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Thesis advisor Author

Eugene Demler Ryan Barnett

Studies of strongly correlated systems: from first principles
computations to effective hamiltonians and novel quantum

phases

Abstract

In this thesis we derive minimal effective hamiltonians from more detailed theories
which are used to predict novel quantum phases of solid state and atomic and molec-
ular systems. We consider the solid state systems of transition metal dichalcogenides,
strands of stretched poly(CG)-poly(CG) DNA, and carbon nanotubes. The cold
atomic and molecular systems we consider are alkali atoms in the F' = 2 hyperfine

state and dipolar molecules in an optical lattice.
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Chapter 1

Introduction

1.1 Outlook: the central challenge

The central paradigm used to make predictions in this thesis, and, indeed, in con-
densed matter physics is illustrated in Fig. 1.1. The idea is to start with the general
many body hamiltonian which is typically intractable for systems of interest. Thus,
instead of trying to directly solve this most general hamiltonian we make approxi-
mations to arrive at a minimal effective hamiltonian which has enough information
to describe the central physics that we are interested in but not much more. We
refer to this as step (a). The next step is to solve (or solve approximately) this ef-
fective hamiltonian so that predictions can be made, which we refer to as step (b).
Sometimes step (a) is the bottleneck, while at other times it is step (b).

This method is perhaps best understood through a few examples. For the first

example, we will take an electron phonon system, described by the Frohlich hamilto-
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Chapter 1: Introduction 2

General many—body problem Effective model

e.g.
H=-t Z CI(,C]'U + UZniTniL

(i)e @

Lo, ! G5 _
(Zﬁv +§; o] | Yrseot) =B ¥l r)

(b)

Predictions

Figure 1.1: The process of starting with the most general many-body hamiltonian
which will describe all properties of a solid. Unfortunately it is intractable, so in step
(a) simplifying approximations are made to derive an effective hamiltonian having
enough detail to explain the desired physics but little more. Then analysis of this
effective hamiltonian is performed in step (b) so that predictions can be made.
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Chapter 1: Introduction 3

nian

1
H = Z ekcfwcka + Z Qﬁ (af(ak + 5)
ko k

+ Z gkk’cir(gck’a(ak—k’ + a;r(,_k) (1.1)
kk'c

J ¥
+ Z ka/ ck+qa ck’—qa’ Ck’o' Cko -
kk'qoo’

This describes a band of electrons created by cfm coupled to phonons created by a:fl.
For the sake of illustration here we consider only one electronic band and one phonon
mode. Step (a) consists of deriving this model from first principles and coming up
with realistic parameters for the hamiltonian Eq. (1.1). A considerable industry in
this has been established during the 1980s and 90s [29] motivated by the desire to
predict the properties of superconducting materials from first principles. The main
tool used is density-functional theory (DFT) which approximately solves the many-
body equations within the so-called local-density approximation [122]. The single
particle electron quasiparticle energies €j, are typically taken from the metallic band
computed using DFT. The energy of the normal phonon modes {2, can be computed
by evaluating the energy difference (again, using DFT total energy calculations) of
the equilibrium and distorted lattice structures; the lattice distortions corresponding
to the normal phonon modes can typically be obtained from the symmetry of the
crystal. The electron phonon coupling vertices gy can be computed by using the
Kohn-Sham eigenstates ¢y (r) to evaluate matrix elements (for more details on this,
see Appendix A.1). Finally, coming up with a realistic expression for the Coulomb
interaction has proven to be the most difficult aspect of the process. This is partly due
to the fact that DFT already includes an amount of the electron-electron interaction

(through, for instance, the Hartree term), so writing a term that is not accounted
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Chapter 1: Introduction 4

for in DFT is difficult. Thus, there is a bit of an art to correctly accounting for the
Coulomb interaction; we will not go through all of the details here. This completes
step (a).

Once we have a reliable Frohlich hamiltonian, we can perform step (b) to make
predictions. An important area where step (b) has been applied is in predicting
the transition temperature of “conventional” supérconductors (i.e. superconductors
described by the BCS theory). The method used here is to derive the so-called
Migdal-Eliashberg equations (see, for instance, [3]) which are self-consistent equations
in terms of the superconducting gap. The superconducting transition temperature
will be the temperature at which a nonvanishing solution for the gap appears. This
method has been used over the years to calculate the transition temperature of real
materials. One success of the method was the prediction that silicon will become
superconducting under pressure [31] which was later verified experimentally. More
recently, the method has been applied to the superconducting compound MgB, where
the superconducting gap structure was analyzed.

The Frohlich hamiltonian also can describe the charge-density wave transition
(and predict the temperature at which it occurs), which is endemic to one-dimensional
systems. We described a method based on the random phase approximation (RPA)
in Chapter 4 which we apply to carbon nanotubes.

Our next example has become somewhat dubious in recent years, and is an ex-
cellent paradigm of strongly correlated physics where there is competition between
kinetic and potential energy. Despite appearing simple, we will see that the two-step

process is quite difficult for this case. The Hubbard model on a square lattice is
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Chapter 1: Introduction ' 5

defined by

H=—t Z CIGC]'U + UZniTnil (12)

(if)o i

where ¢;, obey fermionic commutation relations and n;,, = c}acw is the number op-
erator at site . This model has been central to condensed matter phySics during
recent vears, primarily because of its suspected connection with the high tempera-
ture cuprate superconductors. We will start with considering step (b). When U = 0,
the ground state is simply a filled Fermi sea of noninteracting electrons. The physics
is similar when ¢ > U; one can perform perturbation theory in U/t. This will yield
electrons that are dressed by a polarization cloud, but, for the most part, they will
have similar properties to the original undressed electron. More precisely, it is said
that one can adiabatically transform the electron into the quasiparticle without en-
countering any phase transitions (the essence of Fermi liquid theory). On the other
hand, when U is of the same order as t or larger, the ground state is not (even qualita-
tively) known. This regime is referred to as the strongly correlated regime where the
perturbation theory in the interaction strength fails. The question of whether or not
this Hubbard model has a superconducting ground state in this strongly correlated
regime is of central importance and is still not completely resolved. Thus step (b) is
quite difficult for the Hubbard model.

On the other hand, perhaps an even more important question is whether or not
the Hubbard model is the appropriate minimal model for describing the physics of
the high temperature superconductors (step (a)). For instance, suppose that someday
someone was able to unambiguously determine that the ground state of the Hubbard

model in the strongly correlated regime is a d-wave superconductor. Then this alone
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Chapter 1: Introduction 6

would not be sufficient to serve as a complete understanding of the superconductivity
in these materials. An impetus would certainly follow to more carefully determine
if the Hubbard is indeed the correct minimal model to capture the physics of the
cuprates. There are many ingredients that the Hubbard model does not contain
which are present in these materials. Whether or not these missing ingredients are
relevant or not is the central question. For instance, there are three bands at the
Fermi energy in the cuprates, while our model only has one. Other quantities present
in the material but not explicit in the model are impurities, phonons and electron-
phonon interactions, and the long-range Coulomb interaction. On the other hand,
including these effects would certainly make our model even less tractable.

There is a growing class of models which exhibit strongly correlated physics
thought to be relevant for real materials which are difficult to solve. On the other
hand, it is often the case that it is uncertain whether or not these models are cor-
rect for describing the material under consideration. This has been a fundamental
difficulty (and challenge) in strongly correlated physics.

The burgeoning field of optical lattices has provided new insights into the solu-
tion of model hamiltonians, thus helping to resolve this central difficulty in strongly
correlated physics. What makes these systems particularly interesting is that step
(a) can be carefully, and correctly done. That is, there is little doubt that the ef-
fective hamiltonian neglects any important terms. This enables, in principle, direct
realization (and solution) of such model hamiltonians in the laboratory.

In Chapters 2, 3, and 4 we consider the solid state systems of the transition metal

dichalcogenides, DNA, and carbon nanotubes. Crudely speaking steps (a) and (b)
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Chapter 1: Introduction 7

are of similar difficulty in these systems. In Chapters 5 we consider cold atoms and
molecules in optical lattices. As said before, there is little doubt that we are dealing
with the correct models here, and the impetus is placed on solving the model and

predicting novel quantum phases.

