-

tance.

The correlation energy for the homogeneous electron gas cannot be determined

exactly. However, it was shown that very accurate Quantum Monte Carlo (QMC)

calculations of the homogeneous electron gas can be used instead [45, 46]. A popular

parametrization used for instance in VASP is that by Perdew and Zunger [46] based

on the QMC calculations by Ceperley and Alder [45], which for a spin unpolarized

system takes the form,

ǫc [n] =



















0.0311 ln rs − 0.048 + 0.0020rs − 0.0116rs, rs ≤ 1

−0.1423/
(

1 + 1.0529
√
rs + 0.3334rs

)

rs > 1.

(2.19)

Spin polarized systems are parametrized in the same way resulting in a relation which

takes the same form but has different parameter values [46].

Despite the approximations involved in the LDA, it performs remarkably well.

Not surprisingly the best correspondence with experiments can be found for systems
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that are highly homogeneous, such as metals. Insulators and semiconductors are

also described well. The reason why the LDA works so surprisingly well is that the

exchange correlation hole fulfills all the sum rules and that for accurate results the

exact shape of the exchange correlation hole is not required, only its average is of

importance. In general one finds that the LDA tends to overestimate the cohesive or

binding energies. As a results it tends to underestimate bond lengths and overestimate

the bulk modulus. One main source of errors comes from the fact that in the LDA the

self-interaction energy does not cancel completely due to the locality approximation.

This can result in large error in strongly localized states. In general since the main

approximation for the LDA is that we assume a local behavior that can be well

described by the uniform electron gas, we cannot expect it to work that well for

molecules and for surfaces as these have density distributions that involve areas of

significant inhomogeneity.

Generalized gradient approximation

The generalized gradient approximation aims to address the short-comings of the

LDA of not being able to appropriately treat highly inhomogeneous system. This is

achieved by including terms of both the density and its gradient into the exchange

correlation energy functional,

EGGA
xc [n] =

∫

dr3n (r) ǫxc (n, |∇n|) . (2.20)
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Initial extensions of the LDA suffered from the problem that the exchange hole was

not described correctly. This has been addressed in several different functional forms

for the GGA [47, 48, 49, 28]. All of these have in common that the behavior for

the exchange hole is appropriate as was the case for the LDA. This means that the

exchange hole has to be normalized to -1 and is negative definite. The particular GGA

functional used both for the calculations presented in Chapter 3 with VASP and those

presented in chapters 4, 5 and 6 with CP2K are performed using the form of Perdew,

Burke and Erznerhof (PBE) [28]. This particular approach will be outlined here for

completeness with the relevant publications cited for further information. As for the

LDA, the correlation and exchange energy functionals are considered separately. The

correlation energy takes the form,

EGGA
c

[

n↑, n↓
]

=

∫

dr3n (r)
[

ǫunif.
c (rs, ζ) +H (rs, ζ, t)

]

. (2.21)

By considering the relevant limiting cases of the density PBE proposed the Ansatz,

H =

(

e2

a0

)

γφ3 ln

{

1 +
β

γ
t2

[

1 + At2

1 + At2 + A2t4

]}

, (2.22)

where,

A =
β

γ

[

exp
{

−ǫunif.
c /

(

γφ3e2/a0

)}

− 1
]−1

, (2.23)

and ζ =
(

n↑ − n↓
)

/n is the relative spin polarization and t is proportional to the

density gradient (a detailed description of each parameter can be found in the original

work by PBE [28]). The exchange term for GGA functionals is usually defined by,

EGGA
x =

∫

dr3n (r) ǫunif.
x (n)Fx (s) . (2.24)
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For the particular form of the exchange energy density term PBE take a functional

of the same form as Becke [50],

Fx (s) = 1 + κ− κ/
(

1 + µs2/κ
)

, (2.25)

where κ = 0.804 and β is chosen to take the same value as for the correlation.

2.2.5 Pseudopotentials and Projector Augmented Waves

The previous sections have shown that DFT can be an alternative to attempting

to find direct solutions of the full many-body Schrödinger equation. Although more

feasible, finding solutions within the DFT formalism can still be very computationally

intensive and further approximations are frequently used to improve the efficiency of

practical calculations. Pseudopotentials fall within this category of addressing the

efficiency of calculations and therefore the feasibility of being able to study practical

systems. The underlying simplification of pseudopotentials is based on the realization

that not all electrons are of equal importance when only chemical bonding of atoms is

considered. It is primarily the valence electrons that are involved in bond formation

and it is therefore often not necessary to treat the core electrons explicitly. Very

good results can be obtained by employing pseudopotentials where the core electrons

only provide an effective potential and are not explicitly treated in the Kohn-Sham

equations. On top of the clear advantage of treating less electrons explicitly in the

Kohn-Sham equations, the pseudopotential method offers the advantage that the

effective potentials can be constructed to be smoother than originally. This if of
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great importance when a plane wave basis is employed as this allows for a description

of the states with a smaller energy cutoff (this will be discussed in more detailed in

section 2.2.6). The theory of pseudopotentials was established in work by Phillips

and Kleinman [51]. They propose a smooth nodeless wavefunction, φ̃v for valence

states to take the form,

∣

∣

∣
φ̃v

〉

= |φv〉 +
∑

c

αcv |φc〉 , (2.26)

where αcv =
〈

φc

∣

∣

∣
φ̃c

〉

. The wavefunctions φi are the original wavefunctions and satisfy

H |φi〉 = ǫiφ where i = c, v corresponds to core and valence states, respectively, and

H is the single particle Hamiltonian H = T + V . On operating with H on eq. 2.26

and rearranging, one finds,

[

H + (ǫc − ǫv)
∑

c

|φc〉 〈φc|
]

φ̃v = ǫv

∣

∣

∣
φ̃v

〉

. (2.27)

This takes the form of a Schrödinger equation for the pseudized wavefunctions φ̃v. It

is therefore possible to construct an effective Hamiltonian that has the same eigen-

values as the original Hamiltonian. At the same time the pseudo-wavefunctions can

be constructed to be nodeless and smoother in the core region. Modern day imple-

mentations of pseudopotentials often add several important ingredients to the above

derivation. First, many pseudopotentials are constructed to satisfy norm-conservation

of the pseudized wavefunctions in comparison to the original states. This allows for

greater transferability to environments where the energy range of the eigenvalues do

not depart too far from the ones used in the construction of the pseudopotential.
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Another important consideration are relativistic pseudopotentials. These are con-

structed by considering Dirac’s expression rather than the Schrödinger equation of

eq. 2.2. This then allows for relativistic treatment of the core electrons, whereas

valence electrons can still be treated non-relativistically with DFT.

There are numerous different recipes and implementations for pseudopotentials.

Some of the more popular ones include for instance the pseudopotentials proposed by

Troullier Martins (TM) [52] and those by Rappe, Rabe, Kaxiras and Joannopoulos

(RRKJ) [53]. The pseudopotentials used in the work presented in chapters 4, 5 and

6 are based on the form by Goedecker, Teter and Hutter (GTH) [30, 54]. These are

norm-conserving, relativistic, separable and dual-space pseudopotentials. They can

be expressed in terms of a local (V PP
loc ) and nonlocal (V PP

nl ) part, where the local part

in turn can be separated into a long-range term and a short-range term,

V PP
loc = −Zion

r
erf

(

αPP r
)

+
2

∑

i=1

CPP
i

(√
2αPP r

)2i−2

× exp
[

−
(

αPP r
)2

]

, (2.28)

where Zion is the ionic charge and αPP =
(√

2rloc

)−1
. The nonlocal part takes the

following form,

V PP
nl (r, r′) =

∑

lm

∑

ij
〈

r
∣

∣plm
i

〉

hl
ij

〈

plm
j |r′

〉

, (2.29)

where the projectors have a Gaussian form,

〈

r
∣

∣plm
i

〉

= N l
iY

lm (r̂) rl+2i−2 exp

[

−1

2

(

r

rl

)2
]

, (2.30)

where Y lm are the spherical harmonics and N are normalization constants. It is

important to point out that in contrast to many other pseudopotential approaches
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that are based on tabulated values, this implementation is analytic with only a small

number of parameters (CPP
i , rloc, rl and hl

ij). Normally the GTH pseudopotentials

are considered too computationally intensive to be used in plane wave methods, but

they are well suited for the gaussian plane wave approach. This will be discussed in

greater detail in section 2.2.6.

Another commonly used approach based on similar ideas as pseudopotentials is

that of projector augmented waves (PAW), first introduced by Blöchl [55]. This

method will be used for the calculations performed in section 3. The main difference

to the pseudopotential method, where the core electrons only enter through the effec-

tive potential of the pseudopotentials, is that within the PAW formalism all-electron

wavefunctions are employed. The method relies on rewriting the original all-electron

wavefunctions into a set of auxiliary wavefunctions that can be decomposed such

that they are smooth everywhere except in well-defined small regions with rapid os-

cillations. Each part can be treated separately, where the rapidly oscillating part is

treated similarly to the muffin-tin approach. A more detailed discussion can be found

in the original work by Blöchl [55] and in for instance ref. [42]

2.2.6 Basis Sets

It is computationally advantageous to express the one-electron orbitals in a dif-

ferent mathematical form. This is achieved by expanding the one-electron orbitals,
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ψj (r), in a different basis,

ψj (r) =
M

∑

α=1

cjαφα (r) , (2.31)

where φα (r) are the new basis set orbitals, M is the size of the basis set and cjα are

the expansion coefficients for each electron wavefunction ψj (r). A wide variety of

different types of basis set functions have been proposed. Amongst the most popular

ones are plane waves [56], Gaussians [57], Slater functions [58], wavelets [59] and

numerical atomic orbitals [60, 5]. The choice of the particular basis historically was

mostly divided into two areas, those of the plane wave (PW) approach which was

traditionally preferred in the physics community, and those of atom centered basis

sets such as Gaussians, originally favored by the chemistry community. The difference

between these in terms of accuracy for different systems has somewhat diminished

today. Other approaches exist that combine different types of basis functions. In

this way, parts of the mathematical problem of solving the KS-equations can be

selectively addressed with one or the other method, thereby giving the possibility

to take advantage of the best of both methods. One such approach is the Gaussian

Plane Wave (GPW) approach, which will be used in the work of section 4, 5 and 6.

In what follows, we proceed by giving a separate introduction to the different types

of basis sets relevant to this work.
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Plane waves

The PW approach was originally developed in the physics community and takes

advantage of periodicity naturally found in many solid state systems. Considering

Bloch’s theorem we know that the solution of the Schrödinger equation for a constant

potential are plane waves. This makes them natural candidates as a basis set in

condensed matter system. It is possible to write the PW basis as,

φk

G
(r) =

1√
Ω
ei(k+G), (2.32)

where k are the wave vectors, G are the reciprocal lattice vectors and the PW basis

functions are normalized by the unit cell volume Ω. This results in an expression for

the one-electron wavefunctions,

ψk

j (r) =
∞

∑

G=0

cjk (G)φk

G
(r) . (2.33)

So far the expression in eq. 2.33 assumes an infinite basis in the sum. This would

represent the one-electron wavefunctions to infinite accuracy. In practice one chooses

an energy cutoff, thereby limiting the number of plane wave functions,

h̄2

2m
|k + G|2 < Ecut. (2.34)

This is possible without significant loss of accuracy as it is found that the coefficients

cjk (G) become smaller as |k + G| increases. The error that is introduced by ignoring

high-energy expansion terms is also manageable in a reasonably straightforward fash-

ion. Increasing the number of plane waves increases the accuracy, thereby allowing
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for gradual mathematical convergence of the results. This is an important point and

care has to be taken that calculations are appropriately converged.

The importance of introducing pseudopotentials for PW methods becomes more

apparent now. Rapidly varying one-electron wavefunctions would require significantly

greater energy cut-offs for the PW method, leading to an overall increase in the

computational cost required.

Gaussian-type orbitals

Within the chemistry community, another commonly used approach that gives

an alternative to PW methods is that of atom-centered basis sets. Of particular

importance in this field are Gaussian-type orbitals. This was first introduced in 1950

by Boys [57]. A major advantage of Gaussians is that the integrals involved in solving

the KS equations can be performed analytically. This is mathematically possible since

the product of two Gaussians is another Gaussian. The form generally used is that

of cartesian (primitive) Gaussians,

gijk (r) = χi (x)χj (y)χk (z) , (2.35)

where,

χi (x) =

(

2α

π

)
1
4

√

(4α)i

(2i− 1)!!
xie−αx2

(2.36)

and equivalent expressions for the y and z parts. Most approaches in practice employ

contracted Gaussians, φµ (r), based on superpositions of primitive Gaussians, gw (r),
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such that,

φµ (r) =
∑

w

dwµgw (r) , (2.37)

where dwµ are the respective contraction coefficients and the single parameter w is

written for convenience and consist of i, j and k as in eq. 2.35. Using contracted

Gaussians eliminates the problem that a single Gaussian would have zero derivative

at the origin, which is in contrast to the behavior of atomic orbitals that have a cusp

at the origin.

Gaussian plane waves

Mixed basis sets are approaches that try to combine the best of two worlds. This

is the method used in QUICKSTEP [61] part of CP2K [3]. It combines a Gaussian

basis with an auxiliary PW basis. The approach is therefore called Gaussian Plane

Wave (GPW) method. Only the main ideas involved in the GPW method will be

outlined below and a detailed account of the methodology and implementation can

be found in several excellent reviews [61, 62, 63]. The method works by defining two

representations of the electronic charge density, the first is based on atom centered

contracted Gaussians,

n (r) =
∑

µν

P µνφµ (r)φν (r) , (2.38)

where P µν are the density matrix elements and the contracted Gaussians are as de-

fined in eq. 2.37. The second auxiliary representation of the electronic density takes
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advantage of the PW basis by defining,

ñ (r) =
1

Ω

∑

G

ñ (G) eiG·r, (2.39)

where ñ (G) are expansion coefficients that ensure that the electronic density ex-

pressed in the PW basis, ñ (r), equals the primary electronic density in terms of the

Gaussian basis, n (r). Equality is enforced on a regular grid in the unit cell. To

transform between the different representations efficient FFT methods can be used.

Within the GPW framework individual KS energy terms are evaluated with either

Gaussians or the auxiliary PW basis set. The choice for each term depends on which

basis has greater numerical efficiency. The different terms are carefully defined here,

E [n] = ET [n] + EV [n] + EH [n] + EXC [n] + EII . (2.40)

Given the two basis sets as defined in eq. 2.37 and 2.32 the individual terms then

take the following form. The kinetic energy is,

ET [n] =
∑

µν

P µν 〈φµ (r)| − 1

2
∇2 |φν (r)〉 , (2.41)

which in the Gaussian basis is analytic. The electronic interaction with the ions,

EV [n], is described using the GTH pseudopotentials [30, 54] as described in sec-

tion 2.2.5 and is separated in a local and non-local part,

ET [n] =
∑

µν

P µν 〈φµ (r)|V PP
loc (r) |φν (r)〉 +

∑

µν

P µν 〈φµ (r)|V PP
nl (r, r′) |φν (r)〉 ,

(2.42)

with V PP
loc (r) and V PP

nl (r, r′) defined in eq. 2.28 and 2.28, respectively. The short

range terms are again analytic in the local Gaussian basis and the long-range terms



Chapter 2: Computational method and theoretical background 31

can be treated as part of the electrostatic terms. The electrostatic interaction term

is generally not well handled by Gaussians, but comparatively easily using PW in

reciprocal space. The Hartree term, EH [n], is therefore evaluated using the PW

basis,

EH [n] = 2πΩ
∑

G

ñ∗ (G) ñ (G)

G
2 . (2.43)

The exchange correlation energy is similarly evaluated using the PW basis grid,

EXC [n] =

∫

eXC (r) dr. (2.44)

This leaves the last term, the interaction energy of the ionic cores,

EII [n] =
1

2

∑

I 6=J

ZIZJ

|RI − RJ |
. (2.45)

The advantage of using a mixed basis is therefore provided by evaluating individual

terms with either Gaussians or plane waves.

2.3 The embedded atom method

So far the discussion in this chapter has solely dealt with first-principles ap-

proaches. Although based on ideas from density functional theory, the embedded

atom method (EAM), originally proposed and developed by Daw and Baskes [64, 65],

instead is an empirical method in its implementation. The method is based on the

result from the work of Hohenberg and Kohn that the energy of a system is a func-

tional of the density. This led Daw and Baskes [64, 65] to introduce an embedding
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function, F (ρ), that describes the energy change as a single atom is added to the

electron background charge. They propose that the total energy takes the form,

Etot =
∑

i

F (ρi) +
∑

ij

V (rij) , (2.46)

where ρi is the local electron charge density and V (rij) is a two-body pair potential.

The electron charge density is approximated by a linear superposition of the densities

of the individual atoms, ρ (rij),

ρi =
∑

j 6=i

ρ (rij) . (2.47)

The particular mathematical form of the EAM results in a very small computational

cost, similar to that of traditional pair potentials. At the same time, the accuracy of

the results is dramatically improved over pair potentials. The EAM has been found

to give excellent results for many system, especially for metals where directional

bonding plays a minor role such as the two metals treated in this work, Cu and

Ni. It is important to point out here that although the EAM takes its roots from

ideas from DFT by considering the densities of the system, it is by no means a first-

principles approach and is inherently an empirical method. The functions in eq. 2.46

are in practice used as fitting functions based on ab-initio or experimental work. This

makes relating the physical meaning of the individual terms to the quantum system

difficult at best.

Despite its success, the EAM has several short-comings. The functions in eq. 2.46

are fitted and tabulated based on experimental or ab-initio results. This limits a
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particular EAM potential to a specific element and the transferability for the same

element to different environments or structures is not guaranteed. There is no a priori

knowledge that an EAM potential, fitted based on a particular set of conditions will

perform well for others. For instance fitting for a bulk material does not mean that

one can a priori say that this EAM will perform well for materials with defects or

under extreme conditions. Being a empirical method, extra attention has to be paid

to the particular system that is being studied and whether it is within the limits of

the particular EAM potential employed.

Another potential short-coming of the EAM is that it is not necessarily straight-

forward to identify the underlying physics responsible for a given process, in particular

if this is based on understanding the electronic density. Although the EAM is based

on the electron density, this has become to all intense and purpose a fitting function

that has only a loose connection with the real electron densities. This was addressed

in recent work by Mitev et al. [66, 67] but commonly used EAM potentials have no

direct connection to the electron densities.

Finally, the main disadvantage of the EAM for the particular work undertaken

here is the need for potentials for each element in a particular structure. This is

a complication for alloy systems but similarly also if one tries to study impurities.

The latter is particularly complicated as tabulated EAM potentials would have to be

developed for each impurity and the surrounding matrix. This would have to include

considerations such as applicability of the potentials for given concentrations, which
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coincides with the disadvantage of no a priori knowledge of the applicability of given

potentials discussed above. In general, developing a new potential is a complicated

task and if not done right, can lead to significant errors.



Chapter 3

Sulfur induced embrittlement of

Nickel: A first principles study

3.1 Overview

We study the embrittlement of Ni due to the presence of S impurities, considering

their effect in the bulk and at grain boundaries. For bulk Ni, we employ Rice’s

theory based on generalized-stacking-fault energetics and the unstable stacking energy

criterion. We use first-principles density-functional-theory calculations to determine

the ductility parameter D = γs/γus, the ratio of the surface energy γs to the unstable

stacking energy γus, for bulk Ni with substitutional S impurities. Similar arguments

based on Rice’s theory for the mechanical properties of grain boundaries (GB’s) are

invoked. We study the Σ5(012) GB with interstitial S impurities, in which case

35
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D is defined as the ratio of the work of separation Ws and the unstable stacking

energy γus, to model the competition between grain decohesion and shear-induced

plastic deformation due to grain boundary sliding (GBS). The presence of S impurities

is found to increase the value of D by ∼ 40% in bulk Ni, but reduces it by over

80% for the GB. These results support earlier suggestions that embrittlement of Ni

by S impurities is related to their effect on grain boundaries. We further calculate

relevant tensile and shear stresses to study the expected fracture mode and find that

intergranular crack propagation accommodated by GBS is inhibited in the system

considered here.

