INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600






HARVARD UNIVERSITY
THE GRADUATE SCHOOL OF ARTS AND SCIENCES

THESIS ACCEPTANCE CERTIFICATE

The undersigned, appointed by the
Division
Department of Physics

Comrnittee

have examined a thesis entded

""Adaptive Basis Approaches to Quantum Spin and
Electronic Systems Using Parallel Computers"

presented by Normand Arthur Modine

candidate for the degrec of Doctor of Philosophy and hereby
certify that it is worthy of acceprange.

Signature ...

Typed name ... Efthimios. Kaxiras, Chair. . . .

Signature .. F22F

Typed name ... Bertrand...l...,ﬂalger.

Signature ............ / jﬁ ............................

Typed name ... Daniel S, Fisher. .. . ... ... .

Date June 12, 1996






Adaptive Basis Approaches
to Quantum Spin and Electronic Systems

Using Parallel Computers

A thesis presented

by
Normand Arthur Modine

to
The Department of Physics
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

in the subject of
Physics
Harvard University

Cambridge, Massachusetts
June 1996



UMI Number: 9710459

Copyright 1996 by
Modine, Normand Arthur

All rights reserved.

UMI Microform 9710459
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



(©1996 by Normand Arthur Modine

All rights reserved



Abstract

Most computational methods do not adapt to the particular system that is being
studied. We discuss the addition of adaptability to simulations of quantum spin models
and electronic systems. First, we study the spin-:} Heisenberg antiferromagnet on a
series of finite-size clusters with and without frustration. We use exact diagonalization
combined with a truncation method in which only the most important basis states of
the Hilbert space are retained. We describe an efficient variational method for finding
an optimal truncation which minimizes the error in the ground state energy. Ground
state energies and spin-spin correlations are obtained for clusters with up to thirty-
two sites without recourse to symmetry. Next, we develop adaptive coordinate real-
space electronic structure computations. A regular real-space mesh produces a sparse,
local, and structured Hamiltonian, which enables effective use of iterative algorithms
and parallel computers. However, a regular real space mesh can not be adapted to a
particular physical system. To remedy this inefficiency without losing the advantages of
a regular mesh, we use a regular mesh in curvilinear space, which is mapped by a change
of coordinates to an adaptive mesh in real space. We report all-electron calculations for
atoms and molecules with 1s and 2p valence electrons, and pseudopotential calculations
for molecules and solids. Then, we present an eigensolver based on inverse iteration
that efficiently finds a few eigenvalues and eigenvectors of a large sparse matrix. The
core of the method is an algorithm that converges to eigenstates located within a given
energy range, while strongly suppressing effects from states outside the energy range.
The algorithm avoids global orthogonalization and has a convergence rate that does not
depend on the width of the spectrum. We discuss implementation in the context of
large scale electronic structure computations. Finally, we discuss adaptive coordinate
real-space electronic structure computations for the Si surface. Parallel computers,
which have sufficient power to allow the study of systems previously beyond the reach
of simulation, are used for all computations, and details are included when unusual

techniques are required.
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Chapter 1

Introduction

1.1 Introduction

The human view of the physical world is intrinsically adaptive. Details are rarely no-
ticed unless they are important or unusual. A person looking at a curve instantly
notices any sharp cusps without having to examine the entire line closely, even when
the unusual behavior only extends over a very short distance. More abstractly, an ob-
ject is observed to have a definite position even though its wavefunction includes the
possibility that it just tunneled through the floor. Human observation automatically
truncates unimportant regions of the wavefunction. Even understanding, in general,
and the pursuit of physics, in particular, could be viewed as nothing but the abstraction
of general patterns from a sea of unimportant details. However, no matter how easily
the human mind picks out important information from a constant deluge of input, it is
not easy to convince a computer to do the same thing. The power of computers and
the complexity of the operations that they perform has been consistently growing at an
exponential rate with a doubling time of about 18 months. A significant step in this
continuous evolution has been the recent development of massively parallel computers.

Like a human brain, these computers have many processors, which work cooperatively
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on a given task. As is the case in many fields, the growing capabilities of computers
have led to their growing use in physics research. As computers become an increasingly
important part of physics research, their inability to select the relevant variables for a
particular situation presents an important obstacle. In the following thesis, we show
how a degree of adaptability can be added to the computational treatment of quan-
tum spin systems and electronic structure calculations. First, we discuss a variational
Hilbert space truncation approach to quantum magnets. Then, we report an implemen-
tation of adaptive coordinate, real-space electronic structure calculations. This will be
followed by a description of an inverse iteration eigensolver with applications to efficient
electronic structure calculations. Finally, we will discuss some applications of the last

two topics to the study of semiconductor surface reconstructions and impurities.

1.2 Variational Hilbert Space Truncation

Quantum lattice models such as the Heisenberg antiferromagnet have enjoyed long last-
ing popularity with theoretical physicists. At a fundamental level, it is hoped that an
understanding of such simplified models will improve understanding of the general be-
havior of systems with many interacting quantum degrees of freedom. At a practical
level, it is believed that the low energy, long wavelength behavior of some models may be
identical to the low energy, long wavelength behavior of real systems such as magnetic
materials, superconductors, or heavy fermion compounds. The fullerenes are spheri-
cal shells of threefold coordinated carbon atoms arranged in pentagonal and hexagonal
rings. Doped fullerene crystals are observed to become superconducting at an unusually
high temperature. Each carbon atom of a fullerene has a dangling bond occupied by
a single electron. If we limit our degrees of freedom to these dangling bonds and their
electrons, and if we keep only the shortest range interactions, we obtain an effective
model known as the Hubbard model. The Hubbard model combines a tight binding like

hopping between nearest neighbor orbitals with an on-site interaction between electrons
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located in the same orbital. If we assume that that the on-site interaction is repulsive
and large compared to the hopping matrix element, we can further simplify the model
by limiting the considered space to states with a minimal number of doubly occupied
orbitals. This results in the £ — J model, which consists of an antiferromagnetic back-
ground plus a fixed number of holes or doubly occupied sites that move through the
background by a nearest neighbor hopping. The antiferromagnetic background arises
because an antiferromagnetic arrangement of the electronic spins allows virtual hops of
each electron to the neighboring sites, and thus lowers the energy relative to a ferro-
magnetic arrangement. In the case, of half-filling (one electron per orbital), there are
no holes or doubly occupied orbitals, and the system acts like a pure antiferromagnet.
The charge degrees of freedom are frozen out by the repulsive on-site interaction, and
the only remaining degrees of freedom are the electronic spins.

We study the spin-% Heisenberg antiferromagnet on a series of finite-size clusters
with features inspired by the fullerenes. The pentagonal rings prevent each spin from
pointing opposite to its neighbors. This frustration makes such structures challenging
in the context of quantum Monte-Carlo methods. The growing power of computers
has made practical the exact diagonalization of the Hamiltonian of systems with up to
a few dozen degrees of freedom. Exact diagonalization provides important checks on
other approaches and useful clues about unknown physics because its results are not
biased toward any particular outcome. However, the size of the systems that can be
handled is limited because the size of the Hilbert space (and thus the size of the matrix
that must be diagonalized) grows exponentially in the size of the system. Therefore,
the goal is to develop an adaptive method that includes only important states in the
calculation without biasing the answer. Although human observation of a real system
manages to select the important parts of a wavefunction by some means that is not fully
understood, typically there is no way that a computer can tell beforehand which states

will be important. We describe an efficient variational method for finding an optimal
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truncation of a given size which minimizes the error in the ground state energy. Ground
state energies and spin-spin correlations are obtained for clusters with up to thirty-
two sites without the need to restrict the symmetry of the structures. The results
are compared to full-space calculations and to unfrustrated structures based on the

honeycomb lattice.

1.3 ACRES: Adaptive Coordinate, Real-space Electronic

Structure

Within the Born-Oppenheimer approximation, the electronic state of an atomic, molec-
ular, or condensed matter system is described by the ionic positions Ry, ..., R, and the
many body electronic wavefunction ¥(7,...,7n). The time evolution of ¥(7,...,7x)
is determined by the Hamiltonian

H=Z-V?+Zt_—1:+zléon(ﬁ) (1.1)

i el | B

where V; refers to differentiation with respect to 7;, and V;,, describes the effect of
the ions on an electron. In an all-electron calculation, V;,, consists of a Coulomb
potential centered on each ion, and N is the total number of electrons in the system.
In a pseudopotential calculation, V., includes the effect of some core electrons, which
are taken to be frozen, and N includes only the remaining electrons. For a particular
arrangement of the ions, a very important case is the electronic ground state of the
system, which is obtained when ¥(7},...,7n) is taken to be the eigenvector of H with
the smallest eigenvalue. Since electrons usually relax several order of magnitude faster
than ions, many properties of physical systems at typical temperatures can be predicted
by studying their electronic ground states. Of central interest is the smallest eigenvalue
of the Hamiltonian Eg, which gives the energy of a given configuration of ions when the
electrons are fully relaxed.

Because ¥ is a function of a 3N dimensional space, a direct calculation of the
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ground state is very difficult for ¥ > 2. The density functional approach to electronic
structure replaces this intractable problem with the much simpler problem of finding
N single-body fictitious wavefunctions, which produce the same density as the real
electrons. The density functional approach is based on the variational formulation of

the eigenvalue problem. This formulation requires that
Eq = ml.vin (V| H|T) (1.2)

where the minimization is over all states ¥ that are antisymmetric with respect to

exchange of the electrons. If we define the electronic density
o) = [19F Py PP b, (13)
we can rewrite Eq. {(1.2) as
Eo = min {% (\I!|H|\Il)}, (1.4)

where the outer minimization is over densities p that are produced by any ¥, and the
inner minimization is over wavefunctions ¥ that pruduce the density p. Then, defining

a universal functional of the density

Flp] = rmn(‘IllZ V2+Z[r _Tllw (1.5)
i#] I
we obtain
Bo = mjn { Fla] + [ Vien DoAY (L6)

This procedure was developed and shown to be well defined in 1964 by Hohenberg and
Kohn [1]. In 1965, Kohn and Sham [2] suggested defining a new functional Exc [p] and
expanding F [p] as

T T
Pl =T+ 5 [ SR 870 + Bro o (17)
where T is the kinetic energy of a set of N noninteracting ‘electrons’ located in a

potential V chosen such that the total density is p. The motivation for this expansion
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is that if the kinetic energy of the real interacting electrons is similar to T, then the
exchange-correlation energy Exc should be small, and approximating Exc should have

a small effect on Ep. Kohn and Sham [2] also showed that if

- A3 § ’
v = [EOTT 4+ By, (18)

and if the lowest N eigenstates ty, ..., ¥y of the Kohn-Sham Hamiltonian —V2 4+ V
produce a total density p, then p is the desired minimum in Eq. (1.6). In practice, this
self consistency is achieved iteratively by choosing an initial p, calculating #4,...,¥n,
computing the resulting density p’, and updating p toward p’. The procedure is repeated
until convergence is achieved.

Up to this point, the density functional approach has been an exact rewriting of the
original problem and has involved no new approximations. However, all of the compli-
cated exchange and correlation effects contained in ¥ have been swept into the unknown
functional Exc. Practical implementations of the method require approximating Ex¢
by a known functional. The most frequently used type of approximation for Exc are
the various local density approximations (LDA). In the LDA, at each point 7, Exc(7)
is taken to be Exc for a uniform electron gas with density p(7). For the uniform elec-
tron gas, Exc can be obtained from quantum Monte-Carlo simulations or perturbation
expansions. Another type of approximation for Exc are the generalized gradient ap-
proximations (GGA) in which corrections depending on the gradient of p at position
T are added to the LDA. For both LDA and GGA, there are several different versions
of the approximation that correspond to different calculations of Ex¢ for a uniform
electron gas, different parameterizations of the results, and slightly different gradient
corrections. The various versions of LDA and GGA can give slightly different answers,
but in general electronic structure calculations based on density functional theory have
been remarkably successful at predicting properties of real molecules and solids.

We describe our ACRES approach to density functional calculations, which has

three desirable properties: sparsity, parallelizability, and adaptability. A sparse Hamil-
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tonian enables effective use of iterative numerical methods, which allow large savings in
computer time and memory. A natural mapping onto a parallel computer that assigns
equivalent tasks to every processor and produces a structured communications pattern
that is local makes it easy to obtain excellent parallel efficiency. The ability to adapt
the resolution in different regions of space in such a way that only important details are
represented allows efficient treatment of inhomogeneous problems such as all-electron
computations, pseudopotential computations for atoms with 1s, 2p, 3d, or 4 f valence
electrons, or systems with large regions of vacuum such as atoms, molecules, clusters, or
solid surfaces. The ACRES method achieves these properties by calculating on a regular
mesh in curwlinear space, which is mapped by a change of coordinates to an adaptive
mesh in real space. The underlying regular mesh provides sparsity and parallelizability.
The coordinate transformation preserves these properties while providing adaptability.
There are several choices involved in the implementation of the method. These include
the form and optimization of the coordinate transformation, the expression for the dis-
cretized Laplacian, the regularization of the ionic potential for all-electron calculations,
the method of calculating the forces, and the algorithms used. Band structure calcu-
lations are implemented by adding a phase shift at periodic boundary conditions. We
report all-electron calculations for atoms and molecules with 1s and 2p valence electrons,

and pseudopotential calculations for molecules and solids.

1.4 Inverse Iteration

Since it is more efficient, an adaptive approach allows a higher maximum resolution
than an approach that requires an equal level of resolution everywhere. A high resolu-
tion gives rise to high energy states in the spectrum of a typical operator, and therefore
standard eigensolver algorithms may have unusually poor performance. In particular,
this is a problem for the Lanczos algorithm, which is the standard iterative algorithm

used to avoid an O(n2N;) orthogonalization cost when finding n. eigenvectors in a space
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with Ny basis states. We present an efficient iterative eigensolver based on inverse it-
eration that is suitable for finding a few eigenvalues and eigenvectors of a large sparse
matrix. This eigensolver avoids global orthogonalization of the eigenfunctions and has
a convergence rate that does not depend on the width of the spectrum. The core of
the method is an algorithm that converges to eigenstates located within a given energy
range, while strongly suppressing effects from states outside the energy range. Since
eigenstates with different energies are automatically orthogonal, orthogonalization be-
tween different energy ranges is avoided. We discuss an implementation in the context
of our ACRES method. The algorithm successfully resolves several important computa-
tional bottlenecks in these calculations. Aspects of our approach that are of particular
interest include: (a) a scanning technique used to find the eigenvalues from little a priori
knowledge about the spectrum; (b) systematic avoidance of strongly singular equations;
(c) diagonalization within small subspaces to resolve nearly degenerate states; (d) use of
a multigrid preconditioned conjugate gradient solver to handle long wavelength modes
efficiently; and (e) use of the exact inverse Hamiltonian within small subspaces to pre-
condition nearly singular systems generated by the inverse iteration. Although the
algorithm was designed to avoid a problem that arose during adaptive calculations, it
could itself be described as adaptive in the sense that it treats different time scales
and length scales with different methods. The short time scales related to highly ex-
cited states in the spectrum are effectively handled with the inverse iteration approach,
while the long time scale associated with the small differences between almost degener-
ate eigenvalues are quickly treated by standard noniterative diagonalization. Likewise,
short length scales are rapidly converged using the conjugate gradient algorithm, while

long length scales are efficiently handled by the multigrid preconditioning.
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1.5 Applications

The processing of the surface of silicon is of great importance to the electronics industry.
and therefore a better understanding of the phenomena that take place during this
processing would be useful. Increasingly, investigations of such phenomena focus on
microscopic properties and first principles electronic structure calculations are uniquely
suited to the investigation of such properties. Because it can efficiently handle both
large regions of vacuum and oxygen atoms, the ACRES method is especially well suited
to the study the absorption of the oxygen at the silicon surface, which is the first step
of the extremely important process of converting semiconducting Si to insulating SiO,.
Investigation of the absorption process is complicated by reconstruction of the Si surface
and by the large number of possible paths that could be involved in the process. We
present the results of ACRES calculations for tilted and untilted dimer reconstructions
on the clean Si surface as well as an untilted dimer with an oxygen atom incorporated

into the bond.



Chapter 2

Variational Hilbert Space
Truncation Approach to
Quantum Heisenberg
Antiferromagnets on Frustrated

Clusters

2.1 Introduction

The spin-% Heisenberg antiferromagnet (HAFM) has long been studied as a simple
example of a strongly interacting quantum many-body system [3]. Recently, it has
attracted considerable attention in the context of the copper oxide high-temperature
superconductors [4, 5]. The Hamiltonian of the HAFM is given by

H=JY 5520 8iSi+5 (557 +5757) (2.1)
{1.5) (i.7)

24
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where J takes positive values, (i,j) refers to nearest neighbor pairs, S; is the spin
operator for a spin-% located at site ¢, and S} and ST are the corresponding raising
and lowering operators. The operator §;"S; + 57§57 exchanges antiparallel spins, but
vanishes when applied to a pair of parallel spins. The terms of this type produce off-
diagonal matrix elements equal to % between basis states (i.e. spin configurations) that
are related by a single exchange of nearest neighbor spins. The terms of the form 5757
combine to give a diagonal matrix element for each state equal to % times the difference
between the number of parallel nearest neighbor spins and the number of anti-parallel
nearest neighbor spins in that configuration. Despite the simplicity of the model, no
analytic solutions have been found for nontrivial structures except in one dimension [3].

Since the Hamiltonian is invariant under uniform rotations of the spins, one can
choose its eigenstates to be simultaneous eigenstates of the operators $%, and S35,
where STor is the total spin. For a system containing an even number of spins =,
whatever the ground state value of 512‘0T’ there is always a ground state with S5, = 0.

Therefore, a ground state can always be found in the subspace spanned by the
n!
(n/2)Y(n/2)!

basis states with an equal number of up and down spins. The generalization to an odd

lvtatal = (22)

number of spins is straightforward. Since the Hamiltonian is real, the ground state
eigenvector can be chosen to be real.

In this chapter, we solve this model for a series of structures that embody the basic
structural features of the fullerenes, which are spherical shells of threefold coordinated
carbon atoms arranged in pentagonal and hexagonal rings. It can be shown that every
such structure must have twelve pentagonal faces [6]. The total number of sites can be
varied by changing the number of hexagons. The smallest such structure contains no
hexagons and has 20 sites. Figure 2.1 shows several fullerene related structures that we
discuss in this chapter. We shall refer to the structures in Fig. 2.1 (a)-(e) as F-20, F-24,
F-26, F-28, and F-32, respectively. For simplicity, we shall treat all of the bonds in these
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Figure 2.1: (a) 20-site, (b) 24-site, (c) 26-site, (d) 28-site, and (e) 32-site

frustrated structures with spherical topology. The 3-dimensional structures
are shown projected on a plane, which introduces a distortion of relative
distances. Therefore, the figures only indicate the connectivity of the the
structures, and the apparent lengths of the bonds are not to be interpreted

literally.
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Table 2.1: Some properties of the structures considered in this chapter. Symmetry

indicates the point group symmetry of the structure.

Structural Properties

Structure | Symmetry | Pentagons | Hexagons | Dimension of Space
F-20 Iy 12 0 184,756
F-24 Dgq 12 2 2,704,156
F-26 Csy 12 3 10,400,600
F-28 Tq 12 4 40,116,600
F-30 Cov 12 5 155,117,520
F-32 D3 12 6 601,080,390
F-60 Iy, 12 20 1.2 x 10%7
H-18 Cay 0 9 48,620
H-24 Cay 0 12 2,704,156
H-26 Cay 0 13 10,400,600

structures as equivalent even though in actual carbon clusters they may differ. On a
pentagonal ring, it is impossible to arrange all spins in an antiferromagnetic pattern.
This introduces frustration in the classical ground state where nearest neighbor spins
would prefer to be antiparallel. For comparison, we also study several unfrustrated
structures that are derived from the honeycomb lattice by applying periodic boundary
conditions. These structures are shown in Fig. 2.2 (a)—(c). We refer to these structures
as H-18, H-24, and H-26, respectively. These structures have toroidal topology rather
than the spherical topology of the frustrated structures. Table 2.1 summarizes the
geometrical features of the structures that we investigate.