1.2 Overview of methods used to derive effective

hamiltonians

1.2.1 Density-functional theory

A starting point that we use in most (Chapters 2,3,4 but not Chapter 5) is the band
structure computed from the density-functional theory (DFT). This theory involves

the solution of the Kohn-Sham equations [87, 67, 88] which read

<—%V2 + Vion(r) + Vua(r) + ch(r)> (1) = €1 (r) (1.3)

where

/ g3 ) (1.4)

r—r/|
is the Hartree potential, and Vxc(r) is the exchange-correlation potential. The
Hartree and exchange-correlation potentials are typically solved self-consistently in

terms of the electronic density such that

n(r) = lez r)|*f(e) (1.5)

where f is the Fermi-function. The purpose of the exchange-correlation potential

is to capture contributions to the total energy which are not accounted for in the
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Chapter 1: Introduction 8

Hartree approximation. The most common way to describe such a term is through
the so-called local-density approximation [88] which is typically viewed as the most
common source of error in the method. More details of the Kohn-Sham equations
and density-functional theory are contained in the review article [122] and the book
by Kaxiras [84].

Density-functional theory has been wildly successful in accurately describing the
properties of conventional (i.e. not strongly correlated) solids. In addition, there has
been a recent push to capture the behavior of strongly correlated systems using exten-
sions of the conventional DFT methods. One ambitious extension which accounts for
quantum fluctuations is to augment DFT with dynamical mean field theory (DMFT)
[51], which is referred to now as DFT+DMFT [89]. It will be very interesting to see
how successful this method will prove to be in describing such materials.

The results from density-functional theory have been the starting point for many
of the studies in this thesis. A summary of the usage of DFT will now be given. In
Chapter 2 we use an all-electron code which uses a plane-wave basis set called Wien
2K [14] to compute the band structure of 2H-TaSe,. From this, the Wannier functions
centered on a single Ta atom are computed. These Wannier functions are used to
compute the magnitude of the hoppings between neighboring atoms. Comparisons of
these calculations are made with a simple minimal model throughout. In Chapter 3
a fairly similar approach is used. A method called Density-Functional Tight Binding
(DFTB) [47] was used. This uses a tight-binding method, but computes the charge
density self consistently. The results of this are use to compute the maximally local-

ized Wannier functions which are located on single bases. As in the previous chapter,
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Chapter 1: Introduction 9

these localized functions are used to compute the hopping between neighboring bases.
Finally, in Chapter 4 we use the Naval Research Laboratory Tight-Binding (NRLTB)
method [110]. This method is fit to reproduce the more accurate ab-initio methods,
and has the advantage that it takes relatively little computer time. With NRLTB, we
compute the input parameters of the Frohlich hamiltonian for various carbon nan-
otubes. This involves computing the band structure, the electron-phonon coupling

matrix elements, and the phonon frequencies using the frozen-phonon approximation.

1.2.2 Scattering lengths in atomic and molecular systems

The method of obtaining a microscopic hamiltonian for an optical lattice system or
a dilute gas of weakly interacting bosons is significantly easier than what we described
in the previous section. The crucial ingredient that we need (either from experiment
or from detailed quantum mechanical calculations) is the scattering length (see, for
instance, the book by Pethick and Smith [125]). Atoms typically interact with a van
der Waals interaction which decays as 1/r®. This is much easier to deal with than
the case of the 1/r Coulomb interaction because it is short-ranged. For a sufficiently
dilute (the average interparticle spacing being much larger than the scattering length)
and weakly interacting gas, the upshot of the method [125] is that the interatomic
interaction can be replaced by the point interaction

Vil — 1) = ‘%“m —). (1.6)

where o is the s-wave scattering length. This form of the interaction makes the
effective hamiltonian typically easy to derive from first principles.

In an optical lattice system, standing waves are made by reflecting a set of laser
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Chapter 1: Introduction 10

Figure 1.2: A schematic representation of an optical lattice [17].

beams back upon itself. This will give for the lattice interaction
V(ir)=W (sing(k:x) + sin*(ky) + sinQ(k:z)) (1.7)

for the particular example of a square lattice where k = 27 /) is the wave vector of
the laser light. For a schematic of the optical lattice, see Fig. 1.2.

With the lattice potential and the atom-atom interaction potential, we are now in
a position to derive the microscopic Hamiltonian. We expand the boson field operator

in a basis of Wannier states so that

= Zd)i(r)ai (1.8)

.I.

where a; creates an atom on site ¢ and ¢;(r) is the corresponding localized Wannier

state at this site. Then, the noninteracting portion of our many-body hamiltonian is

/d?’r\Iﬁ(r) ( V2 +V(r) ) = EOZCL a; — J%a la; (1.9)

where J is the hopping integral between nearest neighbors

J= / d3ré}(r) (%VQ + V(r)) ¢;(r). (1.10)
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Chapter 1: Introduction 11

For the interaction portion of the hamiltonian we get

Hims = ~ /d3 B Vigs (r — )T (£) U (1) O (¢! an(nz—l (1.11)

.'.

where n; = a;a; and the onsite repulsion is given by

_4ma T2 [ #riom)* (1.12)

Thus, we have constructed the Bose Hubbard hamiltonian
t U
Hen = —J Y _ala; + o > ny(n; —1) (1.13)
(i7) i

(note we have dropped the unimportant term containing e, which can be absorbed into
the chemical potential). Moreover, we have essentially exact expression for J and U
in terms of known quantities. We remark that the above procedure is straightforward
to generalize to more complicated systems of, for instance, molecules in an optical

lattice and multicomponent atoms (see Chapter 5), and mixtures of atomic species

[5].

1.3 Overview of systems

Now an overview will be provided of the systems studied in this thesis within the

general framework discussed in the previous sections.

1.3.1 Solid state systems

The first three systems are solid state systems where we study correlated electrons.

To derive the effective hamiltonians in each case we use DFT-based methods.
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Chapter 1: Introduction 12

Figure 1.3: The lattice stucture of 2H-TaSes. The dark spheres correspond to Ta
atoms while the light spheres correspond to the Se atoms [79)].

Transition metal dichalcogenides

The 2H transition metal dichalcogenides (TMDs) were one of the first materials
shown to exhibit a charge-density wave transition at sufficiently low temperatures
[166]. Examples of these materials are NbSe; and TaSes, and the lattice structure
is shown in Fig. 1.3. As can be seen, these materials consist of layers containing a
triangular lattice of transition metal atoms sandwiched between two layers triangular
lattices of chalcogen atoms.

The basic chemistry of these materials is as follows. Four of the valence electrons
of the transition metal atoms (Ta or Nb) are transferred to the chalcogen layers,
giving two extra electrons per chalcogen atom, filling their p shell. This then leaves

one electron per transition metal atom of approximately d,: character which forms
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Chapter 1: Introduction 13

the metallic band. Indeed, detailed DFT calculations reveal that the band(s) at the
Fermi energy primarily have d,2 symmetry.

Many of the properties of the transition metal dichalcogenides have defied simple
explanation over the years. For instance, in the original CDW work [166], no sharp
increase in the resistivity was found as the temperature was lowered through the
CDW transition, which is what one typically finds for the typical CDW materials.
Instead, the resistivity seems to decrease, and the presence of the CDW was revealed
through electron diffraction studies.

Later high precision ARPES measurements were used to map out the Fermi surface
of the TMDs [172, 100, 147, 101, 154, 158, 133, 157]. These reveal a hexagonal Fermi
surface centered at I which seems to be well nested. Moreover, the nesting vectors
seem to correspond to the direction and period of the charge-density wave distortion.
However, from these ARPES measurements in the CDW state, there was no clear
evidence for a gap opening on this Fermi surface, which is not what one would expect
from the standard CDW picture.

Another strange feature seen in recent ARPES measurements [158] is found from
extracting the electronic self-energy. In TaSe;, kinks in the electron quasiparticle
dispersions close to the Fermi energy were observed, which is a typical effect from
the electrons coupling to some bosonic mode. Interestingly, these kinks shift further
away from the Fermi energy as the temperature is lowered, where the magnitude of
the shift is too large to be explained by phonons alone, suggesting perhaps some more
exotic bosonic coupling.

In Chapter 2 we attempt to provide an explanation to these two puzzles in the
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Figure 1.4: Cylindrical contour map of the highest valence (a) and the lowest con-
duction (b) band electron density, for the poly(CG)-poly(CG) DNA (top left) and
the 30%, 60%, and 90% overstretched forms (right). The bottom left panel of each
figure shows a drawing of the CG base pairs along the cylinder; the arrows indicate
bases with the largest couplings. In Fig. (a) the 90 % overstretched 5-5’ form is not
shown because the highest valence band mixes with the lower bands. The vertical
axis covers a fixed region corresponding to 10 base pairs in the unstretched form.
The horizontal axis runs from 0 to 27w. The radius of the cylinder follows the guanine
C5 atom in (a), and the cytosine C6 in Fig. (b). The cylinder surface unit element
is kept fixed: this results in a variation of the length of the horizontal axis, propor-
tional to the cylinder radius. The color coding (shown in the color bar between the
unstretched and stretched graphs) is fixed between different structures and covers 5
orders of magnitude [106].