3.2 Introduction

Embrittlement of ductile metals by chemical impurities is a process of great impor-

tance in materials used in a wide range of technologies, ranging from transportation

to the energy industry. Although this process has been known in industry for a long

time, the fundamental mechanisms underlying chemical embrittlement are not un-

derstood at the atomic level. More detailed knowledge of atomistic level processes

can lead to improvements in the design and efficiency of many practical applications.

In the present study we concentrate on the effects of S impurities on the mechanical

properties of Ni. This system is of great industrial interest since nickel-based alloys

are widely used, whilst sulfur is a common impurity during processing steps and in

many operating environments.
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Much experimental effort has been devoted to the study of S impurities in Ni.

These impurities segregate at the grain boundaries (GB’s) [68, 69, 70, 71, 72, 73, 74,

75, 76] and lead to a transition from ductile transgranular to brittle intergranular frac-

ture at high concentrations in microcrystalline materials [68, 69, 70, 71, 72, 73, 74].

Recent experimental work identified a critical S impurity concentration for this tran-

sition, accompanied by amorphization [76]. Theoretical work addressed some of these

issues of chemical embrittlement from an atomistic viewpoint. Chen et al. [77] per-

formed large-scale Molecular Dynamics (MD) simulations supporting the experimen-

tal work by Heuer et al. [76]. Yamaguchi et al. [78] used first-principles density-

functional-theory calculations to provide theoretical evidence for the segregation ef-

fect of sulfur near GB’s and showed how this effect leads to weakening of the structure

by decohesion. Kart et al. [79] were able to confirm those results. Similarly, Sanyal

et al. [80] studied the effects of different impurities on the decohesion of a Ni GB and

related this to chemical embrittlement.

Most of these experimental and theoretical studies have addressed the behavior

and processes in coarse-grained materials. Recent advances in processing techniques

have enabled selective growth of ultrafine crystalline (ufc) and nanocrystalline (nc)

materials. GB engineering techniques have enabled control over the grain boundary

structure. Manipulating the grain sizes and the grain boundary structure may result

in enhancements in the mechanical properties. Kobayashi et al. [73], for instance,

have shown that special GB’s have higher resistance to S embrittlement in ufc Ni.
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At the same time, these techniques make a deeper understanding of the underlying

atomic-scale processes more important in order to effectively take advantage of the

microstructure. For example, different response mechanisms are thought to apply

to coarse-grained than nc metals. Several classical MD studies have highlighted the

importance of intergranular deformation mechanisms in nc metals [19, 20, 21, 22, 23,

24]. These results were instrumental in showing that in contrast to coarse-grained

metals, GB’s in nc metals do not merely act as static barriers for crystal dislocations.

Instead, as grain sizes become smaller, the GB’s themselves play an increasingly

important role in plastic deformation and fracture [19, 20, 21, 22, 23, 24]. In this

context plastic deformation can be facilitated by GB sliding (GBS). Most theoretical

and computational studies to date, that addressed chemical embrittlement of Ni from

an atomistic level, have considered the decohesion behavior of GB’s [78, 79, 80] but

not shear effects, which could be of crucial importance.

The mechanical behavior of solids is inherently connected to the issue of brittle

or ductile response. The terms “brittle” and “ductile” refer to macroscopic response,

which ultimately is related to the atomic scale structure and nature of bonding be-

tween atoms in the solid. The connection between macroscopic behavior and atomic-

scale structure is not trivial, and remains the focus of vigorous research in many

classes of materials. Armstrong [81] and Kelly et al. [82] first suggested that the dif-

ference between the two types of responses is due to competition between decohesion

(also referred to as “Griffith cleavage”) and plastic deformation (or shear) at the tip
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of a crack inside the solid; these ideas were subsequently put on a more quantitative

basis first by Rice and Thomson [83] and later by Rice [84] who related the decohe-

sion and shear tendencies to specific energy terms that can be ultimately connected

to the atomic structure of the solid. This provided a criterion for determining the

brittle or ductile response of the solid by calculating the relevant energy terms, from

atomic-scale considerations. The approach based on Rice’s criterion [84] for brittle

versus ductile behavior can give a clear picture of the effect of the chemical compo-

sition of the solid and of changes in it, for example, the introduction of impurities

on the mechanical properties. We extend the original Rice’s theory to study ductile

vs. brittle response at GB’s of small sized grains, by considering the competition be-

tween plastic deformation facilitated by shear in the form of GBS and brittle response

induced by grain decohesion. Specifically, we examine whether or not S impurities

at GB’s in Ni are the dominant mechanism for its embrittlement. To this end, we

calculate the decohesion energy and unstable stacking energies both for bulk Ni and

for a representative GB in Ni, and compare these values for the pure structures and

structures with S impurities at the relevant slip and decohesion planes. Our results

show that in bulk Ni, the presence of S impurities leads to an increase in ductility.

In contrast to this, we find clear evidence of S-induced embrittlement for the case of

the Ni GB, introduced by a decrease in the required work of separation and suppres-

sion of GBS. This supports the view that S impurity segregation at the Ni GBs is a

dominant effect in its embrittlement.
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The chapter is organized as follows: in Section 3.3 we present the theoretical

framework for interpreting our first principles calculations in the context of macro-

scopic continuum theory, together with a description of our specific computational

model. Section 3.4 presents the results of our calculations for the key quantities that

characterize brittle or ductile response for bulk Ni and the Ni GB, with or without

the S impurities. Finally, in Section 3.5 we discuss our conclusions.

3.3 Theoretical framework

Macroscopic theories have been used extensively to describe the mechanical be-

havior of materials. Early work by Rice and Thomson [83], modeled the process

of nucleation of dislocations at the tip of a crack as the fundamental mechanism of

plastic shear. Subsequently, Rice [84] used the Peierls concept [85] to quantify the

competition between cleavage and plastic shear at the tip of a crack, which are related

to brittle versus ductile response of a stressed solid, in terms of two key quantities:

the surface energy of newly exposed surfaces due to cleavage, γs, and the unstable

stacking energy, γus, the lowest energy barrier for sliding two halves of a periodic crys-

tal over a full period across a crystal plane. Using this theoretical framework, studies

of representative solids with effective interatomic potentials [86] or first-principles

total-energy calculations [87] were carried out to elucidate the nature of brittle or

ductile response of various materials. Extensions of these studies to more realistic

situations [88, 89, 90] were employed to predict the change in mechanical response
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due to impurities [91, 92]. Thus, the combination of Rice’s continuum macroscopic

theory, coupled with high-accuracy atomistic scale calculations for the values of key

quantities like γs and γus, can be useful for addressing qualitatively the complicated

issue of brittle versus ductile behavior in the presence of chemical impurities.

In this approach, the main point is that a large value of the ratioD = γs/γus, called

the ductility parameter [93], implies ductile behavior because it corresponds either

to a large energy cost for cleavage (large γs) or to a small energy cost for dislocation

nucleation (small γus); conversely, a small value of D implies brittle behavior due to

a small cost of cleavage (small γs) or large cost for dislocation nucleation (large γus).

There is however no general rule for what constitutes “large” or “small” values ofD in

such comparisons; it depends on the specific system under consideration. For example,

in what concerns the behavior of fcc metals, Rice [84] previously estimated the critical

value of D to lie between 4 and 9 and was able to successfully correlate the values

of the ductility parameter D of several metals to the correct experimental behavior.

When the interest is specifically focused on the role of chemical impurities, the task

is simpler: the values of γs and γus can be calculated with or without impurities,

and the resulting comparison can give strong indications about the likely role of

the impurities [91, 92]. The use of first-principles quantum mechanical calculations

that faithfully represent the chemical character of various species of atoms makes it

possible to obtain accurate values for γs and γus, at least in cases where the relevant

geometries are simple enough to make such calculations feasible.
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For the most part in this study we consider the simple ratio of the unstable stacking

energy, γus, and the surface energy, γs, to calculate the ductility parameter D. This

is sufficient when the geometries, and in particular the Burgers vectors, of the system

of interest do not change significantly when impurities are present or not. When the

Burgers vectors change as impurities are introduced, a more careful definition of the

ductility parameter D̃ is required. Rice showed that, for mode I loading, the energy

release rate for dislocation nucleation is [83],

Gd = 8
1 + (1 − ν) tan2 φ

(1 + cos θ) sin2 θ
γus, (3.1)

where θ is the angle between the slip and decohesion planes (see Fig. 3.1) and

ν is the Poisson ratio; the angle φ is the one subtended between the normal to

the intersection of the slip and decohesion planes which lies on the slip plane and

the Burgers vector [84]. The energy release rate for Griffith cleavage is Gc = 2γs.

The most general definition for the ductility parameter D̃ is then D̃ = Gc/Gd. For

situations where θ and φ are constant D̃ = αD = α (γs/γus), with α being a constant

factor determined by geometric considerations.

We extend here the concept of the generalized energy surface, or γ-surface, first

discussed by Vitek [94], to the case of a GB. Specifically, we use the work of separation

(Ws) and the minimal energy required to shear the GB (γus), in the same spirit as

these are used in relation to decohesion and slip planes in the bulk of a regular

crystal. We note that the decohesion (cleavage) and slip planes in a crystal are often

different [92]. In the case of a GB it is a reasonable choice to identify both the
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Figure 3.1: Illustration of slip/decohesion planes at a relative angle θ, in the bulk
(left panel, straight lines represent bulk planes), in the presence of GB’s (represented
by jagged lines), and possible inter-granular failure mechanism (right panel, fracture
along red boundary between GB’s) due to external load, with forces denoted as F
and their parallel F|| and perpendicular F⊥ components on a given GB.

decohesion and slip planes with the GB plane, since this is the weak plane of the

system on which either decohesion or slip may occur. In the context of GB’s γus now

quantifies the resistance against shear and can therefore still be taken as a measure of

ductility. The competing process of greatest importance is that of cleavage, quantified

by the work of separation (Ws) for intergranular decohesion along the GB. We can

then define in a similar manner as in the original Rice’s theory a ductility parameter

as the ratio of these two competing processes DGB = Ws/γus. We will use the natural

cleavage plane of bulk fcc Ni, the (111) plane, and the Σ5(012) GB as a prototypical

planar defect that has been the subject of detailed studies recently [78, 79, 80].

The total energy of various structures, from which the key quantities discussed

above can be directly obtained, are calculated using density-functional-theory as im-
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plemented in the VASP code [4]. The generalized gradient approximation (GGA) [28]

with projector-augmented plane wave (PAW) potentials [29] was used for all calcula-

tions. We elected to perform spin polarized calculations to improve accuracy, since

Ni can be a magnetic solid. A kinetic energy cutoff of 330 eV was used after care-

fully testing for convergence when the geometry of the system is changed during slip

calculations and when S impurities were included. The Methfessel-Paxton smearing

of second order [95] was used with a smearing width of 0.1 eV. All relaxations were

performed using the conjugate-gradient method as implemented in VASP. Finally, a

uniform Monkhorst-Pack [96] k-point grid of 15 × 15 × 15 was used for the fcc bulk

Ni calculations with 4 atoms in the cubic unit cell and scaled appropriately for larger

supercells (for instance, a 2 × 2 × 1 grid was used for the supercell with a GB, as in

similar works [78, 79]).

With these computational parameters, we determined the lattice constant for

fcc Ni by fitting the Birch-Murnaghan equation of state, which results in a lattice

constant of a = 3.52 Å and a bulk modulus of B = 185.8 GPa which compare well

with the experimentally determined values of a = 3.52 Å [97] and B = 186 GPa [97].

Relaxation of the unit cell volume was explicitly taken into account when impurities

are introduced in the host crystal.



Chapter 3: Sulfur induced embrittlement of Nickel: A first principles study 45

T

O

Figure 3.2: Illustration of the two interstitial sites in the fcc lattice: the regular lattice
sites are shown as blue circles, the tetrahedral interstitial (T ) is shown as a red circle
and linked by red lines to its 4 nearest neighbors and the octahedral interstitial (O)
is shown as a black circle and linked by black lines to its 6 nearest neighbors.

3.4 Results and Discussion

We address first the question of where the S impurities sit in the case of the fcc

bulk structure and the Σ5(012) GB. For bulk Ni, in general, impurities can be ac-

commodated at either interstitial or substitutional sites. There are two interstitial

positions in the fcc lattice where impurities typically reside [98], the so called “tetra-

hedral” (T ) and “octahedral” (O) sites, named after the coordination of these sites

with nearest neighbor regular lattice sites; the position of these defects in the lattice

is indicated in Fig. 3.2.

To determine the optimal position for the impurities we calculated the formation
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energy εX
f per impurity, defined as:

εX
f =

1

ni

[

EX
tot(ni, nh) − Etot

(

n0
h

)

− niµi −
(

nh − n0
h

)

εh

]

(3.2)

where EX
tot(ni, nh) is the total binding energy of the system containing ni impurities of

type X (X = IT or IO for the interstitial tetrahedral and octahedral positions in bulk

Ni, and S for the substitutional positions), and nh atoms of the host crystal, Etot (n0
h)

is the total binding energy of the system without impurities containing n0
h host atoms,

µi is the chemical potential for the impurities and εh is the binding energy per atom

of the host crystal in its ideal structure. In this expression, the supercell is chosen

so that ni ≪ nh (ideally, nh → ∞). We have considered two different reservoirs for

S, isolated S atoms (equivalent to the limit of µS = 0) and bulk S, which consists of

puckered hexagonal or octagonal stacked rings of S [99]. To obtain the bulk S chemical

potential, we optimized the structures using the same computational parameter as

for bulk Ni and a cubic supercell of large size (with lattice constant up to 28 Å),

and found that in the hexagonal rings the S–S bond length is 2.06 Å and the S–S–S

bond angle is 102◦, whereas for the octagonal rings the bond length is 2.04 Å and

the bond angle is 108◦. The difference in chemical potential between the hexagonal

and octagonal rings is only 0.07 eV in favor of the latter, so we will quote results

in the rest of the paper for the octagonal ring structure only, which corresponds to

µS = −3.22 eV. The results of these calculations for the formation energy of S point

defects in bulk Ni are given in Table 3.1. We find that the energy of formation of the

S interstitial defect at both the tetrahedral and octahedral positions are IT = 3.16 eV
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X Θ εX
f

IT 0.92% 3.16
IO 0.92% 1.96
Sb 0.93% 0.38
IGB 0.25 −0.89
IGB 1.0 −1.21
SGB 0.33 0.35

Table 3.1: Formation energies εX
f (in eV) from Eq. (5.1) of the various S point defects

in bulk Ni and at the Σ5(012) grain boundary, for the S chemical potential µS = −3.22
eV (corresponding to bulk S, consisting of stacked octagonal rings). X = IT , IO
are the bulk interstitial positions (tetrahedral and octahedral, respectively), X =
Sb is the bulk substitutional position, IGB, SGB are the grain boundary interstitial
and substitutional positions. Bulk concentrations Θ correspond to percentage of
impurities in the supercell; GB concentrations correspond to the defect plane ratio
for the GB0 plane.

and IO = 1.96 eV, respectively. This is significantly greater than the formation energy

of a substitutional S defect, namely Sb = 0.38 eV. These results suggest that the only

relevant S defect in bulk Ni is the substitutional.

We have performed similar calculations for the formation energy of impurities

at the GB plane. The open spaces on the GB plane allow energetically favorable

interstitial S impurities (this is explained in more detail in the next subsection, 3.4.2).

In the context of the following calculations of the unstable stacking and decohesion

energies, it is useful to introduce at this point a convenient measure of the impurity

concentration on a defect plane. We follow the literature convention [100] of defining

the defect plane impurity concentration Θ as the ratio of the number of S atoms to

the number of Ni atoms on the respective defect plane. The planes used throughout

will be the cleavage or slip planes. Table 3.1 summarizes the formation energies for
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the case of one and four S atoms in a unit cell containing four Ni atoms on each plane

parallel to the GB plane, that is, for Θ = 0.25 and 1.0 (see Fig. 3.5). These values

include supercell volume relaxation. The unit cell volume for the GB with impurities

increases: the lattice constant perpendicular to the GB plane (a3 = 16.40 Å in the

pure Ni case) expands by 1% and 3% for Θ = 0.25 and 1.0, respectively; of the other

two lattice vectors in the plane parallel to the GB, one (a1 = 7.02 Å in the pure

Ni case) contracts by 1% for both S concentrations, and the other (a2 = 7.85 Å in

the pure Ni case) expands by 1% and by 2% for Θ = 0.25 and 1.0, respectively. The

energy gain due to the volume relaxation is very small and the S inclusion energy

dominates. The formation energies in this case are considerably lower than for bulk

Ni. This finding indicates that S atoms segregate at the GB’s under thermodynamic

equilibrium conditions, but it does not address the kinetic issue, that is, how easily S

atoms diffuse to the optimal equilibrium sites at the GB. A detailed study explicitly

treating S diffusion from first principles is beyond the scope of the present work.

Experimentally it is known that S diffuses to the GB [68, 69, 70, 71, 72, 73, 74, 75, 76],

which is consistent with our results of low energy positions of S impurities being

associated with the GB. The concentrations were chosen with experiments in mind

[70, 76]: for Θ = 1.0 in our case, the equivalent concentration to experimental ones

would be approximately 9%, taking into account the total amount of Ni atoms that

the supercell contains in the neighborhood of the GB.
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Figure 3.3: Setup for the calculation of γs and γus in bulk fcc Ni: Ni atoms are
represented by blue circles. The top view shows the unit cell vectors a1, a2 on the
(111) plane. The side view shows the atoms along the 〈111〉 crystal direction, with the
corresponding lattice constant a3. The thick dashed blue line represents the boundary
of the supercell in the ideal crystal, which contains 9 (111) planes of atoms. Changes
in the supercell lattice constant (indicated by the small vertical and horizontal arrows)
define the distortions through which γs and γus are determined: these distortions are
shown as double-headed arrows d (for decohesion) and s (for slip), and correspond
to a displacement of atomic planes from their positions in the ideal crystal, indicated
by black dashed lines, to new positions, indicated by dash-dotted red lines. The red
circle labeled T and the black circle labeled O indicate the tetrahedral and octahedral
interstitial sites in the bulk.

3.4.1 Decohesion in bulk fcc Ni

We begin with a description of the unit cell for calculating the surface energy, γs,

and unstable stacking energy, γus, for bulk Ni. The relevant plane for such calcula-

tions, on which both decohesion (cleavage) and slip take place in the fcc crystal is

the (111) plane; this is illustrated in Fig. 3.3. The surface energy is determined by

increasing the length of the supercell vector a3 along the 〈111〉 crystallographic direc-

tion by d until the energy reaches an asymptotic value which is 2γs higher than the

equilibrium energy. For consistency, we use the Universal Binding Energy Relation

(UBER) [101] to fit the results of changing the value of d, in order to determine the

asymptotic value for d→ ∞.
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To find the surface energy, γs, for bulk fcc Ni decohesion in the 〈111〉 direction, we

also need to specify how the atoms relax in the process of separating the two halves

of the crystal while exposing two (111) planes. For an unambiguous definition of the

decohesion distance d, the atoms on either side of the cut must be at a fixed distance

in the 〈111〉 direction. Since for the calculations of the bulk decohesion the periodicity

on the (111) plane is that of the bulk structure, the above restriction implies that all

atoms on the two planes immediately adjacent to the cut are fixed in all directions,

at the required distance d between the planes. All other atoms in the unit cell are

allowed to relax fully.

