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Abstract. We present a procedure that makes use of group theory to analyze
and predict the main properties of the negatively charged nitrogen-vacancy (NV)
center in diamond. We focus on the relatively low temperature limit where both
the spin–spin and spin–orbit effects are important to consider. We demonstrate
that group theory may be used to clarify several aspects of the NV structure, such
as ordering of the singlets in the (e2) electronic configuration and the spin–spin
and spin–orbit interactions in the (ae) electronic configuration. We also discuss
how the optical selection rules and the response of the center to electric field
can be used for spin–photon entanglement schemes. Our general formalism is
applicable to a broad class of local defects in solids. The present results have
important implications for applications in quantum information science and
nanomagnetometry.
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1. Introduction

Nitrogen-vacancy (NV) centers have emerged as promising candidates for a number
of applications [1]–[4], ranging from high spatial resolution imaging [5] to quantum
computation [6]. At low temperatures, the optical transitions of the NV center become
very narrow and can be coherently manipulated, allowing for spin–photon entanglement
generation [7] for quantum communication and all optical control [8]. A detailed understanding
of the properties of this defect is critical for many of these applications. Although several studies
have addressed this issue both experimentally and theoretically [9]–[20], not all aspects of the
NV center are yet understood in detail. Furthermore, other atom-like defects can potentially be
engineered in diamond [21] and other materials with similar, or perhaps better, properties for the
desired application. Therefore, it is of immediate importance to develop a formalism to analyze
and predict the main properties of defects in solids.

Here, we present a formalism based on standard group theory combined with high-level
ab initio calculations. We apply group theory to identify the non-zero interactions between
the given states, while the strength of the interaction will be calculated by using the wave
functions and self-consistent potentials from atomistic ab initio calculations. We show that this
combination is very powerful for explaining, or even predicting, several properties of the NV
center. This treatment can be particularly useful in lowering the computational cost of point
defects of such complexity that may be treated at the ab initio level, making a very detailed
study of point defects possible.

While we focus on describing the NV center in diamond, the formalism can be applied
to any point defect in solid state physics. The method takes advantage of the symmetry of the
states to properly treat the relevant interactions and their symmetries. We apply group theory
to find out not only the symmetry of the states but also their explicit form in terms of orbital
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and spin degrees of freedom. We show that this is essential to build an accurate model of the
NV center. In particular, we analyze the effect of the Coulomb interaction and predict that the
ordering of the triplet and singlet states in the ground state configuration is {

3A2,
1E,1A1} and

that the distance between them is of the order of the exchange term of the electron–electron
Coulomb energy. This ordering has been discussed over the last few years [14, 16, 17], and our
results agree with earlier [12] and recent ab initio calculations performed in bulk diamond [22].

The method is also used to analyze important properties of the center, such as polarization
selection rules. The explicit form of the states allows us to identify a particularly useful lambda-
type transition that was recently used for spin–photon entanglement generation [7]. We consider
perturbations that lower the symmetry of a point defect, such as strain and electric field, and how
they affect the polarization properties. We also show that the non-axial spin–orbit interaction
discussed in [15] does not mix the basis states of the center in a given multiplet. Instead, we
find that the electron spin–spin interaction is responsible for the spin state mixing of the excited
state as a result of the lack of inversion symmetry of the center, contrary to what has been
suggested in the literature [14, 15, 18]. Finally, we analyze the effect of electric fields via the
inverse piezoelectric effect and compare it to experimental observations. We show that this
effect can be used to tune the polarization properties of optical transitions and the wavelength
of emitted photons, which is of direct importance for photon-based quantum communication
between NV centers. The present study clarifies important properties of NV centers and provides
the foundation for coherent interaction between electronic spins and photons in solid state.

This paper is organized as follows. In section 2, we present a general group theoretical
formalism to calculate the electronic or hole representation of a point defect for a given crystal
field symmetry and number of electrons contained in the defect. Using group theory and the
explicit form of the states, we analyze the effect of the Coulomb interaction between electrons
(section 3) and spin–spin and spin–orbit interactions for the NV center (sections 5 and 4,
respectively). Next, the selection rules of the unperturbed defect are analyzed in section 6.
Finally, in section 7, we analyze the effect of strain and electric field perturbations.

2. State representation

We are particularly interested in quasi-static properties of defects in crystals where the
complex electronic structure can be observed spectroscopically. In this limit, one can apply
the Born–Oppenheimer approximation to separate the many-body system of electrons and
nuclei. This approximation relies on the fact that nuclei are much slower than electrons. In
this approximation, the nuclei are represented by their coordinates and the physical quantities
of the electrons depend on these coordinates as (external) fixed parameters. A defect in a crystal
breaks down the translational symmetry, reducing the symmetry of the crystal to rotations and
reflections. These symmetries form a point group that in general is a subgroup of the point
group of the lattice. The loss of translational symmetry indicates that the Bloch states are no
longer a good approximation to describe the point defect. In fact, some states can be very well
localized near the point defect. These defect states are particularly important in semiconductors
and insulators when they appear within the fundamental band gap of the crystal.

In the tight-binding picture, the electron system of the diamond crystal may be described
as the sum of covalent-type interactions between the valence electrons of two nearest neighbor
atoms. When defects involve vacancies, the absence of an ion will break bonds in the crystal,
producing unpaired electrons or dangling bonds, σi , which to leading order can be used to
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represent the single electron orbitals around the defect [10]. The particular combination of
dangling bonds that form the single electron orbitals {ϕr} is set by the crystal field of the
defect and can be readily calculated by projecting the dangling bonds on each irreducible
representation (IR) of the point group of the defect [23],

ϕr = P (r)σi =
lr

h

∑
e

χ (r)
e Reσi , (1)

where P (r) is the projective operator to the IR r , χ (r)
e is the character of operation Re (element)

for the IR r , lr is the dimension of the IR r , and h is the order of the group (number of
elements). Applying equation (1) to the NV center leads to the following single electron orbital
basis (see appendix A): {a1(1) = αac + βan, a1(2) = αan + βac, ex = (2σ1 − σ2 − σ3) /

√
6, ey =

(σ2 − σ3) /
√

2} [10, 12]. The non-degenerate orbitals a1(1) and a2(1) are totally symmetric and
transform according to the one-dimensional (1D) IR A1; meanwhile, {ex , ey} are two degenerate
states that transform according to the 2D IR E . At this stage, group theory does not predict the
energy order of these states. However, a simple model of the electron–ion Coulomb interaction
can be used to qualitatively obtain the ordering of the levels [24]. In appendix A, we model the
effect of this interaction on the single electron orbitals, ϕr , for the case of the NV center and
find that the ordering of the states (increasing in energy) is a1(1), a1(2) and {ex , ey}. Indeed,
ab initio density functional theory (DFT) calculations revealed [12, 25] that the a1(1) and a1(2)

levels are lower than the ex and ey levels, which demonstrates the strength of the combination
of group theory and simple models of interactions for qualitative predictions.