TMDs. To do this, we use detailied DF'T calculations to motivate a minimal model

which is then used to study these effects.

DNA

Chapter 3 deals with the electronic properties of DNA. It has been over half a
century since Watson and Crick deduced the atomic structure of DNA [163]. Recently,
there has been a significant drive towards characterizing the electronic structure which
is motivated on both biological and technological fronts (for a recent review of these
endevours, see [48]).

Only recently have detailed quantum mechanical calculations (e.g. density-functional
theory) been able to be performed on a strand of DNA containing several base pairs,

which are composed of hundreds of atoms [48]. It is intriguing that these calculations
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reveal that the states closest to the Fermi energy (and therefore most relevant from an
electronic point of view) reside precisely on the bases (see Fig. 1.4). More specifically,
the valence states (just below the Fermi energy) reside on the purine bases (Adenine
and Guanine) while the conduction states (just above the Fermi energy) reside on
the pyrimidine bases (Cytosine and Thiamine). This gives the promise of sequencing
DNA by purely electronic means [26].

In our study, the electronic structure of poly(CG)-poly(CG) DNA which is stretched
up to 90% of its natural length is computed. Based on these results, we argue that
such stretching plays an important role in electronic transport experiments [106] which
are typically performed on a substrate. Next, we take the results from the detailed
calculations and derive accurately parameterized tight-binding models for different
stretching magnitudes. With these, we show that as the molecule is stretched, the
electronic states which were originally delocalized across thousands of base pairs be-
come localized with a modest amount of disorder (in line with that of the dipole

moment of stray water molecules attached to the backbone).

Carbon nanotubes

Since their discovery in 1991 by Ijima [72], carbon nanotubes have received con-
tinual attention. In addition to having much promise for technological applications,
carbon nanotubes are also interesting to study from the purely physical point of view.
For instance, they constitute a clean one-dimensional electron system. Therefore,
the concomitant physics of Luttinger liquids is expected to arise [52]. Additionally,

electron-phonon coupling in one dimensional systems typically will lead to the charge-
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Figure 1.5: The lattice structure of a typical carbon nanotube.

density wave state [61].

Carbon nanotubes have the geometry of a rolled up sheet of graphene (see Fig. 1.5).
To understand the electronic band structure of a carbon nanotube, it is often suffieient
to start with that of a single sheet of graphene. A carbon atom has six electrons.
Two of these electrons occupy the 1s state and are unimportant as far as the bonding
properties are concerned, leaving four electrons in the outer shell.

The atomic structure of a sheet of graphene is given by the lattice vectors

3 1
= Vs ?:& - 5§ (1.14)

5 Yy ; a=

[N

and basis vector

t=—-% (1.15)

DO =

With this hexagonal lattice, every atom has four nearest neighbors. Three of the
electrons in this outer shell will form sps bonds with the neighboring atoms, leaving

one electron per carbon atom which is in the p, state. Thus as a first approximation,
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we should be able to describe the metallic band in graphene by using a tight-binding
model on a hexagonal lattice at half filling. Doing this, keeping only nearest-neighbor
hopping, we find

€8 = |1 + ek 4 gl (1.16)

where we have set the Fermi energy equal to zero. From this, one sees why graphene
is considered to be a semimetal; from Eq. (1.16) we see that there is zero band gap,
but also zero density of states at the Fermi energy.

The reciprocal lattice vectors of Eq. (1.14) are given by

1 1
by=21|—=%X+¥| ; be=2n|—4%X-73]. 1.17
1 ( 7 y) 2 ( 7 y) (1.17)
The first Brillouin zone will correspond to a hexagon that has corners at :t%z,

:i:glllgﬁz, and :EQDLB&J-. These corners are the so-called K-points and correspond to

where €& = 0. Expanding about one of these points, we find that

3
& = it\—g—'|k\, (1.18)

the so-called Dirac cone.

The vector C = na; + may defines the axis about which the nanotube is rolled.
This will place a periodicity condition on the wave vectors in the band structure of
graphene: k - C must be an integer multiple of 27. Requiring k to be at one of the
K points of the first Brioullin zone, we find that K - C being an integer multiple of
27 is equivalent to n —m being divisible by 3. Thus, according to this, a nanotube is
metallic if and only if (n — m)/3 is an integer.

Obtaining the band structure of a nanotube from the band structure of graphene in

such a way is known as the zone-folding method [135]. It has one obvious drawback: it
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does not take into account the curvature effects of the nanotube since it uses the band
structure of graphene. It turns out that such a method works well for nanotubes of
sufficiently large diameter, but eventually breaks down. That is, eventually curvature
will make the sp, bonds mix with the p, states, which of course is not taken into
account in our simple model.

Chapter 4 largely deals with nanotubes for which the zone-folding method breaks
down. This study is motivated by observations of superconductivity in such small-
radius nanotubes. Experimentally, superconductivity was found in ropes of single-
walled nanotubes [86], small-radius nanotubes embedded in a zeolite matrix [152],
and multiwall carbon nanotubes [151]. Small-radius nanotubes have significantly
enhanced electron-phonon coupling strengths. This will raise the charge-density wave
and superconducting transition temperatures to observable temperatures as we will

argue in Chapter 4.

1.3.2 Atomic and molecular systems
Background

After two decades of developing the technology of trapping and cooling alkali
atoms by lasers, Bose-Einstein condensation was achieved in 1995 first in Rb [6], and
soon after in Na [33] and Li [10]. This added to superfluid helium and superconduct-
ing metals another interesting system exhibiting macroscopic occupation of a single
quantum state.

On the other hand, since the standard BEC of alkali atoms are dilute and weakly

interacting, developing a theory to describe the quantum state of the condenstate
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turns out not to be particularly demanding. More specifically, using the Gross-
Pitaevskii equation [126, 60] has proved to be very successful in describing the ground
state properties as well as the dynamics in the condensed state. The only two impor-
tant parameters to make such predictions are the s-wave scattering length and the
atomic mass. Moreover, quantum corrections not taken into account in the Gross-
Pitaevskii equation can be accounted for by using the Bogoliubov theory [18].

Within recent years, cold atomic systems have entered the strongly interacting
regime with the advent of optical lattices. Being theoretically discussed in 1998 [77],
such systems were realized in 2002 [57]. Using optical lattices, many topics in strongly
correlated physics are now being explored. We should also remark that another route
to strong interactions in an atomic system is through the use of a Feshbach resonance
[125] which allows the scattering lengths to be controllably tuned with the use of an
external magnetic field. When the magnetic field is tuned close to the resonance the
scattering lengths can be made to be quite large having either positive or negative
sign.

Examples of strongly interacting physics in atomic systems studied with the use
of an optical lattice and/or a Feshbach resonance are becoming numerous. Some
examples are (the references are not comprehensive) quasi one-dimensional physics
[120, 85], the insulator-superfluid transition [57], pairing in imbalanced populations
of atoms {175, 121}, and the BEC-BCS crossover [131].

Now it is appropriate to give a short overview of the Bose Hubbard model which
exhibits the insulator-superfluid transition, since it is essential background for Chap-

ter 5. For convenience, we reproduce the model derived in the previous section 1.2.2,
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MI3
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MI2

MI1

— JU

MIO

Figure 1.6: The phase diagram of the Bose Hubbard model. MI1, MI2, ... correspond
to the Mott insulating states with 1,2, ... bosons per site. In the MI state we have
{(a) = 0 while in the superfluid state (SF) we have {(a) # 0.
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and include a chemical potential term
t U
Hpu = —J ) aja; + Eznz(nz‘l) —pyon (1.19)
(i) i i
which is the Bose Hubbard model for spinless bosons. This model is amenable to a
mean field treatment applied to the hopping term. Assuming translational invariance,

this leads to the single site mean field hamiltonian
— (gt i i u
Huvr = —J (a (ay + (a")a — (a )(a)) + En(n —1)— un. (1.20)

This equation then needs to be solved self-consistently in terms of (a). One method
to do this is through numerical iteration. The resulting phase diagram is shown in
Fig. 1.6. It is seen that large regions of the phase diagrams are pinned at an integer
number of bosons per site (labeled MI1, MI2, ...). In these regions, we have (a) = 0.
The superfluid state (labeled SF), on the other hand, has (a) # 0.