For the decohesion calculation in the presence of S impurities, we used a supercell

with 2 × 2 periodicity in the a1 and a2 lateral directions. This allows us to consider

different concentrations of S impurities, by replacing one or more of the Ni atoms on

the plane next to the cut by S atoms. We have considered two cases for the cleavage

plane, Θ = 0.33 (one substitutional S atom in the 2 × 2 supercell) and Θ = 1.0 (two

substitutional S atoms in the 2 × 2 supercell). These concentrations were chosen

primarily in order to be able to have a direct comparison to the concentrations in

the case of the GB calculations. The results of the decohesion calculations are shown

in Fig. 3.4(a). The surface energy decreases by 27% in the case of Θ = 0.33 on the

cleavage plane and by 51% in the case of Θ = 1.0.
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Figure 3.4: (a) Decohesion energy for bulk (111) Ni, without impurities (Θ = 0.0) and
at two S impurity concentrations, Θ = 0.33, 1.0 (see text for details). (b) Decohesion
energy for the Σ5(012) GB without impurities (Θ = 0.0) and at two S impurity
concentrations, Θ = 0.25, 1.0 (see text for details). (c) Corresponding tensile stress
for the GB, without and with S impurities.
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Figure 3.5: Setup for the calculation of the Σ5(012) GB: Ni atoms are represented
by blue circles, possible interstitial positions for S atoms are indicated by smaller red
circles. The top view shows the unit cell vectors a1, a2 on the (012) plane, parallel
to the GB. The side view shows the atoms along the 〈012〉 crystal direction, with the
corresponding lattice constant a3. The thick dashed blue line represents the boundary
of the supercell, which contains 20 (012) planes of atoms, labeled −9, . . . , 0, . . . , 10
(only one atom per plane is labeled). Each plane contains 4 atoms, labeled in the top
view for planes 0 and 1. There are two GB’s in each unit cell, at planes labeled 0
and 10. Decohesion calculations are performed by increasing the magnitude of a3 by
d and moving all atoms in the top half of the cell by the same amount so that a gap
appears at GB0. GSF energy calculations are performed by displacing all the atoms
in one half of the cyrstal (defined by a cut between GB0 and GB1) with respect to
the other.
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Bulk Ni Σ5(012) GB
Θ 0.0 0.33 1.0 Θ 0.0 0.25 1.0

γs [J/m2] 1.91 1.40 0.93 W̃s [J/m2] 3.56 3.06 2.24
γus [J/m2] 0.29 0.17 0.10 γus [J/m2] 0.30 0.63 1.24

D = γs/γus 6.6 8.2 9.3 DGB = W̃s/γus 11.86 4.86 1.80
σt [GPa] 20.91 20.11 17.74
σs [GPa] 6.41 7.84 15.04

Table 3.2: Surface (γs) and unstable stacking (γus) energies and ductility parameter
(D) for the bulk Ni; work of separation (Ws) and unstable stacking (γus) energies
and ductility parameter (DGB) for the Σ5(012) GB, for different concentrations Θ of
S impurities. σt and σs are the corresponding tensile and shear strengths for the GB
without or with S impurities.

3.4.2 Decohesion in fcc Ni with a grain boundary

For the GB calculations we consider a Σ5(012) structure, the same as in recent

other work [78, 79, 80]. This GB has energetically and structurally advantageous

interstitial sites for the incorporation of S impurities. The structure of this GB is

shown in Fig. 3.5. The S impurities in our calculations of the work of separation are

added to the 4 interstitial sites on the GB0 plane, equidistant from the 3 adjacent

Ni atoms as shown in Fig. 3.5. The inclusion of impurities leads to a change in the

supercell volume, as described earlier. The formation energy of the GB, obtained by

comparing the energies of the supercell with the GB and a supercell which has exactly

the same geometry and number of Ni atoms but no GB, is ∆EGB = 1.21 J/m2, which

compares well with the results reported earlier for the same GB (1.19 J/m2 [78]). The

calculated energy difference includes both the energy change due to supercell volume

relaxation and the structural changes introduced by the GB.
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To determine the work of separation Ws, a cut is introduced at the GB between

layers GB0 and GB1. Here the situation is more complicated than for the decohesion

of the perfect Ni crystal discussed earlier. We consider two cases: in the first, denoted

as Ws, all the atoms on the decohesion planes are held fixed; in the second, denoted

as W̃s, we allow relaxations on the planes on either side of the cut by fixing only one

reference Ni atom in each cut plane. We discuss first the result of the case with fixed

atoms, which are shown in Fig. 3.4(b). The fit using UBER allows us to extract the

decohesion energy for d → ∞. Table 3.2 summarizes the results. In the absence of

impurities the decohesion energy of the GB is smaller than that of bulk (111) Ni by

only 7%. This is reasonable since the exposed surfaces upon decohesion of the GB are

the (02̄1) crystal surfaces, which have higher surface energy than the (111) surface,

but the reference structure in this case includes the GB, which itself is a higher energy

structure than the ideal bulk crystal. When S impurities are added, Ws is lowered

by 7% for Θ = 0.25 (one S atom in the unit cell of the GB0 plane), and by 31% for

Θ = 1.0 (four S atoms in the unit cell of the GB0 plane). This is consistent with

calculations for the cleavage energy reported by Sanyal et al. [80]. The reduction in

Ws is much smaller than the corresponding reduction of the decohesion energy in the

ideal Ni crystal upon the incorporation of S impurities. When surface relaxation is

included, the resulting work of separation W̃s is generally lower. In the absence of

S impurities the difference between Ws and W̃s is negligible. With S impurities, the

effect of relaxation is stronger, and the values of W̃s are lower than that of the pure
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GB by 14% and 37% for Θ = 0.25 and 1.0, respectively. The relaxation of atoms on

the two planes on either side of the cut is significant, especially that of the impurities:

the relaxed S atoms move outwards away from the exposed surface by 0.41 Å with

respect to the three Ni atoms that are allowed to relax, and by 0.18 Å with respect

to the fixed reference Ni atom.

3.4.3 Generalized-stacking-fault energy for bulk Ni

For the calculations of the generalized-stacking-fault energy, care has to be taken

how the atoms are relaxed on the slip planes, as the supercell vector a3 is changed

by s (see Fig. 3.3). We simulate the behavior of the bulk away from the slip plane by

keeping the central plane of the supercell fixed. We allow relaxations along a3 but

keep the positions of all slip plane atoms fixed along a1 and a2, while the remaining

atoms are allowed to relax freely. These restrictions are crucial to ensure a meaningful

representation of slip displacements that result in run-on configurations where atoms

in the slip plane are directly on top of one another [88]. The resulting γ-surface for slip

on the (111) plane is shown in Fig. 3.6 (a). The (111) plane contains the minimal path

between two equivalent slip points. The total slip between two such points results in

a dislocation with Burgers vector b along the 〈101̄〉 direction, which can split into

two partial dislocations with Burgers vectors b1 = 1
6
〈112̄〉 and b2 = 1

6
〈21̄1̄〉. Along

these directions, the minimal energy barrier γus occurs at a relative displacement of

0.6
√

6aÅ (see Fig. 3.6 (a)); the slip energy along 〈112̄〉 is shown in Fig. 3.7 (a). The
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intrinsic stacking fault energy obtained from this calculation is γsf = 0.143 J/m2, in

good agreement with experimental results (0.125 J/m2 [102]).

We performed convergence tests with respect to the size of the supercell in the

a3 direction by increasing the size to 4 units along the a3 direction, which gave a

difference of less than 1% to the results mentioned above. To confirm that the substi-

tutional S atoms did not distort the supercell significantly we performed relaxations

along 〈111〉 in the case of added impurities. This resulted in a change in a3 of less

than 1% for both Θ = 0.33 and 1.0. Table 3.2 shows the values of the unstable

stacking energy, γus, for the case Θ = 0.0, 0.33 and 1.0 on the slip plane: the presence

of S produces a decrease in γus by 41% and 66% for Θ = 0.33 and 1.0, respectively.

This indicates that a slip becomes more favorable with increasing impurity concen-

tration. In the context of Griffith cleavage, the decohesion energy results presented in

section 3.4.1 suggested that the material should become more brittle since the energy

barrier for creation of new surfaces decreases considerably as impurities are added.

This is outweighed by the changes in the unstable stacking energy. The ductility

parameter D increases by 24% and 41% for Θ = 0.33 and 1.0, that is, with added

S impurities bulk Ni actually should become more ductile. This is not seen in ex-

periments when S impurities are added to Ni. These results already suggest that Ni

embrittlement cannot be due to S incorporation in the bulk, but that instead other

processes are dominant.
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Figure 3.6: (a) Generalized-stacking-fault energy for slip on the (111) plane of bulk
Ni (see text for details). The lowest energy path between equivalent points on the
slip plane lies in part along the diagonal direction in the plot; a displacement along
this direction results in a partial dislocation with Burgers vector b = 1

6
〈112̄〉. (b)

Generalized-stacking-fault energy for Σ5(012) GB in pure Ni and (c) in Ni with 4
interstitial S atoms on the GB plane (GB0), corresponding to Θ = 1.0.
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3.4.4 Generalized-stacking-fault energy at a grain boundary

To model the resistance of a Ni GB against shear, we calculate its generalized-

stacking-fault energy. We use the same structure as in section 3.4.2, but now displace

all atoms of one of the two half-crystals, defined by a cut between GB0 and GB1,

by a slip vector s (Fig. 3.5). As in the case of the generalized-stacking-fault energy

calculations for bulk Ni, we relax the atoms of the slip plane in the a3 direction only

and keep them fixed along a1 and a2; this allows us to define the slip vector s properly.

Note that such a slip displacement defines two interfaces under our periodic boundary

conditions: the first at GB0 and the second at GB10. Accordingly S impurities were

added to both these planes in a symmetrical fashion. We again simulate a bulk layer

by holding the center-most two planes between the two GB’s fixed.

The γ-surface of the GB without S impurities is shown in Fig. 3.6 (b). The

three maxima in the energy surface correspond to run-on configurations of the Ni

atoms in the GB0 and GB1 planes (compare to Fig. 3.5). A displacement by a slip

vector s = a
10
〈521̄〉 leads to a configuration that is geometrically equivalent to the

initial GB structure. The maximum energy of the minimal energy path (see Fig. 3.7

(b)) between these two geometrically equivalent points, corresponds to the unstable

stacking energy γus = 0.30 J/m2, which is almost the same as for the case of pure

bulk Ni.

When impurities are added to the interstitial sites, the symmetry of the GB plane

is altered and the possible slip vectors leading to minima in the γ-surface change. We
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Figure 3.7: (a) The generalized-stacking-fault energy along the 〈112̄〉 path for slip
on the (111) plane of bulk Ni, without (Θ = 0.0) and with (Θ = 0.33 and 1.0)
S impurities. The relative displacement is in units of

√
6a, where a is the bulk

lattice constant. The unstable stacking energy, γus, occurs at a relative displacement
of 0.6

√
6a. (b) The generalized-stacking-fault energy for the Σ5(012) GB, without

(Θ = 0.0) and with (Θ = 0.25 and 1.0) S impurities. The relative displacement is
in units of a

10
along 〈521̄〉 for Θ = 0.0 and 0.25 and in units of a

10
along 〈563̄〉 for

Θ = 1.0. (c) The corresponding shear stress for the GB.
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have performed separate γ-surface calculations for structures with one (Θ = 0.25)

and four (Θ = 1.0) interstitial S atoms on the GB plane, and determined the minimal

energy path between equivalent points. For Θ = 0.25, the minimal energy path

follows the slip vector s = a
10
〈521̄〉; this is the same as for Θ = 0.0. When all

interstitial sites on the GB plane are filled with S impurities (Θ = 1.0), the direction

to the nearest local minimum changes such that the minimal energy path now occurs

along s = a
10
〈563̄〉 (Fig. 3.6 (c)). Due to the change of geometry of the GB plane when

impurities are added, the slip vectors are now associated with partial GB dislocations.

The respective minimal paths are plotted for Θ = 0.0, 0.25 and 1.0 in Fig. 3.7 (b). In

contrast to the results for the bulk crystal, the value of γus increases with impurity

inclusion (Table 3.2). We can see from these results that GBS is suppressed with S

impurity inclusion at the GB. Since GBS is a dominant process of plastic deformation

in nc metals, this strongly suggests that such materials would behave less ductile when

S segregates to the Ni GB’s. The almost two- and four-fold increase in γus for Θ = 0.25

and 1.0 results in a decrease of 59% and 85%, respectively, for the value of the ratio

DGB between the work of separation Ws and the unstable stacking energy γus (see

Table 3.2). This means that our results for the changes in Ws in combination with

our findings for the shear behavior indicate that for a given individual GB interface

we expect the mechanical behavior to change from a more ductile response involving

GBS to a more brittle response involving cleavage along the GB.

In order to take into account changes in the minimal energy path with S inclusion,



Chapter 3: Sulfur induced embrittlement of Nickel: A first principles study 61

planes θ D̃GB
0 D̃GB

1 D̃GB
0 /D̃GB

1

[(012̄) , (012)] 53.1◦ 0.658 0.330 2.0
[(120) , (012)] 66.4◦ 2.846 0.532 5.4
[(210) , (012)] 78.5◦ 0.658 0.424 1.6
[(02̄1) , (012)] 90.0◦ 0.642 0.322 2.0

Table 3.3: The values of the ductility parameter D̃GB when the geometry change
between Θ = 0.0 (D̃GB

0 ) and 1.0 (D̃GB
1 ) is considered. The angle between the two

possible Burgers vectors is ∆φ = 29.21◦. θ is the dihedral angle between the slip and
decohesion plane.
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Figure 3.8: Normalized ductility parameter D/DΘ=0 for bulk Ni and Ni with a
Σ5(012) GB. The four data sets shown are values of D for the relevant combina-
tions of decohesion and slip planes, with labels [decohesion plane, slip plane] and
their respective schematics to the right. The lines are guides for the eye.
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we calculate a ductility parameter D̃GB that includes geometry changes based on

Eq. (3.1) by considering the possible intersections of {012} planes for the two different

Burgers vectors 1. This is presented in Table 3.3. We find that for physically realistic

configurations the behavior of D̃GB remains unaffected and the trends are the same

as for the more simplified ductility parameter DGB, that is, S inclusion significantly

decreases the value of DGB.

It is possible that the GB may provide a relaxation mechanism in combination

with the (111) planes. We plot in Fig. 3.8 the normalized ductility parameter D of

such physically reasonable configurations. In this comparison, we have left out the

possible combinations that have S impurities on the (111) planes together with GB

slip or decohesion, since we have already seen in Section 3.4 and Table 3.1 that the

thermodynamically most stable positions of the S impurity atoms are at the GB,

which are energetically preferred by 1.3 to 1.6 eV, depending on S coverage, over bulk

planes. We first consider that the GB could serve as a decohesion plane in combination

with a clean (111) plane as the slip plane. Such a geometry would be of importance

for coarse-grained systems but also for materials with heterogeneous grains. Due to

the decrease in Ws of the GB with S inclusion, the ductility parameter of such a

geometry also decreases. We see that therefore this mechanism also changes to more

brittle behavior resulting in preferential intergranular fracture. The GB could also

serve as a slip plane with decohesion on the (111) planes. Although this process would

1We assume here that the Poisson ratio is unchanged and takes the value ν = 0.276 [102].
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likely result in blunting of any emerging (111) crack in the intrinsically ductile bulk

Ni, it is possible that such blunting is not a dominant effect in nc and ufc materials.

This process of transgranular failure will therefore still be considered. We again see

a decrease in DGB, implying preferential brittle behavior, since ductile behavior in

the form of GBS becomes energetically less favorable. Overall this comparison shows

that S impurity segregation at the GB defects results in a decrease in the ductility

parameter for all combinations involving the GB.

We have shown that for a system where GB slip and GB decohesion are considered

as competing processes, S impurities segregated to the GB plane result in an overall

more brittle response. The question that still remains is if our results support an

increase of intergranular fracture, that is, if a crack can more easily propagate along

the grains. A simple model, similar in spirit to that in Ref. [77], illustrates a possible

intergranular fracture mechanism. We first calculate the shear and tensile strengths,

that is, the maximum of the derivatives of the relevant energy curves of Fig. 3.4(b)

and 3.7(b) with respect to displacement. This is shown in Fig. 3.4(c) and 3.7(c) and

summarized in Table 3.2. We see a small decrease in the tensile strength σt as S

impurities are added to the GB. In contrast, the shear strength σs increases signifi-

cantly. Although decohesion of the grains is preferred for S inclusion, a crack within

this model can only propagate efficiently if GBS supports this. This is illustrated

by the simple schematic of Fig. 3.1. If we assume that the force perpendicular to

the cracked GB is equal to the critical value of the tensile strength, we find that for
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all possible Σ5 (012) GB geometries the parallel forces required for sliding are larger

than the critical shear strength. This implies decohesion, followed by sliding, leading

to easy crack propagation. In contrast, when we add impurities the critical shear

strength increases, and for Θ = 1.0, two out of five possible geometries of our GB

are now not supporting crack propagation anymore; intergranular crack propagation,

at least when it is accommodated by GBS, is suppressed. Although our results for

GBS suggest that this form of plastic deformation is suppressed with impurity inclu-

sion at the GB, indicative of a more brittle behavior, this model predicts that the

expected type of fracture behavior is not intergranular fracture. Several important

points have to be made regarding these results. First, in our simple crack propagation

model intergranular fracture accommodated by GBS is possible for the pure GB’s.

This does not imply intergranular fracture for pure nc Ni; instead we are limited

to conclusions based on our Σ5 (012) GB which is a special GB and any sample in

an experiment would be made up of a variety of GB’s intersecting at various angles.

Treating GB properties from first-principles calculations is notoriously difficult due to

the unknown structure at the GB and the large unit cells required. Thus, performing

calculations over many possible GBs is not feasible. As in most similar studies, we

have considered here a single GB structure and explored the implications of having

impurities in it, with the expectation that this gives useful insight to the behavior

of such systems. We assume that other GBs that share structural features with the

one we studied, such as adequate space to accommodate the impurity atoms at low-
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energy positions, will exhibit similar behavior. We investigated only changes in the

behavior of such special GB’s as we add S impurities. For nc grains such intergran-

ular fracture behavior has been predicted by classical MD simulations without any

impurity inclusion [20]. Second, we found that a fracture mode accommodated by

GBS is suppressed. This does not preclude intergranular fracture in general, as it ap-

plies only GBS related mechanisms. Cracking along the grain will still occur once the

applied forces for the perpendicular components of the GB’s exceed the continuously

decreasing critical tensile strength. We can therefore anticipate a behavior where

initially the suppression of GBS increases brittle behavior, making both intergranu-

lar and transgranular fracture possible. For increasing S impurity concentrations, a

decreasing value of Ws would eventually lead to pure intergranular fracture. In the

context of the competition between trans- and intergranular fracture, it is important

to note that GB decohesion for Θ = 1.0 gives a value of Ws which is almost half that

of the decohesion energy for the (111) planes. This clearly makes GB decohesion and

hence intergranular fracture an energetically preferred pathway.

The last issue we consider is the effect of S impurities on the crystalline order

around the GB, which could be important in inducing fracture. This effect was first

proposed by Heuer et al. [76] and computationally treated by Chen et al. [77]. They

see that an amorphized GB results in a dramatic decrease in the shear strength as

impurities are added, favoring immediate intergranular crack propagation as the GB

is weakened both for cleavage and shear. Our results support the argument that this
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is indeed necessary to facilitate easy intergranular fracture accommodated by GBS

for the Ni and S system. A more detailed analysis of a system of very high S impurity

concentration that leads to amorphization of the GB region is beyond the scope of

the present approach.

3.5 Conclusion

We have performed a first-principles DFT study of the mechanical behavior of fcc

Ni in the presence of S impurities. The differences between bulk fcc Ni and fcc Ni

with a Σ5(012) GB defect as S impurities are added were investigated. Low energy

interstitial positions for the S impurity atoms at the GB are the stable sites, versus

the substitutional defect sites in the bulk fcc crystal. This already highlights the im-

portance of GB’s in chemical embrittlement and is consistent with the experimentally

observed S segregation to GB’s [73, 68, 69, 70, 74, 71, 72, 75, 76].

