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Artificial neural network
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Input layer

Highly beneficial if inputs have obvious 
symmetries of the system built-in



  

Harvard 

BD MaloneMM 2014

Input layer

Highly beneficial if inputs have obvious 
symmetries of the system built-in

Behler, J. Chem. Phys. 134,074106
(2011)
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Behler Parrinello topology

Express total energy as a sum of 
atomic contributions

Behler, Parrinello PRL 98,146401
(2007)
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Motivation

Networks of this type have been successful, but...

1). Currently limited to about 4 atomic types

2). Number and type of symmetry functions is ad-hoc

3). Extrapolation on unseen data can give large errors

4). Relationships between accuracy, data sizes, NN 
     architectures,  input space choices largely unexplored
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Achievable accuracy

Molten Si system – 64 atom supercell @ 2000K

Does this work?
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Does this work?

Molten Si system – 64 atom supercell @ 2000K

Training error =1.01 meV/atom
Test error = 1.1 meV/atom
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Training speedup?

Neural net training can take a long time

Use Principal Component Analysis (PCA)
 on input space?
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PCA basics

Data is highly correlated 
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PCA basics

Identification of new directions (principal
components) such that the data is uncorrelated
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Effect of PCA

Dimensionality reduction using most 
significant principal components 
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Conclusions

● Neural networks capable of reproducing DFT total energies to
 high precision

● PCA dramatically speeds up the training of NNs applied for these 
 physical problems, allows for easier exploration of NN 
possibilities

● PCA may allow for dimensional reduction of input space,
 enabling the use of NNs to systems with a greater number
 of atomic types and/or improving the transferability  

Torch7 machine learning 
library 
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The Problem

The detailed simulation of many physical processes can be perfomed 
with knowledge of the potential energy surface (PES) 

A large number of important physical phenomena can be studied through the knowledge 
of the static energy of a system given its atomic configuration, which is known as the 
PES.. \
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The Problem

The detailed simulation of many physical processes can be perfomed 
with knowledge of the potential energy surface (PES) 

 

 Density functional theory is an efficient approximation for solving this problem. 
Nevertheless, ab initio MD is still much too expensive to address problems that are on 
very large length and time scales. For these more efficient approximations are needed.
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The Problem

Empirical potentials can be very efficient, although with some 
loss of accuracy

The detailed simulation of many physical processes can be perfomed 
with knowledge of the potential energy surface (PES) 

Empirical potentials are an alternative option, although the functional form chosen can 
often limit the accuracy possible.

–------[[ An popular example of this type is the Stillinger Weber potential, which is 
constructed from both two-body and 3-body terms. This potential favors the configuration 
when the cosine is -1/3, or in other words, bond angles of the tetrahedral configuration. 
This sort of potential may work very well for certain systems, such as cubic silicon, but 
its form may limit the type of physics you can observe within a MD simulation. In 
particular, if you want to study the phase transformation to a non-cubic polytype of Si, 
this potential may unfavorably bias against its formation.]]---
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Learning the Hamiltonain w/ neural nets

Artificial neural network

A different approach to this problem can be taken from the machine learning community 
through the use of the biologically-inspired neural networks, which is an extremely 
flexible approach in contrast to the fixed form of the empirical potentials and has in 
previous work shown to be capable of reproducing DFT total energies but at a fraction of 
the cost. 

For those unfamiliar with NN, let me give you a quick summary. The NN is constructed 
with a certain topology and with some parameters known as weights, marked by the 
lines between nodes. By learning on a set of examples, these weights can be chosen to 
minimize the error. A suitably trained NN can then predict output quantities from inputs 
that it's never seen before.
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Input layer

Highly beneficial if inputs have obvious 
symmetries of the system built-in

 Now for this input vector the naïve thing to do is to use the cartesian coordinates of the 
atoms.. However, this is not invariant to translations or rotations of the system, and so 
it's not a convenient set of functions to describe our system. For this we use so-called 
symmetry functions which describe the atomic environment around each atom
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symmetries of the system built-in

Behler, J. Chem. Phys. 134,074106
(2011)

Radial functions

Angular functions

Cutoff functions
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Behler Parrinello topology

Express total energy as a sum of 
atomic contributions

Behler, Parrinello PRL 98,146401
(2007)

We use a topology originally introduced by Behler and Parrinello in which we have 
coupled NN, each of which is supposed to calculate the energy contribution from a 
single atom to the total energy. If two atoms have the same environment, they should 
give the same energy, and so these weights are shared. The benefit of this is that it's 
invariant to permutations and that a trained network can be used for other system sizes 
by simply adding or subtracting the correct number of individual atom networks.
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Motivation

Networks of this type have been successful, but...

1). Currently limited to about 4 atomic types

2). Number and type of symmetry functions is ad-hoc

3). Extrapolation on unseen data can give large errors

4). Relationships between accuracy, data sizes, NN 
     architectures,  input space choices largely unexplored

Now it's been found that networks of this type can be successful, but there are a number 
of open problems. One, these networks are believed to only be feasible for up to about 4 
atomic types, The reason for this is that the number of symmetry functions used to 
describe the multicomponents system grows rapidly w/ the # of types. 