It should also be pointed out that the Bose Hubbard model has an exact solution
in one dimension for hard core bosons (i.e. when U = o0). In this regime, the
bosons behave exactly like fermions, and through a series of transformations, the
Bose Hubbard hamiltonian can be mapped to the simple tight-binding model for

fermions in one dimension

Heop = > (—2tcos(k) — p) chex (1.21)

which, of course, can be solved exactly. Here, the filled band p > 2t corresponds to
the vacuum state, the empty band y < —2t corresponds to the Mott insulating state
with one boson per site, while the partially filled band —2¢ < u < 2t corresponds to

the SF state.
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Multicomponent atoms and molecules in optical lattices

Chapter 5 will be devoted to considering how the simple phase diagram of the

Bose Hubbard model shown in Fig. 1.6 will be modified for multicomponent systems.
Spin two bosons

We first condsider spin two bosons in an optical lattice which corresponds to a
hyperfine state of an alkali atom (having nuclear spin I = 3/2 and electronic spin
S =1/2). When considering scattering between two such atoms, we have to consider
three different scattering lengths (ag, as, and a4) because the two atoms can combine
to be in a state with total spin 0, 2, or 4 (odd spins are not allowed because the
wavefunction of the two particles must be symmetrical under interchange of particles).

This will modify the onsite Hubbard interaction to read
1 1 1 9
Hy = -éUo’n(TL - 1) =+ §U1P0 + §U2(F — 67’L) (122)

where Py is the projection operator into the spin zero state. The onsite interaction
parameters are given by Uy = 2 (4as+3a4), Ur = $(Tapg—10a2+3a4), and U = $(as—
as) where « is a constant depending on the shape of the onsite Wannier functions.
Note that when the scattering lengths are all equal, we will have U; = Uy = 0, and
our system is described by the spinless hamiltonian.

Now we consider the example of one boson per site in the Mott insulating state.
Deep in the Mott insulating state, when there is no hopping between adjacent sites
(J = 0) there will be a macroscopic degeneracy where the effective spins on any
site can point in any direction. Turning on finite J will remove this degeneracy by

the second order process of virtual hopping. First we consider the case of equal
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scattering lengths where U; = U; = 0. It can be seen that such an interaction favors

the ferromagnetic state

v=]] ( > Ag la)) (1.23)

a=—2

where |a) are the eigenkets of F,: F,|a) = a|a) and the coefficients are normalized
Yo ALA, = 1. Despite removing the original macroscopic degeneracy, there is still
a fairly large degeneracy: the 8 free parameters from the A, coefficients (10 real
numbers minus one normalization condition and an overall phase factor). We will
show in the first part of Chapter 5 that with finite U; and U, this latter degeneracy

will be lifted in interesting ways.
Dipolar molecules

Another system which exhibits interesting spin ordering are dipolar molecules in
an optical lattice. Two classical dipoles d; and d, at positions r; and ry will interact

through the anisotropic potential

d1 . dg 3d1 . (I‘l — I‘Q) d2 : (I‘l — I'2)

1% = -
(1‘1, r2) |r1 _ r2|3 |r1 _ r2|5

(1.24)

On the other hand, for quantum molecules the situation will not be quite so simple.
That is, a dipolar molecule in any particular rotational eigenstate will always have
average dipole moment of zero: (d) = 0. Such molecules will therefore not interact
as in Eq. (1.24).

One method to induce dipolar interactions between molecules is to use a strong
external electric field, which will align all of the molecules to point along a common
axis. The resulting ordering for a gas of cold molecules has been considered in the

literature [169, 137, 37, 56, 117, 111].
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L=0
Figure 1.7: The lowest rotational levels of a diatomic molecule.

In this work, we consder an alternative mechanism which is shown schematically
in Fig. 1.7. The idea is to create a mixture of molecules in the L = 0 and L = 1
states by controlling the relative populations with an external microwave field. We
use the notation that s' creates a molecule in the L = 0, L, = 0 state while tT_LO’l
creates molecules in the L =1, L, = —1,0, 1 states. Then taking the following linear

combinations
i = ! (H+ehy) ;5 tf = L (t-tly) 5 ta=to (1.25)
allows us to write the dipole moment operators within this subspace as
do = 8Tto +tls (1.26)

where a = z,y, or z. Note that, as stated before, states that are rotational eigenstates
give (d) = 0. On the other hand, states that are formed from superpositions of the s
and ¢ operators such as |¢)) = —5(s" + 1) |0) will have nonzero dipole moment.

Our expression for the dipole moment operators 1.26 can now be inserted into

Eq. (1.24). This gives an extra term in to our original Bose Hubbard model. The
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resulting dipolar ordering will be discussed in the latter portion of Chapter 5.
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Chapter 2

Electronic properties of the 2H

transition metal dichalcogenides

2.1 Coexistence of gapless excitations and com-
mensurate charge-density wave in the 2H-transition
metal dichalcogenides

2.1.1 Introduction

Charge-density waves (CDWs) in solids has been a topic of central interest in
condensed matter physics for many years [61]. Recent scanning tunneling microscopy
experiments showing a periodic modulation in the local density of states in cuprate
superconductors [68], has reinvigorated such interest. Despite being one of the ear-

liest discovered class of materials which exhibit a CDW at low temperatures (for a

26
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review, see [165]), many properties of the 2H-transition metal dichalcogenides (2H-
TMDs) are still not understood, leading to much recent theoretical [132, 25, 156] and
experimental [172, 100, 147, 101, 154, 158, 133, 157] research effort (for a review, see
Ref. [[167])). Two key issues concerning the CDW phase in these materials deserve the
most attention. First, controversy exists between different experimental groups on
the driving mechanism of CDW originating from quantitative differences between the
angle-resolved photoemission spectroscopy (ARPES) data. While some experimental
results [100, 147, 101, 154] suggest that the hexagonal Fermi surfaces around the I'
point are consistent with the CDW nesting vector, others [158, 133, 157] indicate that
this Fermi surface is too large to give the correct nesting vector. Second, and of a
more qualitative nature, ARPES measurements [100, 147, 101, 154, 158, 133, 157]
find no evidence of a gap opening on the hexagonal Fermi surface, in direct contrast
with traditional wisdom of CDW materials.

Here, we focus on the latter issue and suggest a simple picture for why such gap-
less excitations are permitted in the CDW phase. Using density-functional theory,
the electronic structure of prototype 2H-TMD, 2H-TaSes, is analyzed with a newly
developed Wannier function approach [91, 58|, and a striking feature is revealed: the
low-energy bands near Fermi surfaces, which governs the physics of CDW, is domi-
nated by hopping between second-nearest neighbors. This special nature of hopping,
in combination with the triangular lattice vectors, effectively splits the system into
three weakly coupled triangular sublattices. Since the CDW state gives distortion of
only two of the sublattices, whose stability is illustrated with a simple model, such

unique electronic structure naturally leaves the bands associated with the undistorted
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Figure 2.1: First-principles band structure (dots) with the d,. (black circles) and
dzy/dy2_y2 (blue circles) characters shown. The bands below —0.7 eV are mainly Se
p bands. Also shown are the bands constructed from low-energy WFs (green solid
lines) and a 2D ‘nesting’ model (red dotted line; see text).

sublattice ungapped in this CDW phase, resolving the puzzle of the observed gapless

excitations along the nested regions of the Fermi surface.

2.1.2 Calculating the Wannier functions from first-principles

The lattice structure of 2H-TMDs consists of stacked layers of 2D-triangular lat-
tices of transition metals (e.g. Ta or Nb) sandwiched between layers of chalcogen
atoms (e.g. S or Se). Rough estimation of the ionization leads to the Ta**Se?~ con-
figuration with one valence 5d,2 electron left per Ta atom that forms the metallic
bands at the Fermi level. We applied the WIEN2k [15] implementation of the full
potential linearized augmented plane wave method in the local density approxima-
tion of density functional theory with the crystallographic data [115]. The basis size

was determined by R,;Kme = 7 and the Brillouin zone was sampled with a regu-
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lar mesh containing 99 irreducible k-points to achieve energy convergency of 1 meV.
The band structure from our first-principles calculations (see Fig. 2.1) shows a strong
d,2 character in the two metallic bands corresponding to two weakly coupled TaSes
sandwiches per unit cell. Unexpectedly, little Se p characters are found in these two
bands. The calculated low-energy bands agree well with experiments, except that the
saddle bands on the 'K and AH lines are not as flat and close to the Fermi level as
reported [100, 101].