The dynamics of the center are set by the number of electrons available to occupy the
orbitals. In the case of the negatively charged NV center, each carbon atom contributes one
electron, the nitrogen (as a donor in diamond) contributes two electrons, and an extra electron
comes from the environment [25, 26], possibly given by substitutional nitrogens [27]. The
ground state configuration consists of four electrons occupying the totally symmetric states and
the remaining two electrons pairing up in the {ex , ey} orbitals. In this single particle picture, the
excited state configuration can be approximated as one electron being promoted from the a1(2)

orbital to the ex,y orbitals [12].
If two more electrons were added to any of these configurations, the wavefunction of the

defect would be a singlet with a totally symmetric spatial wavefunction, equivalent to the state of
an atom with a filled shell [28, 29]. Therefore, the electronic configuration of this defect can be
modeled by two holes occupying the orbitals ex,y in the ground state (e2 electronic configuration)
and one hole each in the orbitals a1(2) and ex,y for the excited state (ae electronic configuration).
A third electronic configuration, a2, can be envisioned by promoting the remaining electron
from the orbital a1(2) to the orbitals ex,y . Hole and electron representations are totally equivalent
and it is convenient to choose the representation containing the smallest number of particles. If
a hole representation is chosen, some care must be taken, as some interactions reverse their
sign, such as the spin–orbit interaction [28]. In what follows, we choose a hole representation
containing two particles (instead of an electron representation containing four particles), since
it is more convenient to describe the physics of the NV center. However, the analysis can be
applied to electrons as well.

The representation of the total n-electron wavefunction, including space and spin degrees
of freedom, is given by the direct product of the representation of each hole 0hn and its
spin 09 =

∏
n(0hn ⊗ D1/2), where D1/2 is the representation for a spin-1

2 particle in the
corresponding point group. The reduction or block diagonalization of the representation 09
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Table 1. Partner functions of each IR for the direct product of two holes. The
first column shows the electronic configuration and in parentheses their triplet
(T) or singlet (S) character. The third column gives the symmetry of the row of
the IR. α (β) stands for ↑ (↓) and E± = |a1e± − e±a1〉, where e± = ∓(ex ± iey),
|X〉 = (|E−〉 − |E+〉)/2 and |Y 〉 = (|E−〉 + |E+〉)i/2.

Configuration State Symmetry

e2 (T)

3 A2− =

3 A20 = |ex ey − eyex 〉⊗
3 A2+ =


|ββ〉

|αβ + |βα〉

αα〉

E1 + E2

A1

E1 − E2

e2 (S)

1 E1 = |ex ex − eyey〉
1 E2 = |ex ey + eyex 〉
1 A1 = |ex ex + eyey〉

 ⊗ |αβ − βα〉

E1

E2

A1

A1 = |E−〉 ⊗ |αα〉 − |E+〉 ⊗ |ββ〉 A1

A2 = |E−〉 ⊗ |αα〉 + |E+〉 ⊗ |ββ〉 A2

E1 = |E−〉 ⊗ |ββ〉 − |E+〉 ⊗ |αα〉 E1

ea (T) E2 = |E−〉 ⊗ |ββ〉 + |E+〉 ⊗ |αα〉 E2

Ey = |Y 〉 ⊗ |αβ + βα〉 E1

Ex = |X〉 ⊗ |αβ + βα〉 E2
1 Ex = |a1ex + ex a1〉 ⊗ |αβ − βα〉 E1

ea (S) 1 Ey = |a1ey + eya1〉 ⊗ |αβ − βα〉 E2

a2(S) 1 A1 = |a1a1〉 ⊗ |αβ − βα〉 A1

gives the basis states of the Hamiltonian associated with the crystal field potential and any
interaction that remains invariant under the elements of the point group in question. These
interactions include spin–orbit, spin–spin and Coulomb interactions, as well as expansions,
contractions and stress where their axes coincide with the symmetry axis of the defect. The
states can be found by projecting any combination of the two-electron wavefunction onto the
IRs of the group [23, 30],

9r
= P (r)ϕ1 ⊗ χ1 ⊗ ϕ2 ⊗ χ2 =

lr

h

∑
e

χ (r)∗
e Reϕ1 ⊗ Ueχ1 ⊗ Reϕ2 ⊗ Ueχ2, (2)

where ϕi can be any of the orbitals in equation (1), χi represents the spin wavefunction, and
the subindex i refers to the hole i . Ue is the corresponding operator of element e in the SU(2)

representation. In the case of the NV center, it is illustrative to note that the spin representation
for the two particles can be reduced to D1/2 ⊗ D1/2 = A1 + A2 + E , where A1 corresponds to
the singlet state, and A2 and E to the triplet state with zero and nonzero spin projections,
respectively. A list of the states and their symmetries for the two-hole representation can be
found in table 1 for the ground state (e2) and the excited state (ae). For completeness, we
include the doubly excited state (a2) electronic configuration, although this state is not optically
accessible in the excitation process of the NV center in experiments. Note that each electronic
configuration might have singlet and triplet states. We have written the degenerate ground state
triplet as |αα〉 and |ββ〉 instead of the natural basis |αα〉 ± |ββ〉 as they immediately split into
|αα〉 and |ββ〉, even for small magnetic fields. We have used the complex notation E± to identify
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the orbital parts that factorize the spin parts on the excited triplet states. The orbital part will
be important in the discussion of the optical transitions in the limit of low strain in section 6.
For the degenerate states Ex,y(ae), we write the orbital part as X, Y as they split (or get mixed),
even for low strain. Note that each electronic configuration might have singlet and triplet states.

Group theory can explain why the hyperfine interaction with the nuclear spin of the
nitrogen in the excited state is more than an order of magnitude larger than in the ground state
for both nitrogen species: the non-zero spin density in the ground state wavefunction of the
NV center is mostly concentrated in the orbitals ex,y , which have no overlap with the nitrogen
atom. On the other hand, in the excited state, when one electron is promoted from the a1(2)

orbital to one of the ex,y orbitals, the non-zero spin density comes now from unpaired electrons
occupying the orbitals a1(2) and ex,y . As the orbital a1(2) is partially localized on the nitrogen
atom, a sizable contact term interaction between the electronic spin and the nuclear spin of the
nitrogen is expected [25, 31, 32].

Until now, states inside a given electronic configuration have the same energy, but the
inclusion of the electron–electron Coulomb interaction will lift the degeneracy between triplets
and singlets. The resulting energy splitting can be of the order of a fraction of an eV, and it
is analyzed for the ground state configuration of the NV center in section 3. Furthermore, the
degeneracy of triplet states is lifted by spin–orbit and spin–spin interactions of the order of GHz,
where the crystal field plays an important role. These interactions will be treated in sections 4
and 5.

3. Ordering of singlet states

For a given electronic configuration, the most relevant interaction is the electron–electron
Coulomb interaction, which is minimized when electrons are configured in an antisymmetric
spatial configuration. As the total wavefunction must be antisymmetric for fermionic particles,
the spin configuration must be symmetric. As a result, the state with the largest multiplicity lies
lower in energy. This analysis, known as the first Hund’s rule, predicts that the ground state of
the NV center should be the triplet 3A2 state [11, 12]. We now address the question related to
the order of singlets in the ground state electronic configuration e2. The order of singlet states
has great significance in understanding the spin-flipping fluorescence of the NV center and ab
initio DFT calculations were unable to address this issue properly due to the many-body singlet
states. Since we have the explicit form of the wavefunctions, we can work out the ordering of the
singlets in a given electronic configuration by analyzing the expectation value of the Coulomb
interaction, which can be written in the general form

Cabcd =

∫
dV1 dV2a?(r1)b

? (r2) V (|r1 − r2|) c (r1) d(r2).

