Introduction: energy sources and uses
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The challenge of sustainable energy sources
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Motivation: Growing role of Chemical production

in Industrial Energy demand

Global industrial energy use also is driven by the
chemicals sector, where demand for energyai
about 50 percent faster than ove
demand.

ing 2040

Chemical companies use en¢
fuel and as a feedstock to m
products essential to manuf
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Need for catalysis research:

Chemical production relies on catalysis

« Catalysis for sustainable
energy

« Catalysis for
sustainable chemicals

« Optimization of existing
industry
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Reduction Iin enerqyv cost using catalysis

* Increase selectivity Example: Methanol
— get the product oxidation on Ag or Au

you want with little
or no waste 2 H,0
Its all about 3 CH,OH + O,
\ 2

kinetics!
CO, +2H,0
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Catalysis: Modification of kinetics via

introducing intermediate steps

* |ncrease rate
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CH3OC(=0)H Ester: Methyl Formate

H/ Au(111) (
Oxidative self-

coupling of
methanol

CH, $Hs ™~ 1,0

/-‘ ' Rate-limiting step:
H elimination from

CH,0

| B ENEMXM&QQ@%G& Friend, C. Angew. Chem., Int. Ed. 48, 4206 —4209 (2009).
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Generalization: Guiding principle for

designing new reactions

Electron distribution
leads to reaction of
negatively polarized
species with positively
charged one

Prediction: Any molecule with electron-
deficient carbon should react with OCH; on
O/Au surface (e.g. CO or NR,
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EFRC Participants:

Harvard:

C.M Friend, E. Kaxiras, D. Bell, J. Hoffman, R. Madix
Tufts: M. Flytzani-Stephanopoulos,
Fritz Haber Inst. (Berlin): A. Tkatchenko

U. Kansas F. Tao Goal: Develop
LBNL: M. Salmeron design principles
LLNL: J. Biener for increasing
Collaborators: selectivity and
CNR (Rome): S. Succi, G. Falcucci lower operation
U. St. Louis: R. Fushima temperatures to
BNL: Y. Zhu reduce energy
EXA Corp: S. Melcionna expenditure
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The DOE EFRC Program

32 EFRCs in 32 States + D.C.

" ¥ Lead Institution

o University

m Industry
m Non-Profit
S2 to 4 Million

per year
per center

~ 525 Senior Investigators
~ 900 students, postdoctoral fellows,
and technical staff
~ 100 Institutions

)

The Office of Basic Energy
Sciences in the U.S.
Department of Energy’s
Office of Science
established the Energy
Frontier Research Center
(EFRC) program, to
accelerate such
transformative discovery,

e Partner Institution combining the talents and
m National Lab creativity of our national

scientific workforce with a
powerful new generation
of tools for penetrating,
understanding, and
manipulating matter on the
atomic and molecular
scales.
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Integrated Mesoscale Structures of Sustainable Catalysis (IMASC)
Director: Cynthia Friend (Harvard University)

EFRC mission statement: Atomistic Theory

To develop a fundamental L C\2nar Models: 102 torr
understanding of how to design and - - S
use novel mesoporous catalyst
architectures for sustainable

g:; Propene
3 Propene Oxide

conversion and production of Acrolein “y_ ’}Z& R
platform chemicals through selective Allyl alcoholg‘ﬁ : _-“; "Mﬁg‘
oxidation and selective m@\t%ﬁf" ”
. Porous Catalysts: 10 torr- =% *v N
hydrogenation to-1 atm pressure ) g 'J
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RESEARCH PLAN
Principles for designing catalytic processes that will reduce energy
consumption in producing chemical production will be constructed using
advanced experiment and theory. Porous catalyst architectures will be
studied under a wide range of conditions in order to optimize production of
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Nanoporous Au: Dilute Ag/Au alloys exploit

ability of Ag to dissociate O,

Nanoporous Au Microspheres
1-3 at% Ag (EDS)
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Nanoporous Au Ingots
1-3 at% Ag (EDS)
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Environmental TEM shows dynamic nature of catalyst
CH;OH + O, on npAu

CH,0OH (0.05 torr)+ O,

(0.1 Torr) 20 nm | CH;OH (0.05 torr)

CH,0H (0.05 torr)+ O,
(0.1 Torr)




The role of theory: “Multiscale modeling of complex
chemical systems”

Macroscopic ™= Mesoscopic™== Microscopic

Fluid with reactant

Prof. Sauro Succi
Applied Computation 274
Computational modeling of fluids and soft matter
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Methoxy splitting on TiO, surface

 Formaldehyde was photochemically produced from
methoxy on TiO, (110) surface

CH30() + Og/ery + h" — HyCOp) + OHain)

D. Vinichenko
G. Kolesov

G. Tritsaris

O. Granas

R. Hoyt

P};{illips, K. R., Jensen, S. C., Baron, M., Li, S.-C. & Friend, C. M.
Sequential photo-oxidation of methanol to methyl formate on TiO2 (110).
Journal of the American Chemical Society 135, 574-577 (2013).



Example: ozone photolysis

e Excitation HOMO to LUMO: slow dissociation

e Excitation HOMO to LUMO+1: quick dissociation

Matsumi, Y. & Kawasaki, M. Photolysis of atmospheric ozone in the
ultraviolet region. Chemical reviews 103, 4767-4782 (2003).
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Wrong excitation (visible light)
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Right excitation (UV light)
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2"d excited state trajectory

 Movie:
o3split.mov
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TDDEFT trajectory:

Electron Hole
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Integrated Mesoscale Architectures
for Sustainable Catalysis (IMASC)

selective oxidation and
hydrogenation reactions

multi-scale computational
modeling

10°torr > 1 atm atomistic > macroscopic
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