Based on the first-principles ground state, the low-energy Hilbert space can be
accurately extracted via local WF's (see Fig. 2.2), which we constructed by extending
recently developed energy-resolved method [91, 58] to incorporate desired symme-
try [90]. As expected, the WF located at each Ta site has strong d,» symmetry near
the center, before extending its unusual tails of dgy/d,2_,2 symmetry to the nearest
neighboring Ta sites due to strong hybridization with the d,,/d,2_,2 orbitals near
the K and H points (see Fig. 2.1). This particular shape of the WF results in an
intriguing feature in the hopping integral (evaluated via t,, = <,u ‘hD F T’ I/> with den-
sity functional theory Hamiltonian, h?*7, and Wannier states |u) and |v)). That is,
the second neighbor hopping, ¢; = 115 meV, overwhelms the first neighbor hopping,
t1 = 38 meV, due to remarkable phase cancelation in the latter case (to be discussed
in more detail below). In addition, interlayer hoppings are found to be comparable
to first-neighbor in-plane hopping with ¢, ; = 29 meV and ¢, 5 = 23 meV.

A simple microscopic picture for the unexpected dominance of second-neighbor
hopping can be obtained from the symmetry of the WFs. As shown in Fig. 2.2(c)

and (d), the contributions to the hopping parameters between neighboring WFs come
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c)

Figure 2.2: Low-energy WF centered at Ta sites with a, (d,2) symmetry, colored to
show its gradient from positive (red) to negative (blue). Notice the local dy,/dy2_2
symmetry in the hybridization tail (circled) located at neighboring Ta sites. b)
Schematics of the WF in the layer of the Ta triangular lattice, with a similar color
scheme giving the sign of the WF and three small dots marking the positions of Se
atoms in the next layer. c¢) and d) Schematics of phase interference in hopping to
first and second nearest neighbors, respectively.

mainly from overlap of their hybridization tails, since the tail-center (d,2 —dy,/dz2_y2)
overlap gives negligible contribution due to its odd parity. While the first-neighbor
hopping suffers seriously from the phase cancelation (illustrated by the opposite sign
in Fig. 2.2(c)), the second-neighbor hopping benefits greatly from the phase coherence
(the same sign in Fig. 2.2(d)) of the overlap. Such symmetry consideration should
hold for all 2H-TMDs of the same class, due to their similar local environment around
the transition metal sites.

Specifically in 2H-TaSe,, this unusual electronic structure provides a plausible
intuitive resolution to the puzzling experimental observation of gapless excitations
in the CDW phase. Indeed, with the dominating second neighbor hopping in a
triangular lattice, the system effectively splits into three weakly coupled sublattices.

As we discuss below, one of the sublattices remains undistorted in the CDW phase
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Figure 2.3: (a) The Fermi surface from the tight-binding band structure. White
indicates unoccupied states and black indicates occupied states. (b) The Fermi surface
for a slightly smaller chemical potential showing the extended saddle bands (small
white regions). The first Brillouin zone is the hexagonal cell formed by the red dashed
lines.

(see Fig. 2.4) and therefore the bands associated with it are ungapped.

2.1.3 Minimal model for the CDW state

With the dominance of the second neighbor hopping established, we now move
on to construct a minimal , nesting model which captures the essential physics of the
gapless CDW in 2H-TMDs. We start with the simple 2D tight-binding energies given
by

&) = %:tIRI cos(k-R) (2.1)

where R runs over the triangular lattice defined by lattice vectors a; = a(+/3/2,1/2)
and a; = a(+/3/2,—1/2). In addition to t,, tg = t»/3 (all other hoppings neglected)

is introduced to produce the Fermi surface of an almost perfectly nested “hexagonal
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checkerboard” pattern similar to the recent ARPES data with extended saddle bands
(very close to but below the Fermi energy for extended regions along T'K) [100, 147,
101, 154], as shown in Fig. 2.3. The corresponding band (with t, adjusted to 140
meV) compares reasonably well with the first principles results (see Fig. 2.1; the two
metallic bands are degenerate in the 2D model). As we show below, even with such
a perfect Fermi surface nesting, no gap is opened upon the formation of CDW.
Continuing the development of our minimal model, we next consider the CDW lat-
tice distortions. The detailed neutron diffraction experiments of Moncton et al. [115]
have determined that the ionic displacements have ¥; symmetry, which corresponds
to longitudinal motion of the Ta atoms in the basal plane with amplitude given by
experiment. However, the fitting procedure to the measured geometric structure fac-
tors was insensitive to the overall phase ¢ of the distortions. Following this work, the
atomic displacements having ¥; symmetry corresponding to the triple period CDW

in the 2H-TMDs are given by

dR=> ucos(Q-R+ 0)Q. (2.2)
Q

Here w is the amplitude and the sum runs over the vectors Q; = by /3, Q2 = by/3, and
Q3 = —(b;+by)/3, where the reciprocal lattice vectors are given by by = 27”(1/\/3 1)
and by = 2777(1 /v/3,—1). The above atomic displacements also splits the lattice into
three independent sublattices, where one of these sublattices does not experience
displacements for any ¢. We will determine the overall phase factor ¢ by minimizing
the total energy. It can be seen that the magnitude of the displacements given by
Eq. (2.2) will not depend on ¢. Thus the elastic energy of the system will not depend

on the phase of the CDW for this model system and our problem is reduced to finding
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the phase that minimizes the energy of the conduction band. Expanding the crystal

potential to first order in R given by Eq. (2.2) leads to the perturbation

H = Z ASCLCIH_Q -+ h.c. (23)
k,Q

where the wave vector k is summed over the first Brillouin zone. For simplicity,
we assume that the change in the hopping parameters due to the lattice distortion

is proportional to the change in the absolute distance between neighboring atoms:

5tRR’ X (5R — 6Rl) . (R - RI) Then
AR = —ue™ Y g (e R —1)e Q- R (2.4)
R

where the lattice vector R is summed over the second nearest neighbors to the atom
at the origin and Ymj=2 > 0'is the electron-phonon coupling constant in the unit of
energy /distance. Since the unit cell of the distorted lattice contains nine sites of the

original lattice, the renormalized energies sl((") are given by the eigenvalues of the 9 x 9

matrix
1 a1 ad2 aps adin oAy adsn 0 0
Agl* fk+Qy 0 0 A8¢Q1 Al?—fQ1 Al?fQ1 Al?—fé1»Q2 Al?—féz*Q1
A82* 0 fk+Q2 0 AEsz AEsz ASJ:Qz AE—EZZJ_*Qz AE—&‘;;—Q1
ASS* 0 0 fk+Qg Al?-an Al?iQa Al?—an Al?jrl:ll -Q2 Al?f‘;z -Q1
& = AS_IQI A&al AS_E;S2 gfaa k- 0 0 Al?fql ASEQI
A§3Q2 Al?fél Al?faz A&}aa 0 fk—Qq 0 A3_1Q2 A3§Q2
A}?f% Al?_fal A&}éz Al‘fjas 0 0 ck-Qg ASEQB Af_lqa
0 AS3Q1~C22 Al?lesz AI?-&Q1—Q2 AI?E:‘21 Agjéz ASE‘*QS fk+Q1-Q2 0

0 AQs AQ: Q2 Qa2* AQs* AQ1* 0

k+Q2-Q1 k+Q2—-Qy Ak-+—Qz*Q1 A1<—Q1 k—-Q2 k—Qg FktQa-Qy

(2.8)

We can now write the total energy as a function of the amplitude and phase of

the distortion as

B (1, ) = / " ep(e)de + Ea(u) (2.6)

—0o0
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Figure 2.4: Atomic displacement pattern corresponding to the phase ¢ = 7/2 in
Eq. (2.2). The inset shows the total energy of the CDW state as the function of
phase ¢ where the total energy units are arbitrary and the phase is in units of .
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where p(e) = 3y, 8 (e—&{™) is the density of electronic states and Eq(u) is the elastic

energy which, as we noted before, is independent of the phase of the distortion. The
k-integration is performed by using a fine Monkhorst-Pack mesh and corresponding
weights [116] in the irreducible Brillouin zone of the triangular lattice. We determine
the chemical potential u by considering two extreme cases: (i) Fixed particle number
N, which corresponds to an isolated metallic band at the Fermi energy. (ii) Fixed u =
0, which corresponds to significant spectral weight from the other bands at the Fermi
energy. The realistic situation, with two metallic bands at the Fermi energy arising
from the multi-layer structure should reside somewhere between these two extremes.
We find that the unanimous minimum for both extreme cases occurs when ¢ = 7/2.
This minimum will become more pronounced with increased electron-phonon coupling
constant. In Fig. 2.4 we show the corresponding atomic displacement pattern, which is
consistent with the charge maxima seen in scanning tunneling microscopy experiments
[142, 30]. Furthermore, to check the robustness of this result, we have performed the
same calculation, but with tg set to zero, and have found that the minimal total

energy still occurs at ¢ = 7/2.