Using this expression, we find that in the ground state electronic configuration (e2), the Coulomb
interactions for these states are

C(3 A2) =
(
Cxyxy − Cxyyx − Cyxxy + Cyxyx

)
/2,

C(1 E1) =
(
Cxyxy + Cxyyx + Cyxxy + Cyxyx

)
/2,

C(1 E2) =
(
Cxxxx − Cxxyy − Cyyxx + Cyyyy

)
/2,

C(1 A1) =
(
Cxxxx + Cxxyy + Cyyxx + Cyyyy

)
/2,

(3)
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Table 2. Matrix elements for orbital operators in the C3v point group. For the Td

symmetry group or spherically symmetric potentials, A = B.

Ox |ex 〉 |ey〉 |a〉 Oy |ex 〉 |ey〉 |a〉 Oz |ex 〉 |ey〉 |a〉

〈ex | 0 0 0 〈ex | 0 0 −iA 〈ex | 0 −iB 0
〈ey | 0 0 iA 〈ey | 0 0 0 〈ey | −iB 0 0
〈a| 0 −iA 0 〈a| iA 0 0 〈a| 0 0 0

where x, y correspond to ex , ey states. From this set of equations, we find that the spacing
between the singlets 1 A1 and 1 E2 is equal to the spacing between the singlet 1 E1 and the
ground state 3 A2, i.e. C(1A1) − C(1E2) = C(1E1) − C(3A2) = Cxxyy + Cyyxx ≡ 2J , where the
difference is the exchange Coulomb interaction, which is always positive [33]. In addition, as
1 E1 and 1 E2 belong to the same IR E , it can be shown that C(1 E2) = C(1 E1) [19]. Under this
consideration, the ordering of the states is {

3A2,
1 E,1 A1} with relative energies {0, 2J, 4J } [19].

It should be noted that, in this case, the most symmetric state has higher energy since the
Coulomb interaction between two electrons is repulsive. This picture might be modified by
the following effect. Since the Coulomb interaction transforms as the totally symmetric IR, the
matrix elements between states with the same symmetry are non-zero. The states 1 E(e2) and
1 E(ae) can couple via the Coulomb interaction, increasing the gap between them. A similar
effect happens with the states 1 A1(e2) and 1 A1(a2). In equation (3), we did not take into account
the effect of the other electrons present in the system. Nevertheless, our basic results here serve
as a qualitative estimate for the energy of levels and provide useful insights into the structure of
the NV center. The results of very recent calculations based on many-body perturbation theory
(MBPT) [22] support our conclusion.

4. Spin–orbit interaction

The spin–orbit interaction lifts the degeneracy of multiplets that have non-zero angular
momentum, and is also responsible for transitions between terms with different spin states [28].
It is a relativistic effect due to the relative motion between electrons and nuclei. In the reference
frame of the electron, the nuclear potential, φ, produces a magnetic field equal to ∇φ × v/c2. In
SI units, this interaction is given by [23]

HSO =

∑
k

1

2

h̄

c2m2
e

(∇k V × pk) ·

(
sk

h̄

)
, (4)

where V = eφ is the nuclear potential energy, me is the electron mass and pk (sk) is the
momentum (spin) of electron k. The presence of the crystal field breaks the rotational symmetry
of this interaction. Since φ is produced by the nuclear potential, it transforms as the totally
symmetric representation A1, and therefore ∇V = (Vx , Vy, Vz) transforms as a vector, where
Vi = ∂V/∂xi . Since p also transforms as a vector, it is possible to identify the IRs to which
the orbital operator components EO = ∇V × p = (Vy pz − Vz py, Vz px − Vx pz, Vx py − Vy px)

belong. In C3v, the components of ∇V and p transform as (E1, E2, A1) and therefore EO
transforms as the IRs (E2, E1, A2) = (E, A2). The non-zero matrix elements of the orbital
operators Oi in the basis {a, ex , ey} can be determined by checking if (ϕi , Ok, ϕ f ) ⊃ A1, and
they are shown in table 2, where A = 〈ey|Ox |a〉 and B = 〈ex |Oz|ey〉 (for simplicity we denote
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by a the a1(2) orbital state). As noted by Lenef and Rand [11], other matrix elements, such as
〈ex |Ox |ey〉, might be different from zero as they contain the IR A1. However, it is clear that they
are zero by considering the Hermitian character of the interaction. In this case, the spin–orbit
interaction can be written in terms of the angular momentum operators li and takes the following
form,

HSO =

∑
k

λxy

(
l x
k sx

k + l y
k s y

k

)
+ λzl

z
ksz

k , (5)

where λx,y (λz) denotes the non-axial (axial) strength of the interaction. In a system with Td

or spherical symmetry, A = B (therefore λx,y = λz) and the usual form (S · L) of the spin–orbit
interaction is recovered. It is also useful to think about e± as p± orbitals and a1(2) as a pz orbital,
where the angular momentum operators satisfy l±a1(2) ∝ e± [34].

Once it is known how the spin–orbit interaction acts on the orbitals, ex , ey and a, it is
possible to calculate the effect of this interaction on the 15 states given in table 1. An important
effect is the splitting in the excited state triplet between the states A1, A2 and Ex , Ey and
between states Ex , Ey and E1, E2 [11]. The spin–orbit interaction can be written as

HSO = λz(|A1〉〈A1| + |A2〉〈A2| − |E1〉〈E1| − |E2〉〈E2|) (6)

in the excited state triplet manifold {A1, A2, Ex , Ey, E1, E2}. Another effect, relevant when
treating non-radiative transitions, is that the axial part of the spin–orbit interaction (λz) links
states with ms = 0 spin projections among states of the same electronic configuration, while the
non-axial part (λx,y) links states with non-zero spin projections with singlets among different
electronic configurations. In figure 1, we show the states linked by the axial and the non-axial
parts of the spin–orbit interaction, for which non-radiative transitions might occur. In addition
to the well-known transition between A1(ae) →

1A1(e2), we find that this interaction might
also link E1,2(ae) →

1E1,2(e2) and in particular Ex,y(ae) →
1Ex,y(ae). The latter transition may

play an important role, as recent ab initio calculations have shown that the singlets 1 Ex,y(ae)
might lie very close in energy to the excited state triplet [22]. In our model, the non-axial
part of the spin–orbit interaction, λx,y(l+s− + l−s+), does not mix the states of the excited state
triplet with different spin projections because the raising and lower operators, l− and l+, link
states of different electronic configurations. In principle, this interaction can mix the states of
the excited state triplet to higher order; however, this mixing will be largely suppressed by
the large gap that separates different electronic configurations. Likewise, the transverse part
of spin–orbit cannot mix the singlet 1E(e2) with the ±1 spin projections of the ground state
3A2. In this sense, there is no conflict with the singlet 1E(e2) state to lie lower in energy than
the singlet 1A1, as suggested in [14], because the inter-system crossing, presumably allowed
by spin–orbit [28], will be weak and will not preferably populate the ±1 spin states of the
ground state.