We employ Rice’s theory to investigate changes in the ratio of the surface and

the unstable stacking energy (the ductility parameter D) to quantify changes in the

ductility. This approach is adapted to our system with a Σ5 (012) GB by considering

the competition between GB decohesion and shear in the form of GBS. GB decohe-

sion, indicative of brittle behavior, is quantified through the work of separation (Ws),

whilst GBS, a mechanism of plastic deformation in nc metals, is quantified through

γus, analogous to previous work on GB’s in crystalline solids [78, 79, 80]. By con-

sidering the energy of dislocation nucleation in the bulk and of GBS for our GB, in
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comparison to the decohesion energy and the work of separation, respectively, we are

able to put this problem on a more complete and quantitative footing in the context

of the competition between processes of cleavage and plastic deformation. Our calcu-

lations for the bulk defect-free structure indicate that an increase in ductility occurs

as impurities are added. In contrast, we find that the resistance to shear, quantified

by γus, increases for the GB structure. This limits plastic deformation and indicates

a transition to brittle behavior, as this form of plastic deformation mechanism is

removed. The effect of embrittlement persists when geometric factors are fully ac-

counted for according to Rice’s theory and when different combinations of slip and

cleavage systems are considered. Although our results for the Σ5 (012) GB show that

GBS is suppressed with S impurity segregation, intergranular cracking facilitated by

GBS in our simple geometric model does not become more preferred. We do not see

the significant decrease of shear strength observed in MD calculations of amorphized

GB’s [77]; amorphization is important to enable easy intergranular crack propagation

that is accommodated by GBS. Our results address the problem of a crystalline GB

since analyzing an amorphous GB in the context of Rice’s theory is not feasible. We

show that even before any possible amorphization of the GB is considered, there is

clear evidence for a significant decrease in ductility but not in the form of immediate

intergranular fracture accommodated by GBS. This does not preclude intergranular

fracture for large enough tensile forces, since the tensile strength decreases with the

inclusion of S impurities. Any failure mode that relies on GBS is suppressed for the
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GB system.



Chapter 4

An ab-initio concurrent multiscale

method for metals

4.1 Overview

We present a multiscale method, coupling a small region treated by a first-

principles quantum mechanical method to a larger region treated by classical atom-

istics, based on total energy arguments that are applicable to metals. In particular,

we employ Kohn-Sham Density Functional Theory in the smaller region and couple

this to the larger region which is treated with the classical Embedded Atom Method.

We test the accuracy of our approach for two transition metals, Ni and Cu, with

good results for both a standard fcc crystal and a more complicated system including

chemical impurities at a grain boundary (GB). For the latter we study the average

69
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interplanar strain surrounding the GB and use this as a measure of the atomic relax-

ation. We apply this method to investigate the chemical embrittlement of Cu by Bi

and Pb impurities and compare this to the effect of Ag impurities which are known

to segregate to the GB but not embrittle Cu. We find clear evidence for chemical

embrittlement by Bi and Pb but not for Ag, when these atoms are added as impurities

at the Cu GB, in the form of a significant decrease of both the work of separation,

Ws, and tensile strength, σt.

4.2 Introduction

Over the last decades materials modeling has become of great importance in un-

derstanding real world systems. One of the central issues in modeling is finding the

right balance between the required accuracy and the affordable computational cost.

A promising avenue toward addressing this issue is the development of methods for

coupling different regions of accuracy in a multiscale approach [6, 7, 8, 9, 10, 11, 12].

A prototypical example in which many length scales are important is the propa-

gation of cracks in brittle fracture, often induced by chemical impurities. In this

paper we will attempt to address a subset of issues related to this problem, that is

chemical impurities at grain boundaries (GBs) of metals and how they may affect

the physical and mechanical properties of the material. For systems with chemi-

cal impurities, quantum mechanical accuracy is needed to correctly capture bond

breaking and formation. On the other hand, in order to gain understanding of the
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large scale mechanical behavior, the region containing the impurities must be coupled

effectively to a larger region where quantum mechanical accuracy is of little impor-

tance due to relatively small deviations from the ideal structure. We present here

a concurrent multiscale method appropriate for such systems, in which Kohn-Sham

(KS) Density-Functional-Theory (DFT) is coupled to the Embedded Atom Method

(EAM), making it possible to maintain quantum mechanical accuracy where needed

but keep the computational cost low. We present results that show that our model

works for Nickel (Ni) and Copper (Cu) in the sense that for those metallic systems

the different regions are coupled appropriately. This is achieved by comparing our

multiscale results to the ideal fcc lattice to quantify how well-known structures are

reproduced and by considering the vacancy formation energy as a measure of the ac-

curacy of the energetics. We next apply our method to the more complicated system

of chemical embrittlement of Cu, a metal used in a variety of technological applica-

tions that has recently gained importance particularly in the electronics industry. Cu

has high thermal and electrical conductivity and is normally ductile. At the same

time, it has been experimentally known for well over a century that Cu is subject to

chemical embrittlement in the presence of common impurity elements, such as Bis-

muth (Bi) and Lead (Pb) [14]. This is thought to be related to the segregation of

these impurities to GBs [13, 103, 104, 105]. The fundamental mechanism involved in

chemical embrittlement of metals is in general not fully understood and has been sub-

ject to several theoretical and computational studies. Rice and Wang [106] identified



Chapter 4: An ab-initio concurrent multiscale method for metals 72

the work of interfacial separation as an important quantity to measure the potential

for chemical embrittlement and proposed a competing relationship with the energy

release rate of dislocation nucleation, Gd. They also discussed the importance of the

stress vs. separation relation and its maximum, the tensile strength, in crack nucle-

ation. Several recent ab-initio studies have addressed important issues concerning the

chemical embrittlement of Cu [107, 108, 109, 110]. Schweinfest et al. [107] and Lo-

zovoi et al. [108] investigated the effect different impurities have on the Cu GB using

DFT calculations and proposed that chemical embrittlement can be explained by a

theory based on size effects. They used energy arguments relying on the theoretical

work of Rice and Wang [106] and Rice [84] to study a Σ5 and Σ19 GB to address

the issue of chemical embrittlement. Geng et al. [111] used a first-principles based

phenomenological theory and proposed that chemical contribution is also important

in addition to the size effect. In the present work we employ the ab-initio multiscale

method mentioned above to study a Σ5 (012) Cu GB with Bi, Pb and Ag impurities.

The multiscale approach allows us to capture long-range effects and we consider the

strain behavior as we change the composition of the grain boundary. To this end we

demonstrate a method to relax the system into a physically sensible state by relaxing

the strain efficiently for atoms far away from the GB. This allows us to get reliable val-

ues for the GB expansion of the Cu GB system with impurities. Such GB expansion

caused by impurity inclusion at the GB has been previously reported for the Cu sys-

tem [107, 108] and has been identified as a sign of weakening the GB in the context of
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chemical embrittlement of metals [78, 107, 108, 112]. We further address the influence

that chemical impurities have on the Cu GB by considering the work of separation,

Ws, and the tensile strength, σt, of the Σ5 (012) GB. Both Ws and σt are directly

linked to the cleavage properties of the metal-impurity system since they quantify

the propensity of GBs to fail via intergranular fracture [78, 84, 106, 107, 108, 112].

We show evidence of chemical embrittlement for Bi and Pb in Cu in the form of a

significant decrease in both Ws and σt. As a reference, we also consider Ag impurities

which are known to segregate to the GB but do not embrittle Cu [108]. We do not

find evidence of the same type of embrittlement as for Bi and Pb impurities; instead

the behavior in the presence of Ag impurities changes little in comparison to the pure

Cu GB.

The chapter is organized as follows. In Section 4.3 we discuss the theoretical

background of the multiscale method, coupling KS-DFT to the EAM, for metal sys-

tems with defects and discuss the specifics of our computational model. Section 4.4

presents test calculations showing the validity of our implementation of the multiscale

method. This is followed by a study of chemical embrittlement due to impurities at a

GB in Cu in Section 4.5. Finally, in Section 4.6 we summarize our results and discuss

our conclusions.
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4.3 Theoretical background

In order to address large system size effects we have implemented a multiscale

method based on first-principles DFT calculations in the small region where quan-

tum mechanical treatment is of importance, coupled to the rest of the system which

is treated by the EAM. This allows us to increase the number of atoms we are able

to consider from a few hundred in DFT calculations. Typical quantum-mechanical to

molecular mechanics (QM/MM) methods are developed for covalently bonded struc-

tures, with the coupling relying on the presence of additional or fictitious link atoms

on the MM side. Such an approach is not needed in the present formulation which

is expressed in terms of different contributions to the total energy of the whole sys-

tem, and its derivatives with respect to atomic positions which give the forces. This

method was originally developed using Orbital-Free DFT (OF-DFT) [113]. Here, we

instead implement the multiscale method using KS-DFT, where the kinetic energy

is known exactly in terms of single-particle orbitals. This choice of computational

method for the QM region offers several advantages over OF-DFT: First and fore-

most, it allows treatment of transition metals like Cu and Ni (the focus of the present

study) whereas OF-DFT is often limited to main group metals [114, 115]. There have

been attempts to create appropriate local pseudopotentials and special kinetic energy

density functionals for transition metals recently, but these are still limited in their

applicability and lack easy transferability. It is also not clear how well these very

recent OF-DFT methods would perform for impurity inclusion as they are found to
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rc

I II

Figure 4.1: Schematic illustration of the multiscale coupling across the DFT/EAM
boundary. Blue circles represent atoms in region II and are calculated using EAM
only; red circles represent atoms in region I, where filled circles have a net force only
from DFT calculations and empty circles have force contribution both from DFT and
EAM. Forces between nearest neighbor atoms are shown as solid lines, red for DFT
and blue for EAM. The sub-region contained within region I, which is within the
EAM cutoff radius, rc, of the nearest region II atom, is shown delimited by vertical
dashed lines.

be of limited accuracy for alloy systems [116]. An additional complication is that

the multiscale approach is best implemented with a method allowing for non-periodic

boundary conditions; this will be discussed in greater detail below. Although there

are non-periodic approaches to OF-DFT [117], this is not trivial. In contrast, numer-

ous choices exist for accurate treatment of non-periodic boundary conditions within

KS-DFT [118, 119, 120]. We implement our multiscale method in the framework

of a well-established KS-DFT code, which offers the advantages of versatility and

transferability beyond the specific systems studied in the present work.

We discuss next the theoretical basis of the multiscale approach and provide a
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description of how coupling across regions is accomplished. The supercell is divided

into two regions, I and II, where region I requires quantum mechanical accuracy and

is coupled to region II which involves classical interaction between atoms, treated by

the EAM. The total energy is in general given by

E [I + II] = E1 [I] + E2 [II] + Eint [I, II] , (4.1)

where, E1[I] and E2[II] are the total energies in regions I and II with their respec-

tive calculation methods 1 and 2, and Eint is the interaction energy associated with

coupling the two regions. We can classically approximate this interaction energy by

calculating each term using the EAM [113]:

Eint [I, II] = EEAM [I + II] −EEAM [I] − EEAM [II] . (4.2)

Taking method 1 for region I to be KS-DFT and method 2 for region II to be the

EAM, it is possible to show that the total energy of our system can be written as

E
[

Rtot
]

= EEAM

[

Rtot
]

−EEAM

[

RI
]

+ min
ρI

EDFT

[

ρI,RI
]

, (4.3)

where Rtot, RI and RII are the coordinates in the respective regions and ρI is the

electron density for the DFT calculation. The coupling between region I and II

and the origin of forces on individual atoms is illustrated in Fig. 4.1. We show the

different force contributions from nearest neighbor atoms only. Next-nearest neighbor

interactions and those farther away are not shown for clarity, but are based on the

same principles. Forces in region II are only based on the EAM, indicated as blue lines



Chapter 4: An ab-initio concurrent multiscale method for metals 77

connecting the blue filled circles representing the atoms in region II. The coupling

is due to the EAM forces across the EAM/DFT boundary; this is a direct result of

approximating the interaction energy classically with the EAM. For atoms in region I

that are farther away than rc (the EAM cutoff radius) from the boundary separating

the two regions, the forces are based solely on DFT; these atoms are drawn as filled

red circles with red lines indicating forces based on DFT. For atoms that are within

a distance rc from the nearest region II atom, the net force is the sum of DFT

contributions and the interaction correction EEAM[Rtot] − EEAM[RI]. This involves

DFT interactions with all region I atoms, and forces based on the EAM with atoms in

region II that are within rc. These atoms are shown as empty red circles in Fig. 4.1.

This approach is general and can be used for any type of system that requires quantum

mechanical accuracy only in a small region of the total. Our example of a GB defect

with impurity atoms is shown in Fig. 4.2.

We have chosen to employ QUICKSTEP (QS) [61] in our implementation of the

multiscale code. This code, available in the suite of programs CP2K [3], is based

on mixed Gaussian Plane Waves (GPW) [62]. This is well suited for our multiscale

method since the isolated center region I is non-periodic. Typical plane wave (PW)

based DFT codes would require that a significant portion of the supercell consists of

vacuum. This is computationally expensive and can lead to spurious results due to

image effects if the size of the vacuum is not carefully converged. We circumvent this

problem within the GPW formalism of CP2K by specialized poisson solvers, which al-
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low for fast convergence and accurate results, free of boundary effects [118, 119, 120].

The implementation is not limited to the 2D periodicity described in this work. The

exact XC energy is approximated by the PBE generalized gradient approximation [28],

while separable and norm-conserving GTH pseudopotentials are used to describe the

interactions between the valence electrons and the ionic cores [30, 31]. Convergence

for Ni and Cu requires a density cutoff of 575 and 525 Ry, respectively. An important

point to highlight is that the impurity atoms in our implementation are treated by

DFT only. Therefore, a classical EAM potential for the impurities is not required.

This is a great advantage, since constructing classical potentials that accurately de-

scribe the interaction between different types of atoms is exceedingly difficult and

time-consuming. The EAM potentials we use for our metal atoms are based on a

potential by Mishin et al. [121] for Ni and the EAM1 potential by Mishin et al. [122]

for Cu. In order to ensure that we minimize any adverse effects at the boundary

between the EAM and DFT, we have chosen to rescale the EAM potential so that

the lattice constant (a0) and bulk modulus (B) exactly match those of the DFT cal-

culation, which in the case of Ni and Cu were determined to be a0 (Ni) = 3.54 Å,

B (Ni) = 201.1 GPa and a0 (Cu) = 3.67 Å, B (Cu) = 131.3 GPa, respectively. Table 4.1

shows the energies of important structures and the elastic constants for DFT, the

EAM in its original form from references [121] and [122] and the rescaled EAM for

each case. The specific shear displacements to calculate the elastic constants are re-

produced in Appendix A for completeness. The rescaling did not adversely affect the
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Ni Cu
DFT r-EAM o-EAM Exp. DFT r-EAM o-EAM Exp.

a0 [Å] 3.542 3.542 3.520 3.52a 3.669 3.669 3.617 3.61a

B [1011 Pa] 2.011 2.011 1.720 1.86a 1.313 1.313 1.372 1.37a

C11 [1011 Pa] 2.821 2.802 2.376 2.481b 1.725 1.660 1.75 1.683b

C44 [1011 Pa] 1.299 1.484 1.291 1.242b 0.918 0.740 0.779 0.757b

C12 [1011 Pa] 1.861 1.775 1.548 1.545b 1.254 1.187 1.253 1.221b

γ
(100)
s [J/m2] 2.271 1.956 1.884 - 1.589 1.339 1.390 -

γ
(012)
s [J/m2] 2.583 2.285 2.194 - 1.772 1.530 1.587 -

Table 4.1: Summary of the elastic constants and relevant structural energies for Ni
and Cu, obtained with DFT, the EAM rescaled to fit our DFT results (r-EAM), and
the EAM in its original form (o-EAM) [121, 122]. Experimental values from a :Ref.
[124], b :Ref. [41].

performance of the EAM potential and for Ni changed the results for the energies and

elastic constants to be closer to the DFT results. By appropriately defining the forces

of our system as the derivative of the total energy, which includes contributions from

the EAM and DFT regions, we can apply all the structural relaxation techniques

commonly employed. In particular we employ either the conjugate gradient or the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method [123], and unless

otherwise stated, relax all forces to a magnitude less than 0.01 eV/Å.

4.4 Test Calculations

We test the accuracy of our multiscale method using a periodic supercell which is

a 4×4×16 multiple of the cubic fcc cell, and contains 1024 atoms. The center-most 7

planes in this setup (see Fig. 4.2) were calculated by DFT, that is a total of 224 atoms.
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Figure 4.2: Schematic representation of the multiscale system: region I may contain
defects (e.g. the Σ5 (012) GB shown), impurities or just be part of the bulk crystal
for test calculations. Blue circles represent metal atoms calculated using EAM only,
red circles represent metal atoms treated by DFT. Green circles represent either host
atoms at the GB plane or substitutional impurity atoms. The black boundary circles
represent atoms that are either fixed or periodic images along z. The grey dashed
line shows the position where the cell is split in two halves for the work of separation,
Ws, calculations.

To quantify how well the DFT region is matched to the EAM region we consider two

properties: 1) the forces before any relaxations and 2) the distance between the ideal

fcc positions in comparison to their position after relaxation, with all forces smaller

in magnitude than 0.0026 eV/Å. The results of this comparison are summarized in

Table 4.2. For both Ni and Cu the fcc lattice is well reproduced, suggesting that the

coupling between region I and II is accurate and that the forces before relaxation are

small enough to guarantee physically sensible results. Table 4.2 also shows previous

results by Choly et al. [113]; the present work is a significant improvement to this

earlier work which employed OF-DFT for the quantum mechanical region.

To get a quantitative measure of how well the matching performs in terms of
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System F I
max [eV/Å] F̄ I [eV/Å] dI

max [Å] d̄I [Å] dII
max[Å]

Ni (I=7 layers/II=25 layers) 0.316 0.171 0.037 0.023 0.037
Cu (I=7 layers/II=25 layers) 0.100 0.063 0.015 0.007 0.008
Al (32 atoms - region I) 0.45(a) 0.33(a) 0.12(a) 0.07(a) 0.05(a)

Table 4.2: Deviation from the ideal fcc positions in the multiscale method. All forces
were relaxed to be smaller in magnitude than 0.0026 eV/Å. The size of the supercells
for the fcc calculations and the number of DFT layers are indicated. The results
quoted from Choly et al. [113] are based on a method that employed OF-DFT for the
quantum mechanical region. (a) Values for Al from: ref [113].

energetics we considered the vacancy formation energy, E
(V)
f

E
(V)
f = E(V) (n− 1) +

E0 (n)

n
− E0 (n) , (4.4)

where E(V) (n) is the total energy with a vacancy, E0 (n) is the total energy of a bulk

fcc calculation and n is the number of atoms in the system. This is straightforward

for a DFT calculation, the only issue being that the values for E(V) (n− 1) and E0 (n)

should be based on the same supercell size and computational parameters. For the

multiscale calculations the second term in Eq.(4.4) has to be approximated by a full

DFT calculation to get the energy of a bulk atom. The results for a fixed vacancy

for both Cu and Ni are summarized in Table 4.3. The aim here is to get an estimate

of the error associated with energies rather than to evaluate the vacancy formation

energy of Cu and Ni accurately. Long-range relaxation effects that are dependent

on system size [125] may adversely affect this analysis and were hence eliminated

by holding all atom fixed. We consider the level of agreement between the different

results to be very satisfactory for energy comparisons of physical relevance.
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Cu Ni
I II EV

f [eV] EV
f [eV]

256 0 1.38 1.59
224 800 1.34 1.63
416 608 1.44 -

Table 4.3: Vacancy formation energy for Cu and Ni calculated for fixed atomic
positions.

4.5 Application to chemical embrittlement

To address the issue of chemical embrittlement at GBs we study the effect that

Bi, Pb and Ag impurities have on the Σ5 (012) Cu GB. The impurities are placed as

substitutional defects on the GB plane as in previous work with similar GB struc-

tures [107, 108]. We choose one monolayer (ML) coverage, which is consistent with

experimental observations for the Cu system [13]. The geometry of the calculations

is shown in Fig.4.2. Of particular importance is the long-range behavior away from

the GB plane when impurities are added, which can result in GB expansion in most

cases [78, 107, 108, 112]. In previous work using only DFT, relatively small super-

cells were employed; this approach allows the determination of the minimum energy

structure using conventional methods like the Birch-Murnaghan equation [126]. In

this work, we have performed calculations with 201 planes parallel to the GB and 16

atoms per plane, that is, a total of 3216 atoms. To ensure that the structure is in a

physically sensible state, proper care must be taken to relax the inherent stress due

to the presence of impurities or defects. Calculations that minimize the energy as a
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Figure 4.3: Average interplanar strain for pure Cu for different supercell sizes. The
strain for compression/expansion, by 0.5 Å of the lattice vector perpendicular to the
GB plane in comparison to a strain-relaxed structure is shown.

function of cell volume would be prohibitively expensive and not feasible for this case.