2.1.4 Theoretical ARPES spectra

Now that the phase of the CDW has been determined we will analyze the renor-
malized quasiparticle dispersion in the presence of the CDW. The energy spectrum
from the undistorted sublattice is shown in Fig. 2.5(a) and that from distorted sub-
lattices is shown in Fig. 2.5(b) along the I'M direction, which is along the nested

region of the I'-centered hexagonal Fermi surface. Clearly, those associated with
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the undistorted sublattice do not change [Fig. 2.5(a)]. Thus, the corresponding sub-
bands remain metallic in the CDW phase. On the other hand, the bands originating
from the two distorted sublattices are doubly degenerate and we find a gap opens
at the Fermi energy [Fig. 2.5(b)]. Moreover, to make comparison with experiment
more direct, in Fig. 2.5(c) and Fig. 2.5(d) we present theoretical ARPES spectra
Ak, w) = 1 f(w)ImG(k,w) where G(k,w) is the single particle Green's function and
f(w) is the Fermi distribution function for wave vectors in a small region of the
nested portion of the Fermi surface. To emulate experimental data, we have chosen
a broadening of n = 40 meV of the spectral density function. In Fig. 2.5(b) both the
gapped and ungapped bands are visible (for an account of the weightings of satelite
bands in CDW materials, see Voit et al. [159]). The most direct comparison between
experimental data is with the work of Valla et al. [158] where there is a plot similar
to Fig. 2.5(a). It is also shown in this paper that no gap opens along 'K, being
consistent with Fig. 2.5(b).

A question that naturally follows is, how robust this result is when the finite first
neighbor interaction—which mixes all bands and thus destroys the exact decoupling
into the three independent sublattices—is taken into account. We examine this issue,
switching on the first-neighbor electron-phonon coupling constant v, in Eq. (2.4),
up to a third of the value of v, as suggested by the first principles results: ¢; ~
ts/3. As expected, we find that the degeneracy of the bands originating from the
distorted sublattices shown in Fig. 2.5(b) is lifted. In addition, the triple degeneracy

originating from the undistorted sublattice shown in Fig. 2.5(a) at the Fermi energy is

lifted. However, this does not produce a quasiparticle gap at the Fermi energy. More
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Figure 2.5: The bands in the low temperature CDW state originating from the undis-
torted (a) and distorted (b) sublattices. The increase in the number of bands corre-
sponds to backfolding resulting from the 3 x 3 supercell. Theoretical ARPES spectra
for the normal (c) (corresponding to vanishing electron-phonon coupling) and CDW
(d) states for wave vectors over the nested region of the Fermi energy along I'M. The

energy range is —0.47 to 0 eV relative to the Fermi energy and the momentum range
is bi+bs 3 to bi+by 7
10

3 3 10"
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specifically, this triple degeneracy is lifted in such a way that two of the energies
are increased to above the Fermi energy and the other one is decreased to below the
Fermi energy. It can be seen that this will indeed not gap the Fermi surface, given vy,

is considerably smaller than vs.

2.1.5 Conclusion

In conclusion, we have studied the CDW state in the 2H-transition metal dichalco-
genides and found that due to a unique feature in the electronic structure of these
materials revealed from first-principles calculations, the triangular lattice can be effec-
tively decoupled into three independent sublattices, with one remaining undistorted
in the CDW phase. As illustrated with a model calculation, this leads to the remark-
able situation where no regions of the entire Fermi surface become gapped even when

these materials exhibit a commensurate CDW.
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2.2 The temperature dependence of the electronic

self-energy

2.2.1 Introduction

In a recent set of very interesting experiments the quasiparticle self-energy of
2H-TaSe, [158] and 2H-NbSe, was determined by ARPES experiments. This was
done by measuring the dressed quasiparticle energies, ¢, and using then using the

relation g = 61&0) + Re (3(k,ex)) to determine the quasiparticle self-energy where

a linear form for the bare energy 51((0) is typically assumed. Similar studies have
revealed the mysterious “kink” structure in the quasiparticle energies of the cuperate
superconductors [95]. For 2H-TaSe, it was found that at temperatures close to and
above the commensurate transition temperature of 90K, there is a peak in the real
part of the quasiparticle self-energy Re(X(w)) at wpex = 30 meV. This peak is
consistent with coupling to a phonon mode (the maximum phonon energy is 40
meV). As the temperature was reduced below the CDW transition temperature, the
peak position experienced an upward shift until reaching the low-temperature value of
Wpeak = 65 meV at 34 K. Since this peak energy exceeds the energy of any phonon, it
was attributed to the appearance of an exotic collective bosonic mode below the CDW
transition temperature and not to phonons [158]. In the more recent experiment on
2H-NbSe; [157] a peak at wpeax Was observed which had no measurable temperature
dependence.

In the following, we will propose an alternative explanation of the these exper-

iments. We will show that the peak position in the quasiparticle energy will occur
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at

Wpeak(T') = Qpn + [Acpw ()| (2.7)

where Q,, = 30 meV is the energy of an optical phonon mode and Acpw(T) is the
energy of the charge-density wave gap which has temperature dependence. The shift
in the quasiparticle energy of 35 meV is consistent with the low temperature CDW
gap energies of 2H-TaSe;. We argue that the peak shift of 2H-NbSe, is unobservable

because of its significantly smaller CDW gap.

2.2.2 Simple model

We will consider coupling to a single dispersionless phonon mode of energy 2 and
electron-phonon coupling constant which has weak momentum transfer dependence
gxk’ =~ g where k and k’ are on the Fermi surface. Then Migdal’s expression for the

electronic self-energy is

d /
S(w)=1i¢")_ / %G(k’, W+ inw)D(w — W'). (2.8)
k/
where the phonon Green’s function is

2Q
(w=Q+in)(w+Q—in)

D(w) = (2.9)

We can now perform a Wick rotation in the energy integral to obtain the expression

dw’ 2Q
) — 2 hasadl rog
(W) =g ;/ 2 G ) e T

+%0(w — Q)3 G(K,w — Q+1n) + ¢*0(—w — Q) Y Gk, w + Q —in)

k! k!

(2.10)
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Numerically evaluating Eq. 2.10 will sometimes prove to be easier than directly eval-
uating Eq. 2.8.

As an initial step, we will consider the simple 1d tight-binding band ¢, = —2¢ cos(k)
at half filling which undergoes a period two CDW transition. This band has the sim-

plifying feature that 4., = —ey, and the Green’s function is

W+ €k
Gk, ) = = T ey T TAT (2.11)

With this, using Eq.2.10, we obtain

dw’ W' 20)
by = —ig* — 2.12
(w) ig“v(0)m o \/m i) T (2.12)
—ig*v(0)m w_§ O(w—Q)
V0w —Q2—|AR+in
—ig*v(0)m wt O(—w — )

\Kw + Q)2 — |A]Z+in
where the first term is to be evaluated numerically. At |A| = 0, the above expression

reduces to

w—§

E(w) = g'v(0)log|~—¢

'—m%mmmw—9y4fmmwpw—9y (2.13)

We find, as shown in Fig. 2.6, that the position of the peak in Re(X(w)) is at wpeak =
2 + |A|, which is the relation stated above in Eq. 2.7. The above analysis can
also be carried out at finite temperature. It is found that the divergences occurring
at w = Q + A are replaced by maxima which have a logarithmic dependence on
temperature.

The features in the electronic self-energy can be understood by the following

qualitative arguments. Consider a hole injected into the material in the normal state
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Re SE

Figure 2.6: The real part of the electronic self-energy as a function of w for A =0
(blue) and A = Q (red). The horizontal axis is in units of €2 and the vertical axis has
arbitrary units.

with energy w satisfying w < —Q labeled as (2) in Fig. 2.7 (a). Then a higher
energy electron can emit a phonon of energy 2 and decay into this hole, giving the
excitation a finite lifetime. On the other hand, if the energy of the hole is in the range
—Q <w < 0 as shown as (1) in Fig. 2.7 (a), then there is no similar process, which
means that the hole will have an infinite lifetime. Similar conclusions can be reached
by considering the injection of electrons above the Fermi energy. The lifetimes of
these excitations gives information about the imaginary part of the electronic self-
energy. Namely, Im(X(w)) will be zero in the region —Q2 < w < Q, and outside this
region will obtain finite values. The real part of the self-energy can then be obtained
by use of the Kramers-Kronig relations. A schematic depiction of the arguments for
the CDW phase is given in Fig. 2.7 (b). Here, a gap in the density of states of width

2|Al is opened at the Fermi energy for the model discussed above. Using similar
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Figure 2.7: Schematic depiction of hole injection into the normal (a) and CDW (b)
phases of the TMDs. By considering scattering from a single optical phonon, one can
conclude that the holes labeled as (1) will have infinite lifetimes whereas the holes
labeled by (2) will have finite lifetimes.