A group of powerful techniques used to investigate quantum many-body systems
such as the HAFM are based on quantum Monte-Carlo methods. In systems with

frustration, these methods either require the summation of a very large number of
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Figure 2.2: (a) 18-site, (b) 24-site, and (c) 26-site unfrustrated structures de-
rived from the honeycomb lattice by applying periodic boundary conditions

along the thinner solid lines.
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terms with alternating signs (known as the sign problem) or depend on a “guiding”
wavefunction which must be properly guessed. Here we use a different approach based
on exact diagonalization of the Hamiltonian matrix. This approach has the advantage
of not being affected by the sign problem, but is limited to rather small system sizes
because the number of states in the Hilbert space grows exponentially with the size of
the system. For example, in Table 2.1 we list the number of states in the S§5r = 0
subspace for each cluster that we investigate. Thus, it takes a major increase in either
computer power or efficiency of the algorithm to get a modest increase in the size of
system that can be investigated.

Using exact diagonalization techniques, modern computers can handle systems with
< 36 spins. A 36 spin system has about 9 billion basis states in the subspace with
S%or = 0. The Hamiltonian matrix is sparse and has only about 300 billion nonzero
entries for this size system. Memory constraints make it difficult to store this matrix.
The symmetries of the structure must be used to reduce the size of the basis space
in order to make calculations tractable. The usefulness of symmetrization depends on
how many mutually commuting symmetry operations can be found. Symmetry is most
useful for lattices where all translations commute, such as the square lattice. Even
noncommuting symmetries could be easily exploited if the ground state was known to
transform according to the identity representation of the symmetry group. This can
not be assumed to be the case for the frustrated HAFM. To our knowledge, the largest
structure that has been solved using exact diagonalization and taking advantage of all
of its symmetries is the 36-site square lattice [7]. It would be very difficult to find
the ground state of a structure with the same size and a lower number of commuting
symmetries without approximation.

One way to manage larger systems is to restrict the wavefunction to the space
spanned by a subset of the basis states. In this approach, the problem is transformed

into finding a subspace that accurately approximates the full-space result, but that is
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small enough to be handled computationally. In this chapter, we variationally optimize
the truncation of the Hilbert space, and exactly diagonalize within the truncated space.
The rest of the chapter is organized as follows: section 2.2 contains a justification
for our choice of optimal wavefunction and truncated space, section 2.4 discusses the
ground state properties that we obtain with this approach for a series of frustrated and

honeycomb clusters, and section 2.5 summarizes our conclusions.

2.2 Choice of Truncation

Consider a truncation of the space to the basis states {|ai),|az),...,|aN, 4n.)} Where
Niryne < Niotar- Define a truncated Hamiltonian that consists of those elements of
the original Hamiltonian that connect states retained in the truncated space. Let
E({a1,a2,...,0Nu.}) denote the smallest eigenvalue of the truncated Hamiltonian.
We define the optimal truncation as the one that minimizes E with respect to all sets
with Niruno basis states. By the variational principle, the ground state wavefunction
of the corresponding truncated Hamiltonian is the wavefunction that, subject to the
constraint of vanishing for all but Nyn. states, minimizes the expectation of the full
Hamiltonian. Therefore, £ for the optimal truncation is the smallest possible varia-
tional upper bound on the true ground state energy that can be obtained using trial
wavefunctions that have no more than N;ryn. nonzero components.

The minimization over sets of basis states is accomplished using a stochastic search:
An initial truncation is chosen and the ground state energy of the corresponding trun-
cated Hamiltonian is found using the Lanczos method [8]. Moves in the stochastic search
consist of adding states to the space and eliminating others while keeping the overall
number of states fixed. The Lanczos method is used at each step to find the ground
state energy for the new truncation, and the move is accepted or rejected according
to a Metropolis algorithm [9, 10]. This procedure is repeated until all new moves are

rejected, in which case a minimum of E({ay,as,...,an,....}) has been found. If this
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is the global minimum, the resulting truncation is the ideal truncation. We have found
no evidence that the procedure gets trapped in local minima.

For systems that are small enough that the full problem can be solved, we have
also applied an alternative truncation procedure for purposes of comparison with our
variational scheme. This consists of keeping only the basis states that have the largest
weights in the full-space ground state solution and varying the cutoff weight below which
states are excluded from the basis. The energy obtained from this alternative procedure
must be greater than or equal to the variational result, but the wavefunction from this
alternative procedure is expected to be closer to the true ground state. Therefore, this
alternative procedure might be expected to yield better results for correlation functions.
A comparison of results obtained using these two independent methods helps to assure
that the variational procedure is converging properly and shows that the procedure
produces reasonable correlation functions.

In order to optimize the variational search, it is necessary to bias the selection of
the states to be added to, or eliminated from, the truncated basis during each step.
The procedure proposed here is analogous to force-bias Monte Carlo. In our case, the
equivalent of the force in a particular direction is the difference between the energy
when a particular state |3) is included in a truncation and the energy when the state is

not included in the truncation:

VeE({a1, a2,y aNyn}) = E({o1, 02, . . ONpunes B}) — E({ar, 025 - - -y N pinc })-
(2.3)
In force-bias Monte Carlo, the force is a function of the configuration of the system,
and correspondingly V3 E is a function of the set of states included in the truncation.

In our case, since each state is either included or not included, we must take

VeE({a1,02,...,0Nuac: B}) = VgE({ar, a2, ..., aN, o0 })- (2.4)

VgE can be estimated easily for each 3 using the solution from the previous truncation:

We denote the states that are included in the previous truncation as internal states, and
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the remaining states of the full Hilbert space as external states. The internal states are
the states that could be eliminated from the previous truncation in the process of forming
the new truncation, while the external states are the states that could be added. For
each internal state, we wish to calculate the change in the variational energy caused
by eliminating it from the previous truncation. Let the ground state wavefunction for
the previous truncation be |¥p) and let g = (B|¥o). We approximate the ground
state of the truncation with the state |3) eliminated by assuming that the rest of the

wavefunction remains unchanged except for an overall normalization factor,

Uo) —
op) = (2oL = al6) (2.5)
1 — ¢l
To first order in [1]* this approximation gives,
VpE = Eo ~ (Yo—g| H[Yo-g) = |95l” (Eo - Hpp) (2.6)

where H|¥o) = Eo|¥o) and Hgg = (G| H|B). Similarly, the effect of adding an external

state is approximated using second order perturbation theory as:

(81 H| o)}
Vglt = =——-rm,
s Eo — Hpp

(2.7)
Note that VgE will be zero if |f) is neither an internal state nor an external state
that is connected by the Hamiltonian to an internal state. Depending on the stage of
the variational procedure, a set of trial states is chosen which either contains all of the
states for which VgFE is nonzero, or a randomly chosen subset of such states. VgFE
is calculated for this set, and the new truncation is formed by taking the states with
the largest values. Choosing a random subset of trial states introduces a stochastic
element into the computation and effectively reduces the variational step size. During a
minimization procedure where the full set of trial states is used at every step, a move will
eventually be rejected in the Monte-Carlo evaluation. Further iterations beyond this

point will simply generate the same move. This is similar to a gradient minimization

with a fixed step size where the step overshoots the minimum. Here, since each state is
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either included or not included, it is impossible to reduce the step size in the usual sense.
Instead, the step size can be effectively reduced by using a randomly chosen subset of
the components of the gradient. The fastest minimization is achieved by using all of the
trial states until the first move is rejected, and then considering a random subset which
is gradually reduced in size. For the HAFM model considered in this chapter, we found
that our move selection algorithm was so effective that additional moves after the first
rejected move produced minimal improvements in the energy. Accordingly, we stop the
variational procedure when the first move is rejected.

The idea of iterative improvement of a Hilbert space truncation using perturbative
estimates of the importance of new states has a long history in the quantum chemistry
literature [11, 12. 13, 14, 15]. In addition, for this class of problems, the final truncated
results are typically corrected with a perturbative treatment of the remaining states [16.
17, 18, 19]. Extrapolation methods are also frequently used [20]. Such methods would
likely be a useful addition to our method, but since the emphasis of this chapter is on
a variational approach, we have avoided such corrections. Iterative improvement of a
Hilbert space truncation has also been studied in the context of quantum lattice models.
De Raedt and von der Linden estimated the importance of a new basis state by means
of the energy lowering obtained from a Jacobi rotation involving the state [21]. Riera
and Dagotto added basis states that are connected by the Hamiltonian to states with
a large weight in the current truncated solution [22]. In this previous work, the basis is
expanded by adding selected new states until either the desired quantities converge or
computational limits are reached. In contrast. our emphasis is on finding the optimal
basis of a given size. Working with a constant size basis has two advantages:

(1) It allows us to define the optimal basis in an unambiguous manner and to express
the problem of finding this optimal basis as a minimization problem. This makes it pos-
sible to harness the full power of the Metropolis algorithm and the simulated annealing

approach.
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(2) It allows us to tackle problems with no clear hierarchy of importance among
the basis states. In quantum chemistry, there is a hierarchy of states in which higher
excitations are progressively less important. In contrast, the frustrated HAFM lacks
any clear a prior: hierarchy among the basis states. As a result, truncation can induce
level crossings and change the character (e.g. the symmetry) of the ground state. If a
basis selection process were to start with an incorrect ground state, augmentation of the
truncation runs the risk of not selecting the basis states that are important for the true
ground state. This makes it likely that the true ground state would never be found. By
working with a basis of a constant size, which is variationally optimized, we avoid this
problem.

The effectiveness of the variational Hilbert space truncation procedure can be demon-
strated by comparing its results to those obtained from the full-space solution. Define

the fractional error in the energy for a given truncation by

E( {alv Qag,..., alvtrunc}) _ Elv:oml

7 (2.8)

66({017 Qz, sty an‘vzrunc}) =
1Vtotnl

where Ey, ., is the full-space ground state energy. Figure 2.3 shows ée for the truncation
resulting from the variational truncation procedure and the truncation resulting from
keeping the states with the largest weights in the full-space solution. The energies found
using the variational procedure are just slightly below those found by truncating based
on the full-space solution. The fact that the variational energies are the lowest energies
indicates that the variational minimization is converging properly. The closeness of the
two results indicates that our definition of a best truncation is successful in capturing
the most important parts of the full-space wavefunction. The difference between the two
results grows as the retained fraction of the space diminishes and as the physical system
gets smaller, but it stays relatively insignificant except for the smallest truncation size
of the smallest structure. For example, retaining only % of the basis states of the F-20
structure results in only about 1 percent error in the energy. Note that in order to get

the same fractional error. a smaller fraction of the basis vectors is required for the larger
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Figure 2.3: Error in the ground state energy resulting from truncation of the

Hilbert space for (a) some frustrated structures and (b) some unfrustrated

structures. Lines indicate the results of truncating the Hilbert space based on

the weights of states in the full space solution. Individual points indicate results

from the variational method and correspond to the same structure as the line

immediately above them. The stars indicate results for the 28 site system.

where results from truncating based on the full-space solution are unavailable.
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systems. As a result, the number of states that must be retained in the truncated space
grows more slowly than the number of states in the full-space. Therefore, larger systems
make truncation increasingly useful. The curves resulting from the frustrated structures
have a different shape than the curves resulting from the unfrustrated structures. The
error falls more slowly for the unfrustrated structures than for the frustrated structures
as the retained fraction of space increases. This suggests that the method is more useful
for frustrated structures.

Figure 2.4 shows the correlations for the honeycomb lattice structures as a func-
tion of the fraction of space retained in the truncation. Since for these structures the
nearest neighbor correlation function is proportional to the energy, it is not included.
The multiple lines are due to the fact that the 24 and 26 site structures each have two
inequivalent 3rd neighbor correlations, and the 24 site structure has two inequivalent
4th neighbor correlations. Again, both the results of the variational truncation method
and the results of truncating the Hilbert space based on the weights of states in the full-
space solution are shown. The truncation based on the full-space solution is expected
to give a better approximation to correlation functions than the variational method,
but for the correlations considered here, the results of two methods are almost indis-
tinguishable. Furthermore, truncation down to a few percent of the space by either of
these methods introduces only a few percent error in the correlations. Since the HAFM
on the honeycomb lattice has long range order, all of the correlations are fairly large
in magnitude. This causes our truncation methods to give particularly good results for
these correlations.

In contrast, correlations between sites that are far apart on the frustrated structures
are a worst case situation. Correlations on the frustrated structures usually become
very small at long distances. As a result, the fractional error in these correlations is
quite large. Figure 2.5 shows the fractional error in the correlation that is smallest in

magnitude for the 20, 24, and 26 site frustrated structures. The full-space values of these
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Figure 2.4: Spin-spin correlations for the unfrustrated structures based on
the honeycomb lattice as a function of the fraction of states retained in the
truncated Hilbert space. Lines indicate results from truncating the Hilbert
space based on the weights of states in the full-space solution. Individual
points indicate results from the variational method. The groups of lines
are labeled by nearest neighbor distances. The points near zero abscissa

correspond to small, but finite, truncations.
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correlations are 3.31 x 1072, —3.43 x 1073, and 2.02 x 103, respectively. With less than
half of the space retained, the fractional error introduced in these correlations becomes
substantial. The error resulting from the variational truncation method is rather similar
to the error introduced by truncating the Hilbert space based on the weights of states
in the full-space solution. The fractional error in a correlation seems to grow with the

inverse of the magnitude of the correlation.

2.3 Implementation of the Method in a Massively Parallel

Architecture

Since we are interested in the most accurate approximation to the full-space properties
of the system, it is desirable to make the size of the truncation as large as possible.
As mentioned above, memory is the primary constraint on the size of the system that
can be handled using exact diagonalization techniques. Thus, effective implementa-
tion of this algorithm requires careful treatment of memory usage. The requirement
of maximizing speed while minimizing memory usage provides a particular program-
ming challenge to implementing the variational Hilbert space truncation method. We
have implemented the method on the Naval Research Laboratory’s 256 node Thinking
Machines Corporation CM-5E supercomputer.

The largest size truncation that we solved consisted of 20 million states, which is
3.33% of the full-space of the F-32 structure. The diagonalization of such matrices is a
time consuming process. Our implementation on the CM5 massively parallel architec-
ture provided a vivid demonstration of the conflict between efficient use of memory and
efficient use of CPU time. The Hamiltonian matrix can either be stored in core memory
or generated during each matrix-vector multiply required by the Lanczos method. Stor-
ing the Hamiltonian reduces the time by about a factor of ten at the expense of a factor

of four increase in the memory. A third possibility would be to store the Hamiltonian
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on an external device with fast access, such as the Scalable Disk Array (SDA). Because
the SDA’s total capacity is only about three times that of the core memory, we have
not implemented this option.

Multiplication of the wavefunction by the unstructured, sparse Hamiltonian matrix
requires general communication between sections of memory distributed to different
processors, and therefore it is not expected to parallelize efficiently. Such multiplications
form the core of the Lanczos algorithm. Careful implementation of these multiplications
as well as the generation of the new truncations and Hamiltonians is essential to good
parallel performance. We separate the techniques used to obtain reasonable efficiency,
while avoiding excessive memory use, into three categories: the use of previous results
during the generation of new results, the balanced division of work over both processors
and time (load balancing), and the usage of sorting instead of searching. These are

discussed in order:

2.3.1 Use of previous results

There are three tasks that must be accomplished during each iteration of the varia-
tional Hilbert space truncation method: generation of the truncated space that will
be investigated during the iteration, generation of the corresponding Hamiltonian, and
diagonalization of the Hamiltonian. Since each truncation is a variation of the previous
truncation, it is possible to use results from the previous iteration to speed up the cal-
culation considerably. The most important gain in efficiency is obtained by initializing
the Lanczos routine with a guess wavefunction derived from the results for the previous
iteration by using first order perturbation theory. This requires very little extra work
since all of the expensive steps of the perturbation theory are already carried out as part
of the generation of each new truncation. This procedure can reduce the time required

to find the ground state by a factor of 100.
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2.3.2 Load balancing

In order to get a reasonable rate of performance out of a parallel computer, it is necessary
to group sets of similar operations together. On the other hand, avoiding the use of
large amounts of memory requires divying up similar operations over time so that the
memory needed to perform each group of operations can be reused. Therefore, getting
good utilization of both processors and memory requires groups of operations that are
neither too big, nor too small. In general, the best performance is achieved by identifying
the largest unavoidable use of memory, and then using groups of operations that are
somewhat smaller. One example is the generation of the Hamiltonian, where the best
compromise is to consider all of the elements resulting from exchanging one pair of
nearest neighbor spins at the same time. Another example is provided by the selection
of each new truncation. It is necessary to compute VgFE for each trial state |3) [see
Egs. (2.6) and (2.7)]. For most cases of interest, there are many more trial states than
states in the truncation. Thus, if the Hamiltonian is not stored, it is efficient in terms
of memory usage to divide the trial states into smaller sets and compute for one set at a
time. This is possible since only the N¢runc states with the largest values of VgE need
to be retained at each step. This technique allows sets of trial states of arbitrary size

to be considered when generating each variational step.

2.3.3 Sorts instead of searches

A standard problem encountered during numerical calculations involving spin models is
that information (in this case, the components of the wavefunction) about each of the
spin configurations must be packed into memory in some manner that allows its quick
retrieval. It is trivial to associate each spin configuration with a unique number, but
the resulting set of numbers is not usually dense. Considerable research effort has been
expended in developing efficient hashing routines for locating the memory addresses

associated with a given spin configuration [24, 25]. Since the set of basis states changes
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stochastically during each iteration of our variational truncation process, the algorithm
requires a flexible hashing procedure without substantial overhead for setup. For our
implementation, we also needed a procedure that parallelizes efficiently. The radix
sort algorithm, which consists of hashing on successive blocks of bits, sorts a list of
Nkeys in a time proportional to Ny.y,. This algorithm parallelizes ideally (it uses a
time proportional to Nkeys/Nproc On a machine with Ny, processors) and is stable
(if two entries are equal. the entry with the smaller initial subscript will be sorted to
the location with the smaller final subscript). This points to combining many searching
operations together and using sorts to do searching efficiently on a parallel machine. We
implemented a procedure based on inter-sorting a list of states with unknown memory
addresses with a list of all the states in the truncation. This procedure worked so
well that we were able to generate the Hamiltonian during each matrix-vector multiply
rather than storing it. thereby saving on memory usage and extending the size of the

system that could be handled.

2.4 Results

Table 2.2 summarizes some of the ground state properties of the HAFM on the structures
we considered. The expectation of $%,; can be calculated by summing the correlation
functions between all pairs of sites. Since each structure considered has an even number
of spins, the possible exact eigenvalues are s(s+ 1) where s is an integer. Deviation from
these values can be expected for truncated solutions because the truncation procedure
breaks the invariance of the model under global spin rotation. For each of our full-
space solutions (which includes all structures studied except F-32). the expectation of
§%‘0T is 0 to the accuracy of the solution. Thus. for every system except F-32, the
calculated ground state is a spin singlet. For the truncated solution of the F-32 system.
this expectation is = 0.5. This value is between the values expected for a spin singlet

(s(s+ 1) = 0) and a spin triplet (s(s+ 1) = 2). It is much closer to the value of the
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Table 2.2: Ground state energy and nearest neighbor correlation functions of each

structure. Results for the F-32 structure are from a truncation retaining 20 million of

the 601 million states. All other results are from full-space solutions.

Ground State Properties
Structure | Eg/Site H-H H-H H-P P-~-P
F-20 | —1.722219 Crz = —0.324
F-24 —1.726614 | Cy2 = —-0.409 Ci9=-0.203 | Csg9 =-0.371
F26 | ~1.719921 | Ci2=~0424 | Cro=—~0.103 | Cayy = —0.265 | Ci1.12 = ~0.332
Ca3 = -0.339
F-28A | —~1.719633 | Ci2=~0275 | Cig=—~0.327 | Cay1 = —0.321
Cis=~0362 | Cayz3=—~0.063 | Cer=—0.269
Caz = ~0.425
F-28B | —1.719633 | Ci2=~0433 | Cig=—~0.151 | Cay; = ~0.286
Cis=—0346 | Cayz3=—0.415 | Cer= ~0.338
Caa = ~0.283
F-32 -1.736 Caz = -0.420 C34=-0.101 | Ci2=-0.279 | Cy213 = —-0.333
Cazo= 0352 | Ci120 = —0.123
Cayz = —0.407
Cy1s = —0.509
Ci1.12 = -0.335
H-18 | —1.871907 | Ci12 = —0.374
H-24 —1.860839 | Ci.o=~0.370
H-26 —1.858385 | Ci. = -0.369
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spin singlet than to the triplet. Moreover, we have found that the variational procedure
tends to decrease this value, indicating that the ground state of F-32 is also a spin
singlet. Table 2.2 contains two entries for the F-28 structure because its ground state
is a rotational doublet. The rest of the states are rotational singlets. The two F-28
states are distinguished by considering their transformation properties under improper
rotation about the symmetry axis through the center of the bond between site 19 and
site 20 (see Fig. 2.1 (d)). Under this transformation, the F-28A state has eigenvalue 1,
while the F-28B state has eigenvalue —1.