Instead, we develop a scheme to find the physically most reasonable structure by suc-

cessive strain relaxations. This has been added to the full relaxation step of region II

of the method of Choly et al. [113] to efficiently relax the two different regions. We

define the average interlayer strain,

ǭ =
d− d0

d0

, (4.5)

where d is the relaxed interplanar distance and d0 is the ideal interplanar distance for

a perfect fcc structure. We relax the bulk strain by successively intergrating the strain

in region II and appropriately increasing the supercell size. This method works very

well for our system since we are dealing with a two-dimensional defect. We fix the
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Figure 4.4: Interlayer strain of the Σ5 (012) GB for Pb, Bi and Ag substitutional
impurities and a clean GB. Note that the majority of the distortions with respect to
the ideal fcc positions occurs very close to the GB plane for the cases of Pb and Bi,
whereas it is more spread out for pure Cu and Cu with Ag.

outermost 10 layers on each end of the supercell and employ non-periodic boundary

conditions for region II. This allows us to compress, expand or shear the two grains.

The strain of a fully relaxed Cu GB is shown in Fig. 4.3. For compression, we also

include the cases where the supercell is compressed or expanded by 0.5 Å, which shows

the strain build-up over the entire cell.

The supercell contains 11 layers of DFT atoms, corresponding to a region I of size

16.41 Å ×14.68 Å ×8.48 Å. Convergence tests of up to 27 layers (16.41 Å ×14.68 Å

×21.65 Å) showed that the results change by less than 5%. As impurities are added

to the GB plane the GB structure changes. We consider the distance between 30
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Ws [J/m2] σt [GPa] d GB [Å]
pure 2.65 16.2 0.0
Ag 2.45 15.5 0.263
Pb 1.52 9.1 0.820
Bi 1.38 7.7 0.940

Table 4.4: Work of separation, Ws, tensile strength, σt, and the GB expansion, dGB,
for a clean Cu Σ5 (012) GB with substitutional Ag, Pb and Bi impurities at the GB
plane.

layers above and below the GB plane, and define the GB expansion, dGB, as the

change of this length as we add impurities. We list the respective values of the GB

expansion in Table 4.4. The GB expansion, dGB, is particularly large for Bi and Pb

where we see an increase of the GB region by 0.82 Å and 0.94 Å, respectively. The

GB expansion of Ag is much less, hinting at its smaller propensity to cause chemical

embrittlement for the Σ5 (012) GB. This behavior is qualitatively similar to the GB

expansion for a Σ5 (013) Cu GB reported by Lozovoi et al. [108]. Fig. 4.4 shows the

associated average interlayer strain of the relaxed GB system. This illustrates why

a multiscale approach with a sufficiently large number of layers parallel to the GB

plane is necessary in comparison to the limited size of a DFT calculation. There is a

considerable strain build-up that decays to zero over many layers away from the GB

plane. Small supercells typically employed in DFT calculations may not capture this.

The strain field reaches at least up to 10 layers into the bulk away from the center of

the GB. That means a DFT calculation with standard periodic boundary conditions

would require a supercell of 40 layers to effectively decouple the GB and its periodic



Chapter 4: An ab-initio concurrent multiscale method for metals 86

image, which would be computationally prohibitive. Our multiscale approach uses

non-periodic boundary conditions and hence the size of region I does not have such

strict size requirements. The strain build-up at the center of the GB for Bi and Pb

impurities is significantly greater than for Ag impurities in comparison to the pure Cu

GB and most of the strain and corresponding GB expansion occurs near the center

of the GB for Bi and Pb.

This difference in the structural changes for the different impurities can be quan-

tified further by considering the energetics of cleavage. We simulate cleavage by

separating the GB at the center and rigidly displacing the two grains by a given dis-

tance, δ. Relaxations are allowed for all atoms except the cleavage plane atoms, which

were held fixed. The cell size perpendicular to the GB plane is appropriately relaxed.

Interlayer relaxations are dominant, whilst in-plane relaxations of the cleavage plane

atoms are negligible and hence not included in calculations for the decohesion energy

as a function of grain separation. In Fig. 4.5 (a) we show the decohesion energy as

a function of δ for four systems, the pure Cu GB, Cu GB with Ag, Bi and Pb im-

purities. This set of results shows different behavior for the Bi and Pb impurities in

comparison to the pure Cu GB or the Cu GB with Ag impurities. To quantify the

potential of the different systems to fail in an intergranular fashion, we consider the

work of separation, Ws, defined as,

Ws = E∞ − E0, (4.6)

where E∞ and E0 are the total energies of the separated grains and the intact GB,
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Figure 4.5: (a) Decohesion energy as a function of the decohesion length for the pure
Cu GB (black circles), the Cu GB with Ag (red squares), Pb (green diamonds) and
Bi (blue triangles) impurities (lines are guides to the eye). (b) Stress as a function of
decohesion length for the pure Cu GB, the Cu GB with Ag, Pb and Bi impurities.
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respectively. Pb and Bi induce a significant decrease of the work of separation in

comparison to the pure Cu GB, by 1.13 J/m2 and 1.27 J/m2 or 43% and 48%, respec-

tively. For Ag this decrease is only 0.2 J/m2 or 7.5%. Since the work of separation

is directly related to how easily a crack can spread along the GB interface [106], we

conclude that intergranular embrittlement is greatly enhanced by the segregated Bi

and Pb impurities, whereas Ag impurities have a negligible effect. The energy re-

lease rate for dislocation nucleation, Gdisl [106, 84] for a typical Cu GB system lies

in the range of 1 − 2 J/m2 [127]. Thus, the pure GB and that with Ag impurities

has Gcleave = Ws > Gdisl, whereas the addition of Bi or Pb impurities causes Gcleave to

decrease leading to embrittlement.

As a second measure of intergranular fracture we consider the tensile strength,

σt, as a function of impurity addition at the GB plane. This allows us to determine

how easily a crack can nucleate at stress concentrations in the otherwise ductile

Cu [106]. We calculate the stress, σ (δ), based on the decohesion energy curves of

Fig 4.5(a) as the derivative with respect to the separation of the two grains. This is

shown in Fig 4.5(b) with the tensile strength listed in Table 4.4. The tensile strength

decreases by a very small amount, 4.3%, when Ag impurities are added, but Pb and

Bi impurities reduce σt by 44% and 52%, respectively. We therefore see that both

crack nucleation and the spreading of such a crack along the GB interface becomes

easier when Bi and Pb are added to the GB. In contrast Ag impurities have only a

minimal effect on either quantity.
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4.6 Discussion and Conclusion

We have demonstrated a multiscale method based on a classical approximation of

the interaction energy to efficiently couple the region treated by KS-DFT with the

region surrounding it which is treated by the classical EAM. We have only dealt so far

with geometry optimization based on CG and BFGS but our implementation in its

current form also allows for ab-initio molecular dynamics (MD) and Car-Parrinello-

like MD [128]. The method was tested for the bulk fcc structure and the vacancy

formation energy for both Ni and Cu. We show that the strain behavior at a defect

such as a GB can reach far into the bulk and hence larger supercells with a multi-

scale approach are necessary to properly capture the properties of the system and

provided a method for efficiently relaxing the strain to obtain a physically sensible

structure. We use our method to study the chemical embrittlement of Cu by impu-

rity segregation at the GB plane. We find that the GB expansion observed for Bi

and Pb is significantly greater than that for Ag impurities. This is further quantified

by considering the work of separation, Ws, which decreases significantly for both Bi

and Pb. This indicates that the likelihood that an existing crack spreads along the

interface increases when Bi and Pb are added to the GB. In contrast, our calculations

for Ag, do not show this dramatic decrease in Ws. The work of separation for Ag

impurities remains such that Ws = Gcleave > Gdisl, the energy release rate for disloca-

tion nucleation, whereas Gcleave ≈ Gdisl when Pb and Bi impurities are added to the

Cu GB. We also consider the stress as a function of grain separation, σ (δ), and the
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tensile strength, σt. The tensile strength of the pure Cu GB and the Cu GB with Ag

impurities is very similar in magnitude. In contrast the tensile strength for Pb and

Bi decreases by 44% and 52%, respectively, relative to the pure case. This suggests

that cracks are more likely to nucleate at stress concentrations when Bi and Pb are

present at the GB plane.



Chapter 5

The physics of impurities at copper

grain boundaries

5.1 Overview

We investigate the changes in the mechanical properties of copper (Cu), when

bismuth (Bi), lead (Pb) and silver (Ag) substitutional impurity atoms are added to

the Σ5 (012) symmetric tilt grain boundary (GB). We employ a concurrent multiscale

approach, coupling a small region containing the GB with the impurities, calculated

with density functional theory (DFT), to a large region containing the bulk metal

around the GB, calculated with the embedded atom method (EAM). We first study

the segregation behavior of the impurities by determining the impurity formation

energy in the vicinity of the GB and find the energetically most beneficial sites are

91
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on the center GB plane. We study grain boundary sliding (GBS) and intergranular

decohesion as mechanisms of plasticity and brittle cleavage, respectively. All impu-

rities are found to strongly inhibit GBS. Mechanical size effects are found to be of

great importance when Bi and Pb are included at the GB. Ag is found to be the

strongest inhibitor of GBS; this can be traced back to chemical effects that play a

more significant role. For intergranular decohesion different contributions to the work

of separation and the electronic charge density are being considered. We find further

evidence that mechanical size effects are dominant for Bi and Pb. The ratio of the

energy barrier for GBS and the work of separation, called the ductility parameter,

D, can be determined. For Bi and Pb this measure of ductility decreases, due to a

combination of inhibiting GBS and enhancing decohesion. Ag does not significantly

decrease the work of separation, but due to the reduced propensity for GBS, the duc-

tility parameter decreases significantly with Ag inclusion, to a similar value as that

of Bi and Pb. This highlights the very different mechanical behavior Ag is expected

to display for nanocrystalline Cu.

5.2 Introduction

It is well known that the mechanical properties of metals can change dramatically

as they are exposed to chemical impurities [14, 15]. Extensive experimental and

computational work has addressed this in the past and it was possible to identify

many important effects resulting from impurity inclusion into metals. In this work we
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will focus on two important parts of mechanical behavior of metals, grain boundary

sliding (GBS) and intergranular decohesion. These are two important mechanical

processes in their own right but can also be considered as competing mechanisms for

systems such as nanocrystalline metals; this was discussed in detail in chapter 3 and

ref. [112] for the case of nickel. In this work we aim to investigate the direct effects

impurities have on the mechanical behavior of copper (Cu). At the same time the

underlying mechanisms for the change of the behavior will be addressed in detail.

In depth knowledge of the underlying mechanisms involved is not just an interesting

theoretical curiosity but improving our understanding will benefit many industrial

applications.

Grain boundary sliding (GBS) is an important process determining the mechanical

properties of metals. It has been known to be of importance for the plastic flow in

polycrystalline materials at high temperatures (T > 0.4Tm) for a long time [15, 16, 17]

and was suggested to play a major role in recent experiments of nanocrystalline Cu

where superplasticity was found at low temperatures [129]. The importance of GBS as

a deformation mechanism in nanocrystalline metals has been studied directly [19, 20,

21, 22, 23, 24]. Several molecular dynamics (MD) studies have considered specifically

nanocrystalline Cu [23, 24] and were able to observe a cross-over with decreasing grain

size from a regime where plasticity is dominated by dislocation mediated activity, to a

regime where GBS is the dominant process. In their work Schiøtz and co-workers [23,

24, 130] proposed that GBS, as an alternative deformation mechanism, can explain
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the apparent break-down of the Hall-Petch relation observed in many nanocrystalline

metals [131, 132]. We study GBS in Cu with a Σ5 (012) GB and address the influence

three impurities, bismuth (Bi), lead (Pb) and silver (Ag) have. These are the same

impurities as treated before in chapter 4. They are common impurity elements in Cu

and in particular the former two are known to cause embrittlement [14]. Ag is known

to segregate to the GBs in Cu but, at least in coarse-grained materials, is not known

to embrittle it. This is consistent with computational results on the integranular

decohesion properties when Bi, Pb and Ag are added to the Cu GB (see section 4.5).

The mechanical properties of Cu with GBs have recently been studied from first

principles [107, 108, 109, 110, 133]. Most computational and experimental work

to date has addressed the mechanical properties of the Cu GB in the context of

coarse-grained structures and hence only intergranular decohesion was considered. To

address novel materials where grain sizes can be on the nanoscale, we also consider

GBS. Little is known to date of the changes in mechanical properties as impurities are

added to nanocrystalline metals; hence this work partly serves as a predictive study

of the effect of impurities.

In our study of GBS we find that both Bi and Pb inhibit GBS and GB migration,

resulting in an increase of brittle behavior. The effect of Ag is unexpected: although

not known to embrittle coarse-grained Cu it strongly inhibits GBS. We will try to

elucidate the underlying mechanisms for the changes in the energy landscape for

sliding the grains of the GB. This is based on a Gedanken experiment originally
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proposed in ref. [108] to study GB decohesion. We are able to distinguish different

mechanisms involved in the changes of the sliding energies as we add impurities and

find that these carry different importance for different impurities.

To gain a complete picture of the involved processes, we revisit intergranular

decohesion of the same Σ5 (012) GB. Our previous work on the Cu GB in section 4 has

so far only dealt with the effects the impurities have on the intergranular decohesion,

in the form of changes in the work of separation and the tensile strength. Impurities

expected to embrittle the Cu GB were shown to lower the work of separation and

tensile strength. This did not yet address the underlying physical reasons for these

changes to occur, which will be addressed here and compared to the mechanisms

involved in GBS.

We also compare the GBS results to our results for intergranular decohesion to find

the ductility parameter, D, the ratio of the work of separation, Wsep and the sliding

energy, γ(b), defined as the energy barrier for GBS. The ductility parameter is found

to decreases for all impurities, implying overall less ductile behavior. This includes

Ag, which shows a marked increase in the energy for sliding, γ(b). This suggests that

Ag, though believed to not cause brittle behavior in coarse-grained Cu, may have a

deleterious effect on plastic deformation in the form of GBS for nanocrystalline Cu.

This illustrates the great differences in the mechanical behavior one may encounter

at the nanoscale.

This chapter also includes a discussion of the energetically beneficial positions of
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the three impurities near the GB. We find that the substitutional sites near the GB

are energetically more stable than in the bulk, which is consistent with experiments

on segregation to GBs [13].

The calculations in this chapter are performed using the multiscale approach.

The same computational method has previously been used to study the decohesion

properties of a Cu GB in chapter 4. The method is based on coupling a small region

containing the GB and the impurities, treated with density functional theory (DFT),

to the bulk, treated by the embedded atom method (EAM). The concurrent multiscale

approach allows us to achieve quantum mechanical accuracy near the GB and the

segregated defects. It can therefore account for bond breaking and forming. At the

same time it is possible to keep the computational cost at a minimum such that large

systems can be considered.

The chapter is organized as follows. Section 5.3 reviews our multiscale approach

and we discuss our computational method. In Section 5.4 we present results for the

impurity formation energy near the GB and compare this to impurity segregation.

The results for GBS of the pure Cu GB and of the Cu GB with Bi, Pb, and Ag are

presented in Section 5.5 and the underlying mechanisms for the observed changes are

discussed for each impurity. Section 5.6 contains a comparison to the mechanisms

relevant in GB decohesion. We discuss the decohesion and GBS results in the context

of the ductility parameter, D, in Section 5.7 and conclude this work in Section 5.8.
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5.3 Computational Method

To be able to study large system sizes and appropriately capture any long-range

effects we use the multiscale method previously discussed in detail in chapter 4.

Many previous computational reports on GBS have employed small supercells, both

perpendicular to and in the same plane as the GB plane [112, 134, 135, 136]. This

can in principle implicitly fix atoms or at least result in constrained geometries and

hence may not allow for proper relaxation.

In this implementation the quantum mechanical region of the multiscale method

is described using a single-ζ basis, optimized in molecular calculations (m-SZV) to

become approximately equivalent to a DZVP basis [137]. Convergence requires a

density cutoff of 320 Ry for Cu. We find for the lattice constant a0 = 3.70 Å and

for the bulk modulus B = 114.2 GPa. This compares well with experiments for

which the lattice constant is found to be aexp. = 3.61 Å and the bulk modulus Bexp. =

137 GPa [124].

We study the Σ5 (012) symmetric tilt GB in Cu, which is the same structure as

in section 4.5. The multiscale supercell consists of 3216 Cu atoms, with appropriate

substitutions by impurity atoms. The structure has 201 planes parallel to the GB

plane, with 16 atoms per plane; of these, 27 planes are DFT atoms. All our struc-

tures are relaxed to account for GB expansion as described previously in section 4.5.

Structural relaxations are performed using either the conjugate gradient or limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton method [123].
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All forces are relaxed to a magnitude of less than 0.01 eV/Å.

5.4 Impurity formation energy near the grain bound-

ary

Impurities in Cu are known to segregate to GBs under equilibrium [13]. Experi-

ments indicate that the highest concentration of impurities occurs around the center

of the GB and then falls off exponentially toward the bulk of the grains [13]. These

results are mostly based on Auger Electron Spectroscopy (AES). The experimental

procedure involves exposing the Cu structures with impurities, followed by segrega-

tion normally encouraged by changing the temperature conditions appropriately. The

AES analysis and the concentration behavior is then based on cleaved samples that

fail via intergranular fracture. This therefore assumes that no significant diffusion oc-

curs after the grains are decohered. We are not bound by such limitations to cleaved

or otherwise altered structures and can determine the impurity formation energy and

segregation energy of the relaxed GB. This first of all serves the purpose of estab-

lishing the preferential segregation sites of the impurities near the GB and secondly

helps in assessing our results for GBS in section 5.5. It has been shown that some

GBs support GB migration accommodated by GBS. This causes the impurities to

change their position with respect to the GB plane. Hence knowledge of the impurity

formation energy in the vicinity of the GB is important to understand GBS in the
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context of indirectly migrating impurities.

We calculate the impurity formation energy, εX
f , as in eq. 5.1, reproduced here for

completeness:

εX
f =

1

ni

[

EX
tot(ni, nh) − Etot

(

n0
h

)

− niµi −
(

nh − n0
h

)

εh

]

, (5.1)

where Etot (n0
h) is the energy of the system with no impurities and n0

h host atoms,

EX
tot(ni, nh) is the energy of the system with ni impurities of type X, and nh host

atoms, εh is the energy per atom of the metal matrix host in its ideal structure and

µi is the chemical potential of the impurities. For typical DFT calculations εh would

normally be based on the same parameters and similar structures as the calculations

for EX
tot(ni, nh) and Etot (n0

h). This is not possible here, as the latter two are based on

multiscale calculations. The former needs to be approximated by a separate DFT or

EAM calculation, depending on whether the removed host atom is located in region

I or region II. As an approximation for removing a DFT atom from the multiscale

structure we therefore base εh on a calculation using DFT with periodic boundary

conditions of a 5× 5× 5 supercell with a 4 atom basis. This is close to the number of

atoms used in the multiscale approach (432 DFT atoms), and reasonably converged

with respect to the supercell size. The energy εh for a calculation based on a 4×4×4

supercell and otherwise the same parameters is different by only 0.01 eV (see Fig. 5.1).

The chemical potential, µi, of the impurities is determined by considering the energy

of a single impurity surrounded by a large amount of vacuum. The calculations are

based on the same parameters as the calculation used to determine εh.
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Figure 5.1: Energy per atom for Cu, εh, for different supercell sizes.

The structures for the calculations of the segregation energy are based on a Cu

GB with all atomic positions relaxed. Care was taken to relax all bulk strain as

described in section 4.5. We place substitutional impurities at different lattice sites.