\\b\\°

arguments as above, one sees that injected holes with energies —) — A < w < —A
will have infinite lifetimes while holes injected with energy w < — — A will have
finite lifetimes with similar results holding for injected electrons. This means that
the Im(¥(w)) will be zero in the range —Q2 — A < w < 2+ A and outside this range

will be finite.

2.2.3 Realistic Computation

Now we want to provide a more realistic calculation of the self-energy shift as a
function of the gap by using the the band structure energies ¢y given in Eq. 2.1 and
the gap AB given in Eq. 2.2. Also, to be consistent, we will calculate the self-energy at

finite temperature. At finite temperature, the self-energy for the retarded electronic
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Green’s function corresponding to Eq. 2.8 can be expressed as [1]

Y(w) = g_/dzl/(z) ( = iQ_ﬁi})_;O_ Z(;B ) - — z(QfZ)—_:fCZO— 2(7;5 |

5 ) (2.14)
where v(z) is the density of states obtained from the eigenvalues of the matrix Eq. 2.5
and § is inverse temperature. We will again use the Monkhorst-Pack method [116]
to generate a mesh and weights in the first BZ to carry out the k-integration. We
fix the optical phonon frequency at € = 30 meV, and, as discussed above, use the
hopping value ¢ = 0.21 eV in the expression for the band structure energies.
Now we need to obtain quantitative values for the CDW gap. In the low-temperature

STM experiment of Wang et al. [162] an abrupt change in the slope of the tunnel-
ing conductance was found at a bias voltage of 80 meV which was attributed to the

magnitude of the zero-temperature CDW gap: Acpw(0) = 80meV. We use the mean

field result
T

Teow

Acpw(T) = Acpw(0)4/1 (2.15)

to obtain values of the finite temperature gap where Tepw = 90 K is the commensu-
rate CDW transition temperature for 2H-TaSe;. There is some ambiguity in defining
the magnitude of the gap in our model since AS in Eq. 2.4 has k-dependence. We
adopt the definition Acpw = %manIABL Now with all these parameters specified,
we can calculate the shift in wpeqy ( for occupied states) as a function of temperature
which is shown in Fig. 2.9 which is in quantitative agreement with the experiments of
Valla et al. [158]. Because of the approximate nesting condition, there is a maximum
in the density of states within 30 meV of the Fermi energy. Because this is on the
order of the phonon frequencies and the gap, the standard approximation of taking

the electronic density of states to be constant around the Fermi energy (which we
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used in the previous section of the toy model) is not valid here.

0 0.1 0.2

L ,’,'l"// —— RE(SE) 30K l
A —— RE(SE) 60 K
.............. RE(SE) 90 K

—--~ IMSE) 30K |

-- -~ IM(SE) 60 K

IM(SE) 90 K

energy (arbitrary units)
o
\‘A/

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
frequency (eV)

-10

Figure 2.8: The real and imaginary parts of the finite-temperature retarded self-
energy for various temperatures.

According to the Drude approximation for electronic transport in solids, the re-
sistivity is proportional to the scattering rate of electrons at the Fermi energy. Using

Eq. 2.14, this temperature-dependent rate can be expressed as

v(Q) +v(-Q) l

sinh(159) (2.16)

[(T) = Im(X(w = 0))] = g*7

Note that the density of states in v(w) in this expression has temperature dependence
which enters through Acpw(7) below the CDW transition temperature. However,
for temperatures greater than the CDW transition temperature, the temperature
dependence will come exclusively from the denominator in Eq. 2.16. In the experiment

of Valla et al. in Ref.citeValla00, it was observed that the temperature dependent
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Figure 2.9: The energy for which the peak in the electronic self-energy occurs wpeax <
0 as a function of temperature.

scattering rates at the Fermi energy extracted from ARPES measurements, were in
close correspondence with the resistivity measured from transport experiments. For
comparison, we plot the scattering rate I'(T") calculated from our model in Fig. 2.10.
This shows a change of slope at Tcpw=90 K which is qualitatively consistent with

the temperature-dependent resistivity of 2H-TaSe,.

20

15 -

Scattering Rate (arbitrary units)
=

0leee ‘ ‘ ‘
] 50 100 150 200 250 300
Temperature (Kelvin)

Figure 2.10: The scattering rate I'(T) as a function of temperature which exhibits a
cusp at Topw=90 K.
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2.3 Fourier STM analysis

The recently developed method of high-resolution Fourier-transform scanning-
tunneling microscopy (FT-STM) [66, 108, 68] has yielded much insight into the na-
ture of the cuperate superconductors, and the experiments have been analyzed from
various theoretical perspectives [127, 23, 128, 11]. In this section, we consider the

possible insights that similar experiments would give for the TMD materials.

2.3.1 Formalism

Real-space STM experiments measure the local density of electronic states which
can be expressed as

v(x,w) = %Im (G(x,%x,w)) (2.17)

where
G(x, X, w) = (x| G(w) |[x') = (x| (w = H — in) ™" |x)) (2.18)

is the real-space Green’s function. In this, |x) = ¥'(x)|0) where 9 (x) is the electron
field operator. The Fourier transform of the local density of states v(x,w) is performed
to yield v(q,w). Consider now adding an impurity to our system represented by the

potential Vimp. In the Born approximation we obtain
(x| G(w) ') = (x| Go(w) [x') + (x| Go(w) VimpGlo(w) [x) . (2.19)

where Gy is the Green’s function operator in the absence of the impurity potential.
The contribution to v(q,w) from the first term in this equation will essentially be
peaks at each reciprocal lattice vector. On the other hand, the second term can

reveal more subtle information concerning the nesting of the Fermi surface. In the
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following, we will concentrate exclusively on the implications of this second term
resulting from impurity scattering and label the resulting contribution to the Fourier
transformed local density of states as vimp(q, w).

Let |k) denote an eigenstate of the undistorted Hamiltonian Hy of energy ex.

Inserting these states, we obtain

(x| Go(w) VimpGlo(w) ) (2.20)

= Z <X| k> <k| éo(w) lk’) <k/| ‘A/;mp ‘k"> <k”l éo(w) lkm> <k",’ X>

Ik’ k' k" €BYZ,

= Y x|k (k| Go(w) [k + Q) (k + Q| Vi [K' + Q) (K + Q| Go(w) [K) (K'| x)
k,k'cBZ: Q,Q

where the Q sums are over the nine vectors 0, Q1, Qz, Q3, —Qq, ... which are the
vectors pointing to the centers of the nine hexagons in the first Brioullin zone shown
if Fig. 2.3. To simplify things in taking the Fourier transform of the above expression,
we will take

(x| k) = %eik* (2.21)

where  is the volume of the system noting that a more detalied expression for the
Bloch functions of the undistorted lattice should not change the qualitative features
of v(q,w). Taking the Fourier transform, and assuming that Vin,(x) has inversion
symmetry, we finally obtain

1 A ’
Vimp(qw) = =Im( ) (k+9+Q|Go(w) k+q+ Q)
T keRrBZ;Q,Q.Q"

X {a+ Q| Vimp [Q") (k + Q'| Go(w) [k + Q)) (2.22)

where the k-summation is over the reduced Brillouin zone composed of the innermost

hexagon in Fig. 2.3 having one ninth of the area of the total Brioullin zone. Using
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our expression for the matrix Green’s function G(k,w), the expression for v(q,w) can
be rewritten in the convenient form
1 - . -
Vimp(q, w) = —Im (H ( Z g(k +q, w) imp(q)g(ka w))) (223)
@ keRBZ

where ]}imp is the 9 x 9 impurity potential matrix

2.3.2 Results and discussion

In Fig. 2.11, we show several FT-STM plots evauated for various energies w viewed
over the same region in reciprocal space as in Fig. 2.3 for the normal phase of the
TMDs.