The first column of Table 2.2 contains the ground state energy per site. As expected.
frustration raises the ground state energy. The energies per site of the structures based
on the honeycomb lattice reveal the expected finite size effects for the HAFM on a
lattice: the energy per site increases as the size of the system increases. Finite size
effects are not as clearly evident in the frustrated structures, but the trend from F-24
to F-26 to F-28 is rather similar to what could be expected from finite size effects. The
trend is reversed in F-32. These clusters are not especially similar to each other except
for overall topology, so it is reasonable that finite size effects are obscured by effects
due to details of the structure. Furthermore, as the size of the frustrated structures
increases, the hexagonal rings become more plentiful and closer together. Thus, these
systems should behave more like the unfrustrated structures at larger sizes. Eventually,
the energy must decrease toward the unfrustrated value. It is likely that the drop in
energy between F-28 and F-32 indicates the beginning of this trend. Note that this drop
in energy can not be a result of using a truncated solution for the F-32 system since the
energy resulting from the truncation must be greater than the full-space energy.

The rest of the columns in Table 2.2 show the nearest neighbor spin-spin correlations.

The correlation between site ¢ and site j is defined by
Cij = (¥olS; - 5;1%o) (2.9)

where ¥q is the ground state wavefunction. The sum of all of the nearest neighbor
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correlations for a particular structure gives the ground state energy. Even though the
ground state energies vary relatively little, the nearest neighbor correlation functions
vary dramatically (see Table 2.2). The nearest neighbor correlations are divided into four
columns. The column labeled H — H contains correlations between sites that are both
located on the same hexagonal ring. The column labeled H — H’ contains correlations
between sites that are located on two different hexagonal rings. The column labeled
H — P contains correlations between a site located on a hexagonal ring and a site that
is not located on any hexagonal ring. The column labeled P — P contains correlations
between two sites neither of which is on a hexagonal ring. Fig. 2.1 and Fig. 2.2 serve as
keys to the labeling of the sites.

All of the nearest neighbor correlation functions are negative, which is not surprising
since the ground state wavefunction is chosen to minimize the sum over these correla-
tions. In order to provide physical insight into the results, we consider the following
argument: it is possible to solve the HAFM analytically on a structure consisting of a
central site and its three neighbors. The sum of the three correlations for this system is
—5/4. The variational principle can then be used to show that for a general structure,
the sum of the three correlations between a given site and its neighbors can not be less
than —5/4. This sum is reduced in magnitude by frustration and by quantum fluctua-
tions when additional sites are included in the structure. However, the existence of the
strict bound discussed above suggests that a strong correlation between a site and one
of its neighbors will reduce the correlations to the rest of its neighbors. This behavior
is exemplified by the correlations in Table 2.2. The strongest correlations, those in the
H — H column, are for the bonds between two sites that are on the same hexagonal
ring. Furthermore, the strongest of these correlations are found on the frustrated struc-
tures where the bonds that form the hexagonal ring do not have to compete with two
other identical bonds. The drop in energy between F-28 and F-32 can be attributed

to an increase in the number of bonds of this type. The weakest nearest neighbor cor-



Chapter 2: Variational Hilbert Space Truncation 46

relations are found between sites that are located on different hexagonal rings. These
bonds are frustrated and also suffer from strong competition from the bonds on each of
the hexagonal rings. To illustrate these arguments in a specific example, consider the
F-26 structure. The C) g and Ci; 2 correlations are both frustrated since each of these
bonds is included in two pentagonal rings. The C} g correlation is much weaker (-0.103)
than the Ci, 12 correlation (-0.332) because the C) g correlation has competition from
four strong (-0.424) correlations of the C; ; type (correlations between sites that are
on the same hexagon but not on any other hexagons). For similar reasons, the H — P
correlations are weaker than the P — P correlations.

The correlation functions for the 28 site frustrated structure are constrained by
the symmetries of the wavefunction, and this results in several anomalously small cor-
relations, especially Cj3,3 for the A wavefunction. Although the original structure is
tetrahedral, the process of resolving the two degenerate states breaks this symmetry by
singling out the symmetry axis through the bond between sites 19 and 20. There is an
approximate equivalence of correlations between the results for the two wavefunctions.
The role of C} 2 is switched with Cj 3, the role of C; g is switched with C3 13, and the role
of C3,11 is switched with Cg 7. Roughly speaking, the correlations that are closest to the
axis through the bond between sites 19 and 20 switch places with the correlations that
are furthest away form this axis. The F-28 structure has unusually strong long range
correlations between the sites labeled as 7, 11, 15, and 28 in Fig. 2.1 (d). These sites
form the corners of a tetrahedron. For the F-28A state, the correlations of this type
perpendicular to the symmetry breaking axis (C7 s and Cyy,15) are 0.141 and the other
correlations of this type (C7 11, Cr 15, C11,28, and Cjs,28) are 0.136. For the F-28B state,
these correlations are 0.134 and 0.139 respectively. This result is interesting because it
suggests strong ferromagnetic correlations between the spins on the four apex sites that
form the corners of a tetrahedron in F-28. This is consistent with quantum mechanical

calculations of the electronic structure of the Cyg molecule, which is believed to have
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the same structure as the F-28 cluster: in those calculations, the molecule is found to

have an s = 2 ground state, with the spins in the four apex sites aligned [23].

2.5 Conclusion

The variational Hilbert space truncation approach provides an effective way to extend
the range of structures for which exact diagonalization of the HAFM is feasible. Sub-
stantial reductions in memory can be obtained with less than a 1% error in the ground
state energy. A few percent error is introduced in most correlations. The exception is
very weak correlations for which the method will give a rough idea at best. For system
sizes that are at the current leading edge of computational capabilities, a reduction of
the Hilbert space by a factor of thirty can be achieved. For the HAFM, a factor of thirty
reduction in memory use allows structures with about 5 additional sites to be handled.
Our method is compatible with symmetrization techniques, which, depending on the
structure under consideration, can achieve a similar reduction in memory requirements.
Finally, our method should be useful for models other than the HAFM. In fact, much
larger reductions in the size of the Hilbert space can be expected for systems where
the ground state is dominated by a few of the basis states used in the expansion of
the wavefunction. For such systems, the method should be capable of identifying the
important basis states, and thus the important physics of the ground state.

Using this variational approach, we have successfully determined the ground state
properties of the HAFM on a series of frustrated and unfrustrated structures. An
interesting and unexpected result is the doublet nature of the ground state of the 28
site frustrated structure. The 32 site frustrated structure seems to be a rotational
singlet, but it would be interesting to know whether other larger structures of this type

also break structural symmetries.
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Chapter 3

ACRES: Adaptive Coordinate,
Real-Space Electronic Structure

Calculations for Atoms,

Molecules, and Solids

3.1 Introduction

Ab initio electronic structure calculations based on the Hohenberg-Kohn-Sham density
functional theory [1] have the remarkable capability of accurately predicting physical
properties of real systems. However, the size of system that can be treated with these
methods is limited because solving the Kohn-Sham equations [2] is computationally
demanding. Therefore, the development of new methods that improve the efficiency of

such calculations is an important priority.

49



Chapter 3: Adaptive Coordinate, Real-Space Electronic Structure 50

3.1.1 Desirable properties

An efficient electronic structure method should satisfy certain requirements. Three
desirable properties for any electronic structure algorithm are sparsity, parallelizability,

and adaptability.

Sparsity

Let N, be the size of the basis used to represent the wavefunctions in an electronic
structure calculation. If the Hamiltonian is a dense matrix, storing the Hamiltonian
requires N? memory locations. As Nj increases, the memory required to store a dense
Hamiltonian will eventually become prohibitive. Furthermore, traditional matrix diago-
nalization techniques designed to find all eigenvalues and eigenvectors of dense matrices
require O( V) operations. The prefactor in these methods is small, but as the system
size increases they eventually lose to methods with a more efficient scaling. In con-
trast, storage of a sparse matrix with a constant sparsity requires only O(N,) memory
locations and multiplying a vector by such a matrix requires only O(V;) operations. A
variety of iterative eigensolver algorithms that require only an implicit representation
of the matrix through its action on an arbitrary vector have been developed. As a re-
sult, a sparse representation of the Hamiltonian offers the potential of solving for each
occupied wavefunction in only O(N;) operations. This would give an overall O(n.Ns)
scaling of an electronic structure computation with n, occupied states. Therefore, a
sparse Hamiltonian coupled with iterative algorithms could vastly reduce both memory
and time requirements. In addition, since O(/N) methods require either the wavefunc-
tions or the density matrix to be localized to some subset of the basis functions, a sparse
Hamiltonian is also a prerequisite for any O(/N) treatment of electronic structure. Due
to these considerations, attempts to develop more efficient electronic structure methods

usually start with a sparse Hamiltonian.
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Parallelizability

The ever growing gap between the power of parallel computers and the best performance
that can be achieved from a single processor demands that a state-of-the-art electronic
structure method must be able to harness efficiently the computational power of mas-
sively parallel architectures. This need for good parallelizability imposes additional
constraints on the method. The main criteria for the efficient use of a parallel machine
are good load balance and efficient communications.

A mapping onto a parallel machine that assigns identical tasks to each processor
ensures good load balance. In order to avoid some processors being idle while waiting
for others to finish their work. computational complexity must be evenly divided among
processors. Likewise, if memory requirements are not evenly divided, some processors
will run out of memory while others still have space available. If the processors all
execute the same set of operations, but on different sets of data, both computational
effort and memory requirements are automatically ensured to be balanced.

A mapping onto a parallel machine that produces a local, structured interprocessor
communication pattern ensures efficient communications. Efficient communications is
critical for parallel performance because communications operations typically take tens
or hundreds of times longer than operations that involve only one processor. As much as
possible, both the information that is needed for a given computation and the results of
the computation should be located in the processor in which the calculation will occur.
When this is not possible, it is advantageous to assign such data to processors that
have physical connections to the processor that will actually do the computation. This
avoids wasteful forwarding of messages between processors. A communications pattern
in which datais only sent between nearby processors is called ‘local’. Since efficient ways
to simulate common patterns such as 2 or 3 dimensional rectangular grids or binary
trees have been worked out for the physical arrangements of processors used in modern

parallel computers, it is not actually necessary to arrange the data explicitly so that it
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is local with respect to processors on a given parallel machine. Instead, it is sufficient
to find an arrangement of the data that is local with respect to some standard pattern.
In addition to locality, structure is required in order to ensure efficient communications.
In a typical structured communications pattern, all processors send data in the same
direction at the same time. This maintains load balance during the communications
and prevents conflicts in which one processor is forced to handle more than one message
at the same time.

When a computation lacks any a priort structure that can be exploited to find an
efficient parallel decomposition. the dual requirements of load balance and efficient com-
munications lead to a computational problem known as ‘partitioning an unstructured
mesh’. A large amount of work on this problem has resulted in considerable progress
(see. for example [26. 27. 28]). However, even the best partitioning methods typically
recover only a fraction of the performance achievable with a highly structured commu-
nications pattern. Furthermore, the partitioning often involves considerable overhead.
Therefore. a natural mapping onto a parallel machine that assigns identical tasks to each
processor while producing a local, structured interprocessor communication pattern is

a highly desirable attribute of an electronic structure method.

Adaptability

Adapting the resolution of the calculation in different regions of space to the demands
of the physical system is required for efficient treatment of inhomogeneous systems.
Without adaptation, the most demanding part of the problem determines the required
precision, and the convergence of physical quantities with increasing basis size is very
slow for highly inhomogeneous systems. Examples of inhomogeneous systems include
all-electron calculations, pseudopotential calculations with 1s, 2p. 3d. or 4f valence
electrons, and systems with regions of vacuum.

In all-electron computations. it is necessary to represent accurately the singularities
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in the Coulomb potential at the nuclei. Furthermore, the core electron wavefunctions
are highly localized and have cusps at the nuclear positions, while the valence elec-
tron wavefunctions oscillate rapidly in the core due to orthogonality requirements and
the large amount of kinetic energy gained by an electron when it comes close to a nu-
cleus. Accurately representing these rapidly changing and singular features requires an
extremely high resolution in the core regions.

Even when pseudopotentials are used to eliminate the Coulomb singularities. the
core electrons, and the oscillations in the valence wavefunctions, atoms with ls, 2p. 3d.
or 4 f valence electrons result in an inhomogeneous problem. These valence electrons are
not required to be orthogonal to core electrons with the same symmetry, and therefore
they can approach close enough to the nuclei to gain a large amount of kinetic energy.
Accurately representing the resulting rapid changes in the wavefunctions requires a much
higher resolution than is needed between atoms. Various modified pseudopotentials [29.
30, 31} have been proposed with the goal of reducing this inhomogeneity, but in general.
the transferability of these pseudopotentials (i.e. their ability to produce accurate results
in a variety of environments) has been poorly tested in comparison to standard Bachelet-
Hamann-Schliter pseudopotentials.

In contrast to the above examples, which involve increased precision near the cores
of atoms, a reduction of precision relative to the bonding regions of a system is allowed
by large regions of vacuum. Such large regions of vacuum typically occur for systems
containing isolated atoms, molecules, clusters, or solid surfaces. In fact, many systems
both require an increased resolution in the atomic cores and allow a reduction in resolu-
tion in regions of vacuum. Since the size of the atomic cores is much different from the
size of the vacuum regions, an efficient calculation for these systems requires adaptation

on two different length scales.



Chapter 3: Adaptive Coordinate, Real-Space Electronic Structure 54

3.1.2 Real space methods

The most popular basis for density functional computations has been plane waves. Plane
waves do not have any of the desirable properties discussed above: The potentials used
in density functional calculations are local in real space, and therefore they produce
a dense Hamiltonian in reciprocal space. Since Fourier transforms (the underlying
operations in a plane wave basis) require communication from every processor to every
other processor, they do not parallelize very well. And a plane wave basis has the
same resolution everywhere in space. One might wonder why plane waves have been so
widely used. The answer is that they do fairly well in a limited set of circumstances:
For uniform materials with very soft pseudopotentials, the plane wave basis represents
the wavefunctions quite efficiently. As a result, the number of occupied eigenvectors
ne is a significant fraction of the total number of basis states Ny, which is exactly the
situation where O(N?3) diagonalization becomes efficient. Finally, parallel computing
did not become a major issue in electronic structure computations until recently. Not
surprisingly, the majority of large scale density functional computations have been for
materials such as bulk silicon where the above conditions hold. However, it is clear that
if harder problems are going to be routinely treated, it is necessary to move beyond
plane waves. Many of the most promising methods share a real space approach. In the
rest of this section, we will discuss various real space approaches and see how well they

achieve the properties of sparsity, parallelizability, and adaptability.

Regular grids

A number of groups [32, 33, 34, 35, 36] have recently reported electronic structure
calculations using a regular grid in real space. Such an approach achieves sparsity and
parallelizability, but not adaptability. All terms in the Kohn-Sham Hamiltonian [2] are
local in real space, except the Laplacian. When discretized using a real space grid, the

Laplacian of a function at a point involves only the values of the function at nearby
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points. Thus, the Hamiltonian is represented as a sparse matrix. A representation
based on a regular grid in real space is also a very natural choice for a massively parallel
computer architecture — assigning successive, equivalent blocks of space to processors
configured in a 2 or 3 dimensional grid provides a natural and efficient mapping onto a
parallel machine. Since the subgrids in each block of space require the same operations,
load balance is automatically optimal. Since the nearby points that are needed in order
to compute the Laplacian at a grid point in one processor are either located in the same
processor or in neighboring processors, communication is local. Since all processors need
the same information from their neighbors, communications is structured. Thus, good
load balance and efficient communications are trivially achieved. However, a regular
grid has uniform resolution in space and can not be adapted to inhomogeneous physical

systems.

Local refinement

Adaptability can be added to a real space grid by increasing the number of basis elements
in regions where more resolution is needed. This ‘local refinement’ approach is shown
schematically in Fig. 3.1. The local refinement approach maintains the sparsity of a
regular real space grid, but gives up trivial parallelizability in order to gain adaptability.
Assigning each processor an equivalent region of space would causes some processors to
get more grid points than others, and thus it would ruin the load balance. Assigning
each processor an equal number of points would result in a complicated communications
pattern that varies from processor to processor, and thus it would ruin the structure of
the interprocessor communications. Recent work using the local refinement approach
has been carried out in the context of wavelets [37, 38], finite-elements [39, 40], and

multi-grid methods [41, 42].
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Figure 3.1: Schematic of a local refinement enhancement of the resolution in
a difficult region near the center of the box. The intersections between the
extra lines could indicate an added level of wavelets with a wavelet method,
additional finite elements nodes in with finite element approach, or literally

extra grid points with a multigrid method.
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3.1.3 ACRES

In the following, we review our recently developed Adaptive Coordinate Real-Space
Electronic Structure (ACRES) method, which achieves all three of the desirable prop-
erties discussed above: sparsity, parallelizability, and adaptability.

The central idea is shown in Fig. 3.2. We work on a regular grid in curvilinear space

Figure 3.2: Schematic of the ACRES idea. The computations are done on
a regular mesh in curvilinear coordinates, which is mapped by a change of

variables to an adaptive mesh in real space.

f, which is mapped by a change of coordinates f(g ) to an adaptive mesh in real space
Z which is finer where high precision is needed. The coordinate transformation dif-

fers from “classical” coordinate systems such as spherical coordinates in two important
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ways: (1) The grid is adapted to an arbitrary arrangement of atoms by taking a linear
superposition of the adaptations associated with each atom. (2) The transformation is
smooth and continuous everywhere and thus generates regular equations that are triv-
ially parallelized. The combination of a real space approach and a coordinate transform
is well established in such fields as fluid flow and heat transfer [43, 44, 45]. The type
of coordinate transformation used in the ACRES method was pioneered in electronic
structure calculations by F. Gygi [46] using a plane wave basis. This adaptive plane
wave approach has been fruitfully pursued by several groups [46, 47, 48], but it does
not produce a sparse Hamiltonian or parallelize particularly well. More recently, Gygi
and Galli [49] have also studied a real-space approach using curvilinear coordinates and

pseudopotentials.

3.2 Theory

We will now describe the method in more detail. First, a few notational remarks are
necessary: We use the convention that Roman letters indicate real coordinate indices,
and Greek letters indicate curvilinear coordinate indices. We also use the standard
convention of upper indices for contravariant components, and lower indices for covariant
components. We assume summation over repeated indices. The real space coordinates
z'(€%; P™) depend on the curvilinear coordinates £ and on some set of parameters P™
that allow us to tune the change of coordinates to a particular problem. The Jacobian
of the transformation is

Ji(& P) = 82t 9€ (3.1)
with |J| = det J its determinant. The trivial metric g/ = 6 in real space becomes

g°f = 13812 (3.2)
in curvilinear coordinates. The Laplacian operator in curvilinear space is

A= ﬁaa (1719485 , (3.3)
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and integrals are transformed according to [ d3z = [ d3¢ |J|.

The Coulomb energy between charge distributions p; and p; becomes

[ [ doaar 22EAE) ”‘(’:"’2 ” = [ de Wl pu(e)oate) (3.4)

with v, the solution of the Poisson equation

Avy(€) = —4m pa(§)- (3-3)

Through these transformations, the problem has been entirely rewritten in terms of
the curvilinear coordinates f- — the physical space £ has completely disappeared from
the formulation of the problem. It is only when computing pseudopotentials or when
plotting the density or wave functions that we need to consider the physical space £.

Finally, the above equations are discretized in a box of linear size A;, using a fi-
nite difference scheme on a regular grid in curvilinear space £ with N; points in each
direction. Any boundary conditions can easily be implemented in this approach. In
Section 3.3.6, we will discuss a set of boundary conditions that allow us to do multiple
k-point calculations for periodic solids by generating the Bloch states that;correspond
to selected points in the Brillouin zone. For now, assume that periodic boundary con-
ditions are used. From the mathematical point of view, we are just solving partial
differential equations by discretizing on a regular mesh. Through our finite difference
scheme, we have an approximation of the original equations, rather than a projection of
the original problem onto a basis. Consequently, the variational aspect of a basis is lost,
and our electronic eigenvalues are not necessarily upper bounds of the true electronic
eigenvalues. Nevertheless, we will sometimes use the word ‘basis’ to describe the real

space discretization.