Our supercell has 16 atoms per plane, and we place only one impurity atom into

the supercell. All atomic positions are fully relaxed after impurities are added. No

explicit strain relaxations were performed, that is changes in the supercell size were

neglected, since this was found to be negligible when substituting only one atom in a

plane of 16. The results are shown as individual data points in Fig. 5.2 (a), (b) and (c)

for Bi, Pb and Ag, respectively. Energies were shifted by the bulk impurity formation

energy to show the GB segregation energy with respect to a bulk solute atom. The

bulk impurity formation energy is based on a calculation of a 5× 5× 5 supercell with

a 4 atom basis. This DFT calculation was performed with fully periodic boundary

conditions. We immediately see that the energies near the GB are lower than the
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Figure 5.2: Segregation energy as a function of distance to the center GB plane at
GB0 for (a) Bi, (b) Pb and (c) Ag. For each case, one impurity is placed on a
substitutional site on a plane with otherwise 16 Cu atoms. An exponential fit to
illustrate the exponential behavior of the impurity concentration near a GB is shown
as a dotted line. Solid lines connecting individual data points are guides for the eye
only.
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bulk value for all three impurities. The lowest energy position for all three impurities

is on the GB0 layer, with impurities at the GB1 layer being greater in value than

those at the GB2 layer. The energy recovers to the bulk value at around four to

eight layers away from the center plane of the GB. The variation of the segregation

energy for layers four to eight is not surprising, as the GB sets up a perturbation that

can still be felt at that distance. We also show an exponential fit as a dotted line

to illustrate the expected exponential behavior of the impurity concentration. The

greatest segregation energy was found for Bi, closely followed by Pb. The segregation

energy of Ag is almost half that of Bi.

5.5 Grain boundary sliding

We begin our treatment of the mechanical properties of Cu by considering GBS to

assess how the ductility changes as we add impurities. This was previously discussed

in the context of plastic deformation mechanisms for nanocrystalline metals in chap-

ter 3. Based on our fully relaxed GB structures we slide the two half crystals against

each other along 〈012〉, which is a vector of the coincidence site lattice (CSL) . All

calculations are based on simulating sliding quasistatically, that is the two grains are

shifted rigidly against each other. After sliding, all slip plane atoms are held fixed

in the in-plane directions but allowed to relax freely perpendicular to the GB plane.

This is to ensure that the slip plane vectors can be appropriately defined. All other

atoms are allowed to fully relax. The results are shown in Fig. 5.3 for the pure GB
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Figure 5.3: Sliding energy along the slip vector 〈012〉 for the Σ5 (012) GB without
impurities (black circles) and with Bi (blue triangles), Pb (green diamonds) and Ag
(red squares) impurities. The impurities were placed as substitutional defects as one
ML on the GB0 plane. Solid lines are Fourier series fits. We indicate important
points along the slip displacement by dash-dotted vertical lines labeled (a) through
(e). The corresponding atomic structures are shown in Fig.’s 5.4, 5.5, 5.6 and 5.7
with corresponding label convention of the important positions for the clean GB and
with Bi, Pb, and Ag impurities, respectively.

and the GB with a monolayer (ML) of substitutional impurities (Bi, Pb, and Ag).

The lowest energy positions at the GB0 sites are chosen for the initial positions of all

impurities before the grains are displaced.

5.5.1 Pure system

We first discuss GBS for the pure Σ5 (012) GB, plotted as black circles with

a solid black line fit in Fig. 5.3. Several distinct points of extrema can be seen,

occurring at slip displacements of approximately s = 0.0, 0.2, 0.4, 0.7 and 1.0 times
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the periodic displacement along 〈012〉. These are labeled as (a),(b),(c),(d) and (e)

in Fig. 5.3, respectively. The atomic positions of these slip displacements are shown

in Fig. 5.4 (a)-(d), with important energies labeled γ(a)−(d) listed in Table 5.1. We

indicate atoms in the adjacent parallel {001} planes with filled and unfilled circles in

Fig. 5.4. The first of these structures, labeled (a), is the lowest energy GB with no

slip displacements. The GB plane is indicated as a dashed black line, and remains

centered on the same atoms in the series of images to clearly show the initial position

of the GB plane as sliding proceeds. We have included the characteristic diamond

shapes across the GB plane, showing the GB in the traditional way. Point (e) in

Fig. 5.3 is just a periodic displacement of the structure of point (a) and equivalent

in its atomic positions. It is therefore not reproduced in the series of structural

schematics in Fig. 5.4. As the grains are slid by a factor of s = 0.2 of the full sliding

distance to position (b), we observe a local maximum in Fig. 5.3. This maximum is

a result of a run-on configuration as illustrated in Fig. 5.4 (b). This puts slip plane

atoms of adjacent {001} planes at the same coordinate along 〈012〉, and therefore

results in an increased energy. The maximum at s = 0.7 times the slip displacement

along 〈012〉 is also caused by a run-on configuration across the slip plane. In this case,

as shown in Fig. 5.4 (d), slip plane atoms in the same (001) planes share the same

in-plane coordinates. This causes the global maximum of this curve and a significant

expansion around the GB plane as seen in Fig. 5.4 (d). This maximum provides with

an energetically unfavorable pathway. Due to symmetry the GB can slide under the
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(a) (b) (c) (d)

Figure 5.4: Atomic positions for the slip displacements as indicated in Fig. 5.3 for
the clean Cu Σ5 (012) GB, where (a) is for s = 0.0 the original relaxed GB with no
slip displacement, (b) for s = 0.2, (c) for s = 0.4 and (d) for s = 0.7 times along the
periodic slip displacement along 〈012〉. Light blue empty circles represent Cu atoms
on the (001) plane with light blue filled circles representing Cu atoms on the adjacent
(002) plane. The original GB plane as for position (a) is indicated by a dashed black
line. For slip displacements the characteristic diamond shapes across the GB indicate
the GB plane where possible.

same applied shear stress using the lower energy path symmetrically on the opposite

side of the GB plane. That is, for a given applied shear stress the GB can always slide

such that the path leads it across the lower energy run-on configuration of Fig. 5.4(b).

Fig. 5.3 also shows a minimum at s = 0.4. This is a geometrically equivalent

structure as the initial GB. However, as shown in Fig. 5.4 (c) the GB plane migrates

one layer as a sliding event from (a) to (c) or (e) to (c) takes place. This is indicated

by the dashed line which lies on the atoms of the original GB0 layer, and the diamond

shapes that now indicate that the GB plane migrated up by one layer. On shearing the
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(a) (b) (c) (d)

Figure 5.5: Same as in Fig. 5.4, but for the Cu Σ5 (012) GB with Bi impurities.
Bi impurities are represented by large circles in dark blue. Empty dark blue circles
represent Bi atoms on the (001) plane and filled dark blue circles represent Bi atoms
on the adjacent (002) plane.

Σ5 (012) Cu GB, one may therefore envisage how the GB may migrate, accommodated

by repeated GBS between GB0 and GB1 (or GB-1) planes.

5.5.2 Impurity system

We now consider GBS as we add 1 ML of impurities to the GB0 plane. We

first discuss Bi and Pb shown as blue triangles and green diamonds in Fig. 5.3,

respectively. Both show a similar change in behavior. This is consistent with the

similarity of the two impurities already seen in Section 4.5 when we considered the

work of separation and tensile strength. We saw that both Bi and Pb impurities

embrittle the GB by enabling easier intergranular failure. We now study if they have
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a similarly detrimental effect on plasticity in the form of GBS for nanocrystalline

metals. The maximum for s = 0.20 increases by a factor of 1.7 and 2.6 for Bi

and Pb, respectively, meaning that this lowest local maximum that connected two

geometrically equivalent structures for the pure system becomes energetically less

beneficial as a pathway. This in turn means that GBS along this direction is inhibited

by the inclusion of Bi and Pb impurities. It is important to note that whereas position

(c) was geometrically equivalent to position (a) for the clean GB, this is not the case

for the impurity systems. Instead, since the GB plane migrates by one (012) plane,

the impurities are now on the GB1 plane instead of at the GB0 plane as for position

(a). This can be seen for Bi and Pb in Fig. 5.5 (c) and Fig. 5.6 (c), respectively. This

explains why the sliding energy curve has a local minimum at position (c) that is

greater than the minimum at zero slip displacement at position (a). As we discussed

earlier in Section 5.4 the GB0 planes provide lower energy positions in comparison to

GB1 sites, with the GB0 sites providing the lowest energy sites in comparison to all

others.

The second maximum, for direct run-on configurations at point (d), sees a marked

decrease in comparison to a clean GB. This decrease still provides a larger barrier than

for position (b) and hence should not be a preferential pathway of slip behavior, since

with the same shear stress applied, a slip over the smaller maximum is supported by

planes symmetrically on the other side of the GB plane. It is important to note that

we find that the distortions to the GB for impurities at GB1 at (c) are quite large,
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(a) (b) (c) (d)

Figure 5.6: Same as in Fig. 5.4, but for the Cu Σ5 (012) GB with Pb impurities.
Pb impurities are represented by large circles in green. Empty dark green circles
represent Pb atoms on the (001) plane and filled green circles represent Pb atoms on
the adjacent (002) plane.

(a) (b) (c) (d)

Figure 5.7: Same as in Fig. 5.4, but for the Cu Σ5 (012) GB with Ag impurities.
Ag impurities are represented by large circles in red. Empty red circles represent Ag
atoms on the (001) plane and filled red circles represent Ag atoms on the adjacent
(002) plane.
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and the usual diamond shape to identify the GB plane is distorted. This difference

and how it relates to the significant changes in the sliding energies will be discussed

in greater detail in Section 5.5.3.

We see that for both Bi and Pb the energy barrier to go from (c) to (a) via (b)

decreases dramatically because the impurities at (c) are at the higher energy GB1

position. The relevant energies are shown in Table 5.1. This shows that a higher

concentration of impurities at GB1 sites could very easily migrate to GB0 via sliding

induced GB migration. This is particularly so because the barrier decreases to a value

significantly lower than for the clean GB. The impurities that migrated from GB1 to

GB0 would then be effectively trapped at GB0 because both the formation energy is

significantly lower at the center of the GB for Bi and Pb, making diffusion away from

the GB unlikely (see Fig. 5.2) and further sliding is inhibited by the overall increase

in the energy barrier at position (b) with respect to (a). For the particular Σ5 (012)

symmetric tilt GB, one may imagine a scenario where an initially clean GB could

pick up impurities in the bulk by successive GBS and GB migration events. This

may then pin the GB plane, leading to potential embrittlement due to a decrease

in plasticity. This does not address the potentially different time-scales of GBS and

diffusion of impurity atoms to the GB.

We now move our attention to the effects Ag has on GBS. For our results of

the work of separation we have previously seen that Ag had only a small effect on

the embrittlement of the Cu GB. That is, the work of separation and the tensile
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system γ(b) [J/m2] γ(b) − γ(c) [J/m2]
pure 0.186 0.175
Ag 0.699 0.229
Pb 0.485 0.153
Bi 0.314 0.061

Table 5.1: Sliding energy differences of important paths. The first column shows
the energy difference of going from (a) to (b), previously defined as γ(b) for GBS.
The second column shows the energy difference between positions (c) and (b). This
quantifies the propensity of the system to slide from (c) to (a) via (b).

strength decreased by only a very small amount in comparison to Bi and Pb. This is

expected, as Ag is not known to embrittle coarse-grained Cu. We are not aware of any

experimental work on the behavior of Ag in nanocrystalline metals. It should therefore

not be expected that Ag necessarily does not affect the GBS behavior, since the

experimental knowledge that Ag does not embrittle or otherwise significantly affect

Cu GBs is purely based on coarse-grained materials under normal conditions, where

GBS should not be of importance. This study should therefore be viewed as making

predictive statements as to the behavior of Ag, rather than confirm experimentally

established knowledge.

The sliding energy curve for one ML Ag is shown as red squares in Fig. 5.3. We see

that the changes to the sliding behavior are even more significant than for Bi and Pb.

The energy at position (b), γ(b), increases by a factor of almost 4 in comparison to the

clean GB. This means that GBS becomes energetically very unfavorable. In turn this

also inhibits GB migration for the Σ5 (012) GB. The energies of positions (c) and (d)

also increase in comparison to the clean GB. Again, as for the Bi and Pb system, the
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increase in the energy for position (c) is due to the impurities migrating with the GB

to layer GB1, which is energetically higher (Fig. 5.2 (c)). It is interesting to note that

the structural changes in comparison to the clean GB are not as significant as for Bi

or Pb. This can be seen by comparing Fig. 5.4 and Fig. 5.7. Especially the structure

at position (c), where the impurities are at GB1 sites are significantly less distorted

than for Pb and Bi in Fig. 5.6 (c) and Fig. 5.5 (c). Hence the underlying physics of

the increase of the GSF sliding energy for Ag and the Bi and Pb systems should be

expected to be different. This difference will be addressed further in Section 5.5.3,

where we try to elucidate the mechanisms that result in the different behavior seen

for the clean GB and the impurity systems.

5.5.3 Grain boundary sliding mechanism - Gedanken exper-

iment

We have seen in the previous section that the effect of impurities on GBS and

the sliding energies can be dramatic. We did not address yet the underlying physical

mechanisms involved and how these are different for the different impurities and the

clean GB. To this end we adapt a method recently proposed by Lozovoi et al. [108] to

address intergranular decohesion. The aim is to disentangle the different mechanisms

involved by splitting the sliding event into different steps in a Gedanken experiment.

We will consider three different mechanisms involved in GBS with impurities, 1) that

of breaking of bonds of host matrix atoms by replacing them with substitutional impu-
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Figure 5.8: Schematic illustrating the calculations to elucidate the different mecha-
nisms involved in inhibiting GBS for impurity inclusion. Configuration A is for no
impurities and allows relaxations. Similarly configuration B has impurities at the GB
and also allows for relaxations. Configuration C is based on the structures of con-
figuration B, but all impurity atoms are removed, no further relaxations are allowed.
Similarly configuration D is based on configuration A, but all Cu atoms that would
be replaced by impurities in configuration B are removed, with no further relaxations.

rity atoms, 2) that of a change in the atomic structure surrounding the substitutional

impurities and 3) that of chemical effects in combination with the impurity being

mechanically compressed. The latter combined effect cannot be further disentangled

in this approach. We will follow here the same labeling convention as in ref. [108]

and will forthwith call these three processes the host removal (HR), substitutional

structure (SS) and chemical and compressed impurity (CC) process, respectively.
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A schematic illustration of the different mechanisms and how their contribution to

the overall GBS effect can be calculated is shown in Fig. 5.8. Four different separate

GBS energies will be calculated, labeled as A, B, C and D. The calculations for A

and B are simply the GBS energies for the clean GB and those with impurities.

These calculations allow for atomic relaxations as per section 5.5. The difference

between A and B hence just gives the increase or decrease of the sliding energy as

we add impurities. To investigate the HR process and its contribution to the overall

change of the GBS energy, we calculate structures D. These are based on the relaxed

structures of the clean GB, that is structure A, but with the Cu atoms that are

replaced by substitutional impurities in B removed. The energy difference between

A and D hence gives a measure of how much the loss of host bonds contributes

to the overall energy change. Similarly, to address how much the substitutional

impurities change the structure of the surrounding host matrix, we calculate the

difference between D and C. Structure C is based on the relaxed structures of B, but

now with the impurities removed. This hence gives a measure of how much the Cu

matrix is distorted upon impurity addition, but without including the chemical effects

of the impurities added by bonding in a different fashion than the Cu atoms. The

two processes we have discussed so far, the HR and SS process, are purely mechanical

processes that account for the size effect of substitional impurity atoms. To capture

the chemistry of the impurities we compare structures C and B. This includes all

the bonds introduced by the impurities, but also any mechanical compression the
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impurities may suffer from. We calculate the following quantities based on the above

ideas. For the host removal process,

HR = γ (D) − γ (A) , (5.2)

the substitutional structure process,

SS = γ (C) − γ (D) , (5.3)

and for the chemical and compressed impurity process,

CC = γ (B) − γ (C) , (5.4)

where γ (x) is the sliding energy at a given slip displacement position for a given

system x = A − D.

We start our discussion of the mechanisms involved in changing the GBS behavior

as impurities are added by considering the effect Bi has. We will consider the three dif-

ferent mechanisms for the three important sliding displacements of s = 0.2, 0.4 and 0.7

along 〈012〉, that is positions (b), (c) and (d). This is summarized in Tables 5.2, 5.3

and 5.3, respectively. For configuration (b), which gives the energy barrier for sliding

and hence is the most important energy to quantify resistance against slip, we see an

overall increase when Bi impurities are added. The dominant terms in this increase

are the SS and HR mechanisms. The chemical contributions in the form of the CC

mechanism is very small and negligible in comparison. This implies that most of the

change in γ(b) comes from mechanical effects related to the size of the Bi impurity.
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The chemical term is of little importance. This behavior is matched for position (c),

where the SS term increases relative to the HR term, resulting in an overall increase

in the slip energy. The situation changes slightly for the most extreme run-on config-

uration, that of position (d). Here we see that the substitutional effect is significantly

smaller than the host removal effect, leading to an overall significant decrease in the

slip energy. This decrease in the importance of the substitutional structure change

may be related to the fact that the Cu matrix is only affected by a small amount by

the impurities in this special configuration, where the two grains are pushed apart for

both impurities and the clean GB, since atoms on the slip plane are positioned right

on top of one another. It is important to point out that the chemical and compressed

impurity effect for Bi is very small for all configurations.

For Pb the behavior is very similar as for Bi. For configuration (b) the substi-

tutional structure change is very similar to that of Bi. Again for both configuration

(b) and (c) the dominant terms are the SS and HR mechanism. The main difference

for Pb in comparison to Bi is that the chemical and compressed impurity term be-

comes more important. This results in an overall increase in the slip energy for both

configuration (b) and (c) and a smaller decrease in the slip energy for configuration

(d).

We have already discussed in section 5.5.2 that of the three impurities, Ag in-

creases the sliding energy for all positions by the greatest amount. This at first seems

counterintuitive with respect to our earlier results for intergranular decohesion, where
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system Total [J/m2] SS [J/m2] HR [J/m2] CC [J/m2]
Ag 0.489 0.614 -0.539 0.414
Pb 0.300 0.715 -0.539 0.124
Bi 0.131 0.707 -0.539 -0.037

Table 5.2: GBS mechanisms - slip position (b). Total stands for the total change with
respect to the clean Cu system, SS stands for substitutional structure process, HR
stands for the host removal process and CC stands for the chemical and compressed
impurity process.

system Total [J/m2] SS [J/m2] HR [J/m2] CC [J/m2]
Ag 0.435 0.446 -0.405 0.394
Pb 0.322 0.607 -0.405 0.120
Bi 0.245 0.619 -0.405 0.031

Table 5.3: GBS mechanisms - slip position (c). Label convention as in Table 5.2.

system Total [J/m2] SS [J/m2] HR [J/m2] CC [J/m2]
Ag 0.172 0.470 -0.925 0.627
Pb -0.585 0.199 -0.925 0.141
Bi -0.743 0.149 -0.925 0.032

Table 5.4: GBS mechanisms - slip position (d). Label convention as in Table 5.2.
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Ag does not act strongly as an embrittling impurity and influences the structure only

by a small amount. We may therefore expect that it should also not increase the GBS

energy, and not affect any plastic deformation accommodated by GBS. It is even more

surprising that the changes are even greater than for Bi or Pb. By considering the

different mechanisms of Tables 5.2, 5.3 and 5.4 the origin of this difference to Bi and

Pb becomes more apparent. For Bi and Pb the SS and HR terms were dominant and

the CC term was small in comparison for all configurations. In contrast, Ag has a

much larger chemical and compressed impurity contribution. This is positive, and

binds more strongly than Bi or Pb, and almost as strongly as a Cu atom, at least for

configuration (b) and (c). All terms are similar order of magnitude for Ag, implying

that chemical effects become more important in comparison to the purely mechani-

cal effects of Bi and Pb. As expected from Fig. 5.5, 5.6 and 5.7, the substitutional

structure contribution for Ag impurities is lower than that for Bi and Pb.

5.6 Intergranular decohesion mechanism

5.6.1 Work of separation - revisited

We have previously considered the work of separation as a measure for intergran-

ular embrittlement in Section 4.5. We found a significant decrease of the work of

separation when Bi and Pb impurities are included into the Cu GB structure. In-

stead Ag was found to only cause a minor decrease, not consistent with embrittlement.
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In this section we wish to further understand the underlying mechanism involved in

embrittlement by impurities of the Σ5 (012) Cu GB used in this work. We will em-

ploy the Gedanken experiment introduced in section 5.5.3 and extend it by explicitly

considering the electronic charge densities of relevant structures.