We have numerically evaluated the ratio between the axial part and the transverse part
of spin-orbit, λz/λxy = B/A = 0.75 using the functions ex and ey and a1(2) from ab initio
calculations (see appendix D). This suggests that if the axial part of spin–orbit is 5.5 GHz [17],
the non-axial part should be of the order of λxy = 7.3 GHz and only couples singlet with triplet
states, as shown in figure 1. Although the transverse spin–orbit is much larger than the value
it was incorrectly assigned in [14] (0.2 GHz), we have shown that it does not cause mixing
of different spin projections in the excited state triplet. The transverse spin–orbit might be
important to consider in inter-system crossing transitions [28].
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E1,2

1E1,2

1A1

Ex,y

E1,2

(A2)

(Ex, Ey)

A1

A2
A1

1A1

1Ex,y

λ⊥(S+L− + S−L+)/2

λzSzLz

λzSzLz

λ⊥(S+L− + S−L+)/2

e2

ae

a2

2J

2J

Figure 1. Energy diagram of the unperturbed NV center in diamond. Note
that each electronic configuration can contain triplets (left column) as well as
singlets (right column), which have been drawn in separate columns for clarity.
Red arrows indicate allowed optical transitions via electric dipole moment
interactions. The circular arrows between the states E1,2 and Ex,y represent the
mixing due to spin–spin interaction (see figure 2). Dashed lines indicate possible
non-radiate processes assisted by spin–orbit interaction. In the ground state
(e2 configuration), the distance between singlets and triplets is equal to the
exchange energy of Coulomb interaction (2J ). The horizontal dashed blue line
represents the orbital energy of the ground state (without including spin–spin
interaction).

5. Spin–spin interaction

The spin–spin interaction between electrons is usually not present in systems with spherical
symmetry, due to the traceless character of the magnetic dipole–dipole interaction. However,
if the electron wavefunction is not spherically distributed, this interaction does not average
out. Here we describe its effect on the excited state triplet of the NV center and we provide
a numerical estimation of its strength. The spin–spin interaction can be written (in SI units) as

hss = −
µ0

4π

g2β2

r 3

(
3(s1 · r̂)(s2 · r̂) − s1 · s2

)
, (7)
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where si =
1
2

[
σx , σy, σz

]
are the spin operators of particle i and σ j ( j = x, y, z) are the Pauli

matrices, β is the Bohr magneton, g is the Landé factor for the electron and µ0 is the magnetic
permeability of free space8. To analyze the effect of this interaction on the defect, it is useful
to write the spatial and spin parts separately in terms of the IRs of the point group [11, 23].
Then, it is straightforward to express this interaction in terms of the basis states of the defect
(see appendix B),

Hss = 1 (|A1〉〈A1| + |A2〉〈A2| + |E1〉〈E1| + |E2〉〈E2|) − 21
(
|Ex〉〈Ex | + |Ey〉〈Ey|

)
+ 21′ (|A2〉〈A2|−|A1〉〈A1|)+1′′

(
|E1〉〈Ey|+|Ey〉〈E1|− i|E2〉〈Ex |+i|Ex〉〈E2|

)
, (8)

where the gaps between the ms = ±1 and ms = 0 projections and between A1 and A2 states are
given by

31 = 3
µ0

4π
g2β2

〈
X

∣∣∣∣1 − 3ẑ2

4r 3

∣∣∣∣ X

〉
= −

3

4
Dzz, (9)

41′
= 4

µ0

4π
g2β2

〈
X

∣∣∣∣3x̂2
− 3ŷ2

4r 3

∣∣∣∣ X

〉
= Dx2−y2 . (10)

These parameters have been analyzed in [11]. However, the mixing term given by [19]

1′′
=

µ0

4π
g2β2

〈
X

∣∣∣∣ 3x̂ ẑ
√

2r 3

∣∣∣∣ X

〉
(11)

was not considered in [11].
Figure 2 shows the effect of spin–orbit and spin–spin interactions on the excited state

manifold. In particular, we find that the state A2 has higher energy than the state A1 (21′ > 0),
contrary to previous estimations [11]9. In addition, we find that the spin–spin interaction 1′′

mixes states with different spin projections. This effect is the result of a lack of inversion
symmetry of the NV center and it is not present in systems with inversion symmetry, such
as free atoms or substitutional atoms in cubic lattices. This does not contradict group theoretical
estimates as the mixed states transform according to the same IR (e.g. the E1 and Ey states
both transform according to the IR E1; see table 1). The mixing term 1′′ is responsible for the
observed lambda transitions [8].

We estimated these parameters using a simplified model consisting of the dangling bonds
given in figure A.1 (in the appendix) for the three carbons and the nitrogen atom around the
vacancy. The dangling bonds are modeled by Gaussian orbitals that best fit the wavefunction
obtained by an ab initio DFT supercell calculation (see appendix D). The distance between
atoms is also taken from these simulations. To avoid numerical divergences when r = 0, we
estimate equations (9)–(11) in reciprocal space following [35]. The values for the zero field
splitting (1es = 31), the gap between states A1 and A2 (41′) and the mixing term between
states E1,2 and Ex,y (1′′) are given in figure 2(b). As ab initio calculations cannot accurately
estimate the nitrogen population pN = |β|

2 in the single orbital state a1(2) (see appendix A
for a definition of parameter β), we have plotted in figure 2(b) the values of the spin–spin
interaction as a function of pN . In addition, the solid regions in the figure take into account

8 The contact term does not contribute due to the Pauli exclusion principle.
9 Recently, this was indirectly experimentally confirmed. The lower energy state A1 was observed to have a shorter
lifetime than the state A2 [7]. This is as expected since the state A1 decays non-radiatively to the singlet 1 A1 via
non-axial spin–orbit interaction.
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∆

Figure 2. Splitting due to spin–orbit and spin–spin interactions in triplet ae.
(a) The axial part of the spin–orbit interaction splits the states {A1, A2}, {Ex , Ey}

and {E1, E2} by λz. The spin–spin interaction splits states with different spin
projections and also splits the A1 and A2 states. Our theory predicts the A2 state
at higher energy than the A1 state and that the states (E1,2) and (Ex,y) are mixed.
As the state A1 has an additional non-radiative decay channel, it is possible to
confirm this finding by measuring the lifetime of the state. Note that the splitting
between A1 and A2 is a direct consequence of spin–orbit mixing of the spatial
and spin parts of the wavefunction. (b) Values for the zero field splitting (31),
the gap between the states A1 and A2 (41′) and the mixing term (1′′) due to
spin–spin interaction in the excited state as a function of the nitrogen population,
pN , in the state a1(2). The shadowed areas indicate the possible values for these
parameters when the distance between the vacancy and the three carbons is
increased between 0 and 3%, and the distance between the vacancy and the
nitrogen is decreased between 0 and 4% of their excited state configuration. The
solid lines correspond to the maximum (minimum) distance between the carbons
(nitrogen) and the vacancy.

variations in the relative distance between the three carbons, the nitrogen and the vacancy. The
distance between the carbons and the vacancy is increased between 0 and 3%; meanwhile, the
distance between the nitrogen and the vacancy is decreased between 0 and 4% relative to their
excited state configuration (solid lines). This shows how the spin–spin interaction depends on
the distance between the atoms. For a value of pN around 20%, our estimations are in good
agreement with experimental observations [15, 17, 31].