3.3 Implementation

There are several choices involved in the implementation of the method. These include

the form of the discretized Laplacian, the treatment of the Coulomb potential. the form
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of the coordinate transform, the optimization of the coordinate transform, the method

of calculating the forces, and the algorithms used.

3.3.1 The Laplacian

There are several ways of expressing the Laplacian in curvilinear coordinates. These
expressions are equivalent in the continuum, but they are not necessarily equivalent

after discretization. For example, one expression for the Laplacian is
A = g°P,d5 + A%, (3.6)

where A* = 1/4 3, In |g| is the connection associated with the metric g. Many standard
numerical algorithms either work only for symmetric matrices or else require modifica-
tions that slow down their convergence for nonsymmetric matrices. Examples include
the conjugate gradient and Lanczos algorithms. Therefore, it is desirable to have a
self-adjoint (with respect to the measure |J|) discretization of the Laplacian. It is not
possible to find a discrete representation of the derivative operator that makes Eq. (3.6)
self-adjoint. For any representation, the difference between this Laplacian and its ad-
joint can be written in terms of the difference between the discrete and continuum
derivatives, which clearly does not vanish. On the other hand, the Laplacian is also

given by the expression

A= l_.ll_la" (1719%%05) (3.7)

The discretization of this expression is self-adjoint if, for a fixed pair «, 3, the discrete
operators d, and Jg are identical (and antisymmetric). For the @ = g3 part of the
operator, we take a representation of the derivative involving half-integer shifts, e.g.,
(0f)i = (figr/2 = fi—172)/h at first order. For the o # f3 part, we take a representation
of the derivative based on integer shifts, e.g., (0f); = (fi+1 — fi-1)/(2h) at first order.
With these choices, Af is expressed in terms of f evaluated only at the grid points, but

the metric at half-integer points gf.’fl /2 ppears in the a = B part of the operator.
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More generally, using the value of f at 2n points (integer or half-integer), we can
define an order n (antisymmetric) representation 8(") of the derivative. A proper choice
of the coefficients ensures that (") f = f(U) + O (hz" f(z"“)) where f(P) denotes the
pth derivative of f. For example, at order n = 2, the half-integer representation is
(0 f); = (=fi3/2+27 fig1/2—27 fi_1j2+ fi=3/2)/(24h), while the integer representation
is (0@ f); = (= fixa + 8fix1 — 8fi=1 + fi-2)/(12h). The price for using a higher order
representation is that more neighbors are needed in order to compute the Laplacian.
Because of the off-diagonal term ~ 8,83, the number of neighbors grows as 3((2n)%+4n+
1). Since computing with a larger number of neighbors requires more communications
between processors, using a high order representation of the derivative can be quite
expensive on a massively parallel computer. Furthermore, storage of the discretized
Laplacian is a major memory expense that grows with the number of neighbors. Clearly,
there is a trade-off between the need to limit the time and memory required to compute
the Laplacian, and the desire to achieve high accuracy with the minimum number of
grid points.

Changing n changes both the expression for the Laplacian in the eigenvalue equation
and the Coulomb potential (through the Poisson equation). This makes it quite difficult
to analyze how errors in the final results depend on n. Thus, in order to determine a
good value for n, we investigated a number of trial systems. The results of a set of
all-electron computations for an H atom are shown in Fig. 3.3. We clearly see that
n = 1 is not sufficient as the energy does not converge toward the large N limit as we
increase the adaptation around the Coulomb singularity. Therefore, we need to take
at least n = 2. In contrast, the results for n = 2 and n = 3 are essentially the same.
Fig. 3.4 shows pseudopotential results for the same system. Again we find that n = 1
is not sufficient, while n = 2 and n = 3 give very similar results. In the pseudopotential
case, we can clearly see that the error in the energy can have either sign since the finite

difference approximation does not give a variational energy. Since we find little benefit
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Figure 3.3: Convergence of the total energy as a function of the amount
of adaptation for the first. second. and third order discretized derivatives.
Results are from an all-electron calculation for a H atom using a grid with

32 x 32 x 32 points.
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Figure 3.4: Convergence of the total energy as a function of the amount
of adaptation for the first, second, and third order discretized derivatives.
Results are from a pseudopotential calculation for a H atom using a grid

with 32 x 32 x 32 points.
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in increasing to n = 3, there is no justification for the added expense of taking n > 2.

Therefore, we use n = 2 for the rest of our computations.

3.3.2 The Coulomb potential

The grid breaks translational invariance, i.e., the total energy can vary as the entire
system is moved around the box. This broken translational invariance also introduces
an error in the dependence of the total energy on the position of each atom. Since
computing accurate structural properties generally requires much more accurate relative
energies than absolute energies, considerable care must be taken to minimize this effect.
The errors introduced by broken translational invariance become negligible when the
density of grid points is sufficiently high that the functions of interest (wavefunctions,
density, potentials, etc.) are well represented. Adaptation increases the density of grid
points in regions where such functions are rapidly varying, and therefore adaptatation
reduces the effect of the grid. In the case of pseudopotential calculations, we find
that moderate adaptation eliminates the translational invariance problem whenever the
number of points in the grid is sufficient to give reasonably accurate absolute energies.
The problem is more serious for all-electron computations because the ionic potential
is divergent due to the Coulomb singularity. We call the distance between an atomic
center and the nearest grid point the offset, and the total energy depends on the offset.
If the ionic Coulomb potential is directly evaluated at the grid points (say by an Ewald
sum), the energy diverges to minus infinity as the offset of any of the atoms goes to zero.
The standard finite difference scheme interprets the value assigned to a given grid point
as the actual value of the represented function at that point. With this interpretation,
a singular function will never be well represented for any number of points. Clearly, it
is necessary to regularize the Coulomb potential such that the value assigned to each
grid point represents an average over the grid cell. A natural regularization is provided

by solving numerically the Poisson equation [discretized in curvilinear coordinates by
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means of the Laplacian, Eq. (3.3)] with the nuclear charge as the source. In addition
to providing a natural regularization for the ionic potential, this approach also saves
computational effort relative to an Ewald sum: It is already necessary to solve the
Poisson equation numerically in order to find the Hartree potential, so we get the ionic
potential for free simply by adding the ionic charge to the electronic charge density.
Computing the ionic Coulomb potential using the discretized Poisson equation re-
quires a representation of the nuclear charge on the grid. For an atom with atomic
number Z at position R, the nuclear charge is p({) = Z§(€; R), where 8(&; R) is a rep-
resentation of a Dirac § function at R on the regular grid in E space. There is some
freedom in this representation as the distribution only needs to converge to the contin-
uum 6 function in the limit of the number on grid points going to infinity. Beside the

normalization condition on the é function,
JEULGIE (38)

an important constraint on its representation on a finite grid is that the first moment

of the distribution must correspond to the location of the é function, i.e.,
[devieE Ry ad =& (3.9)

This constraint is necessary in order to ensure that the nuclear charge appears to other
atoms to be at the position R, i.e., the tails of the resulting potential correspond to
a 1/r divergence at R. Without this constraint, there will be fluctuations in the ap-
parent distances between atoms as the whole structure is translated around the box.
Constraints on higher moments could also be imposed [50], but we did not find this to
be necessary. The two constraints Eq. (3.8) and Eq. (3.9) still leave substantial freedom
in the choice of 6({; R). We experimented with a linear interpolated § function defined
as follows: For any function of the curvilinear coordinates f(f ), let f(f) he the linear

interpolation (in £ space) of f between the points of the regular grid. Then, §(¢; R) is
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chosen such that for an arbitrary f,

[ € VIsER 1§ = FS) (3.0)

where :f,-(_:-:) = R; for i =1-3. We also experimented with a Gaussian representation of
the delta function.

6(6; B) o exp (—1€ - o/ 20°A¢2) (3.11)
with A€ the regular grid spacing, o an adjustable parameter, and & chosen to satisfy
the constraint on the first moment of the distribution. Since its width is proportional
to the grid spacing and thus goes to zero in the continuum limit, this small Gaussian
is a good representation of the delta function on the discrete grid. Furthermore, by
defining this representation in £ space, we ensure that it goes to a continuum § in the
limit of strong adaptation. This § is spread over a number of grid points that is set by
o independently of :E({? ), N, and A. Therefore, o sets the rate at which § approaches a
continuum delta function as the number of grid points or the adaptation increases. For
various values of o, Fig. 3.5 shows the error in the total energy of a hydrogen atom as a
function of the amount of adaptation. The curves correspond to an atom located either
directly on a grid point, or as far as possible from a grid point. These cases were found
to correspond to the minimum and maximum values of the total energy. Thus, for a
given value of o, the difference between the two lines indicates the maximum amount
that the energy will vary as the atom is moved around the cell. As the value of o
is increased, this difference decreases rapidly, but there is also an upward shift in the
energy. This upward shift is a result of replacing the nuclear charge distribution with
a small Gaussian. Thus, there is a trade-off between reducing the broken translational
invariance and avoiding a systematic error in the total energy. A value of o ~ 0.6 seems
to be a good compromise. The linear delta function results in an even larger dependence
of the energy on the atomic position than the ¢ = 0.4 Gaussian delta, and thus we found

the Gaussian delta to be more useful. Note in Fig. 3.5 that adaptation further reduces
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Figure 3.5: Error in the total energy of a hydrogen atom as a function

of the amount of adaptation for all-electron calculations using a Gaussian

delta function with various values of o. The points marked by circles result

from placing the atom directly on a grid point (zero offset), while the points

marked by squares result from placing the atom as far as possible from a grid

point (maximum offset). The supercell is 12 a.u. on each side, the grid has

64 points in each direction, no backdrop is used, and the adaptation radius

is 0.5 a.u.
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the dependence of the energy on the position of the atom. For grids of practical size
(the grid used in Fig. 3.5 was chosen to be too coarse for accurate calculations in order
to emphasize the effects discussed above), the combined use of strong adaptation, the
Poisson regularization, and the Gaussian 4 function eliminates the translation invariance

problem.

3.3.3 The coordinate transformation

In the ACRES method, the burden of adapting the basis to the physics of a particular
problem is swept into the change of coordinates £(€). An analytical mapping allows
derived quantities such as .J and g°® to be calculated accurately. There are several
conditions that must be satisfied by the coordinate transformation. The mapping be-
tween ¥ and 5" must be single valued, i.e. the grid in z space must not be folded.
Furthermore, since the Laplacian involves the derivative of the metric, and the metric is
computed from the Jacobian, the mapping must be twice continuously differentiable on
a 3D domain with periodic boundary conditions. It is also desirable that the mapping
be spherically symmetric around an atom, at least to a good approximation (since we
are working in a rectangular box with periodic boundary conditions, this cannot be
an exact property). Even with all these requirements, there are still a vast number of
possible choices of curvilinear coordinates. When necessary, we use a two level change
of coordinates: a global backdrop and further local adaptation around each atom.

The global backdrop allows efficient long wavelength adaptation and is used only for
systems with global inhomogeneities, such as large regions of vacuum. Typical systems
where the backdrop is used are atoms, molecules, clusters, and surfaces. Since the
backdrop consists of an independent change of coordinates in each direction Tt = gi(£Y),
the grid cells remain rectangular. The functions z*(£*) are chosen to create a central
flat region of size Z; with a density of points increased by 1/J;, surrounded by a rapidly

decreasing density of points [51]. Thus, the parameters P associated with the backdrop
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are ¥; and J; for ¢ = 1-3. For rods or slabs of atoms, Z; = A; in one or more directions.

For a given direction, we take z = J€ where £ = J£ for 0 < £ < €,

z:ff+%(1—j)(AE/2__E§—> {q+1—(q—1)(AE/2‘fE)} (3.12)

with ¢ = 3 for £ < £ < A/2, and z(€) = ~z(—€) for —A/2 < £ < 0. In order to ensure

continuity of the second derivative, ¢ > 2 is required. Fig. 3.6 shows the backdrop used

for a pseudopotential calculation for an O, molecule in a 12 x 12 x 24 a.u. box. Note

Figure 3.6: Backdrop used for a pseudopotential calculation for an O,
molecule in a 12 x 12 x 24 a.u. box., in a horizontal cross-section through
the atoms (every fourth line shown). The small dots indicate the locations
of the atoms. The backdrop parameters are Z; = 6 a.u., £ = Z3 = 3 a.u.,

and 1/J; =2fori=1-3.
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that the grid cells remain rectangular.

On top of the backdrop, the local adaptation creates a spherical deformation of the
grid around each atomic center R,. For each atom v, the parameters P associated with
the local adaptation are the amount of adaptation |J], at the position of the atom, and
the radius of the adapted region %,. In order to produce the local adaptation, we use a

coordinate transformation with the form
HEP) =€~ Y F(E-2 - TU/r(l5) Q.- (€= -T)  (3.13)
v T

where the expressions z,. 5,, f, T, and T are explained in following paragraphs.

The vectors =, are chosen so that i:'(é,,) = R,, and the rank 2 tensors C_ju are
adjusted to obtain Ji(Z,) = |J[&/3 6. The values of 3, and Q, must be found self-
consistently. For each atom, Z, contains 3 unknown scalars, while 5 , contains 9 more.
Correspondingly, the condition on the attraction center provides 3 constraints, while
the condition on the Jacobian provides 9 more. Therefore, the number of unknowns
is equal to the number of constraints. Since the system is nonlinear, this does not
guarantee that a unique solution exists, but it is encouraging. In practice, we have
had no trouble finding solutions for reasonable values of the parameters P. We use
Jacobi relaxation to solve the system of equations, and we find that converging the
solution takes only a very small proportion of the total time needed for an ACRES
calculation. The above conditions ensure that the coordinate transformation near each
atom is independent of the positions and parameters associated with all other atoms.
This can be seen by considering a Taylor expansion of z‘(f) about the position of an
atom. The conditions above determine the derivatives, and therefore they determine
the function to first order in the displacement from the atomic position (the constant
term is not determined, but it corresponds to a trivial shift in the underlying grid).

This asymptotic independence of Z(£) and the environment becomes very important

when the adaptation regions overlap. If the coordinate transformation in the cores of
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the atoms is allowed to depend on the arrangement of the atoms, any errors in the
energy due to underconvergence of the calculation in the atomic cores will also depend
on the arrangement of the atoms. This will introduce an extra dependence of the
total energy on the atomic positions. Since errors in relative energies are generally
much more serious than systematic errors in absolute energies, calculated structural
properties may become inaccurate. Furthermore, without enforcement of the condition
on the Jacobian described above, the grid cells between two atoms quickly become very
elongated along the axis between the atoms as the overlap of the adaptation regions
is increased. Soon the grid overlaps, and the grid generation procedure fails. When
all values of k, are much smaller than the distances between atoms, simplifications of
the above procedure can be used. One possibility is to take 5” proportional to the
identity matrix and only require |J(R,)| = |J|,. A further simplification is provided by
approximating =, = R,. Using these simplifications can save a small amount of time
when the adaptation regions do not overlap. Higher order generalizations of Eq. (3.13)
can be imagined also: au - (E-E,~T) could be replaced with a higher order polynomial
in £, and the coefficients could be determined by matching higher order derivatives.
Taylor’s Theorem guarantees that the number of coefficients will be the same as the
number of derivatives at any order. Since such higher order generalizations would
require solving more complicated equations for more unknown coefficients, they would
be more expensive. The form of adaptation given in Eq. (3.13) has worked well for all
the systems that we have studied, so we have not tried to implement the generalizations.

The function f can be any rapidly decaying function with zero derivative at the
origin. All the computations presented below have been done with the simple Gaussian
form f(z) = exp(—z2/2). We also experimented with an exponential form f(z) =
1/ cosh(z). The results are quite similar, but slightly favor the Gaussian form. The

function 7(|J|,,x,) has been chosen such that for one atom sitting at the origin, &



Chapter 3: Adaptive Coordinate, Real-Space Electronic Structure 72

corresponds to the radius of the adapted region independently of |J},. i.e.,
1 —det J(x) = (1 — det J(0))/2. (3.14)

In Eq. (3.13). T is summed over enough lattice vectors to make £(£) effectively
periodic. Since the adaptation range x is generally much smaller than the box size A.
we have found that two lattice vectors in each direction is sufficient.

Fig. 3.7 shows the combined effect of the backdrop and the local adaptation for a
pseudopotential calculation for an O, molecule in a 12 x 12 x 24 a.u. box. Note that
despite the significant overlap of the adaptation regions. the grid cells remain nearly

square close to the atomic positions.

3.3.4 Optimization of the change of coordinates

A question of central importance is how to choose the parameters that determine the
change of coordinates. Consider the case of one atom. Fig. 3.8 shows the error in the
total energy of an O atom as a function of the amount of adaptation for three different
values of the adaptation radius. These results can be viewed in terms of a competition
between a large negative error in the energy associated with the region very close to
the nucleus and a smaller positive error in the energy associated with the region further
away from the nucleus. The first error decreases rapidly with adaptation as more points
are moved into the core region. This results in a sharp initial increase in the energy.
The second error may either increase or decrease with adaptation depending on the
value of the adaptation radius. For a small value of the adaptation radius, the density
of points in the region responsible for this error decreases. Therefore, the second type
of error increases, and the total energy does not converge to the correct energy for
large amounts of adaptation. On the other hand. for a large value of the adaptation
radius, the density of points increases throughout the region where functions need to be
accurately represented in order to get accurate total energies, and both types of error

decrease with adaptation. These situations are demonstrated by Fig. 3.8.
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Figure 3.7: Grid used for a pseudopotential calculation for an O2 molecule
in a 12 x 12 x 24 a.u. box., in a horizontal cross-section through the atoms
(every fourth line shown). Notice the effect of the global backdrop (crosslike
region with many grid points) and the local adaptation around each atom.
The backdrop parameters are Z, = 6 a.u., £ = Z3 = 3 a.u.,and 1/J; = 2 for
i = 1 - 3. For each atom, the local adaptation parameters are 1/|J|, = 32

and k, = 1.4 a.u. The spacing between the atoms is 2.28 a.u.
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Figure 3.8: The error in the total energy of an O atom as a function of the
amount of adaptation for three different adaptation radii x. The results are
from a pseudopotential calculation using a 48 x 48 x 48 grid and a box 6 a.u.
on each side. No backdrop was used. The exact large N limit of the energy

was approximated using a 96 x 96 x 96 grid.
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The & = 0.4 a.u. curve in Fig. 3.8 shows the effects of an overly small adaptation
radius. For moderate to large amounts of adaptation, the error in the energy is domi-
nated by regions further than 0.4 a.u. from the radius. Since this error gets worse with
increasing adaptation, the total energy continues to increase and diverges away from
the correct energy for large adaptations. Since the two types of errors have an opposite
sign, and the larger one decreases while the smaller one increases, the total error passes
through zero. However, this is an accidental cancellation, and the important functions
are not particularly well represented for this amount of adaptation. Therefore, other
quantities, such as the forces, will not be especially accurate at the point where the
error in the total energy cancels. Furthermore, since the total energy changes relatively
quickly with adaptation near this point, this cancellation of errors is fragile. Perturba-
tions in the coordinate transformation due to other atoms should ruin the cancellation.
Since such perturbations depend on the locations of the other atoms, this would intro-
duce extra errors in relative energies and derived structural properties. Therefore, it is
not a good idea to try to choose the amount of adaptation in such a way that the errors
in the total energy cancel exactly.

In Fig. 3.8, the K = 1.2 a.u. curve shows typical results for a large adaptation ra-
dius. In this case, the atom essentially lies within the adaptation region. Therefore,
both types of error decrease with increasing adaptation. Since the large error due to
the core region decreases much more rapidly than the error from further out, the total
error still passes through zero at some point. Again, this cancellation is accidental, and
there is nothing particularly special about this point. Once the error due to the core
region becomes negligible, the error in the total energy decreases slowly with increasing
amounts of adaptation, and the total energy converges toward the large N value. Since
the density of points near the atom continues to increase with adaptation, all impor-
tant functions become better and better represented, and all derived quantities should

become accurate.
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The number of points in the adaptation region grows as k3/|J|. Furthermore, in sys-
tems with more than one atom, the various adaptation regions must compete for points.
Therefore, it usually is not practical to work with such a large adaptation radius that
the atoms are completely within the adaptation regions. A typical compromise is shown
by the & = 0.6 curve in Fig. 3.8. Here, the total energy diverges away from the correct
energy for very large adaptations, but there is a broad region of adaptation parameters
where the error in the energy is small and nearly constant. Since all of the important
functions are fairly well represented throughout this region, derived quantities, such as
the forces, are also accurate.