Intergranular decohesion is of great importance in understanding the chemical

embrittlement of metals. There are generally two schools of thought of the underlying

physical reasons as for the cause of embrittlement by impurity inclusion at GBs. The

first is that of electronic effects and was first proposed by Losch et al. [138] followed

by several studies [139, 140, 110, 141] with similar conclusions alluding to electronic

effects. Several theories exist that address the problem using explanations based on

electronic effects. The first proposed that impurities may deplete the surrounding

metal matrix of electronic charge and thereby weaken the interface [138, 141]. The

second theory considers the changes in the bonding between the metal and impurity

atoms and it is proposed that the impurities result in stiffer bonds that are more likely

to break [139, 140]. Recently, Duscher et al. [110] proposed an altogether different

idea, where the dominant process is that charge is donated by the impurities resulting

in a weakened interface, though questions have been raised as to the validity of their

arguments [107, 108].

An alternative explanation of the effect impurities have on the cohesion of the

GBs can be generally classified as a size effect issue. This was proposed in several

studies [107, 108, 109, 142, 143, 144, 145] and has recently been subject to a detailed
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study by Lozovoi et al. [108] for the Cu system. They develop a Gedanken experiment

that allows for a single path to identify the underlying mechanism for different im-

purity systems. We extend the method by explicitly considering the electron charge

densities to make a direct connection with the ideas of the theories based on elec-

tronic effects. By studying the Σ5 (012) Cu GB, we come to similar conclusions as

in ref. [108], but it will be highlighted that the GB character can have a significant

influence on the exact results.

The work of separation results of Section 4.5 were determined by comparing the

energy of a fully relaxed GB with a separated structure of two grains where the im-

purities were placed such that one ML was kept on one grain and the other grain

was a clean Cu surface. It is known experimentally that after cleavage fracture, ap-

proximately equal levels of impurity concentration are measured on each fractured

surface [13]. However, this is based on AES experiments which means that it inher-

ently represents an average over several ML’s. To investigate this further we perform

calculations where the final impurity concentration is half on each grain, as depicted

in Fig. 5.9. There are many other possible configurations but we choose this config-

uration to maximize the distance between impurity atoms. One could also envisage

clusters forming, but this will not be addressed in this work. The results for the

clean GB and the GB with one ML of Ag, Bi and Pb impurities are summarized in

Table 5.5. The difference in values in comparison to chapter 4, can be traced back

to the different parameters and structures used. The most important quantity, the
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change of the work of separation for impurity inclusion, is very similar and if the size

change of region I is accounted for, we find that the results for the change in Wsep

differ by only 1 − 2% for Bi and Ag and 6% for Pb. Employing the computationally

more efficient implementation is appropriate for the analysis presented in this work

and well within the accuracy limits required.

We see for both the clean GB and the GB with Ag, that the work of separation

is lower for the case where the ML stays intact on a given separated grain. This is

expected for pure Cu, as the energy for cleaving along a perfect weak plane (here the

GB plane) is lowest in comparison to situations where a plane of atoms is unevenly

separated. The half concentration configuration leaves atoms on the top of a surface

that are not optimally bonded and hence has a higher energy. The Ag impurity

atoms seem to behave very similar to Cu in this sense. This may be expected, since

Ag behaves similar in terms of binding as chemically they are from the same group

and were already found to behave very similar in terms of the chemical contribution

for GBS (section 5.5.3) and intergranular decohesion (section 4).

For Bi and Pb we find that structures with half concentrations on the surfaces

after decohesion are energetically more beneficial. This is similar to previous results

of Bi with a different Cu GB [108]. The difference is particularly significant for Bi.

We will therefore use these energetically more beneficial structures for Bi and Pb in

the following analysis and discussion.
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Top view

Figure 5.9: Impurity configuration for half occupancy of surfaces after decohesion.
Light blue atoms are Cu atoms on the GB-1 plane. Red circles represent impurity
atoms on the GB0 plane, where light and dark red circles represent atoms that stay
on the bottom grain with GB-1 and atoms that get cleaved and attach to GB1 with
the top grain, respectively.

system Wsep [J/m2] W (1/2)
sep

[J/m2] Wsep −W (1/2)
sep

[J/m2]
pure 2.10 2.15 -0.05
Ag 1.92 1.99 -0.07
Pb 1.42 1.30 +0.12
Bi 1.15 0.921 +0.23

Table 5.5: Work of separation for half (W (1/2)
sep

) and full (Wsep) occupancy on surface
after decohesion of the GB0 plane.



Chapter 5: The physics of impurities at copper grain boundaries 122

system Total [J/m2] SS [J/m2] HR [J/m2] CC [J/m2]
Ag -0.174 -0.061 -1.171 1.058
Pb -0.854 -0.222 -1.170 0.590
Bi -1.230 -0.372 -1.170 0.365

Table 5.6: Work of separation mechanisms. Total stands for the total change with
respect to the clean Cu system, SS stands for substitutional structure process, HR
stands for the host removal process and CC stands for the chemical and compressed
impurity process.

5.6.2 Underlying mechanisms

We have seen that the work of separation for Bi and Pb decreases considerably,

especially for half coverage after decohesion, whereas Ag has only a small effect on

Wsep. We wish to study this difference in behavior with the same method as presented

in section 5.5.3. This method was previously used to study a Σ5 (013) Cu GB with

Bi, Na and Ag impurities [108] and we will compare these findings to our results for

the Σ5 (012) Cu GB with impurities. The results for the Σ5 (013) Cu GB showed

significant substitutional structure effects and these were identified as the driving

force to decrease the work of separation for increasing impurity concentration. It was

also concluded that any electronic effects are not important, based on comparing the

energies for the three different impurities studied. No explicit study of the electronic

charge density was performed.

The summary of the different contributions of the relevant mechanisms involved in

decohesion of the Σ5 (012) GB are shown in Table 5.6. We see that for Bi the dominant

term is the HR term, with the SS and CC term approximately canceling one another
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and the magnitude is approximately one third of that of the HR term. Although these

results are for one ML coverage as in ref. [108] we do not see the strong substitutional

structure effect they were able to observe. This is because the Σ5 (012) GB has

perfectly symmetric substitutional positions at the GB0 plane, whereas the Σ5 (013)

has two geometrically different positions, of which one has tighter confinement than

the other. This results in the greater substitutional structure effect as their GB is

deformed much more significantly than the GB studied here. This illustrates that

even the small differences within the same type of GB, both are high-angle Σ5 GBs,

can be significant. The smaller substitutional changes result in a smaller propensity to

cause embrittlement. For the same Bi impurity concentration, that is 1 ML coverage,

the work of separation of the Σ5 (012) was reduced by 56%, whereas the Σ5 (013)

GB suffers from a 71% decrease of the work of separation and 36% for half the

concentration of 0.5 ML coverage [108].

Given the controversy of whether impurities that embrittle Cu result in charge

transfer to deplete the charge of Cu atoms surrounding the impurities, it is instruc-

tional to explicitly study the electronic charge density in addition to the above anal-

ysis. We show in Fig. 5.10(a) the electronic charge density for the pure Cu GB.

This should be compared to Fig. 5.10(c) for substitutional Bi atoms at the center

GB plane. Both electronic charge density plots show the (001) plane which perpen-

dicularly intersects the GB plane. These figures show in particular the bonds of the

Bi or GB0 Cu atoms with the GB1 and GB-1 atoms, but also the Cu-Cu bonds of
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Figure 5.10: Electronic charge density on the (001) plane intersecting the GB for
(a) the Σ5 (012) Cu GB, (b) the GB without Cu atoms on the GB0 plane, same as
structure D in Fig. 5.8, (c) the Cu GB with Bi impurities at the center GB0 plane, (d)
the Cu GB structure as for Bi impurities, but with all Bi removed same as structure
C in Fig. 5.8. The center GB plane (GB0) is indicated by a dashed black line. Atoms
in the first three sets of symmetric planes away from the center GB plane are label
−3, . . . , 3. Red areas are regions of large electronic charge density, blue areas are
regions of small electronic charge density.
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the GB1 and GB-1 Cu atoms across the interface. Of these two different bonds, the

former does not change significantly, whereas the latter shows a significant depletion

of electronic charge on Bi inclusion. At first glance this may lead to the conclusion,

that based on the difference in chemical character of the included Bi atoms, charge

redistribution has occurred in the context of electronic effect theories, thereby weak-

ening the Cu-Cu bond between atoms GB1 and GB-1 across the interface. On closer

inspection this change in electronic charge distribution is a result of the substitutional

structure changes. This can be seen by comparing Fig. 5.10(b) and (d). These show

the electronic charge density for structures where the Cu atoms at the GB0 plane

and the Bi impurity atoms have been removed but with no further relaxations as for

structures D and C in Fig. 5.8, respectively. The electronic charge density between

Cu atoms in the GB1 and GB-1 planes, that take crucial roles in bonding across the

GB interface and hence its cohesion, remain approximately unchanged in compari-

son to the structures with all atoms on the GB0 planes. This means that adding or

removing Bi atoms does not significantly affect the electronic charge density of the

Cu-Cu bond across the GB interface. It is instead purely the GB expansion caused

by adding the large Bi atoms, that is, the dominant changes in the electronic charge

density are a mechanical effect and not due to the chemical character of the Bi im-

purities. If anything, one can see that the electronic charge density between the Cu

atoms increases as Bi atoms are added, albeit this is not a strong effect.

The behavior of Pb is very similar to that of Bi except that the chemical con-
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Figure 5.11: Electronic charge density on the (001) plane intersecting the GB for
(a) the Σ5 (012) Cu GB with Pb impurities, (b) the Cu GB structure as for Pb
impurities, but with all Pb removed same as structure C in Fig. 5.8, (c) the Cu GB
with Ag impurities at the center GB0 plane, (d) the Cu GB structure as for Ag
impurities, but with all Ag removed same as structure C in Fig. 5.8. The center GB
plane (GB0) is indicated by a dashed black line. Atoms in the first three sets of
symmetric planes away from the center GB plane are label −3, . . . , 3. Red areas are
regions of large electronic charge density, blue areas are regions of small electronic
charge density.



Chapter 5: The physics of impurities at copper grain boundaries 127

tributions in the form of the CC term become greater and at the same time the

substitutional structure contribution becomes less important. The behavior of the

CC term for Pb is consistent with our previous results for GBS. The electronic charge

densities for Pb are shown in Fig. 5.11(a). Fig. 5.11(b) shows the charge distribution

for the structure without Pb atoms at the GB0 plane but with otherwise unchanged

structure. In the same way as for Bi, one can see that the decreased electronic charge

density across the GB plane is due to the GB expansion and not the chemical char-

acter of the Pb impurity atoms.

The behavior of Ag changes more dramatically. Now the CC term becomes domi-

nant, together with the HR term. There are almost no substitutional structure effects.

We therefore see very similar behavior for this as for the Σ5 (013) Cu GB [108]. How-

ever again the substitutional structure contribution is smaller in our case, almost

negligible because our GB structure allows for a symmetric addition of the impuri-

ties, leading to a more symmetric expansion with less substitutional structure effects.

The electronic charge density for the structures with Ag added to the GB and the

unrelaxed structure without Ag atoms are shown in Fig. 5.11(c) and (d), respectively.

There is a significant similarity to the electronic charge density of the pure Cu GB.

Overall, we find that Ag has a strong chemical and compressed impurity contribution,

much more than Pb and Bi where pure mechanical effects are more dominant.
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system Wsep [J/m2] γ(b) [J/m2] D = Wsep/γ
(b) [J/m2]

pure 2.10 0.186 11.3
Ag 1.92 0.699 2.75
Pb 1.30 0.485 2.68
Bi 0.92 0.314 2.93

Table 5.7: Work of separation (Wsep), the energy barrier for GBS (γ(b)) and the corre-
sponding ductility paramter for the pure Cu GB and with Ag, Pb, and Bi impurities.

5.7 Discussion

We have established that GBS is inhibited by Bi, Pb and Ag impurities at the

GB. This alone already indicates that we should expect a more brittle behavior for

nanocrystalline metals with impurity addition as GBS is an important mechanism of

plastic deformation for these. We have seen that of the three impurities Ag has the

strongest effect on GBS, followed by Pb and Bi. This is in reverse order for their effect

on GB decohesion and hence direct intergranular fracture. It is therefore instructional

to calculate the ratio of the sliding energy, γ(b), quantifying the resistance to GBS,

versus the work of separation, Wsep, quantifying the resistance against grain decohe-

sion. This ratio is called the ductility parameter and its significance was previously

discussed in detail in section 3 and ref. [112]. This is summarized in Table 5.7. We

immediately see that the ductility parameter decreases significantly for all impurities.

We first of all see that the initial value of D = 11.3 is greater than the critical value

identified by Rice [84] for transition from ductile to brittle behavior. Once impurities

are added the value of D drops well below the range where the critical value for duc-
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tile to brittle behavior is expected to be. The ductility parameter for the clean GB

is approximately a factor of 4 greater than those with 1 ML of impurities added to

the GB plane. This is particularly interesting for Ag, as it is traditionally considered

to have little effect on the mechanical properties of Cu. We hence predict that for

nanocrystalline Cu, Ag may have a strong effect, since it removes GBS as a plastic

deformation mechanism. The unique behavior of Ag is important for two reasons.

First of all, given its strong effect on GBS with at the same time little influence on

the intergranular decohesion behavior, it may be an ideal candidate to connect the

results from MD calculations on nanocrystalline Cu showing GBS, to experiments for

which it is difficult to observe the GBS process directly. Another point is, that since

Ag does not affect the intergranular decohesion, it may provide a path to increase the

hardness of Cu in the context of the Hall-Petch behavior for nanograined Cu, which

is believed to be limited by GBS for small grains.

The effect of Pb and Bi on the resistance against GBS is weaker than for Ag,

but in combination with the dramatic decrease of the work of separation when these

impurities are added, the ductility parameter decreases to a value very similar to that

when Ag impurities are added.

5.8 Conclusion

In this work we studied the Σ5 (012) GB in Cu and addressed the physical changes

this GB experiences as different impurities are added to the GB. We used a multiscale
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method based on coupling a large EAM region to a small DFT region to ensure appro-

priate coupling of the GB region with the impurities to the bulk. We first investigated

the lowest energy positions of the impurities and established that the preferential sites

for Bi, Pb and Ag are at the center of the GB, the GB0 plane, and approximately

follow the exponential decay behavior expected for impurity segregation near GBs.

To assess the mechanical properties of nanocrystalline Cu we consider GBS and how

this is affected by adding one ML of either Bi, Pb or Ag. We find that both Bi

and Pb inhibit GBS and any GB migration associated with the sliding events. Ag

is found to be an even stronger GBS inhibitor than Bi or Pb. This was traced back

to the stronger chemical interaction of Ag with Cu. Bi and Pb were found to have

an insignificant chemical interaction with Cu and most of the changes in the GBS

behavior in comparison to pure Cu could be traced to pure mechanical size effect

issues.

We also revisited the issue of intergranular decohesion, a process that can be

expected to be of importance for both nanocrystalline and coarse-grained Cu. We use

a Gedanken experiment to determine the underlying physical reasons for a decrease of

GB cohesion for Bi and Pb for the Σ5 (012) GB and investigate the differences to the

behavior seen with Ag inclusion. Similar to the Σ5 (013) GB studied previously [108]

the Σ5 (012) here is subject to embrittlement due to a size effect of Bi and Pb,

whereas the chemical interactions of Ag with Cu ensure that it does not embrittle the

Cu GB by means of a significant decrease in cohesion. It is noteworthy to point out
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that the Σ5 (012) GB is found to be more resistant against Bi embrittlement than

the Σ5 (013) GB, even though they are both similar Σ5 GBs and hence expected to

behave in a similar manner. This is a direct result of the greater symmetry of the

Σ5 (012) GB. This strongly hints at the importance even small differences in the GB

character can have in determining the resistance against embrittlement and highlights

how computational treatment may allow for identifying GBs particularly suitable for

novel applications.

To investigate further that embrittlement of Cu by Bi or Pb is indeed a mechani-

cal size effect instead of an electronic effect where the impurities affect the electronic

charge density and may cause a depletion of charge of the Cu-Cu bonds in the neigh-

borhood of the impurities and at the GB interface, we directly study the electronic

charge density of the Σ5 (012) Cu GB with and without impurities. Although clear

changes in the electronic charge density are observable in the neighborhood of the

Bi and Pb impurities, and in particular for the Cu-Cu bonds across the interface, we

find strong evidence that this is a direct result of the GB expansion rather than the

chemical character of the impurity. This is therefore in direct contrast to any pure

electronic effect theories that neglect mechanical effects as underlying reasons for the

changes in the electronic charge densities.

Finally, we consider intergranular decohesion and GBS in competition by consid-

ering the ductility parameter D. This was used previously to study the change in

mechanical behavior for nanocrystalline metals [112]. We find that both Bi and Pb
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are expected to strongly embrittle the Cu GB; this is consistent with experiments.

For Ag we find an overall decrease in ductile behavior, primarily in the form of re-

moval of GBS as a form of plastic behavior. This is very different from the behavior

of Ag in coarse-grained Cu and may enable connecting the MD results for nanocrys-

talline Cu with experiments. Furthermore, Ag inclusion may enable extending the

Hall-Petch relation for nanocrystalline Cu by suppressing GBS. In general, this high-

lights how different the behavior of metals at the nanoscale can be expected to be

and that generalizations based on findings for coarse-grained materials are potentially

misleading.



Chapter 6

Influence of vacancies on grain

boundary sliding in Copper

6.1 Overview

We study grain boundary sliding in the context of plasticity of a copper grain

boundary with and without a mono-vacancy. The vacancy formation energy is deter-

mined for positions near a Σ5 (012) symmetric tilt grain boundary and we find that

there are preferential sites in the vicinity of the GB in comparison to the bulk. Grain

boundary migration coupled to grain boundary sliding, previously observed for the

otherwise defect-free grain boundary, is not stopped by the mono-vacancy near the

grain boundary. The energy barrier quantifying resistance against sliding decreases

by 0.04 J/m2, or 22%, for the mono-vacancy, resulting in an increase in the propensity

133
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for plastic deformation accommodated by grain boundary sliding

6.2 Introduction

Grain boundaries (GBs) play a crucial role in the mechanical behavior of metals.

It has been known for a long time that grain boundary sliding (GBS) can become

of importance for the mechanical properties of polycrystalline metals at elevated

temperatures [15, 16, 17]. More recently it has been shown that even at low tem-

peratures GBS can become an important mechanism of plasticity in nanocrystalline

(nc) metals [19, 20, 21, 22, 23, 24]. Another important type of defect that is known

to affect the physical and mechanical behavior of materials are vacancies. Vacancies

are important for the mechanical properties of metals and these have been stud-

ied extensively in the past using a variety of experimental techniques [146], classical

atomistics [136, 147, 148, 149] and first-principles atomistics methods [125, 134, 135,

150, 151, 152, 153, 154, 155]. The majority of the early first-principles work on va-

cancies has considered them independent from other defects [150, 151, 152], yet more

recently interactions with other defects have become the subject of several stud-

ies [134, 135, 153, 154, 155, 155]. In real materials the interaction of different defects

can often lead to new types of behavior and interesting effects. In this work we ad-

dress the collective effect GBs and vacancies may have on the mechanical properties

in copper (Cu) by considering the effect of a vacancy on GBS. We have previously ad-

dressed the issue of other defects, in the form of impurities in the vicinity of GBs and
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how these can affect the GBS properties of a Σ5 (012) symmetric tilt GB in Cu (sec-

tion 5). We were able to show that impurities can significantly alter the mechanical

behavior by inhibiting GBS.

Vacancies near Cu GBs have been studied in the past [136, 148, 149]. This work

was primarily based on the classical embedded atom method (EAM) and tried to ad-

dress elevated temperature effects using simulated annealing Monte Carlo techniques

to study the coupling of GB migration and GBS in combination with vacancies.