6. Selection rules and spin–photon entanglement schemes

Transitions might be dipole allowed if the matrix element in the length representation contains
the totally symmetric IR, 〈ϕ f |ε̂ · r|ϕi〉 ⊃ A1, where ε is the polarization of the electric field. The
matrix elements 〈a|x |ex〉 and 〈a|y|ey〉 are non-zero, from which it is straightforward to calculate
the selection rules among the 15 states given in table 1 for the unperturbed center. This is
shown in table 3. In addition to the well-known triplet–triplet transition [36], transitions are also
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Table 3. Selection rules for optical transitions between the triplet excited state
(ae) and the triplet ground state (e2), the singlets (ae) and the singlets (e2),
and the singlet (a2) and the singlets (ae). Linear polarizations are represented
by x̂ and ŷ, while circular polarizations are represented by σ̂± = x̂ ± iŷ. As an
example, a photon with σ+ polarization is emitted when the electron decays from
state A2(ae) to state 3A2−(e2).

ê A1 A2 E1 E2 Ex Ey ê 1Ex
1Ey ê 1A1

3A2− σ̂+ σ̂+ σ̂− σ̂−
1A1 x̂ ŷ 1E1 x̂

3A20 ŷ x̂ 1E1 x̂ ŷ 1E2 ŷ
3A2+ σ̂− σ̂− σ̂+ σ̂+

1E2 ŷ x̂

E0 αα = 3A2+
3A2 = E0 ββ

σ+

σ−

|A2 = |E+ |ββ + |E− |αα

Figure 3. Spin–photon entanglement generation. When the NV center is
prepared in the excited state A2(

3 E), the electron can decay to the ground state
3A2 ms = 1 (ms = −1) by emitting a right (left) circularly polarized photon.

allowed between the singlets 1E(ae) ↔
1A1(e2), 1E(ae) ↔

1E(e2) and 1A(a2) ↔
1E(ae). Other

non-zero matrix elements are 〈ey|y|ex〉 = 〈ey|x |ey〉 = 〈ex |y|ey〉 = −〈ex |x |ex〉, which might
allow the transition between the singlets 1A1(e2) and 1E(e2). Recent experiments by Rogers
et al identified an emission from singlet to singlet [18], attributing it to the 1A1(e2) →

1E(e2)

transition [20] in the infrared energy range. The 1A1(e2) →
1E(e2) singlet–singlet transition

might also be allowed by phonons or mixing between these states and singlets of different
electronic configurations via Coulomb interaction, as discussed in section 3. However, we note
that a recent sophisticated MBPT calculation [22] indicated that the infrared transition at about
1.1 eV belongs to the 1E(ae) →

1A1(e2) transition. The polarization dependence is the same for
both types of singlet–singlet transitions, and the association of the near-infrared emission of the
NV center with the 1E(ae) →

1A1(e2) transition does not contradict the nature of the emission
in the original [18] and recent [37] measurements including the polarization dependence
study.

Once the selection rules are known for the defect, it is possible to realize interesting
applications, such as spin–photon entanglement generation [38]. In the case of the NV center,
the system can be prepared in the A2(ae) state. Next, the electron can spontaneously decay
to the ground state 3A2− by emitting a photon with σ+ (right circular) polarization or to the
state 3A2+ by emitting a σ− polarized photon (see figure 3). As a result, the spin of the electron
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is entangled with the polarization (spin) of the photon. The implementation of this scheme is
sensitive to strain, which will be analyzed in section 7.

7. The effect of strain

Strain refers to the displacement 1u of the atomic positions when the crystal is stretched
by 1x [34]. It is a dimensionless tensor expressing the fractional change under stretching,
ei j =

∂δRi
∂x j

, and it can be produced by stress (forces applied to the solid structure), electric
field or temperature [39]. A systematic study of strain can be used to unravel the symmetry
of defects and explore their properties [40]. Strain can shift the energy of the states as well as
mix them. It can reduce the symmetry of the crystal field by displacing the atoms. However,
not all nine components of strain change the defect in a noticeable way. The antisymmetric part
of ei j transforms as a generator of the rotational group and therefore only rotates the whole
structure. The symmetry and energies of the unperturbed states do not change upon rotation.
Only the symmetric part of strain, ε = e + eT, affect the structure of a defect [34]. As with any
other element of the theory, strain can be expressed in terms of matrices that transform according
to the IRs of the point group under consideration. These matrices can be found by projecting a
general strain matrix on each IR,

εr =
lr

h

∑
e

χ∗

e R†
eεRe. (12)

In appendix C, we show in detail how to determine the effect of strain on the basis states of
the defect. For simplicity, in the case of the NV center, we only write the effect of strain in the
manifold {ex , ey, a},

Hstrain = δa
A1 Aa

1 + δb
A1 Ab

1 + δa
E1 Ea

1 + δa
E2 Ea

2 + δb
E1 Eb

1 + δb
E2 Eb

2 , (13)

where δa
A1 = (exx + eyy)/2, δb

A1 = ezz, δa
E1 = (exx − eyy)/2, δa

E2 = (exy + eyx)/2, δb
E1 = (exz +

ezx)/2, δb
E2 = (eyz + ezy)/2 and

Aa
1 =

1 0 0
0 1 0
0 0 0

 Ea
1 =

1 0 0
0 −1 0
0 0 0

 Ea
2 =

0 1 0
1 0 0
0 0 0

 ,

Ab
1 =

0 0 0
0 0 0
0 0 1

 Eb
1 =

0 0 1
0 0 0
1 0 0

 Eb
2 =

0 0 0
0 0 1
0 1 0


(14)

in the manifold {ex , ey, a}. The effect of strain on the orbitals a, ex , ey is easy to see. Aa
1 will

shift equally the energies of the states ex and ey , while Ab
1 will shift the energy of states a. Note

that both describe axial stress: the former leaves the e2 electronic configuration unaffected and
the latter leaves the ea configuration unaffected. Either one produces relative shifts between
both configurations, resulting in an inhomogeneous broadening of the optical transitions.
However, they do not change the selection rules. Only the stress Aa

1 + Ab
1, corresponding to either

expansion or contraction, leaves all relative energies unaffected. Ea
1 splits the energy between

ex and ey , and Ea
2 mixes the two states. Finally, Eb

1 and Eb
2 mixes the states ex and a and the

states ey and a, respectively. In the case of the NV center, the effect of the matrices Eb
1,2 can be

neglected thanks to the large gap between the orbitals a and ex,y . Therefore, in what follows,
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Figure 4. Excited state structure as a function of strain. (a) Eigenvalues of the
excited state triplet as a function of δa

E1 strain. (b) Mixture of the state with higher
energy (corresponding to A2 in the limit of low strain) and (c) the polarization of
dipolar radiation under transitions from this state to the 3A2+ state of the ground
state. Note that in both cases the circular polarization character of radiation
remains the same. On the other hand, the linear polarization rotates 90◦ for strain
along δa

E2 with respect to that of strain along δa
E1.

we do not consider them further. Recently, studies have been performed to analyze how strain
affects the excited state structure of the NV center [15, 17, 18]. Here we derive the explicit
form of strain affecting the different electronic configurations and look at how strain affects the
selection rules described in section 6.