The discussion above shows that we want to put more points around the nucleus
in order to describe the potential and wave functions more accurately, but we do not
want to deplete the tails too much. There is clearly a trade-off, and we want a quan-
titative criterion to help us choose a good compromise. In order to generate a nearly
optimal mesh for a given physical problem, we define a merit functional m(f; P) that
measures how well a function f is represented by the grid, and choose the parameters
P that minimize this quantity. Since our approach does not use a basis in a Hilbert
space, the computed energy is not an upper bound to the ground state, and a min-
imal energy optimization as used by Gygi [46] in the adaptive plane wave approach
is not possible. To motivate our choice of a merit functional, consider an estimate of
the error in a periodic, one-dimensional integral I(f) = [dz f(z) = [ d¢ f(&; P) with
f(& P) = |J|(&; P) f(z(&; P)). The integral is computed numerically on a regular mesh

in £ coordinates

IN(f; P) =} A& f(&; P) (3.15)

with mesh spacing AE. Due to the definition of f, the numerical integral depends
on the coordinate transformation both through the Jacobian factor and through the
points at which f is evaluated. We warn the reader against a pitfall encountered when

estimating the error in a numerical integral: the second Euler-Maclaurin summation
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formula, as given in most textbooks, is only an asymptotic formula and can lead to
obvious contradictions. For example, when applied to the discretized integral of an
infinitely differentiable periodic function, as in our case, it gives identically zero for the
error, independently of N ! Therefore, we have to develop another method. Without
actually knowing the precise value of I( f), we want to choose P so that In(f; P)is the
best possible approximant of I(f). We could use In as an approximant for I, but this
would require computation on the finer grid. Our solution is to use Iy as an approximant
for I and to compare its value to [y/;. By optimizing the parameters P, an optimal grid
of size N/2 is generated, and the same set of parameters should also generate a good grid
at size N. Fig. 3.9 shows the contribution to an integral from an elementary volume of
the coarser grid, and the contribution from the same region evaluated with the finer grid.

With N/2 points, the rectangular element of integration is 61/, = 2A¢ f(&:; P). With

3 3

f f o

_2A¢ 3 JAE 3

Figure 3.9: The contributions to an integral from an elementary region of
space evaluated using a regular grid with N/2 points and a regular grid with
N points. Af indicates the grid spacing.

N points, the same region contributes 6y = A£ [f(f,-_l; P)/2+f(£;; P)+ f(§;+1; P)/2]

to the integral. An estimate of the error contributed by this region is given by

be(f) = 8In ~ 6Insy = AL f)2. (3.16)
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This expression is similar to a rigorous upper bound due to Peano [52]: The error in a

one-dimensional integral evaluated by using the simple trapezoidal rule is bounded by

3
se(f) = 22 max f(€) (3.17)

12 a<e<h

with a = & — A§/2 and b = £ + AE/2.
To avoid cancellation of errors from different regions of space, we take our merit

functional to be

1/2

1/2
m(f;P)=(Z(5e)2> =§A55/2 (}:Af(f:')") : (3.18)

t

This provides a measure of how well the grid represents the function f and is suitable
for minimization with respect to P. In Eq. (3.18), the expression is separated in such
a way that the quantity inside the parentheses is the numerically evaluated integral of
a function. Therefore, this part of the expression should approach a constant as the
number of points is increased. An alternative view of m(f; P) given by Eq. (3.18) is
that it is proportional to the squared norm of the difference between f and the function
obtained by interpolating f between the neighboring points. The above idea can be
easily generalized to three-dimensional integrals (whereas the rigorous Peano bound is

difficult to extend to higher dimensions). If we define

8 12 6
sz = 72 fcornef -2 Z fcdge - 42 fface - Sfcentera (3'19)

where D?f depends on the 27 values of f in a cube around the point (¢, j, k), we obtain

L.k

1/2
m(f; P) = SHELEE (Z(sz;.j,k)?) : (3.20)

In order to obtain the scaling dependence of Eq. (3.20) in the continuum limit, consider
a grid such that A& = A = A& = Af = (V/N)/3 where V is the volume of the

system and NV is the total number of points in the grid. Then,

D*f = (A€)?V?f, (3.21)
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and substitution gives

- 1/2
V\7/6 -
mfiP)=3 () (2}; Afa(vzfi,j.k)z) (3:22)

Once more, the terms have been collected in such a way that the expression in paren-
theses is the integral of an ordinary function and should approach a constant as the
number of grid points increases. Therefore, the merit functional should scale inversely
with the 7/6 power of the density of points. If there was no cancellation of errors from
different regions of space, the convergence of finite grid results toward their continuum
limits would have the same scaling, but a substantial amount of cancellation of errors
generally occurs for functions with periodic boundary conditions.

The last step of using our merit functional is picking a function f that produces
a good grid when m(f; P) is minimized. For several atoms where we knew the large
N limit, we carried out calculations with a range of grid parameters P. We compared
the resulting errors in the energy with the functions m(f; P) obtained using various
functions f. Fig. 3.10 and Fig. 3.11 show m(f; P) from pseudopotential calculations for
an O atom. The adaptation radius « is fixed at the small value 0.4 a.u. in Fig. 3.10, while
it was increased to the large value 1.2 a.u. in Fig. 3.11. Note that the larger radius
generally gives much smaller values of m(f), indicating better represented functions,
at moderate to strong adaptation. This is in agreement with the errors in the total
energies given in Fig. 3.8. As expected, different functions are represented best at
somewhat different values of the parameters. However, since the minima are quite broad,
there is a range of parameters where all of the important functions are reasonably well
represented. This indicates that the results of a calculation should not be very sensitive
to the exact values of the grid parameters as long as reasonable values are used.

It is natural to consider choosing f to be an energy density. For example, the band

energy density can be defined as

1

ehand() = 3 WA DA L(E) = &2 (3.23)
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Figure 3.10: Merit functional m( f; P) as a function of the amount of adap-
tation for various arguments f. The adaptation radius « is fixed at 0.4 a.u.
The results are from a pseudopotential calculation for an O atom in a 6x6x6
a.u. box using a 48 x 48 x 48 grid. The functions f are: epgng, the band
energy density; eyo, the potential energy density; e, the pseudopotential
energy density; p, the electronic charge density; |¥,|?, a (squared) s wave-
function; and [¥,|?, a (squared) p wavefunction. m(ep) has been divided

by a factor of 20 in order to fit it on the scale of the other functionals.
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Figure 3.11: Merit functional m( f; P) as a function of the amount of adap-
tation for various arguments f. The adaptation radius « is fixed at 1.2 a.u.
The results are from a pseudopotential calculation for an O atomin a 6x6x6
a.u. box using a 48 x 48 x 48 grid. The functions f are: epanq, the band
energy density; epo, the potential energy density; e,sp, the pseudopotential
energy density; p, the electronic charge density; [¥,|?, a (squared) s wave-
function; and |¥,|?, a (squared) p wavefunction. m(e,,) has been divided

by a factor of 20 in order to fit it on the scale of the other functionals.
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where H is the Kohn-Sham Hamiltonian, and the sums are over occupied states. By
substituting the appropriate operator for H, we can similarly define a kinetic energy
density ekin. 2 potential energy density epo. and a pseudopotential energy density epyp.
For typical systems, both ein and ep, are much larger in magritude than epznq. For
low energy states, this near cancellation of the kinetic and potential terms is forced by
the Kohn-Sham equation. The relatively large magnitude of e, is reflected in its merit
functional, and the values of m(e,,) in Fig. 3.10 and Fig. 3.11 had to be reduced by
a factor of 20 to fit on the same scale as the rest of the functions. Furthermore, since
€hang is comparatively small. exin & —~é€por, and m(ekin) = m(ep,e). For this reason.
we have not included m(eg;,) separately from m(ep,) in Fig. 3.10 and Fig. 3.11. We
find epgng to be a useful indicator of grid quality since it captures the main sources of
error that do not cancel between the kinetic and potential terms. The wavefunctions
must be well represented in order to get accurate results, but the merit functional of an
individual wavefunction (such as m(|¥4[?) or m(|¥,|?) in Fig. 3.10 and Fig. 3.11 ) does
not provide a useful indicator of the overall quality of the grid. In order to combine the
various wavefunctions into one useful result. we can consider the merit functional of the
electronic density m(p). However. Eq. (3.23) ensures that m(p) behaves in a fashion
similar to m(epqnq). Finally, the pseudopotentials must also be well represented. and
checking the merit functional for the pseudopotential energy density e,,, ensures that
this is the case.

For the larger adaptation radius of Fig. 3.11, the various functions indicate somewhat
different adaptation strengths. but the minima are very broad and the resulting values
of the parameters are not significantly different. In general, an adaptation strength
of 1/|J| = 8 — 64 appears reasonable. Comparison to Fig. 3.8 shows that the error
in the total energy is small and nearly constant throughout this region. Even though
the error in the total energy decreases at very large adaptations, the merit functionals

increase very slowly. This indicates that the representation of important functions is
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getting worse, and it is not a good idea to use such very strong adaptations. Minimizing
m( f; P) indicates that substantially weaker adaptation should be used with the smaller
adaptation radius of Fig. 3.10. The minima in m(f; P) are not as broad as they were
with the larger radius, and the minima do not overlap as well for various different
choices of f. Still, the minima are roughly in the same region, and an adaptation
strength of 1/]J| = 2 — 8 appears reasonable. Reference to Fig. 3.8 shows that the
indicated range of adaptation strengths gives the smallest error in the total energy and
also the slowest variation of the error with respect to the adaptation parameters. Thus,
the best possible compromise of parameters can be found using the merit functional,
even when no optimal choice of parameters is available.

Since the expression for the merit functional Eq. (3.20) is nonlinear, it is a difficult
problem to minimize m( f; P) using results computed for only a small number of values of
P. Since calculations for realistic systems are expensive, only a small number of results
are generally available. Therefore, we do not attempt to minimize m(f; P) for large
systems. Instead, by studying m(f; P) for single atoms, we find optimal parameters
for each atomic species. Then, further computations are done using this fixed set of
parameters.

Finally, for pseudopotential computations, the grid generated using the present ap-
proach can be compared with the one obtained with the minimal energy scheme in
adaptive plane waves used by Gygi [46]. We systematically obtain grids that are more
adapted. For example, using a similar box and grid size for oxygen, the linear grid size
Az at the atom location is reduced by a factor ~ 2 using Gygi’s method, whereas we use
a factor ~ 6 (2 for the backdrop and 3 for the local atomic adaptation). This difference
likely originates in our emphasis on making sure that all important functions are well
represented rather than just focusing on the total energy. The elastic constants p used

by Gygi in order to prevent the folding of the grid should also lead to less adapted grids.
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3.3.5 The forces

The total force FT9T on the ion v is the sum of the ion-ion force F!I and the ion-
electron force F,. The ion-ion contribution is evaluated using an Ewald sum. In order

to evaluate the electronic contribution to the force, define

A=H- '21‘VH(P) +exc(p) — Vxelp). (3.24)

where p is the electronic density, H is the Kohn-Sham Hamiltonian, Vi(p) is the Hartree
potential, exc(p) is the exchange-correlation energy density per electron, and Vxc(p)
is the exchange-correlation potential. Then, the electronic contribution to the force is
given by

- d .
F, = —— U |H[¥;). 3.25
LS (3.25)

L)

In principle, since the grid changes as the atoms are moved, it is necessary to include
Pulay corrections in the calculation of F,. If the basis is viewed as fixed, while the
changes in the grid are swept into the Hamiltonian, an analog of the Hellmann-Feynman
Theorem can be proven using that each eigenvector ¥; is an extremum of (¥;|H|¥;),
and p is an extremum of the total energy. In particular,

F,=- Z(wﬂw;) (3.26)

T dR,

where the derivative with respect to R, is taken with the other atomic positions and p
fixed, but with the coordinate transform £(£) allowed to change with E,. Expanding

out the derivative gives

af_'r N dz(6) OH

ﬁ,, =~ ¥, = =|¥;). 27
? |6R,, aR, 65:’(5)“1’ ) (3.27)

Only the local atomic potential V;, and the pseudopotentials depend explicitly on R,,
and the first term gives the standard Hellmann-Feynman force. The long-range part of
the Hellmann-Feynman force can be expressed as
=~ av, dp
FHF _ \Ifi-T”q:,-=/d I\ Vi 2P 3.8
> 55 %) 611 Vir o= (3.28)

v

i
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where Vi is the Hartree potential and p, is the ionic charge distribution for the atom
v. Vg is found by solving the discretized Poisson equation AVy = —4we?p, and the

derivatives ;%’-*— are computed analytically. This form has the advantage of requiring

the solution of only one Poisson equation for any number of atoms in the system. Even
though the ion-electron energy is found by integrating the discretized ionic potential
times the electronic charge, while Eq. (3.28) involves the discretized electronic potential
times the ionic charge, Eq. (3.28) gives the exact derivative of the ion-electron energy.
This is because the discretized Laplacian is a symmetric matrix (with respect to the mea-
sure p), and therefore its inverse is also symmetric. A nonsymmetric Laplacian would
require modification of Eq. (3.28). For pseudopotential calculations, there are additional
non-local short range parts in the Hellmann-Feynman force that are straightforwardly
evaluated by differentiating the pseudopotential. The pseudopotential is interpolated
from values tabulated on a logarithmic grid, and it is important to differentiate the
interpolation of the pseudopotential in order to get forces that are exact derivatives of
the total energy. Our Hellmann-Feynman force is accurately evaluated, and we have
verified that it gives the exact derivative of the energy when the grid does not change.
The second term in Eq. (3.27) gives the Pulay corrections to the forces. Virtually ev-
ery term in H depends on #(£) either through the Jacobian weight |J|, through the
discretized Laplacian, or directly through the points at which a function is evaluated
(i.e. the pseudopotentials). We have implemented the evaluation of all of these terms.
Fig. 3.12 shows the Hellmann-Feynman and Pulay corrected forces from an all-electron
calculation for an H; molecule along with the numerically evaluated derivative of the
energy. With the Pulay corrections, we obtain forces that reproduce the derivative of
the energy with excellent accuracy. For this computation, we used a 64 x 32 x 32 grid
in a 24 X 12 X 12 a.u. box, and the Hellmann-Feynman force differs from the derivative
of the energy by about 0.01 Ry. per a.u. Considering that this grid contains only 1/64

the number of points that we would use in a high accuracy computation for this system,
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Figure 3.12: The forces from an all-electron computation for H, with and
without Pulay corrections. The derivative of the energy is included for com-
parison. The box size was 24 x 12 x 12 a.u. and a 64 x 32 x 32 grid was
used. The backdrop parameters were Z; = 4 a.u., T, = Z3 = 2 a.u., and
1/J; = 4 for i = 1 - 3. For each atom, the local adaptation parameters are

1/|J|, = 64 and k, = 0.5 a.u. A Gaussian delta with ¢ = 0.6 was used.
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this correction is remarkably small. Practical computations must be well converged
with respect to the number of grid points, and we find that the Hellmann-Feynman
forces are typically in such good agreement with the derivatives of the total energy
that the extra expense of evaluating the Pulay corrections can not be justified during
a relaxation of the atomic coordinates. On the other hand, it is useful to evaluate the
Pulay corrections once the energy minimum has been found in order to make sure that
the Pulay corrections would not change the answer. Furthermore, maintaining energy
conservation during an extended molecular dynamics run would require including the

Pulay corrections.

3.3.6 Band structure calculations

Bloch’s Theorem requires the eigenstates of a periodic potential to have the form
W(£) = u(F) exp (ik - £), where u(&) has the periodicity of the potential. Most standard
electronic structure algorithms solve for u(Z), which is an eigenfunction of a modi-
fied Hamiltonian with extra £ dependent terms in the kinetic energy. An alternative
approach is to solve directly for ¥(Z), which is an eigenfunction of the standard Hamilto-
nian with phase shifts at the boundaries. The phase shifts correspond to multiplication
by a complex number whenever information is transported across the boundary in one
direction, and multiplication by the complex conjugate when information crosses the
boundary in the opposite direction. Picking the proper phase shifts allows a computa-
tion to be done for an arbitrary point in the Brillouin zone. This makes it possible to
sample the Brillouin zone properly during calculations for solids. It also allows band
structure calculations for solids. Complex phase shifts require complex wavefunctions.
The Hamiltonian remains Hermitian, but some complexity is inevitably added to the al-
gorithm. With careful coding to make sure that operations are not wasted, the required
time is doubled. An extra complication arises from the nonlocal pseudopotentials. Since

the pseudopotentials are short ranged, it is only necessary to consider one image of each
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atom in the fundamental unit cell. However, extra phases must be included when mul-
tiplying by the nonlocal projectors in order to make sure that the phase corresponds to
multiplication by the wavefunction in the unit cell that is closest to the atom. Fig. 3.13
shows that our real-space calculations give very good agreement with a plane wave

calculation for the band structure of bulk Si.

3.3.7 The algorithms

The sparsity of the equations allows effective use of iterative algorithms to solve the
Poisson and Schrédinger equations. In typical iterative algorithms, the operator only
appears through its action on a vector. There are three main advantages of iterative
algorithms:

(a) The sparse Hamiltonian can be stored in the most compact possible form. A
typical grid with 128 points in each direction produces a Laplacian with 4 trillion ele-
ments, only 150 million of which are non-zero. It is not feasible to store such a matrix
in dense form, so without the use of iterative algorithms, we would be limited to very
small grids.

(b) The use of iterative algorithms makes it possible to compute only those eigen-
vectors that are actually needed. In a typical electronic structure calculation, it is only
necessary to find the small fraction of the eigenstates that are actually occupied. Stan-
dard eigenvalue algorithms that find all of the eigenvalues and eigenvectors of a matrix
are extremely wasteful when applied to such problems. Using an iterative algorithm
that finds only selected eigenstates saves time in addition to memory.

(c) Standard iterative algorithms progressively improve an initial guess solution.
Since self-consistency is achieved iteratively in Kohn-Sham electronic structure calcula-
tions, good initial guess solutions are usually available. Furthermore, it is quite common
to do a series of calculations for structures that vary only slightly from each other. In

this case, the solution for the previous system typically provides a good initial guess for
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Figure 3.13: The bands structure of diamond structure Si unfolded from the
results for a 4 atom unit cell. 30 inequivalent k-points were used to sample
the Brillouin zone. Once self-consistency was achieved, calculations with
a fixed density were done for the Brillouin zone locations indicated in the
figure. A 32 x 32 x 48 grid was used without a backdrop. For each atom,

the local adaptation parameters were 1/|J|, = 8 and x, = 0.9 a.u.
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each new system. Iterative algorithms save a great deal of time by taking advantage of
this knowledge.

Now, we will discuss the specific iterative algorithms that we have used: Lanczos,
inverse iteration, and conjugate gradient.

For computing the eigenstates, we experimented extensively with a Lanczos algo-
rithm. We concluded that we could not get acceptable performance from it. For Lanczos
algorithms, the fastest states to converge are at both ends of the spectrum. The un-
wanted states need to be filtered out. Thus, the convergence time for Lanczos algorithms
is proportional to the total width of the spectrum [53]. The width of the spectrum is
dominated by the largest eigenvalue of the Hamiltonian, and is proportional to the
inverse square of the minimum distance between points in the real space grid. This dis-
tance decreases with increasing adaptation or grid size. Therefore, Lanczos algorithms
become increasingly slow as the adaptation or the number of grid points is increased.
Even worse, with increasing adaptation or grid size, the upper states become increas-
ingly wild and the algorithm can loose stability.