Ballo et al. [136] have gone beyond a purely classical treatment and also addressed

the system of a Cu GB with a vacancy using first-principles density functional the-

ory (DFT). Their method neglects force relaxations based on DFT and instead was

based on calculations first relaxed purely by the EAM followed by a reduction of the

size of the supercell and static calculations using DFT [136]. Other first-principles

studies on the collective behavior of GBs and vacancies were performed for Al [135]

and Fe [134]. Lu and Kioussis [135] found that vacancies increase the barrier of the

energy for GBS in fcc Al of a Σ5 (012) GB. Zhou et al. [134] studied the Σ5 (310) tilt

GB and found the opposite behavior for bcc Fe. Similarly as in the work of Ballo et

al. [136] the inherently large computational cost of most DFT methods meant that

relatively small supercells were employed for both studies, thus resulting in atomic

structures of either lines of vacancies or vacancies separated by only very few atomic

layers [134, 135, 136]. This may introduce significant error and can only serve as a first

approximation to real physical systems with vacancies near GBs. To circumvent this
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problem we employ here a multiscale approach coupling a small region treated with

DFT to the bulk treated with the EAM. This was described in detail in chapter 4 and

applied to the system of a GB with impurities in chapter 5. This allows us to employ

large supercells perpendicular to the GB to decouple the vacancy from its periodic

images. At the same time we use large supercells parallel to the GB plane, enabling

treatment of individual mono-vacancies. Efficiently isolating the vacancy from its pe-

riodic images is particularly important in light of work by Gavini et al. [125] showing

a slow convergence with system size of the formation energy of a mono-vacancy in

aluminum.

We find evidence for vacancy segregation near the GB structure, showing that

vacancies are preferentially located near the GB in comparison to the bulk Cu, with

the lowest energy position one plane away from the center GB. By sliding the grains

with a vacancy placed near the GB plane, we show a decrease of the GBS energy with

a vacancy, resulting in overall easier GBS. In the context of mechanical properties this

hence may lead to an increase in the propensity for plastic deformation as opposed

to brittle behavior.

The chapter is organized as follows. Section 6.3 reviews the computational method

and the GB structure will be described. This also includes an assessment of the ex-

pected error using the multiscale method for vacancy calculations. Section 6.4 con-

tains a discussion of our results for GBS with a vacancy, followed by our conclusions

in section 6.5.
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6.3 Computational Method

We employ a multiscale method coupling a small region treated with DFT to the

bulk metal treated with the EAM. This is implemented using QUICKSTEP [61] as

part of the suite of programs CP2K [3]. The specific details of the methodology and

implementation were discussed in detail in chapter 4. We use here the same conditions

and settings as in chapter 5. The same relaxation procedure and force criterion is

also being used. The supercell, described in detail in chapter 4 and 5, takes the form

of a structure of 3216 Cu atoms with 201 planes parallel to the GB. On removal

of one atom to form a mono-vacancy the structure has 15 Cu atoms remaining in

the plane. This means that the vacancy is isolated, with an approximate distance of

14.8 Å to its closest periodic image, allowing for appropriate in-plane relaxation of the

vacancy. Unless otherwise stated, 27 layers of atoms perpendicular to the GB plane

(14.8 Å × 16.6 Å × 21.8 Å) were used for region I within the multiscale approach.

From previous work on GBS involving vacancies, it is known that the energy

differences involved in GBS with and without a mono-vacancy can be expected to be

small, less than 0.1 J/m2 [136, 148, 149]. We therefore carefully check the convergence

with respect to the DFT cell size in the multiscale approach. To this end we show

in Fig. 6.1 (a) and (b) the energy for a fixed and relaxed vacancy, respectively, in a

supercell of 3126 atoms with 16 atoms per layer with no other defects as a function

of the DFT cell size. The energy difference considered in Fig. 6.1 is the difference

between the energy of a perfect fcc structure and the energy of the same structure with
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Figure 6.1: Energy difference of the fcc structure of Cu with and without a single
vacancy for the multiscale method as a function of the number of DFT layers, where
in (a) all atoms are held fixed and (b) all atoms are allowed to fully relax.

a mono-vacancy in the DFT region. We do not include the energy of the removed Cu

atom into the energy difference, since this would have to be calculated for each DFT

cell size as an approximation. This further complication would not aid in the analysis

in the expected error. Our results show that for a fixed or relaxed structure the

variation in energy is very similar and, in units particular to the supercell employed

here, the energy difference involving a vacancy, for region I sizes greater than 13

layers, has a standard deviation of σ = 0.0025 J/m2. This is well below the energy

differences for GBS found in section 6.4, and should therefore not influence our final

results and conclusions.
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6.4 Results and discussion

6.4.1 Vacancy formation energy near the grain boundary

We first consider where the mono-vacancy is preferentially located. To this end

we remove a single Cu atom from different positions in the relaxed supercell near

the GB. There are 16 atoms per plane, however each one is symmetrically equivalent

in the Σ5 (012) tilt GB. It is therefore sufficient to only consider one vacancy per

plane. After removal of the Cu atom the ionic positions are relaxed and we calculate

the vacancy energy defined in eq. 4.4. We approximate the energy of a bulk DFT

Cu atom by considering the energy of a Cu atom based on a DFT calculation of a

fully periodic fcc supercell without defects. The results are shown in Fig. 6.2 as black

squares as a function of the layer index away from the center of the GB (where 0

is the center of the GB). Also shown is the bulk vacancy energy based on a DFT

calculation using periodic boundary conditions of a 5× 5× 5 supercell with a 4 atom

basis.

We first note that the vacancy energy for all positions near the GB except the

center plane is lower than the bulk vacancy energy. This shows that a mono-vacancy

is preferentially located in the vicinity of the GB as opposed to the bulk. This is

qualitatively consistent with previous results for Cu based on the classical EAM,

however we do not observe the feature of two distinct deep local minima Ballo et al.

observed in their EAM study of Cu in ref. [149]. Table 6.2 summarizes the vacancy



Chapter 6: Influence of vacancies on grain boundary sliding in Copper 140

0 1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

layer index

E
v

[e
V

]

Figure 6.2: Vacancy formation energy for different positions near the GB, where the
layer index refers to the layer number away from the center of the GB; the center
plane is labeled by the layer index 0, with successive parallel layers away from the
center GB plane labeled 1 through 8. Black squares are individual data points based
on the multiscale methods; the solid black lines are guides for the eye only. The
dash-dotted horizontal line shows the bulk vacancy formation energy.
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formation energies for a mono-vacancy on the five nearest layers (GB1 to GB5) to the

GB and the center plane (GB0). The table also shows relevant geometric values of

the Cu atoms for individual layers. This illustrates that the coordination and average

distances of the atoms in the vicinity of the vacancy play an important role and

can assist in explaining the behavior seen in Fig. 6.2. Table 6.2 also lists the average

relaxation distance of the nearest-neighbor atoms. The lowest vacancy energy position

is found to be on layer 1 (GB1). A Cu atom in this layer can be seen to be under-

coordinated with only 10 nearest-neighbors, as opposed to 12 nearest-neighbors as

expected for the bulk fcc structure. This layer also has the smallest average distance,

d̄, to the respective nearest-neighbor atoms with d̄ = 2.57 Å, compared to the bulk

value of d0 = 2.62 Å. The geometry of the structure surrounding the mono-vacancy

is such that it allows for maximal relaxations of the nearest-neighbor Cu atoms.

This explains the low energy position of the vacancy on GB1. A mono-vacancy at

the center of the GB has a higher energy than the bulk vacancy energy and also a

significantly higher energy than for all other positions near the GB. Cu atoms on the

central GB plane (GB0) have a coordination of 12, but the average distances to the

nearest-neighbors of d̄ = 2.73 Å is significantly greater than d0. On removal of a

Cu atom a much greater free volume is therefore created. The geometry around the

mono-vacancy on the center GB plane does not allow for any significant relaxation,

overall resulting in a very high vacancy formation energy. For atoms beyond two layers

away from the GB the average distance to the nearest-neighbors has approximately
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GB0 GB1 GB2 GB3 GB4 GB5
d̄ [Å] 2.73 2.57 2.64 2.63 2.62 2.62
coordination 12 10 11 12 12 12
δd [Å] 0.020 0.145 0.075 0.072 0.039 0.041

E
(V)
f [eV] 1.14 0.40 0.87 0.90 1.03 1.01

Table 6.1: Vacancy formation energy for different layers near the GB. Also listed are
the average distance (d̄) to the nearest neighbors, the coordination for Cu atoms of
different planes near the GB, and the average relaxation distance of nearest-neighbor
atoms (δd). The label convention is such that GB0, GB1, ..., GB5 stands for the
center GB plane, one plane from the center plane, ..., five planes from the center
plane, respectively.

recovered to the bulk value. These atoms are however still influenced by the geometry

of the nearest-neighbors and the long-range strain field of the GB. A mono-vacancy at

GB2 or GB3 has nearest-neighbors that allow for significant relaxations, thus giving

rise to lower vacancy formation energies. It takes up to 8 layers for the mono-vacancy

to recover to a similar value as the bulk energy, but already closely approaches that

value at around 4 layers away from the center region. The variations of the vacancy

formation energy between layers GB4 to GB8 can be expected due to the long-range

strain field of the GB. This influence on the mono-vacancy is not as significant beyond

approximately 4 layers, or 3.53 Å away from the center plane of the GB, at least in

comparison to the immediate vicinity of the GB. The most stable lowest energy

position for the mono-vacancy, one layer away from the center plane of the GB, will

be used in the following study on GBS.
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grain 1

grain 2

grain 1

grain 2

Figure 6.3: Schematic illustration of nearest-neighbor behavior for a single vacancy
during slip displacement, where the left-hand and right-hand side show the two grains
before and during sliding, respectively. The vacancy is represented by the red cir-
cle, surrounded by a perturbation field in blue. During sliding the perturbed atoms
surrounding the vacancy would be moved in an unphysical fashion as only a sin-
gle mono-vacancy is being treated. Atoms in run-on configurations with the mono-
vacancy should be allowed to relax.
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6.4.2 Grain boundary sliding with a mono-vacancy

We perform GBS quasi-statically by rigidly displacing the two grains of the Σ5 (012)

symmetric tilt GB against one another. The direction along which slip is performed is

the coincidence site lattice (CSL) vector 〈012〉. All atoms except those at the two slip

planes are fully relaxed. The relaxation of slip plane atoms has to be considered more

carefully in order to properly define the slip vector s, but at the same time to not

artificially constrain the system. All atoms in the two slip planes are allowed to relax

perpendicular to the slip plane. At the same time the relaxations parallel to the slip

plane have to be restricted, otherwise the slip vector cannot be defined properly near

maxima in the GSF energy landscape. Such maxima appear for run-on configurations

where atoms in opposite slip planes are displaced such that they have the same co-

ordinates along the 〈012〉 direction, either in the same (001) plane or adjacent {001}

planes. Not allowing relaxations in the slip plane directions is therefore a necessity to

ensure that atoms in such run-on configurations do not relax back to their initial local

minima positions, thereby not allowing a clear definition of s. Run-on configurations

however do not exist for atoms on the opposite side of a vacancy in the slip-plane. It

therefore would be unphysical to restrict the in-plane relaxation of atoms that would

have a run-on configuration with a vacancy. We therefore allow in-plane relaxations

of all nearest-neighbor atoms of the vacancy in the opposite slip plane. This is an

important requirement; if not enforced, it was found to give rise to results that would

lead to wrong conclusions. The single vacancy causes a perturbation in its vicinity,
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which for a vacancy positioned one layer away from the center GB cuts through the

slip plane. This is schematically illustrated in Fig. 6.3. Any slip would result in an

unphysical displacement of the perturbation. In particular, we find that the vacancy

introduces rearrangements of the nearest-neighbor atoms and displaces them by an

average of 0.14 Å parallel to the slip plane. Restricting these atoms to these rear-

ranged positions during sliding would give spurious results due to unphysical run-on

configurations. We also checked the influence on next nearest-neighbors and found

those to be negligible for the GBS results.

We have previously discussed GBS in pure Cu in chapter 5.5.1. It was possible to

show that the lower local maximum of the sliding energy at approximately s = 0.2 is

the most relevant energy barrier to quantify the resistance of the GB against sliding.

At s = 0.4 GB migration by one layer occurs and results in an equivalent geometry

for the vacancy-free structure. The relevant GBS energy for the vacancy-free system

is shown in Fig. 6.4 as black circles.

Next, we discuss the results for GBS with a vacancy one layer away from the

center plane of the GB. The relevant sliding energies are shown as red diamonds

in Fig. 6.4. The overall shape of the energy curve remains similar. A decrease

in energy for the two maxima at s = 0.2 and 0.7 and an increase in energy for

the minimum at s = 0.4 occurs. The slip displacement of s = 0.7 results in run-

on configurations of atoms in the same (001) plane. This is an energetically not

preferential pathway for sliding, even with the small decrease due to the introduction
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Figure 6.4: Energy for GBS of the Σ5 (012) symmetric tilt Cu GB along the 〈012〉
direction, with and without a mono-vacancy depicted as red diamonds and black
circles, respectively. Lines are Fourier fits.

of the vacancy. The barrier for the energetically preferential sliding pathway remains

at a slip displacement along 〈012〉 of s = 0.2 as for the defect-free GB. The structure

of such a slip displacement is shown in Fig. 6.5(b). The barrier height for the defect-

free GB and for the GB structure with a mono-vacancy are shown in Table 6.2 and we

can see a decrease in the GSF energy by 0.04 J/m2 or 22%. Previous first-principles

work on GBS in Al, another fcc metal, showed a significant increase of the barrier for

GBS by a factor of three [135]. It is not clear whether this is a material dependent

property, or the significant difference is a result of employing a larger in-plane supercell

and thereby treating an isolated mono-vacancy instead of a line of vacancies. This

significant difference for the behavior of GBS with a mono-vacancy warrants further
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defect free GB GB with vacancy
γs=0.2 [J/m2] 0.186 0.145

Table 6.2: Energy for GBS with a displacement of s = 0.2 along 〈012〉 with and
without a vacancy at the GB interface.

investigations with larger in-plane supercells for Al in the future.

The energy decrease of the GBS barrier is an order or magnitude greater than the

range of energies identified in section 6.4 in the comparison of different supercell sizes.

To ensure no error occurred by relaxing the nearest-neighbor atoms of the vacancy,

we compare our results of GBS with and without nearest-neighbor relaxations for the

defect-free GB. We found a difference of only 0.001 J/m2, well below the value that

has to be resolved. This is a direct result of the large in-plane supercell and the high

symmetry of the Σ5 (012) GB.

Finally, we can consider the changes for a slip vector of s = 0.4. This resulted

in GB migration for the defect-free GB. We see the same behavior for GBS with a

vacancy, only now the energy at s = 0.4 increases. This increase is a direct result

of the vacancy migrating from a position one layer away from the GB, to the center

plane, which is a higher energy position. The GB plane and position of the vacancy

are shown in Fig. 6.5(c).
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V

(a) (b)

V V

(c)

Figure 6.5: Atomic positions for the slip displacements for the Cu Σ5 (012) GB with
a vacancy, where (a) is for s = 0.0, (b) for s = 0.2 and (c) for s = 0.4 along the 〈012〉
direction. Large blue spheres represent Cu atoms on the (001) planes with small red
spheres representing Cu atoms on the adjacent (002) plane; all eight layers of {001}
planes in the supercell are used in generating the illustrations. The original GB plane
as for position (a) is indicated by a dashed black line. For a slip displacements of
s = 0.4 in (c) the migrated GB plane is indicated by a dash-dotted grey line. The
position of the mono-vacancy is indicated by the symbol ’V’.

6.5 Conclusion

We have studied GBS of a Σ5 (012) symmetric tilt GB in Cu with and without a

mono-vacancy. We employed a multiscale method and are able to treat large supercells

allowing us to effectively isolate the vacancy. This is in contrast to previous first-

principles work that was limited to consider small supercells due to the inherent

cost of standard DFT approaches [136, 135, 134]. We were able to show that the

vicinity of the GB offers energetically preferential positions in comparison to the bulk

metal. This shows that we expect mono-vacancies to segregate at the GB. The central

GB plane was found to not be energetically beneficial, due to the large free volume

created and because the high symmetry of the GB does not allow for any significant
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relaxations of the nearest-neighbor atoms. In our study of GBS we have considered a

vacancy one layer away from the center GB plane. We found that this vacancy does

not stop GB migration or GBS, instead it makes GBS energetically more likely to

occur. The relevant energy barrier for sliding was found to decrease by 22%. This

implies that a mono-vacancy enhances GBS for the Σ5 (012) GB in Cu, and hence

results in an increase in any associated plastic behavior.
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Appendix A

Calculation of elastic constants

A.1 Method - Elastic Constants

I follow here the notation and method outlined in [156]. It can be shown that

for a cubic crystal the only independent elastic constants are C11, C12 and C44. The

elastic energy per unit volume is given by

Eelastic =
1

2
C11

(

ǫ21 + ǫ22 + ǫ23
)

+ C12 (ǫ1ǫ2 + ǫ2ǫ3 + ǫ3ǫ1) + C44

(

ǫ24 + ǫ25 + ǫ26
)

, (A.1)

where we follow the standard Voigt notation. The procedure for determining the

elastic constants for instance for C11 is as follows: we apply a strain ǫ1 to our supercell

and determine the total energy per volume as a function of this strain, Etot (ǫ1) in the

range of for instance ±2%. The volume, Vc, is based on the supercell of no strain.

We then fit a fifth order polynomial to the points and determine the curvature at the

minimum. We use a higher order polynomoal rather than a simple 2nd order fit, since
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it is known that higher order effects can become important for small strains [156].

We use the curvature at the minimum to consistently calculate the elastic constant.

To easily calculate the appropriate strain for each atom in the supercell we intro-

duce here the transformation matrix T in the same manner as in [156]:

ǫαβ = γTαβ , (A.2)

where separating γ from the transformation matrix makes it easy to strain the system

by a scalar. The original basis ai of our supercells is then transformed to the new

basis a′
i
such that,

a′
i
= ai + γTai. (A.3)

The elastic energy per volume from equation A.1 then becomes:

Eelastic =
1

2
C11 (Txx + Tyy + Tzz)

2 γ2 (A.4)

+ C12 (TxxTyy + TyyTzz − TzzTxx) γ
2 (A.5)

+ 2C44

(

T 2
yz + T 2

zx + T 2
xy

)

γ2. (A.6)

It is convenient for the discussion below to rewrite this expression in the following

form,

Eelastic =
1

6
(C11 + 2C12) (Txx + Tyy + Tzz)

2 γ2 (A.7)

+
1

3
(C11 − C12)

(

T 2
xx + T 2

yy + T 2
zz − TyyTzz − TzzTxx − TxxTyy

)

γ2 (A.8)

+ 2C44

(

T 2
yz + T 2

zx + T 2
xy

)

γ2. (A.9)
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The following sections outline the appropriate steps and equations for the 3 different

elastic constants for cubic symmetry.

A.1.1 C11 for cubic crystal

Determining C11 involves straining the supercell by for instance ǫxx, i.e. setting

Txx = 1 and Tαβ = 0 for all other α, β except α = β = 1. From equation A.4 we then

immediately see that,

C11 =
∂2Eelastic

∂γ2
=

1

Vc

∂2Etot

∂γ2
, (A.10)

if we assume that the supercell volume is approximately constant Vc (γ) = Vc.

A.1.2 C12 for cubic crystal

We can calculate C12 via the quantity C ′ = 1
2
(C11 − C12), a shear modulus like

C44, by using the transformation matrix

TC′

=

















1 0 0

0 −0.5 0

0 0 −0.5

















, (A.11)

which leads to an expression for C ′ of

C ′ =
1

3Vc

∂2Etot

∂γ2
(A.12)
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A.1.3 C44 for cubic crystal

We calculate C44 for two different transformation matrices. The first involves

shearing the system along [111]:

TC44 =

















0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

















, (A.13)

with and expression for C44,

C44 =
1

3Vc

∂2Etot

∂γ2
. (A.14)

An alternative transformation consists of a shear along a (001) plane:

TC44 =

















0 1 0

1 0 0

0 0 0

















. (A.15)

The relevant expression to calculate C44 then is given by,

C44 =
1

4Vc

∂2Etot

∂γ2
. (A.16)