The relevant strain matrices that will lower the C3v symmetry in each electronic
configuration are Ea

1 and Ea
2 , for which the Hamiltonian is

Hstrain = δa
E1(|ex〉〈ex | − |ey〉〈ey|) + δa

E2(|ex〉〈ey| + |ey〉〈ex |). (15)

This mostly affects the singlet and excited state configurations in the following form,

δa
E1 iδa

E2

−iδa
E2 δa

E1

δa
E1 δa

E2

δa
E2 −δa

E1

δa
E1 iδa

E2

−iδa
E2 δa

E1



 2δa
E1

2δa
E2

2δa
E1 2δa

E2

 (
δa

E1 δa
E2

δa
E2 −δa

E1

)
, (16)
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for the manifolds {A1, A2, Ex , Ey, E1, E2}, {
1E1,

1E2,
1A1} and {

1Ex ,
1Ey}, respectively. The

ground state, due to its antisymmetric combination between ex and ey , is stable under the
perturbation Hstrain. This can be checked by applying equation (15) to the ground state given in
table 1. The effect on the excited state triplet can be seen in figure 4(a), where the unperturbed
states are mixed in such a way that, in the limit of high strain, the excited triplet structure splits
into two triplets with spatial wavefunctions Ex and Ey . When strain overcomes the spin–orbit
interaction (δa

E1 > 5.5 GHz), the spin part decouples from the spatial part and the total angular
momentum is no longer a good quantum number. Transitions from the excited state triplet to
the ground state triplet are linearly polarized, where the polarization indicates the direction of
strain in the xy-plane.

Figure 4(c) shows how the polarization of the emitted photon from the state A2 to the
ground state 3A2− varies from circular to linear as a function of strain. In the case of δa

E2
strain, the effect is similar but now the mixing is different. As shown in figure 4, A2 mixes
with E1 and the photons become polarized along x–y. Note that, in the limit of low strain, in
both cases the polarization remains right circularly polarized for the transition between the
excited state A2(ae) to the ground state 3A2−(e2), while the polarization remains left circular
for the transition between the excited state A2(ae) to the ground state 3A2+(e2). The fact that
at lower strain the character of the polarization remains circular has been successfully used in
entanglement schemes [7]. The polarization properties of the states E1,2 are similar to those of
the states A1,2 but with the opposite polarization.

8. Strain and electric field

The application of an electric field to a defect leads to two main effects. The first effect, the
electronic effect, consists of the polarization of the electron cloud of the defect, and the second
one, the ionic effect, consists of the relative motion of the ions. It has been shown that the two
effects are indistinguishable, as they have the same symmetry properties [41]. The ionic effect is
related to the well-known piezoelectric effect. When a crystal is under stress, a net polarization
Pi = di jkσ jk is induced inside the crystal, where di jk is the third-rank piezoelectric tensor and
σ jk represents the magnitude and direction of the applied force. Conversely, the application
of an electric field might induce strain given by ε jk = di jk Ei , where Ei are the components
of the electric field [39]. The tensor di jk transforms as the coordinates xi x j xk and, therefore,
group theory can be used to establish relations between its components for a given point
group. In particular, the non-zero components should transform as the IR A1. By projecting di jk

(or xi x j xk) onto the IR A1, we can determine the non-zero free parameters of the tensor d
and determine the effect of electric field on the basis states of the unperturbed defect (see
appendix C). In the case of the NV center, the effect on the excited state triplet is given by
the following matrix,

HE = g(b + d)Ez + ga



Ex iEy

−iEy Ex

Ex Ey

Ey −Ex

Ex iEy

−iEy Ex


, (17)
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Figure 5. Piezoelectric response of optical transitions. (a) Response to the
electric field Ez along the NV axis ([111] orientation or equivalent). The defect
only shows a linear Stark shift independent of the initial strain. (b) Electric field
Ex applied perpendicular to the NV axis in the absence of strain (solid lines). The
optical transitions 3 A2(ms = 0) → Ex(ms = 0) and 3 A2(ms = 0) → Ey(ms = 0)

are split linearly and evenly. In the presence of strain along the ŷ direction
(dashed lines), the response is quadratic due to the splitting between Ex and
Ey states in the excited state. Our numerical results are in fair agreement with
experimental results [43].

in the basis {A1, A2, Ex , Ey, E1, E2}, while the effect on the ground state triplet is

HE = 2gbEz, (18)

in the basis {
3A2+,

3A20,
3A2−}. The parameters a, b and d are the components of the piezoelectric

tensor di jk and g is the coupling between the strain tensor e and the NV center. Comparing
equations (17) and (18), we note that the linear response of the excited state and ground state
are, in principle, different. An electric field along the ẑ (NV axis) can be used to tune the optical
transition without distorting the C3v symmetry of the defect, provided b 6= d. In figure 5, we
show the linear response of NV centers under an electric field parallel to the NV axis. In this
case, the linearity is not affected by the presence of strain. Our estimates for the ionic effect,
based on the response of the lattice defect to electric field and the response of the orbital energies
to strain (see appendix C), indicate that the relative shift between the ground and excited states
is about 4 GHz MV−1 m−1. This electric field control [15] could be very important in schemes
to entangle two NV centers optically as the wavelength of the photons emitted from each NV
center need to overlap [42]. In figure 5, we show the response of optical transitions under an
electric field perpendicular to the NV axis. In this case, the response is linear if strain is absent
and quadratic if strain is non-zero. Dashed lines show the response to an electric field when the
defect experiences a 0.3 GHz strain along the [01-1] axis. Our estimates can be used to interpret
the Stark shift observations of Tamarat et al [43].
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9. Conclusions

We have used group theory combined with ab initio calculations to identify, analyze and
predict the properties of NV centers in diamond. This analysis can be extended to other
deep defects in solids. A careful analysis of the properties of a defect using group theory is
essential for predicting spin–photon entanglement generation and for controlling the properties
of NV centers in the presence of perturbations, such as undesired strain. We have shown that
group theoretical approaches can be applied to determine the ordering of the singlets in the
(e2) electronic configuration and to understand the effect of spin–orbit, spin–spin and strain
interactions.
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Appendix A. Dangling bond representation and character table

In this appendix, we show in detail how to find the electronic representation for the case of the
NV center. The NV center contains a vacancy that results in broken bonds in the system. In
the tight-binding picture, this means that three C atoms and one N atom do not have enough
immediate neighbor atoms to form a covalent bond for each of their valence electrons. These
unpaired electrons are called ‘dangling bonds’. In the case of the NV center, we consider a
simple model consisting of four sp3 dangling bonds, where three of them are centered on each
of the three carbon atoms around the vacancy and the fourth dangling bond is associated with
the nitrogen atom. The point group symmetry is C3v and its elements are the identity, rotations
around the z (NV axis) by ±2π/3 and three vertical reflection planes where each contains one
of the carbons and the nitrogen.