As a result of our experience with Lanczos, we developed a modified inverse iteration
eigenvalue solver. The basic idea of inverse iteration is to apply (H — A)~! to an initial
guess vector repeatedly, where A is an approximation to an eigenvalue of the Hamiltonian
H. The result of applying (H — A)~! to a vector |¥;) is calculated by solving the linear
system

(H = A)|¥ip1) = V) (3.29)

for the unknown result |¥;;;). We solve this system of equations iteratively by means
of a conjugate gradient algorithm. In a standard inverse iteration algorithm, A is driven
to the eigenvalue by applying the shifts (¥;|¥;,;)~!. This approach drives the sys-
tem Eq. (3.29) to singular behavior and leads to problems involved with solving ill-
conditioned equations. Instead, we choose A so that it is close to the desired eigenvalue,

but not so close that the linear system becomes ill-conditioned. Noniterative diagonal-
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ization within small subspaces consisting of states with energies near A allows nearly
degenerate states to be efficiently resolved. Further modifications allow us to find the
spectrum reliably with very little a priori knowledge: a lower bound on the spectrum
and a typical spacing for the eigenvalues. Alternatively, we can improve efficiently upon
a previous solution. The inverse iteration algorithm only requires orthogonalization
within degenerate (or nearly degenerate) groups of eigenstates, and thus the computa-
tional time scales as V x n, with V the total number of points in the 3-dimensional grid
and n. the number of electrons in the system. Furthermore, since the inverse iteration
procedure strongly suppresses states with energies far from A, the rate of convergence
does not depend on the total width of the spectrum. and the slowing down that kills
Lanczos is avoided.

A conjugate gradient linear solver is used to solve the Poisson equation and forms
the kernel of our inverse iteration algorithm. We use a multigrid based preconditioner
in order to avoid a slowing of the algorithm with increasing grid size due to the time
required to converge long wavelength modes. Further preconditioning based on subspace
ideas improves the performance of the algorithm for nearly singular systems. Details of
the algorithms are given in Chapter 4.

These iterative methods make it possible to employ rather large grids, and conse-

quently allow us to investigate complex or difficult systems.

3.4 Results

Using the approach described in this chapter, we have implemented DFT/LDA [54]
and DFT/GGA [55] electronic structure calculations on the Naval Research Laboratory
CM-5 massively parallel supercomputer. Within this approach, all-electron computa-
tions involving atoms with 1s, 2s, and 2p valence electrons are feasible. We have also
implemented the pseudopotential approach. using the norm-conserving nonlocal pseu-

dopotentials of Bachelet et al. [56], and the Kleinman-Bylander procedure to render the
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57

nonlocal components separable [57].

For the all-electron calculations, the adaptation of the grid is determined by the
requirement that the density of grid points near the atomic cores is sufficient to represent
accurately the 1/r divergence of the Coulomb potential. Fig. 3.14 shows the occupied
wave functions of the O, molecule along a line through the centers of the two atoms.
Notice the very large difference between the spacing of grid points in the vacuum region
and near the atomic nuclei. The large number of grid points close to the nuclei allows
accurate representation of the cusps and nodes of the wavefunctions.

For a more quantitative comparison to other theoretical results and to experiment,
Table 3.1 and Table 3.2 show our calculated results for a number of test systems.

QOur results are in good agreement both with experimental values and with other
theoretical work using similar methods.

We find a relatively slow deviation of physical properties from converged values
as the number of grid points is reduced. For example, Fig. 3.15 shows the fractional
errors in the bond length, vibrational frequency, and total energy obtained from an
all-electron calculation for a Hy molecule using a number of different grid sizes. Even
with the smallest grid, which has only 1/64 of the points in the largest grid, the errors
in these physical quantities are only about 1%.

In order to compare the efficiency of ACRES to a more traditional method, we
computed the total energy of a H atom using several sizes of unadapted, regular grids.
The resulting fractional errors in the total energy and the computational times are
compared to corresponding ACRES results in Table 3.3. The relevant comparison is
between results of comparable accuracy: the ACRES computation with a 32 x 32 x 32
point grid achieved slightly better accuracy (at a cost of 18 seconds) than the regular
grid computation with 128 x 128 x 128 points, which cost 300 seconds. Therefore, for an
equivalent level of accuracy, ACRES greatly reduces computational time and memory

requirements relative to a regular grid method. In fact, it would be extremely difficult
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Figure 3.14: Occupied wave functions of the O, molecule, along a line
through the centers of the atoms. The 7 bonding and anti-bonding wave
functions collapse onto the horizontal axis (they have nodes through the
atomic centers). The 1s bonding and anti-bonding states were scaled by a
factor of 1/3 so they could be displayed on the same scale. Points on the

curves indicate values at actual grid points used in the calculation.
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Table 3.1: Comparison of our all-electron results with other theory and experiment.
References are @ Ref. 58, S-VWN;  Ref. 59; ¢ Ref. 60, Perdew-Wang; ¢ Ref. 58, B-LYP;
¢ Ref. 60, PW GGA-II; { Ref. 61, Perdew-Zunger; 9 Ref. 62, 2p* 'D state; * Ref. 61,

PW91; qg is binding distance, w is vibrational frequency, Eq is minimum energy, E,; is

total energy.
ACRES | Other Theory | Experiment

H, [LDA] ag (a.u.) 1.448 1.446° 1.401°

w (cm™1) 4192 4207° 4401%

Eo (Ry) -2.276 —-2.27¢ —2.349%
H; [GGA] ao (a.u.) 1.416 1.413¢ 1.401°

w(ecm™l) | 4381 4373¢ 4401%

Eo (Ry) -2.340 —2.34¢ —2.349b
O [LDA] E. (Ry) | -148.870 —148.938f —150.027¢
0 [GGA] E. (Ry) | -149.912 —149.994% —150.0279
0, [LDA] g (a.u.) 2.32 2.30° 2.28°

w (cm™1) 1661 16422 1580°
0, [GGA] ap (a.u.) 2.34 2.34¢ 2.28%

w (cm™1) 1557 1518¢ 1580°
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Table 3.2: Comparison of our pseudopotential results with other theory and experiment.
References are ¢ Ref. 58, S-VWN; ¢ Ref. 59; ¢ Ref. 63, VWN; ¢ Ref. 63, Harmonic
fitting to experiment; © Ref. 61, Perdew-Zunger. aq is binding distance, w is vibrational
frequency, 6 is the bond angle, and B is the bulk modulus. The Si calculations are for

the diamond structure.

ACRES | Other Theory | Experiment
H, [LDA] g (a.u.) 1.441 1.446° 1.401°
w (cm™1) 4212 4207° 4401°
N2 [LDA] ao (a.u.) 2.067 2.07° 2.07°
w(em™') | 2375 2401¢ 2377¢
0, [LDA] aq (a.u.) 2.281 2.30° 2.28%
w (ecm™1) 1588 1642° 1580°
H,O [LDA] ao (a.u.) | 1.840 1.844° 1.812°
8 (deg) 104.1 103.6° 103.9°
Si [LDA] ag (a-u.) 10.14 10.16¢ 10.26
B (GPa) | 97.34 96.57¢ 98.80

Table 3.3: Convergence with respect to grid size of the total energy of a H atom in a
12 x 12 x 12 a.u. box. The errors are computed relative to the largest (most accurate)

ACRES calculation.

Regular Grid ACRES
grid size | error time (s) | error time (s)
323 9% 11 10.9% 18
643 3% 32 0.1% 59
128° 1% 300 - 442
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Figure 3.15: The convergence with increasing grid size of physical properties
of a H molecule. A 12 X 12 X 24 a.u. box was used. The grids have the
indicated number of points in their short directions and twice as many in

their long direction. The results from the 128 x 128 x 256 grid were taken

to be exact.
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to do accurate computations for the systems discussed in Table 3.1 without adaptation

of the grid.

3.5 Conclusion

We have developed the ACRES approach and implemented it on a CM-5 massively
parallel supercomputer. We have fully functional all-electron and pseudopotential codes
that use LDA and GGA exchange correlation functionals. We can compute accurate
forces, band structures, and structural properties for standard test systems such as H,
0, N, H,, O3, Np, H;0, and bulk Si. We believe that ACRES provides a promising
approach to large scale electronic structure calculations involving nonuniform length

scales, especially on massively parallel computers.
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Chapter 4

Inverse iteration eigensolver with

applications to efficient
Kohn-Sham electronic structure

computations

4.1 Introduction

Among large computational tasks, finding a few eigenvalues and eigenvectors of a very
large matrix is perhaps one of the most common in many scientific applications. Quite
often, the eigensolver used to perform this difficult numerical task is the most expensive
part of a computation. Moreover, when the eigensolver lies within one or more outer
loops of the code (which can be the case in many applications), the computational cost is
augmented and the performance of the eigensolver becomes a critical issue. In physics,
examples of problems where such a computational task arises are found in quantum
mechanics (diagonalization of a Hamiltonian matrix), in statistical mechanics (diago-

nalization of a transfer matrix), etc. Outer loops arise in self-consistent approaches

98
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(which are used to handle nonlinear terms), parameter updates (such as the relaxation
of atomic coordinates in dynamical simulations), etc.

The difficulty of finding a few eigenvalues and eigenvectors of a large sparse ma-
trix imposes important limitations on ab-initio calculations of the electronic and struc-
tural properties of molecules and solids, based on the Kohn-Sham density functional
approach [2]. The term ab-initio refers to the fact that the only input in these cal-
culations is the atomic numbers of the constituent atoms. This approach reduces the
problem of finding the total-energy of a system of ions and interacting electrons to one
of finding the wavefunctions of a set of fictitious particles whose density is identical
to the density of real electrons. The wavefunctions are determined by solving a set of
single-particle Schrodinger equations in a mean-field approximation, where the effects
of exchange and correlation between electrons are taken into account by a functional
of the local density (the so called local-density approximation). The use of a basis or
a real-space representation of the wavefunctions, produces a matrix whose eigenvectors
and eigenvalues are solutions of the single-particle Schrédinger equations. Since the
density enters in the determination of the single-particle equations, and is given by the
sum over absolute squares of occupied wavefunctions, the system of equations has to be
solved self-consistently beginning with a guess for the wavefunctions.

Typically, the number of basis elements, n;, needed to represent the wavefunctions,
and the number of occupied wavefunctions, n., that must be calculated, grow linearly
with the size of the system N. Since finding an eigenvector with length n; requires at
least O(ns) operations, the minimum possible scaling of a Kohn-Sham density functional
computation is O(nens), or O(N?). Electronic structure methods with an O(N) scaling
have been developed recently [64, 65, 66, 67, 68, 69, 70], but such methods require
additional approximations which either restrict the wavefunctions to a subset of the
basis elements or avoid explicit calculation of each occupied wavefunction. If one wishes

to avoid additional approximations, the goal becomes to get as close as possible to
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O(neny) or O(N?) scaling.

Traditional matrix diagonalization techniques designed to find all eigenvalues and
eigenvectors of dense matrices have an O(n}) scaling. The prefactor in these methods
is small, but as the system size increases they eventually lose to methods with a more
efficient scaling. In density functional computations, a real space representation of the
wavefunctions produces a sparse Hamiltonian H. All terms in H are local in real space,
except the Laplacian, which in discrete form involves only the values at nearby points,
and thus it is represented as a sparse matrix. Since the number of nearby points that
appear in the discretized representation of the Laplacian is independent of the system
size, multiplying a vector v of length n; by the Hamiltonian requires only O(n;) opera-
tions. Therefore, an eigensolver algorithm that needs only an implicit representation of
the matrix H through its action on an arbitrary v, potentially offers the ability to solve
for an eigenvector of H in only O(n,) operations. A variety of iterative algorithms that
use this implicit representation have been developed. Therefore, combining a real-space
representation of the Hamiltonian with such an iterative eigensolver avoids the O(n})
scaling of full diagonalization and offers a large savings in time and memory. However,
most iterative eigensolvers either explicitly or implicitly require orthogonalization of
the eigenvectors. As the size of systems grows, the cost of keeping the wavefunctions
orthogonal, which scales like O(n2n;), becomes an increasingly important part of the
computational cost.

Traditional Lanczos algorithms use a interesting approach to avoid orthogonalization
of the eigenvectors, but their convergence rate is proportional to the eigenvalue spacing
divided by the total width of the spectrum [53]. As the size of the matrix is increased.
this ratio typically decreases. Therefore. standard Lanczos methods become increasingly
slow as the size of the matrix is increased. In our work on an adaptive coordinate.
real-space electronic structure (ACRES) code [71, 72], we encountered difficulties with

Lanczos related to this fundamental limitation. The relatively large number of basis
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functions used in a real-space representation leads to high energy states in the spectrum,
a very wide spectrum, and consequently a very slow convergence of the algorithm. We
found that this problem is particularly troublesome for adaptive real-space methods
where the energy of the highest eigenstates can be huge. In fact, for strongly adapted
systems, the highest eigenvalues become so large that the Lanczos algorithm can even
loose stability and fail to converge.

To overcome the problems of the Lanczos method, we have developed an efficient
algorithm based on inverse iteration to find a few eigenstates of an implicitly known
(possibly large) matrix while avoiding global orthogonalization of the eigenvectors and
dependence of the convergence rate on the width of the spectrum. In the rest of this
chapter, we first introduce the standard inverse iteration algorithm (Section 4.2), we
then describe our main modifications of the algorithm (Section 4.3), we discuss im-
plementation details (Section 4.4), we elaborate on further modifications that improve
performance (Section 4.5), and finally we give convergence results for a test system

(Section 4.6).

4.2 Inverse Iteration

We begin with a brief review of the basic idea behind inverse iteration. Assume that we
want the first few eigenstates of a symmetric matrix (extension to a Hermitian matrix

is straightforward). Consider a matrix H with eigenvalues ¢; and eigenvectors ;
H(’D" = €@y (4’1)

The algorithm turns a linear solver into an eigensolver by iteratively generating the

sequences v(®) and A(®) defined by the three step recursion

(H — At glnt1) = ) (4.2)

1

(1) gtm) L
AT = AT Sy

(4.3)
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p{n+1)
\/(5(n+1)|1}(n+1)).

At each step, 7 is determined by solving the linear system Eq. 4.2 using a linear solver

P(nH) =

(4.4)

algorithm. Then, the update of A is calculated from Eq. 4.3, and finally v is obtained
by normalizing ¢ with the standard normalization given by Eq. 4.4.
To understand how the algorithm works, expand v(*} in the basis composed of the

eigenvectors of H
?) = Z agn)(p,-. (4.5)

After one iteration of the linear equation, we obtain
(n+1) _a_('n_ )__
n —_ t .
o =3 5 v (4.6)
If A(*) is very close to the eigenvalue ¢;, the corresponding eigenvector ¢; is very strongly

amplified in #(®*+1) because of the small denominator. Likewise,

o2\
Aln+1) = A(n) (}: "W) . (4.7)
€ —

If A(®) is close to the eigenvalue ¢;, the sum is dominated by the ith term giving
AR+ 5 A 4 1M — A, (4.8)

Then, if o{™ is not so small that A("*!) overshoots €;, A™*1) is driven towards ¢;.
Therefore, if v(°) is not far from the eigenvector corresponding to the eigenvalue nearest
to A9, the sequences A(™) and v(") will converge to the nearest eigenstate in a few
iterations.

The potential for avoiding global orthogonalization of the eigenvectors is appar-
ent in the basic inverse iteration algorithm. Since inverse iteration converges to the
eigenvalue closest to the initial guess A0 inverse iteration procedures started from
widely different values of A(%) should converge to different eigenvalues. Eigenstates with
different eigenvalues are automatically orthogonal, thus orthogonalization between non-

degenerate states is in principle unnecessary. In practice, unless the original guesses for
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the eigenvalues are extremely accurate, it is necessary to orthogonalize a given state to
states with nearby eigenvalues in order to avoid repeatedly converging to the same state.
However, applying this local orthogonalization to find n, orthogonal states requires only
O(n.n,np) operations where n, is the size of the local orthogonalization block. Since n,
is typically of order 1, this offers a substantial savings over the O(n?n;) scaling of full
orthogonalization.

The potential for avoiding the dependence of the convergence rate on the width of
the spectrum is also apparent in the basic inverse iteration algorithm. Since the quantity
(e; — A™~! appears in Eq. 4.6 and Eq. 4.7, states that are outside the energy range
near A are very strongly suppressed. The very high energy states that cause problems

for Lanczos methods are exactly the states that are most strongly suppressed.

4.3 Modified Inverse Iteration

There are two aspects of basic inverse iteration that have traditionally made it unsuitable
for many applications: the spectrum must be known a priori and the linear system of

Eq. 4.2 must be solved efficiently. We address both issues in the following.

4.3.1 Scanning for the spectrum

For inverse iteration to converge reliably to the nearest eigenvalue, the original guess
A© must be close to an eigenvalue. Accordingly, inverse iteration has usually been
employed when either the spectrum was known exactly or very good estimates of the
eigenvalues were available. When dealing with real physical problems that produce
sparse matrices, sufficiently good estimates of the eigenvalues may or may not be avail-
able. In fact, both cases may occur while solving a given physical system. For example,
in standard implementations of Kohn-Sham density functional theory, the eigensolver
lies within a self-consistency loop that forces the electronic density to be consistent with

the electronic wavefunctions. When solving a new structure, the spectrum is initially
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completely unknown. Then, for the first few self-consistency iterations, the electronic
density (and therefore the Hamiltonian) may change so much that there are many eigen-
value crossings, and the spectrum becomes completely scrambled at each step. Finally,
as self-consistency is achieved, the density changes diminish until there are no longer
any level crossings, and the spectrum from the previous step is a good estimate for the
new spectrum. I[n order to handle efficiently all of these situations, our routine can
be used in two modes: a mode with good guesses for the eigenvalues (referred to as
“initialized mode”) and a “scanning mode”.

In the first mode, each eigenstate is found by using inverse iteration in the tradi-
tional way: A9 is initialized to each approximate eigenvalue, v(9) is initialized to each
approximate eigenvector (if available), and the recursion described by Eq. 4.2, Eq. 4.3,
and Eq. 4.4 is carried out for each eigenvalue until the eigenvector converges. Before the
first iteration and during the normalization step of each iteration, v is orthogonalized to
states with nearby eigenvalues in order to prevent accidental convergence to the same
eigenvector twice.

When either the spectrum is unknown, or the uncertainties in the eigenvalues are
comparable to the spacing between them, traditional inverse iteration will not find reli-
ably all of the desired eigenstates. Standard routines for finding the eigenvalues involve
transformations that ruin the sparsity of the matrix unless it has a very special form,
which rarely arises in physical problems. For large matrices that are very sparse, such
transformation techniques can be prohibitively expensive in terms of time and memory.
Therefore, it is not practical to use a standard algorithm to find the eigenvalues, fol-
lowed by inverse iteration to find the eigenvectors. In order to handle this case, we have
developed the scanning mode — an algorithm that reliably obtains the eigenvalues and
eigenvectors with little a priori knowledge of the spectrum. The information needed in
the scanning mode is a lower bound on the spectrum Ag and an estimate of the typ-

ical spacing between non-degenerate eigenvalues. Assuming that this much is known,
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A is initialized to the lower bound on the spectrum. Then, the recursion described by
Eq. 4.2, Eq. 4.3, and Eq. 4.4 is carried out. When v converges to an eigenvector, the
recursion is started over with the same A but with a new vector. The vectors used
to initialize the procedure can be educated guesses (which improves convergence) or
simply random. Reasonable educated guesses can be constructed in electronic struc-
ture calculations by superposition of atomic wavefunctions. In order to ensure that the
algorithm always converges to a new eigenvector, v is orthogonalized to the previously
found eigenvectors with eigenvalues close to A before the first step of the recursion and
during the normalization step of each iteration.

Stability of this approach is problematic. If the initial vector »(?) is not close enough
to the next eigenvector, the algorithm may converge to a higher eigenvalue. This hap-
pens because the estimated change in A given by Eq. 4.3 may be inaccurate when v(*®
or v("+1) is far from an eigenvector. As a result, A can jump over an eigenvalue causing
it to be missed. This problem can be avoided by limiting the maximum change in A
to a quantity g that we call the granularity. If the jump from AR} g0 Ant1) g larger
than the granularity, we take A(®*1) = A(®) 1 g This makes the algorithm safer, but
somewhat slower when far from convergence. Taking g sufficiently small ensures that all
eigenvalues will be found in succession. In practice, we find that the estimated shift in A
becomes quite accurate after the first iteration with A closer to the new eigenvalue than
the other unknown eigenvalues. Since A is closer to the next highest eigenvalue than it
is to any of the higher eigenvalues, it is sufficient to take g to be an approximation of
the typical distance between non-degenerate eigenvalues (hence the term ‘granularity’
for g). We also apply this limiting of the A shift in the first mode (when good guesses
for the eigenvalues are available) in order to avoid poor results when the corresponding
eigenvector guesses are poor.