Additionally, the number and type of symmetry functions is currently ad-hoc, and it's 
unclear if they can improved.

As is common with NN, the network can have large extrapolation errors when it sees an 
environment it hasn't seen before. Minimizing these possibilities, or at least detecting 
them, is an important part of building trust with the NN black box.

Finally, the relationships between the accuracy obtainable, the data sizes, NN 
architectures, and input space choices is largely unexplored. 

, 
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Achievable accuracy

Molten Si system – 64 atom supercell @ 2000K

Does this work?

The first question is, whether we can get this method to work. For this we generated 
around 20,000 MD snapshots of molten Si DFT data. We chose a high temperature of 
2000K for this so that we get a wide range of atomic environments over the course of 
the simulation. This data provides for a nice playground to work within. 

So we constructed a NN using the scheme discussed, and here is our training error as a 
number of training iteration. As you can see, after training for about 65k iterations we get 
down to 1 meV/atom training error, with the test error only slightly larger. As you can see 
the error is still going down, but at this point we're already at an accuracy which is lower 
than a majority of DFT calculations are even converged wrt to. 

It's another question as to how accurate this network would be on any possible 
reasonable Si configuration, but we can see that this approach works well and can learn 
the DFT Hamiltonian over this space. 
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Achievable accuracy

Does this work?

Molten Si system – 64 atom supercell @ 2000K

Training error =1.01 meV/atom
Test error = 1.1 meV/atom

So we constructed a NN with 2 hidden layers, 35 nodes per layer, and tried to learn the 
SE over this set of input, and here is our training errors as a function of training iteration.
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Training speedup?

Neural net training can take a long time

In general NN can take a long time to train. This can be particularly annoying if we want 
to look at the behavior of the NN as a function of the # and type of inputs, the size of the 
network, the type of data in the training set, etc. since each of these tests could take
a long time to reach a reasonable level of convergence. Thus anything we can do to 
speed up the convergence is very helpful in exploring these possibilities.
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PCA basics

Data is highly correlated 

One thing we tried along these lines is to use PCA on the input symmetry functions 
rather than use the symmetry functions themselves as was previously done. PCA is a 
technique which creates new inputs from a linear combination of the old such that the 
new ones are uncorrelated with each other. In the ML community this has been seen to 
be useful in some cases for training NNS, as it can help the neural net learn the 
information more easily because it's a simpler optimization problemi if the inputs don't 
display correlations. 
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Effect of PCA

Now we've done the same thing on our symmetry function input space, which in this 
case is 28-dimensional rather than just 2, but the idea is the same.

Here are some results showing the effect of PCA on the training. The blue shaded region 
corresponds to the range of training errors corresponding to 5 independent trainings of 
the NN w/out using PCA. The red corresponds to the same but after applying PCA to the 
input space. You can see that the training begins reaching low values of error much 
more rapidly in the PCA case than in the non-PCA case. 

In addition to this improvement in training speed, in performing PCA we realized another 
thing: that many of the symmetry functions used in previous works actually contain some 
 functions with are linearly dependent upon some of the others, which is as correlated as 
you can get. After PCA pointed this out, it was easy to show this algebraically as well. So 
in addition to quicker learning, PCA can point out highly redundant input that will enlarge 
the # of weights you need to optimize without providing you much benefit. 
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Effect of PCA

Another possibility which is opened up with the use of PCA is the possibility of 
dimensionality reduction. So back to the 2d example, we had these two principal 
components. And PCA will rank these in order of greatest to least variance, in this case 
this would one be the greatest and this the least.  
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Effect of PCA

Dimensionality reduction using most 
significant principal components 

If we drop the component with least variance and convert
the data back to our original xy space, we get the following picture. 
The data is represented by this line of points from their projection
onto the greatest principal component. So we've lost some 
information from our original plot, but the trade off is that we've 
gone from a 2D to a 1D description.

We are now looking into doing this with the symmetry functions in our
NN. The motivation in doing this with the hope that more compact 
representations will allow for easier training, less data, and 
better transferability since extrapolation problems might be less
pronounced on lower dimensionality spaces. 

There's good reason to think we can do this at least to some degree.
In the above 2D example I threw out about 1% of the variance 
in dropping that principal component. In our NN trainings thsufar, 
we throw out only 1 10-billonth of a percent of the variance by
dropping the last of the symmetry functions. So I think it's very unlikely
that this will hurt us in the NN performance. And if it does, that's quite 
an interesting outcome in and of itself.
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Conclusions

● Neural networks capable of reproducing DFT total energies to
 high precision

● PCA dramatically speeds up the training of NNs applied for these 
 physical problems, allows for easier exploration of NN 
possibilities

● PCA may allow for dimensional reduction of input space,
 enabling the use of NNs to systems with a greater number
 of atomic types and/or improving the transferability  

Torch7 machine learning 
library 

One of the obvious questions is whether this will work. Now in the past it has been 
shown that errors on the order of 5 meV/atom have been achieved 
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