As discussed in section 2, it is possible to construct the representation of the dangling
bonds for the point group they belong to. Consider figure A.1, where the ẑ axis is pointing
out of the plane of the page. The dangling bonds {σ1, σ2, σ3, σN } transform into one another
under the operations of the C3v group. In this representation, each operation can be written as
a 4 × 4 matrix, as shown in figure A.1. As representations depend on the particular choice of
basis, it is customary to designate them using the trace of each matrix (characters). Note that
the character for matrices belonging to the same class is the same; hence, in short, the character
representation for the dangling bonds is 0σ = {412}. This representation is clearly reducible, as
it can be decomposed by the IRs of the C3v group given in table A.1 [44].

Application of equation (1) gives the following combination of σ s: {aC = (σ1 + σ2 + σ3)/3,
ex = (2σ1 − σ2 − σ3) /

√
6, ey = (σ2 − σ3)

√
2, aN = σN }, where aC and aN transform as the

totally symmetric IR A1, and ex and ey transform as functions of the IR E . Note that the e
states transform as vectors in the plane perpendicular to the NV axis.
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Figure A.1. Schematic diagram of the NV defect and dangling bond
representation. (Top) Schematic diagram of the dangling bond orbitals used to
represent the NV defect. The symmetry axis or the NV axis is pointing out of the
plane of the page. The dashed lines represent the three vertical reflection planes
of the C3v group. (Bottom) Matrix representation of the dangling bonds.

Table A.1. Character and bases table for the double C3v group. Examples of
functions that transform under a particular representation are {z, x2 + y2, z2

},
which transform as the IR A1, the rotation operator Rz as A2, and the pair of
functions {(x, y), (Rx , Ry), (xy, x2

− y2), (yz, xz)} as E . The spin projections
{α(↑), β(↓)} transform as the IR E1/2 (or D1/2), while the functions ααα + iβββ

and ααα − iβββ transform as the IRs 1E3/2 and 2E3/2, respectively.

C3v E 2C3 3σv Ē 2C̄3 3σ̄v

A1 1 1 1 1 1 1
A2 1 1 −1 1 1 −1
E 2 −1 0 2 −1 0

E1/2 2 1 0 –2 −1 0
1 E3/2 1 −1 i −1 1 −i
2 E3/2 1 −1 −i −1 1 i

Next, we model the electron–ion interaction to find out the ordering of these states. This
interaction can be written in the basis of the dangling bonds σi as

V = vn|σN 〉〈σN | +
∑

i

vi |σi〉〈σi | + hn|σi〉〈σN | +
∑
i> j

|σi〉〈σ j |hc, (A.1)

where vi < 0 is the Coulomb interaction of orbital σi at site i , hc is the expectation value of the
interaction between orbitals σi and σi+1 at site i ={1, 2, 3}, vn =〈σN |V |σN 〉 and hn =〈σi |V |σN 〉.
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This interaction, which transforms as the totally symmetric IR A1, not only sets the order
of the orbitals but also mixes orbitals aN and aC . This is a consequence of the important
concept that whenever a matrix element contains the totally symmetric representation, its
expectation value might be different from zero [23]. Since both wave functions as well as
the interaction between them transform as the totally symmetric representation A1, the
representation for the matrix element also transforms as A1: 0〈〉 =0a ⊗ 0σ N ⊗ 0int = A1 ⊃ A1.
This interaction leads to the new basis [10, 12, 25] {a1(1) = αac + βan, a1(2) = αan + βac,
ex = (2σ1 − σ2 −σ3) /

√
6, ey = (σ2 − σ3)

√
2}, with energies {Ea1(1),a1(2) =

1
2(vc +2hc + vn) ±

1
21,

vc −hc, vc −hc}, respectively, where 1=
√

(vc +2hc − vn)2 +12h2
n, α2

=1 − β2
=3h2

n/1Ea1(1).
We see that the most symmetric state is lowest in energy, which is usually the case for attractive
interactions.

Appendix B. Spin–spin interaction

To analyze the effect of spin–spin interactions (equation (7)) from the perspective of group
theory, we first rewrite this interaction to identify spatial and spin terms that transform as IR
objects in the point group,

hss = −
µ0g2β2

4π

[
1 − 3ẑ2

4r 3
(s1+s2− + s1−s2+ − 4s1zs2z) +

3

4

x̂2
− ŷ2

r 3
(s1−s2− + s1+s2+)

+ i
3

2

x̂ ŷ

r 3
(s1−s2− − s1+s2+) +

3

2

x̂ ẑ

r 3
(s1−s2z + s1zs2− + s1+s2z + s1zs2+)

+ i
3

2

ŷ ẑ

r 3
(s1−s2z + s1zs2− − s1+s2z − s1zs2+)

]
,

where x̂, ŷ and ẑ are directional cosines and s± = sx ± isy . In the case of C3v, for the unperturbed
center, the expectation values of the fourth and fifth terms are non-zero in the spatial manifold
of the excited state {|X〉, |Y 〉} because the center lacks inversion symmetry. However, these
terms might be neglected when considering other defects with inversion symmetry. We note
now that the spatial part of the first term transforms as the totally symmetric representation
A1, while the second and third terms transform as the IR E . The reader can check which IR
these combinations belong to by looking at the character table in appendix A. Therefore, their
expectation values can be written as

µ0

4π
g2β2

〈
1−3ẑ2

4r3

〉
= 1(|X〉〈X | + |Y 〉〈Y |),

µ0

4π
g2β2

〈
3x̂2

−3ŷ2

4r3

〉
= 1′(|X〉〈X | − |Y 〉〈Y |),

µ0

4π
g2β2

〈
3x̂ ŷ+3ŷ x̂

4r3

〉
= 1′(|X〉〈Y | + |Y 〉〈X |),

µ0

4π
g2β2

〈
3x̂ ẑ+3ẑ x̂

4r3

〉
= 1′′(|Y 〉〈Y | − |X〉〈X |),

µ0

4π
g2β2

〈
3ẑ ŷ+3ŷ ẑ

4r3

〉
= 1′′(|X〉〈Y | + |Y 〉〈X |),

(B.1)

New Journal of Physics 13 (2011) 025025 (http://www.njp.org/)

http://www.njp.org/


20

where |X〉 and |Y 〉 are the two-electron states given in table 1. Note that, for symmetry
reasons, the second and third relations are characterized by the same parameter 1′, while
the last two relations are characterized by the same parameter 1′′. Similarly, it is possible
to write the spin operators in the spin basis of the two holes, {|αα〉, |αβ〉, |βα〉, |ββ〉}. For
example, s1+s2− = |αβ〉〈βα|. Using these relations and equation (B.1), the Hamiltonian in the
fundamental bases of the excited state of the NV center is

Hss = −1(|X〉〈X | + |Y 〉〈Y |) ⊗ (|αα〉〈αα| + |ββ〉〈ββ| − 2|αβ + βα〉〈αβ + βα|)

−1′(|X〉〈X | − |Y 〉〈Y |) ⊗ (|αα〉〈ββ| + |ββ〉〈αα|)

−i1′′(|X〉〈Y | + |Y 〉〈X |) ⊗ (|ββ〉〈αα| − |αα〉〈ββ|)

+1′ (|Y 〉〈Y | − |X〉〈X |) ⊗ (|αβ + βα〉〈αα

−ββ| + |αα − ββ〉〈αβ + βα|) + i1′ (|Y 〉〈Y | − |X〉〈X |)

⊗ (|αβ + βα〉〈αα + ββ| − |αα + ββ〉〈αβ + βα|) . (B.2)

Finally, we can write Hss in terms of the basis states of the unperturbed defect (see table 1). This
leads to equation (8).