For most types of matrices, the average spacing between eigenvalues depends on

the location in the the spectrum. For example, in the case of an all-electron electronic
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structure calculation, the energy level spacing decreases dramatically as the energy
increases. Therefore, it may be beneficial to adopt an energy dependent granularity
g()). In our electronic structure calculations, we found that good results are obtained
by taking

9(A) = go(Aeo — A)3/? (4.9)

with Ao an upper bound on the desired eigenvalues. The exact form of g(A) must be
determined for any new type of problem, but we have found that the stability and speed
of the algorithm are not very dependent on it. Instead, good performance is obtained
as long as g(\) captures the general trends in the eigenvalue spacing.

Furthermore, since the accuracy of the estimated shift in lambda given by Eq. 4.3
depends on how close v(™) and v(™*!) are to an eigenvector, the convergence can be

improved by taking the granularity to be a function of the fluctuation o

o™ = \/zv(n)|H2|v(n)) — (v H|v(m)2 (4.10)

Since the fluctuation measures how far a vector is from a true eigenvector, the idea is to
take the granularity magnitude inversely proportional to magnitude of the fluctuations.
Thus, an increased granularity can prevent wasting many iterations stepping A across a
large gap when v already consists mostly of the next eigenvector. Likewise, a reduced
granularity improves the stability when starting with a random initialization for the

eigenvector. We found that good results are obtained with the expression

g(A, oM, glvi1)) = g(A) . (4.11)
Vo) + glntl)

A difficult problem for any iterative eigensolver is to to obtain all the lowest eigen-
states. In the case of the Lanczos algorithm, the accuracy must be set low enough to
avoid spurious convergence, but no other control is possible. Since we want to obtain
all eigenvalues, there is a trade off between speed and security. A very small value of

the granularity ensures that no eigenvalues will be skipped, but it also slows down the
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algorithm considerably. A larger value of the granularity is faster, but might result in
a missed eigenvalue. An efficient compromise is to pick a value of the granularity that
will probably, but not necessarily, find all of the eigenvalues and then check for missed
eigenvalues using an additional scan. For this purpose, our inverse iteration routine
features a third mode that we call “check mode”. This mode works much like scan
mode except that A is always started from the lower bound on the spectrum. A random
initial v is used, and it is orthogonalized to all of the vectors that have been previously
found. Since the remaining spectrum is almost empty in the region of the scan, it is
very difficult to miss an eigenvalue again. In case a missed eigenvalue is found, the
check scan is repeated one more time to make sure that there are no additional missed
eigenvalues. Since A must scan all the way up from the lower bound, it is more efficient
to find a vector during the initial scan than to pick it up in check mode. In practice, the
best average performance has been found to result from picking a value of the granular-
ity which allows the scan to miss an eigenvalue every few diagonalizations. The check
mode is also useful in combination with the initialized mode, in order to check for a
level crossing into the part of the spectrum under investigation, from the range outside.
With reasonably accurate values of the granularity and a correct lower bound on the

spectrum, check mode has never been observed to fail to find a missed eigenvalue.

4.3.2 Solving the linear system

Inverse iteration is usually employed with matrices with special forms, such as tridiag-
onal, that allow an analytic solution of Eq. 4.2. We have found that sparse systems
can be handled by solving Eq. 4.2 with a conjugate gradient iterative solver [73]. With
care to avoid a singular linear system and preconditioning of the conjugate gradient, an
efficient eigensolver can be constructed.

The basic inverse iteration algorithm drives Eq. 4.2 to singular behavior and leads

to slow convergence of the linear solver. This drawback is easily overcome: In order to
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get good enhancement of the desired eigenvector, it is only necessary that A(*) be close
enough to ¢; so that ¢; is amplified much more than other states; it is not necessary
to drive the linear system singular. We call the distance to the nearest eigenvalue
the offset y(*) = |A(®) — ¢;|. If we wish to resolve the eigenvectors efficiently using
inverse iteration, A must be chosen so that ¥ << |ei31 — €;|. The convergence time for
conjugate gradient (and virtually all other iterative eigensolvers) grows sharply as the
matrix (A — \) becomes singular. Therefore, controlling A in such a way that v does not
become too small significantly reduces the convergence time of the algorithm. Since ¢; is
not actually known, the quantity that is controlled is (™) = [A(™) — (v(")| H[v(7))]. If ()
is less than a quantity x called the minimum offset, we take A(®) = (v(®"|H|v(®)) — 4.
In initialized mode, let & be the initial estimate for ¢;. Then, when solving for ¢; and
the corresponding eigenvector the minimum offset u is initialized to a constant fraction
(0.05 works well for our systems) of €41 —¢;. In scanning mode, g is initialized to a small
constant (we use 0.05 again). Then, every time it is necessary to apply the minimum
offset to A, p is divided by a constant (we use v/10). This controlled reduction of g
ensures that the enhancement of the nearest eigenvector will eventually become large
enough that the algorithm converges. The reduction factor is chosen in such a way that
the algorithm converges before Eq. 4.2 becomes strongly singular.

The use of an offset to avoid a singular system is complicated somewhat by degener-
ate eigenvalues. In general, the spectrum is clustered into degenerate multiplets. If the
initial estimates are accurate, applying the above procedure to a degenerate eigenvalue
would result in z = 0 allowing the system to become very singular and the conver-
gence to become very poor. This problem can be avoided by noting that in order to
converge to the desired final accuracy 4, eigenvalues that differ by less than § do not
have to be resolved. Therefore, we can consider two estimated eigenvalues to be de-
generate if €41 — €& < 6. Since we do not attempt to resolve degenerate eigenvalues,

we can cluster together groups of degenerate eigenvalues. The criterion for efficient
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separation of the eigenvalues in the cluster from the rest of the eigenvalues becomes
7 << inf(cluster;1;) — sup(cluster;). Therefore, we can initialize £ to a small fraction
of inf(cluster;4+1) — sup(cluster;), which puts A in the gap between consecutive clusters.
The systematic reduction of the value of u ensures that eigenvalues that are clustered

but not truly degenerate will be quickly resolved well enough to converge.

4.4 Implementation Details

There are a number of issues that arose during the implementation of our inverse iter-
ation algorithm. These include a choice of a convergence criterion for the eigenvectors,
a choice of the convergence criterion for the linear solver, and a choice of a criterion for
switching between the initialized mode and the scan mode.

A natural convergence criterion on a eigenvector is to compute the fluctuation defined
earlier [Eq.(4.10)]. Let 6 be the tolerance. The vector »(®*1) is considered to be suffi-
ciently converged to an eigenvector when ¢("t!) < §. Note that this criterion has the di-
mension of A and that other criteria are possible, for example o("+1) /(v("+1)| F|p(n+1)),
which is dimensionless but clearly has problems for eigenvalues very close to 0. The best
choice of a convergence criterion is problem dependent. Yet, ¢(**1) < § is not sufficient
for a rather subtle reason. For a vector v decomposed as above using the basis of the
eigenvectors of H, the fluctuations are

o =1/2 Za?a?(e; - €)?, (4.12)

J
the problem being that because of the (¢; —¢;)? factors, o is not very sensitive to mixing
between states that are close together but nondegenerate. In particular, this problem
shows up in the failure of higher states to converge. Since the fluctuations are computed
after orthogonalization to previously found eigenvectors, a previous eigenvector that
has not been accurately resolved contributes a term to the fluctuation that can not be

reduced by a more accurate solution for the new eigenvector. The cumulative effect
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of a couple such terms can cause the new eigenvector to never reach the convergence
criterion. In order to avoid such problems, we introduced a second convergence criterion

based on

(]2 _ (@I = 072 — @ - 2)"pt)2 (v™)]5(n+1))
[0’ ] - (vM|(H = A)=2|v(n)) =7 (en+D)|(n+1))

(4.13)
This criterion solves the problem because (™) is much more sensitive to mixing between
eigenvectors close to A than o{"*!). The computation of (" is almost free because
the necessary quantities are already available. but it corresponds to the fluctuations
of (H — A)7! evaluated at the previous iteration. This does not seem to slow the
convergence of the algorithm. Finally, §{™) is weighted with a function of A in order to
give a convergence criterion comparable to the one on a{"+!),

[t is pointless to solve the linear system very accurately if accurate eigenvectors are
not needed. Therefore. in order to get the best possible performance, it is necessary to

relate the convergence criterion for the linear solver to the tolerance for the eigenvectors.

The convergence criterion for the solver is based on the norm of the residual of Eq. 4.2
Il = || (& ~ At g+1) - ). (4.14)

The solution #("*!) must be found accurately enough that |r| < &. where § is the con-
vergence criterion for the solver. We have been unable to find a theoretical relationship
between é§ and é. Therefore, we used an empirical relation of § as a function of §, which
ensures that a more accurate solution for #("*+!) would not affect the performance of the
inverse iteration routine.

In order to take advantage of the initialized mode, a criterion is needed for deciding
when the initial approximation to the spectrum is accurate enough. When the initial-
ization data comes from a previous diagonalization of a similar matrix. the maximum
difference between the eigenvalues of the old matrix and the expectation values of the
new Hamiltonian in the old eigenvectors provides a useful measure of how well the old

results approximate the desired new results. An even better determination is provided
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by diagonalizing the new matrix within the subspace of the old eigenvectors, and com-
paring the subspace eigenvalues to the old eigenvalues. When the old results do provide
an adequate initialization for the new diagonalization, the eigenvalues and eigenvectors
of this subspace diagonalization also provide much better initialization guesses than the

old eigenvalues and eigenvectors.

4.5 Optimized Inverse Iteration

4.5.1 Multigrid preconditioned conjugate gradient

When applied to sparse systems like those generated by discretizing a differential op-
erator on a real space grid, iterative linear solvers generally suffer from a convergence
slowdown due to long wavelength modes. An alternative way to view this problem is
to consider it as arising from the communication time to transfer information from one
side of the grid to the other in a consistent solution. Since multiplication by a sparse
matrix only transmits information to nearby points, the information must travel across
the grid one step at a time. By this argument, the number of matrix-vector multiplies
needed to solve a system should at best scale proportionally to the number of points
across the grid. Typical grids used in real space electronic structure calculations have of
order 100 points in each spatial direction. Therefore, this effect can cause a significant
slowdown.

Multigrid methods make it possible to avoid this slowdown [74]. The basic idea is
to solve a problem on several different grids at the same time. Since typical iterative
linear solvers converge modes with wavelengths comparable to the grid spacing very
quickly, using grids with many different grid spacings allow all modes to be converged
quickly. The multigrid technique has been very successfully applied to solving discretized
partial differential equations. More recently, it has been successfully applied to electronic

structure calculations with euclidean metrics [41, 33].
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Typically, the multigrid approach has been used to accelerate relaxation methods
such as Jacobi relaxation or steepest descent. A standard multigrid cycle starts with a
few relaxation (or “smoothing™) steps on the finest grid in order to converge the highest
frequency modes. Once the high frequency modes are converged, the residual of the
linear system has no high frequency components. This residual is then represented on
the next coarser grid using a restriction operator R. Since the residual did not have any
high frequency modes, this representation is accurate. The relaxation and restriction
operations are repeated on successively coarser grids until, at some coarse level, the
problem is easily solved exactly. The process is ran in reverse with a prolongation
operator P, used to represent each coarse grid result on the next finer grid. At each
grid level, the result from the next coarser grid is added to the previous solution, and a
few relaxation iterations are applied in order to incorporate the coarse and fine results
together. When the finest level is reached, the convergence criterion is evaluated and, if
not satisfied, the whole process is repeated. The trick is that since the residual on each
grid level is smooth after a few relaxation iterations, it can be accurately represented
on a coarser levei.

When used by itself, the conjugate gradient algorithm is usually much more efficient
than relaxation methods, but suffers from a slowdown due to long wavelength modes.
One advantage of the conjugate gradient algorithm is that it can be preconditioned.
This means that if one wants to solve Az = b, there is a straightforward modification
of the algorithm that allows the solution of A~'Az = A~1b instead, where A is some
operator that is much easier than A to invert. If A is an approximation of A, A=14
is close to the identity, and the linear system is much easier to solve. A natural idea
is to take A to be the representation of A on a coarser grid i.e. 4 = PAR. The
coarser grid problem is much smaller and, therefore, much easier to invert. Furthermore,
A~1 4 should appear be the identity to the long wavelength modes that are causing the

slowdown problem. A look at the preconditioned conjugate gradient algorithm reveals
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that A~! is only applied to the residual, which should be smooth after a few iterations.
This is additional indication that this approach may work effectively.

We have found that this approach does indeed work, and that it successfully elim-
inates the grid size dependence due to long wavelength modes (see Section 4.6). One
unexpected difficulty resulted from the fact that A has a very large null space since it is
a projection into a smaller space and back. This null space contains only high frequency
modes, but due to the workings of the preconditioned conjugate gradient they will never
be eliminated from the residual if PAR itself is used as the preconditioner. One way
to avoid this problem is to sandwich PAR between two Jacobi relaxation steps. This
keeps a symmetric preconditioner and provides a pathway through which the null space
of PAR can be eliminated from the residual. The cost of this procedure is two extra
matrix-vector multiplies in order to perform the two additional Jacobi relaxations per
iteration. Despite this extra cost, this preconditioner provides the best performance
that we have found. Another difficulty is that the attractive potential felt by the elec-
trons near the nuclei quickly loses meaning when calculated on coarse grids. Therefore,
it does not make sense to include these terms in the coarse grid representation of the
Hamiltonian. A low order regular grid representation of the Laplacian and the constant

shift A are adequate on the coarse grid.

4.5.2 Subspace diagonalization

Despite its strengths, inverse iteration is not a very efficient method for resolving nearly
degenerate states. In order to resolve such states in a few iterations, A must be driven
much closer to one of the eigenvalues than the other. In general, this results in a singular
Eq. 4.2 and poor performance of the linear solver. In contrast, standard dense matrix
routines are unacceptably slow when applied to very large sparse matrices, but they are
very good at resolving nearly degenerate states. The advantages of the two approaches

can be combined by replacing the local block orthogonalization steps in the inverse
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iteration algorithm described above with local subspace diagonalizations. Subspace
diagonalization works as follows: Given an arbitrary set of n, vectors v;, construct the
subspace Hamiltonian H;; = (v;|H|v;) and the subspace overlap matrix S;; = (vilvj).

Then, solve the generalized eigenvalue equation
Ho; =€5¢;. (4.15)

Since this is a n, dimensional equation where n, is a small number, the time used to
solve it with an O(N?3) algorithm is negligible compared to the rest of the computations.
Mixing the vectors v; according to the components of @; gives a new vector w;. The set
of w vectors has the useful properties (w;|w;) = 6;; and (w;|H|w;) = &6;;. The w vectors
are as close as one can possibly get to eigenvectors using a combination of the v vectors.
If the v vectors are the result of inverse iteration, all of the eigenvectors that correspond
to far away eigenvalues have been strongly suppressed. Therefore, if there are as many
independent v vectors in a local block as there are eigenstates in that region of the
spectrum, the w vectors will be very close to eigenvectors of the full space. Note that it
was not necessary to resolve the vectors within the subspace with the inverse iteration
part. Therefore, A can be chosen as a convenient value in the proper region of the
spectrum, and singular equations are avoided. Each algorithm does what it is best at —
inverse iteration eliminates all the eigenvectors that have much different energies, while
the O(NV?3) diagonalization algorithm takes care of possible degeneracies. In practice, the
local blocks that are used for local subspace diagonalization are somewhat different from
the blocks used for local orthogonalization. With subspace diagonalization, it is useful
to include nearby (i.e. € & A) initial guess states that have not yet been refined, as well
as the previously converged states. Furthermore, at each inverse iteration, instead of
eliminating the old v(* from the space and replacing it with (**1) it is useful to increase
the dimension of the space and diagonalize with both states. After diagonalization, the
highest energy state can then be eliminated. This ensures that all of the vectors in the

block will steadily converge toward the desired eigenvectors.



Chapter 4: [nverse [teration 115

4.5.3 Subspace preconditioning

Despite the best efforts to avoid singular systems in Eq. 4.2, they cannot be avoided
completely. Therefore, it is useful to precondition the subspace of states with energies
as close to A as possible. Subspace diagonalization provides an effective means of doing

this. Within the subspace spanned by the w vectors, the inverse of H — A is exactly

(H - 25" = le, 5 (wil- (4.16)

During the preconditioning step of the conjugate gradient algorithm, this part of the
space can be projected out and preconditioned in this fashion, while the remainder of
the space is preconditioned with the multigrid procedure described above. When the w
vectors come close to spanning the subspace of states with energies close to A (which
is usually the case in the initialized mode), this is a very effective preconditioner that
greatly reduces the dependence of the linear solver performance on the singularity of
the system. In fact, for typical situations with this preconditioner, A must differ from

an eigenvalue by less than 10~ Ry before the solver becomes noticeably slower.

4.6 Results

In order to evaluate the performance our inverse iteration algorithm, we carried out a
number of all electron Kohn-Sham density functional calculations of the ground state
energy of the hydrogen atom in a 12 x 12 X 12 a.u. box. We used cubic grids with 32,
64, and 128 points on each side, and we used both a real space regular grid method and
our adaptive coordinate real-space electronic structure (ACRES) method. The ACRES
grid was adapted so that the grid spacing close to the hydrogen atom was reduced by a
factor of 16 compared to the regular grid spacing. For each of these cases, we carried out
a computation using three different eigensolver methods: Lanczos with implicit restart
using a 40 vector Krylov space; Modified Inverse Iteration, the algorithm described

in this chapter in Sections 4.2 — 4.4 (i.e. without multigrid preconditioning, subspace
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Table 4.1: Average number of matrix-vector multiplies per diagonalization and average
time per diagonalization as a function of grid size. Timings are from a density func-
tional calculation of the ground state energy of the hydrogen atom using a real space
regular grid method or our adaptive coordinate real-space electronic structure {ACRES)
method. Times are cpu seconds per processor on a 256 node Thinking Machines CM-5E,
for the three algorithms discussed here, Lanczos, Modified Inverse Iteration (I.I.) and

Optimized LI (see text).

Grid type Lanczos Modified I.I. Optimized I.I.

type size || multiplies time | multiplies time | multiplies time
Regular 323 104 2.00 56 1.34 7 0.74
Regular 643 198 7.68 105 6.35 7 1.38
Regular 128% 539 97.10 213 59.92 9 6.50
Adapted 323 4860  78.93 154 2.59 14 0.82
Adapted 643 22041  826.77 320 14.78 13 2.34
Adapted 1283 — — 709 147.25 15 13.34

diagonalization, or subspace preconditioning); and Optimized Inverse Iteration, the full
algorithm described in this chapter including the optimizations in Section 4.5. For each
computation, we recorded the number of matrix-vector multiplies and the cpu time per
processor used to find the ground state eigenvector during each self-consistency step.

Table 4.1 shows the results of averaging these values over the self-consistency iterations.

The number of multiplies used by the Lanczos calculation clearly shows the disas-
trous dependence of the convergence rate on the width of the spectrum. The results
were not bad for the regular grid, in which case the number of multiplies approximately

doubles when the number of points across the grid is increased by a factor of 2. However,
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with the adapted grid, the Lanczos calculations were so inefficient that we were not able
to obtain any results for the 128 x 128 x 128 grid. The factor of 16 change in spacing
between the adapted and regular grids, produces as much as a factor of 256 increase in
the width of the full spectrum. This slows down the calculation by a factor of 47 and
115 for the 323 and 643 grids respectively. While the performance degradation is not as
bad as expected if the the Lanczos algorithm is assumed to scale with spectrum width,
it is clear that this algorithm does not provide a useful eigensolver for computations
with strongly adapted real space grids.

Even without multigrid preconditioning, subspace diagonalization, and subspace
preconditioning, our inverse iteration algorithm performs slightly better than Lanczos
for the regular grid and dramatically better for the adapted grid. The convergence
does not show the dependence on the spectrum width inherent in Lanczos. Instead,
the adapted grid calculations consistently take about 3 times as long as the regular
grid calculations. This is not unreasonable given that the nonuniform metric of the
adapted grid makes the eigenvalue problem somewhat more difficult to solve. The
required number of multiplies does show a dependence on the size of the grid: doubling
the number of points across the grid doubles the number of matrix-vector multiplies.
This is consistent with the argument that multiplying by a sparse Hamiltonian only
communicates information one step at a time, since information must be communicated
all the way across the grid in order to obtain a consistent solution.

Adding multigrid preconditioning, subspace diagonalization, and subspace precon-
ditioning substantially reduces the number of matrix-vector multiplies required for a
diagonalization. It also eliminates the dependence on the grid size as would be ex-
pected for a properly functioning multigrid algorithm. The adapted grid calculations
are still somewhat more costly than the regular grid calculations with the same number
of points, but now the average change is reduced to less than a factor of 2. Once again

this probably reflects difficulties due to the position dependent metric of the adapted
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grid.

The computational time should increase by a factor of 8 over the increase in the
number of multiplies when the number of points across the grid is doubled. This is due
to the O(ny) scaling of the matrix-vector multiply. This increase is not observed. The
reason is that even a 64 x 64 x 64 grid is not very big for a 256 node (1024 vector unit)
parallel computer. The increase in parallel efficiency offsets a significant part of the

increase in computational difficulty.

4.7 Conclusions

We believe that inverse iteration offers a promising iterative method for finding selected
eigenvalues and eigenvectors of large sparse matrices. The traditional limitations on
inverse iteration can be overcome by suitable modifications of the algorithm and by
using carefully preconditioned conjugate gradient as the linear solver. Inverse iteration
avoids a couple of pitfalls that plague other iterative eigensolvers, namely global or-
thogonalization of eigenvectors and dependence of the convergence rate on the width
of the spectrum. Modifications of the algorithm allow it to resolve nearly degenerate
eigenvalues and make it possible to avoid inefficiencies due to long wavelength mode
propagation. The modified inverse iteration is particularly well suited to Kohn-Sham
electronic structure calculations using a real space basis, especially if adaptive grids
are used. Clearly in this algorithm, there is plenty of empirical numerical analysis and
optimizations. This description of the algorithm should be regarded as a framework to
be adapted to a particular class of problems and as a list of useful tricks that we found
to perform well. It can not be considered as a black box routine. Yet., we suggest that

adaptation of this method to other types of problems could offer a substantial payoff.
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Chapter 5
Applications

5.1 Introduction

Virtually all modern electronic devices are made by processing silicon wafers. Better
understanding of the phenomena that take place at the surfaces of silicon wafers is re-
quired in order to achieve better control over device processing, which can allow smaller,
faster, and cheaper devices. As electronic devices have become smaller and the desired
degree of control has increased, experimental and theoretical efforts to understand the
complex, nonequilibrium phenomena that take place during the processing of silicon
surfaces have increasingly focused on microscopic aspects. First principles electronic
structure calculations are a valuable tool in these investigations due to their unique
ability to predict the physical properties of systems at the atomic scale accurately. Our
ACRES method is especially well suited to the study of surfaces in general, because
it can handle efficiently the large regions of vacuum that are required in order to iso-
late surfaces. When difficult atoms such as those with 1s, 2p, or 3d valence electrons
are present, the inefficiency of treating the entire vacuum region with the high resolu-
tion needed to represent the difficult states becomes overwhelming. In this case, the

ACRES method offers an even larger advantage over standard methods. One of the
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most important processing steps in the fabrication of silicon based electronic devices
is the addition of oxygen in order to create regions of insulating SiO,. A particularly
important and poorly understood part of this process is the initial absorption of the
oxygen at the silicon surface. Oxygen is one of the most difficult atoms to treat with
standard pseudopotential electronic structure methods because of the extremely high
resolution required to represent its 2p electronic states. Since the simulation of the
oxygen absorption process involves both a large region of vacuum and a very difficult
atom, it is in a sense an ideal application for the ACRES method. In the rest of this
chapter, we will give a brief review of the reconstruction of the clean silicon surface in
Section 5.2, we will consider some general points relevant to the absorption of oxygen
in Section 5.3, we will give the results of some ACRES calculations in Section 5.4, and

we will discuss our conclusions and future plans in Section 5.5.

5.2 Reconstruction of the Silicon Surface

The absorption of oxygen at the silicon surface is complicated by the the fact that the
clean silicon surface is reconstructed. This reconstruction creates many inequivalent
sites at which the oxygen could initially bond to the substrate.

In 1959, Schlier and Farnsworth studied the microscopic structure of the Si (100)
surface using low energy electron diffraction and obtained evidence of a (2 X 1) recon-
struction [75]. They proposed that this structure resulted from the formation of dimers
on the surface. A reduction from 2 dangling bonds per surface atom to 1 dangling bond
per surface atom is the primary driving force behind the dimerization. Let the z axis
be oriented perpendicular to the (100) surface under discussion, and take the z axis to
correspond to the [110] direction. The unreconstructed surface atoms are originally in
their bulk positions, which form a square lattice with a lattice constant of 7.26 a.u., the
second nearest neighbor distance. During dimerization, the atoms move toward each

other along the z axis to form a bond. The dimers lie side by side in rows running
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along the y direction, which is perpendicular to the dimer bonds. The dimerization also
induces atomic displacements in the layers near to the surface.

Further measurements using low energy electron diffraction, photoemission, and He
diffraction revealed the presence of preparation dependent p(2 x 2) and ¢(4 x 2) recon-
structions of the silicon surface. An empirical tight-binding calculation by Chadi [76]
indicated that a tilted dimer had a slightly lower energy than a symmetric dimer, and
it was observed that tilted dimers could explain the larger reconstructions. If the re-
flection symmetry through the center of the dimer bond is spontaneously broken, the
z and z displacements of the two atoms that form a dimer are different, and a tilted
dimer is produced. The dimer is said to be ‘buckled’. If alternating dimers in the same
chain are tilted in opposite directions, but nearest neighbor dimers between chains are
tilted in the same direction a p(2 x 2) reconstruction in produced. If neighboring dimers
both along and perpendicular to the chains are tilted in opposite directions, a ¢(4 x 2)
reconstruction results.

Tromp, Hamers, and Demuth directly observed the dimers with scanning tunneling
microscopy and confirmed that dimer rows were the basic reconstruction on the Si (100)
surface [77, 78]. At room temperature, their measurements revealed the presence of both
tilted and untilted dimers. They also observed that the tilt directions of nearby dimers
were arranged to produce regions of p(2 x 2) and ¢(4 x 2) reconstruction in addition to
the basic (2 x 1) reconstruction.

Wolkow carried out scanning tunneling microscope measurements at low temper-
ature and observed that the number of buckled dimers increased as the temperature
was decreased [79]. He interpreted this as an indication that the buckled dimers had a
lower energy than the symmetric dimers. A number of first-principles calculations have
supported this picture [80, 81, 82]. The energies of symmetric and buckled dimers are
rather similar, but it is now generally accepted that accurate first principles calculations

give a slightly lower energy for the buckled dimer. At room temperature, the dimers
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are predicted to fluctuate between the two bistable buckled states, but at very low tem-
peratures the fluctuations become frozen in and alternating buckled rows are formed in
which each dimer is buckled in the opposite direction of its four neighbors. This gives

an overall ¢(4 x 2) reconstruction of the surface.

5.3 Oxygen Absorption on the Silicon Surface

Very little is known about the way in which oxygen is absorbed at the silicon surface.
Therefore, a good deal of care is required in order to make sure that computational
methods are appropriate and do not bias the results. In order to obtain an accurate
quantitative understanding of the microscopic processes during the initial stages of oxy-
gen uptake on the (100) surface, it is essential to apply a very accurate theoretical model
to the study of the system. Empirical potentials are not accurate for surfaces and do
not tilt the dimers. Tight binding simulations have only been extensively tested for
systems with a single type of atom. On the other hand, without any empirical infor-
mation, density functional electronic structure computations determine most properties
of silicon within 1% agreement with experimental results, and consequently such calcu-
lations are well suited for quantitative study of silicon based structures. Furthermore,
our ACRES approach is particularly well suited to this problem due to its ability to
handle efficiently the large difference between the length scale needed to represent the
vacuum region and the length scale needed to represent the 2p orbitals of the oxygen
atom. Doing an accurate calculation for an oxygen atom in a 7 x 15 x 41 a.u. box
using a plane wave code would require of order 500000 plane waves and would produce
a Hamiltonian with roughly 2.5 x 10! nonzero entries. In contrast, the ACRES method
uses only 124416 grid points and obtains a very sparse Hamiltonian, while maintaining
a faithful representation of the system.

The large phase space of possible absorption paths for oxygen on the silicon surface

makes the investigation of this system challenging. A molecular dynamics simulation
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would be too expensive. Likewise, a full determination of the energy surface as a function
of all of the atomic coordinates would be prohibitive. Instead, we aim to determine the
energies of various special configurations, namely some of the local minima and saddle
points the energy surface. The global minimum of the energy is particularly important
because it gives the equilibrium configuration of the structure at low temperature. Other
local minima are occupied at finite temperatures and may indicate metastable states in
which the system can become stuck for extended periods of time. The saddle points of
the energy surface correspond to the transition states of the system, and their energies
give the energy barriers for transformation between the various minima. Thus, they
determine the dynamic properties of the system. Collective properties of the system
at finite temperature could be found by feeding the results of such a first-principles
calculation into a simulation of larger scale processes using, for example, the Monte
Carlo technique [83, 84].

In order to determine the energies of local minima and saddle points of the energy
surface, we start with a given configuration and then relax the atomic coordinates
according to the forces in a steepest descent approach. The procedure is continued until
the forces are sufficiently small. Depending on the initial structure, either the global
or a local minimum may be found. If various symmetries are maintained during the

procedure, some of the saddle points of the energy surface can also be found.

5.4 ACRES Results

5.4.1 Symmetric Dimer

First, we investigated the surface reconstruction without any oxygen present. Initially,
we relaxed the dimer but enforced reflection symmetry in a plane perpendicular to the
dimer bond. This results in a symmetric dimer reconstruction. Fig. 5.1 shows the self-

consistent electronic charge density that we obtained from this calculation. For this
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Figure 5.1: The charge density for a symmetric dimer reconstruction of the
Si (100) surface shown in a cross-section through the center of the dimer
bond. The size of the unit cell has been doubled in the direction parallel to
the dimer in order to make it easier to see the dimer. 8 layers of Si atoms
and 1 layer of surface terminating H atoms are included in the calculation,
but only 4 layers of Si atoms and the H atoms can be seen in this cross-
section. There are 2 additional rows of Si atoms located out of the plane of
the picture between each of the sets of rows that are visible. The H atoms
appear as bright spots because they have a much higher charge density than

the Si atoms.
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calculation, we held the bottom two layers of Si atoms fixed at their bulk locations,
and we allowed the rest of the atoms to relax. In order to make the atoms far away
from the surface act as much as possible like they were in the bulk solid without having
to simulate a large region of bulk Si, we terminated the lower surface with hydrogen
atoms. Since each hydrogen atom forms a single covalent bond, all of the Si dangling
bonds are satisfied without creating any new dangling bonds.

With this reconstruction, the bands associated with the surface states cross the
Fermi energy producing two partially filled bands. As is often the case in metallic
systems, it is difficult to sample the Brillouin zone well enough to determine the Fermi
surface accurately. For a reduced system with 5 layers of Si atom, we carried out a series
of calculations with different sampling schemes with up to 15 inequivalent (32 total) k-
points. For the purpose of relaxing the coordinates, we chose a sampling scheme with 6
inequivalent (8 total) k-points that was sufficient to converge the forces to better than
10 mRy/a.u. with respect to the number of k-points. Since the error in the relaxed
energy is second order in the error in the atomic positions, this accuracy in the forces
should be adequate for relaxation of the coordinates as long as only energy differences
are needed. However, a much larger 15 inequivalent k-point calculation for the final
atomic positions was needed in order to ensure that the energy itself was well converged

with respect to the number of k-points.

5.4.2 Buckled Dimer

Next, we removed the constraint of reflection symmetry in a plane perpendicular to
the dimer bond. The dimer tilts while relaxing the atomic positions without enforcing
any symmetry between the two atoms of the dimer. This buckling of the dimer can be
viewed as a Jahn-Teller distortion driven by the degeneracy at the open Fermi surface
of the untilted dimer. By tilting the dimer, the Fermi surface is closed and the energy

is lowered. Since we are not especially interested in low temperature properties, we
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did not worry about the subtle interactions between the tilt directions of neighboring
dimers. Instead, we assumed that every dimer tilts in the same direction. This gives
us the smallest possible unit cell that can be used to investigate a dimerized surface.
Fig. 5.2 shows the self-consistent electroric charge density that we obtained from this
calculation. Since we determined from our calculations for the symmetric dimer that
the relaxations were small after the first four layers from the surface, we have focused
on the interesting region near the surface by including only 5 layers of Si atoms. We
held the bottom layer of Si atoms fixed at their bulk locations, and we allowed the rest
of the atoms to relax. We used 6 inequivalent k-points to sample the Brillouin zone,
and we relaxed atoms until the forces were all less than 5 mRy/a.u. The dimer bond
has a length of 4.26 a.u., which is substantially shorter than the bulk bond length of
4.44 a.u. Since the formation of the dimer involves considerable strain, this indicates
that the bond has substantial double bond character. The backbond for the lower atom
in the dimer is 4.31 a.u. long, indicating that it is somewhat stronger than a regular
bond. The backbond on the higher atom in the dimer is 4.40 a.u. long, which is only
slightly shorter than the bulk bond length. The corresponding lengths obtained by Yin
and Cohen are 4.25 a.u., 4.35 a.u., and 4.42 a.u. respectively [80]. Thus, we obtain
excellent agreement with other theoretical calculations.

For the different k-point sampling schemes that we tried, we found that the dimer
buckled in all cases. Even though the buckled dimer state has a lower energy, the
energy of the symmetric state is important because it represents the activation barrier
for conversion from one buckled state to the other (i.e. the “flipping” of the dimers seen
in experiment). The energy difference between the buckled and symmetric dimer varied
between 26 meV for an 8 inequivalent (16 total) k-point sampling scheme and 297 meV
for a 2 inequivalent (8 total) k-point scheme. This large range of values obtained from
different k-point sampling schemes reflects a well known difficulty in performing density

functional calculations for metallic systems, which is aggravated in this case by the
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Figure 5.2: The charge density for a buckled dimer reconstruction of the
Si (100) surface shown in a cross-section through the center of the dimer
bond. We have concentrated on the interesting region near the surface by
including only 5 layers of Si atoms and 1 layer of surface terminating H
atoms in the calculation. Only 3 layers of Si atoms can be seen in this cross-
section. There are 2 additional rows of Si atoms located out of the plane
of the picture between the dimer and the top rows. The four H atoms that
terminate the bonds on the bottom row of atoms are also located out of the

plane with two atoms in front of the plane of the figure and and two behind.
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small size of the energy difference between the two configurations. The most accurate
calculation (15 inequivalent k-points) gave an energy difference of 140 meV. This is in
good agreement with the 200 meV value obtained by Yin and Cohen [80] and the more
recent result of 100 meV obtained by Dabrowski et al. [81].

5.4.3 Oxygenated Dimer

As a first attempt at including oxygen into the system, we put an oxygen atom into the
middle of the symmetric dimer bond. This is likely to be a low energy location for the
oxygen because it allows the dangling bonds to be as well satisfied as they are with the
dimer, while releasing much of the stress due to the dimer formation. Fig. 5.3 shows
the self-consistent electronic charge density that we obtained from this calculation. In
order to show how the ACRES method applies to a complicated system like the one
studied here, we include a cross-section of the grid that was used for this calculation in
Fig. 5.4. Notice the mild enhancement of the grid density near the Si atoms, the larger

enhancement for the H atoms, and the high density of points achieved at the O atom.

5.5 Discussion

The work described so far is an appealing demonstration of the capabilities of the
ACRES method, but much remains to be done in this study of oxygenation of the
Si(100) surface. Obvious additions include a better k-point sampling for the symmetric
dimer and a calculation for a buckled dimer with oxygen included in the middle of the
dimer bond. Numerous other sites where oxygen might be incorporated into the system
also need to be examined in detail. The problem is quite difficult, with a very large
configuration space that must be explored. We feel that these early results demonstrate
that ACRES is the right tool to use for this difficult system, and we have great hopes
for what this method will eventually achieve. Identifying the most probable sites for

oxygen incorporation on Si surfaces, as well as pathways for diffusion between them, is
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Figure 5.3: The charge density for a symmetric dimer reconstruction of the
Si (100) surface with a half monolayer of oxygen inserted into the dimer
bonds. The figure shows a cross-section through the center of the dimer
bond. The size of the unit cell has been doubled in the direction parallel
to the dimer in order to make it easier to see the dimer. The oxygen, 8
layers of Si atoms and 1 layer of surface terminating H atoms are included
in the calculation. There are 2 rows of Si atoms located out of the plane of
the picture between each of the sets of rows that are visible. The O atom
appears as a very bright spot due to its very large charge density relative to

other atoms, even the H atoms.
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Figure 5.4: The grid used for the dimer with oxygen shown in cross-section
through the center of the dimer bond. The size of the unit cell has been
doubled in the direction parallel to the dimer in order to make it easier to

see the dimer.
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a task that we envisage completing in the near future.



Chapter 6

Conclusion and Prospects

We believe that the work discussed in this thesis demonstrates that an adaptive ba-
sis approach can substantially improve the efficiency and extend the applicability of
quantum mechanical calculations. Although we obtained only moderate gains for the
quantum spin systems discussed in Chapter 2 due to the extreme difficulty of solving
these systems, the ACRES approach coupled with the algorithms of Chapter 4 promises
to extend the usefulness of ab initio electronic structure computations significantly for
inhomogeneous materials. The application of the ACRES method to the simulation of
real physical systems that could not be studied practically using other methods is ongo-
ing. The variational Hilbert space truncation approach would surely provide much more
dramatic gains for systems whose basis states have a stronger hierarchy of importance.
Our implementation of this approach waits only for a physically interesting problem
of this type to come to our attention. The inverse iteration eigensolver discussed in
Chapter 4 is very likely to provide excellent performance for a variety of problems that
involve finding a few eigenvalues of a large sparse matrix, especially those with a wide
spectrum. We look forward to applying it to other systems as well as continuing to
optimize it for our ACRES calculations.

Although a substantial amount of effort was required in order to implement the
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methods discussed in this thesis efficiently on parallel computers, we were eventually
able to achieve good parallel efficiency, and we feel that the extra effort was justified
by the extra power provided by massively parallel computation. The huge matrices
associated with the larger spin clusters investigated in Chapter 2 could not have been
diagonalized using conventional computers. Likewise, the power of parallel machines
is helping our ACRES method to reach beyond systems that have been conventionally
studied with ab initio techniques.

One remaining issue is that we have no way of guaranteeing that the ACRES method
generates the best possible grid for determining the most important quantity in an
electronic structure computation, the total energy. Picking a set of parameters that
generates a nearly optimal grid for a complicated system still requires a considerable
amount of experience and physical intuition. One exciting prospect that offers to remedy
this situation is the combination of our variational truncation aporoach with an adaptive
electronic structure method. The techniques discussed in Chapter 2 are immediately
applicable to any local refinement scheme that maintains a variational principle, such
as methods that use wavelets as a basis. The addition of basis states in order to refine
the resolution in difficult regions and the removal of basis states in order to maintain
a space of manageable size could be treated exactly as in our variational Hilbert space
truncation approach. Unlike methods in which the resolution is enhanced to a certain
extent within a predetermined radius of each atom, which can lead to incorrect treatment
of atypical behavior in the bonding region, a variational approach would automatically
achieve the optimal resolution everywhere in the system without any prejudice towards
expected behavior. Furthermore, a variational approach would eliminate the tricky art
of guessing the parameters that determine how the resolution varies in space.

As mentioned in Chapter 3, the problem with a local refinement electronic struc-
ture approach is that it is much more difficult to parallelize efficiently than the ACRES

method. The difficulty of parallelizing a local refinement implementation efficiently is
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closely related to the challenges encountered when parallelizing our variational Hilbert
space truncation method. Although the techniques discussed in Chapter 2 achieve
reasonable parallel performance, they do not approach the efficiency of the naturally
parallel ACRES method. On the other hand, a variational basis truncation approach
can not be directly combined with our ACRES method because the energy found us-
ing the finite difference approximation is not variational. One possible way to regain
a variational energy is to replace the finite difference approximation with a finite ele-
ment approach. By using the grid points determined by an ACRES type coordinate
transformation as the nodes of a finite element mesh, the advantages of the ACRES
method could be retained while, in principle, a variational energy could be maintained.
Since the basis elements in such an approach would evolve continuously as the coordi-
nate transformation was adjusted rather than being suddenly added or removed. the
approach of Chapter 2 would have to be modified. but the principles should remain the
same. Since such an approach would require the analytic evaluation of a large number of
integrals involving the irregularly shaped finite element shape functions, it would likely
require considerable coding effort. However, the finished product would almost surely

be very powerful indeed.
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