Appendix C. Strain and electric field

The effect of strain on the electronic structure of the defect can be obtained from the effect
of the electron–nuclei Coulomb interaction on the basis states of the defect. In our example,
the Coulomb interaction is given by equation (A.1). However, when the positions of the atoms
are such that the symmetry of the defect is reduced, we should allow for different expectation
values of the matrix elements: hi j = 〈σi |V |σ j〉 and hin = 〈σi |V |σN 〉. We have assumed that
the self-interactions, vc and vn, do not change as the electrons follow the position of the ion
according to the Born–Oppenheimer approximation. To relate the matrix elements to the ionic
displacements, we can assume as a first approximation that the electron orbitals are spherical
functions and therefore the matrix elements can be parameterized by the distance between ions,
hi j(qi , q j) = hi j(|qi − q j |), so that we can write

hi j(|qi j |) ≈ hi j(|q
0
i j |) +

1

|qi j |

∂hi j

∂qi j
(qi − q j)

∣∣∣∣
0

· (δqi − δq j) + · · · . (C.1)

The change in the matrix elements is linear in the atomic displacements. In turn, the atomic
displacements are related to the strain tensor by δqi = eq i , and therefore the change in the
matrix element is given by

δhi j(|qi j |) ≈
1

|qi j |

∂hi j

∂qi j
(qi − q j)

T e(qi − q j)

∣∣∣∣
0

. (C.2)

Under these considerations, it is straightforward to calculate the effect of strain on the basis
states of the defect. For simplicity, we write here only the effect of strain on the degenerate
orbitals, ex and ey ,

δV = −g

(
exx exy

exy eyy

)
, (C.3)
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where g =
8q
3

∂hi j

∂qi j
and q is the nearest neighbor distance between atoms. Using the electron

wavefunction obtained from ab initio calculations (see appendix D), we estimate that g ≈ 2 pHz
(p = peta = 1015).

The effect of electric field on the states of the defect can be analyzed by the inverse
piezoelectric effect, as described in section 8. In this appendix, we show how group theory
can determine the nature of the piezoelectric tensor. By projecting di jk (or xi x j xk) onto the IR
A1, we can build the following relations,

a = d111 = −d221 = −d122 d = d333, (C.4)

b = d113 = d223 c = d131 = d232, (C.5)

and the d tensor can be written in the following short notation (contracted matrix form) [39],

di jk →

a −a c
c −2a

b b d

 . (C.6)

For a given electric field, we have a strain tensor of the form

ε =

aEx + bEz −aEy cEx

−aEy −aEx + bEz cEy

cEx cEy d Ez

 . (C.7)

To evaluate the magnitude of the piezoelectric response, we have used first-principles
calculations, as described in appendix D. The values for the components of the piezoelectric
tensor due to the ionic effect are a ≈ b ≈ c ≈ 0.3 µ(MV m−1)−1 and d ≈ 3 µ(MV m−1)−1.

Appendix D. Information about the first-principles methods applied in our study

To determine the values of the constants a, b, c and d introduced in appendix C,
we applied DFT [45] calculations within a generalized gradient approximation PBE
(Perdew–Burke–Ernzerhof) [46]. In the study of spin–orbit and spin–spin interactions, we used
a 512-atom supercell to model the negatively charged NV defect in diamond. In particular,
we utilized the VASP code [47, 48] to determine the geometry of the defect that uses the
projector augmented wave method [49, 50] to eliminate the core electrons, while a plane
wave basis set is employed for expanding the valence wavefunctions. We applied the standard
VASP projectors for the carbon and nitrogen atoms with a plane wave cutoff of 420 eV. The
geometry optimization was stopped when the magnitude of the forces on the atoms was lower
than 0.01 eV Å−1. We calculated the geometry of both ground and excited states. We applied
the constrained DFT method to calculate the charge density of the excited state, that is, by
promoting one electron from the a1(2) orbital to the ex and ey orbitals, as explained in [32, 51].
This procedure is a relatively good approximation, as confirmed by a recent MBPT study [22].
The obtained geometries from VASP calculations were used as starting points in the calculations
of spin–orbit and spin–spin interactions.

The spin–orbit energy was calculated by following equation (4) in this paper. Since
the spin–orbit interaction is short range, we applied all-electron methods beyond the frozen-
core approximation. We utilized the CRYSTAL code [52] for this calculation using the PBE
functional within DFT. We took the geometry as obtained from the VASP calculation. We
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applied the 6–31*G Gaussian basis set for both the carbon and nitrogen atoms. The calculated
properties (such as the position of the defect levels in the gap) agreed well with those from plane-
wave calculations. We obtained the all-electron single-particle states and the corresponding
Kohn–Sham potentials on a grid and calculated the spin–orbit energy numerically.

Finally, we also studied the piezoelectric effect. In this case, an external electric field was
applied along the NV axis and perpendicular to it. For this investigation, only a finite size model
can be used; thus we modeled the negatively charged NV defect in a molecular cluster consisting
of 70 carbon atoms and one nitrogen atom. The defect was placed in the middle of the cluster.
The surface dangling bonds of the cluster were terminated by hydrogen atoms. In our previous
studies, we showed [25] that the defect wavefunctions are strongly localized around the core
of the defect; thus our cluster model can describe reasonably well the situation occurring in
the bulk environment. For this investigation, we again applied DFT with the PBE functional as
implemented in the SIESTA code [53]. We used the standard double-ζ polarized basis set and
Troullier–Martins norm-conserving pseudo-potentials [54]. This method gives identical results
to those obtained from plane wave calculations regarding the geometry and the wavefunctions
in supercell models [25]. We fully optimized the defective nanodiamond with and without the
applied electric field. In this case, we applied a very strict limit to the maximum magnitude of
forces on the atoms, 0.005 eV Å−1 . We applied six different values of the external electric field
along the NV axis and in perpendicular directions to it, where we could clearly detect the slope
of the curvature of atomic displacements versus the applied electric field. The resulting values
for the atom displacements in the presence of 1 MV m−1 electric field are of the order of a few
0.1 µÅ .
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