We now place a delta-function impurity at a site on one of the sublattices which
experiences distortion in the CDW phase. Placing the impurity at such a location
has the effect of modifying only the band structure energies associated with this
sublattice. If the impurity were placed at a site on the sublattice which does not
experience distortion in the CDW phase, then information on the CDW phase could

not be obtained through the respective FT-STM plots.
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w=—40meV w=—50 meV

Figure 2.11: FT-STM images obtained by calculating vy, (q,w). The range of q is
the same as used in Fig. 2.3. These plots correspond to the normal phase (Af{Q =0).
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(a) (b)

Figure 2.12: Plots of vimp(q,w) for q along 'M. Curves for w=-300 meV through
w=300 meV are shown in steps of 10 meV. The plots are offset with respect to each
other for visualization. (a) corresponds to the normal state while (b) corresponds to
the low-temperature CDW state.
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Chapter 3

Electronic properties of DNA

3.1 Introduction

The notion of efficient charge transport along the stacked 7 orbitals of the bases in
DNA was proposed [45] soon after Watson and Crick’s discovery of its structure [163].
From both biological and technological considerations, interest in the electronic prop-
erties of DNA has been renewed recently. Over a decade ago Barton and co-workers
observed distance-independent charge transfer between DNA-intercalated transition-
metal complexes [119] which was argued to be relevant for biology and biotechnology
(a review of electron transport experiments is given by [35]). Recent electron trans-
port experiments on DNA have yielded widely varying results, showing insulating
[19, 34, 146, 173], semiconducting [129], Ohmic conductivity [50, 22, 155, 28], and
proximity induced superconductivity [83]. The large number of relevant variables
endemic to such experiments explains the variability of results. Two such variables

are the DNA-electrode contact resistances and the variations in the DNA molecules

52
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and their environments (for a recent review of transport theory and experiments see
Ref. [48]).

Theoretical efforts to understand electron transport in DNA can be divided into
two categories:

In the first, model calculations use effective hamiltonians and master equations to
describe the dynamics of electrons and holes in DNA (see, for instance, the papers by
Yamada [168] and Iguchi [71] and references therein). Recent results [21] have led to
considerable insights concerning the sequence-independent delocalization of electronic
states in DNA. However, the main limitation of such approaches lies in the difficulty
of determining accurate values for the parameters in the effective hamiltonians. In
the second category, ab-initio calculations are employed for accurate and detailed
description of the electronic features; these approaches are limited by the large number
of atoms required for a realistic representation of the DNA molecules.

In this study, we address the problem of DNA stretching effects on electron local-
ization by providing a bridge between these two extremes. As a representative model,
we consider an 18 base-pair poly(CG)-poly(CG) DNA sequence, which can be synthe-
sized using standard laboratory techniques, stretched up to 90% of its natural length
where the unstretched structure is in the B form. We employ the well-established
stretched structures obtained in the atomistic simulations of Lebrun and Lavery [96]
and compute the electronic structure of this finite system with an efficient and real-
istic self-consistent tight-binding model [47]. Earlier calculations with our approach
[106] and, independently, with ab initio approaches [34], have established that the

highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular or-
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bitals (LUMO) are extended along the molecule, centered on the guanine (G) and
cytosine (C) bases respectively.
In order to employ these results in further analysis of electron localization, we

construct maximally localized states

121> which reside on single bases by forming
the appropriate linear combinations of the HOMO and LUMO states. With these
M)

between neighboring bases, thereby constructing an effective 1d chain model for this

maximally localized states we compute the hopping matrix elements ¢;; = <1Z,

system which can be diagonalized to yield a simplified effective hamiltonian describing
the dynamics of the valence and conduction electrons in the stretched forms of DNA.
This enables us to obtain the electronic band energies of an infinite system based
on the information from the finite molecule calculation. To include the effects of
disorder, we add a random on-site energy term which leads to electronic localization.
To quantify this effect, we diagonalize the new hamiltonian including disorder, and
find that stretching leads to dramatic reduction of the localization length, by several
orders of magnitude for a very modest amount of disorder. This calculation, and
comparison to recent experiments with which it is in agreement, proves that the

comformation of DNA plays a pivotal role in characterizing its conducting properties.

3.2 Constructing the tight-binding hamilonian from
the maximally localized Wannier states

In this section we describe the bottom-up approach used to construct effective

tight-binding models for the conduction and valence electrons in stretched DNA,
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starting from an all-atom quantum mechanical calculation. For the detailed elec-
tronic structure calculations we use an efficient quantum-mechanical approach which
employs an atomic orbital basis set [47]. In this method, the ground state energy is
calculated by a second order expansion in the electronic density, and takes into ac-
count self-consistently the charge transfer which is important for biological systems.
As a first test of this method, we computed the band gap of poly(C)-poly(G) DNA to
be 2.1 eV [106] and found that it is in excellent agreement with the published ab-inito
result of de Pablo et al. [34] of 2.0 eV. In the remainder of this paper we will restrict
our attention to the canonical poly(CG)-poly(CG) structure of DNA.

We took the structures obtained in the pioneering study of Lebrun and Lavery
[96]. Here, the adiabatic elongation of selected DNA molecules was modeled and two
modes of stretching were considered corresponding to pulling on opposite 3’-3’ ends
or 5-5" ends: In the 3’-3’ stretching mode, the DNA helix is unwound leading to
a ribbon-like structure, while in the 5’-5’ stretching mode the DNA helix contracts.
The molecule can be reversibly stretched up to 90% of its natural length after which
breaking occurs, consistent with single-molecule stretching experiments [143, 27, 148].
We compute the electronic structure of each of the stretched poly(CG)-poly(CG) DNA
structures (see Fig. 3.1).

We now move on to describe our method of constructing maximally localized states
on single base pairs, by taking linear combinations of the HOMO and LUMO states
from the electronic structure method. These maximally localized states are then
used to calculate the hopping parameters in the effective 1d hamiltonian. Let |1,) be

the electronic eigenfunctions in the conduction or valence bands with corresponding
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30%

60%

90%

Figure 3.1: The DNA structures for different stretching magnitudes for the 3’-3’
mode. For visualization purposes, we represent the calculated electronic density for
the valence and conduction bands as blue and red spheres, respectively. The volume
of a sphere centered on a particular atom is proportional to the electronic density.
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energies €,. We wish to find the maximally localized states

1Z~)z> obtained by the

unitary transformation

¢1> = Z W}n‘ 1ZZ> W)n) - (3-1)

n

which minimizes the sum of the variances

2 z

(= zl: (<1/;z 1/;z>2> (3.2)

under the constraint <1ZZ d]) = 0;; where z is the position along the helical axis. Due

to the invariance of the trace, the first term in Eq. 3.2 is independent of the unitary
transformation and our problem is simplified to maximizing the second term with
the same orthonormality constraint. Carrying out the minimization, we arrive at the

equation

z

(¥

Um ) (20 — 2m) =0 (3.3)

z

where z, = <1j§n

¢~n> . By inspection, we see that ( is maximized when z, = z,, for
all m and n, corresponding to maximally delocalized states. On the other hand, ( is
minimized when the states Mn> are the eigenkets of the position operator 2z within the
conduction or valence band subspace. So our problem is reduced to constructing and
diagonalizing the matrix (Y| 2 [¢),,) which has the eigenvectors (1/,,| ;) which provide
the desired transformation given in Eq. 3.1. The eigenvalues z, are the positions of
the localized states.

In DFTB [47], the eigenstates are expanded onto a basis set of atomic orbitals

[Yn) =D caw |00) - (3.4)

Here v is summed over each orbital of each atom in the system. To evaluate the
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matrix elements we use the approximation

(Y| 2 |¥m) = Z wacm,, (pul 2]0) ~ Z C:zpcmVSlLVzllV (3.5)
uv uv

where S, = (pu| ¢v) is the tight-binding overlap matrix and z,, is the average z-
value for the atoms located at sites given by the labels u and v. Once the localized

states are constructed, the hopping parameters are computed as

tij = <1Bz

M) =3 en (Wi ) (Ul ) (3.6)

recalling that the quantities (1,|1;) are determined from the transformation de-
scribed above.

Now that we have described the method of calculating hoppings, starting from
the all-atom calculation, we can consider the resulting effective hamiltonian. For
the first, second, and third neighbors along the helix, we denote the hopping matrix
elements according to the scheme shown in Fig. 3.2 which allows us to define an
effective hamiltonian for our system

H=ed cen + t1 Y (chnH + cILch)
n

neven

+ by (c;flcnﬂ + CL+1Cn) (3.7)
n odd

+ t3). (CLCrH_Q + cL+2cn)
n
where n represents the n* base pair along the helical axis and we have neglected
spin indices because they are unimportant for our analysis. Performing a Fourier
transform on the electron creation and annihilation operators c; = \/Lﬁzn e~ thne,

gives a hamiltonian which has coupling between momenta k and k+7/a. By doubling

the unit cell (and reducing the Brillouin zone by a factor of two), this can finally be
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Figure 3.2: Schematic depiction of the electron hopping in poly(CG)-poly(CG) DNA
for the valence band. The hopping matrix elements ¢; are denoted by the indices
(i) = (1),(2),(3). For the conduction band, the hopping is similar with electrons
localized on the C bases.
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‘ valence [ conduction ]

e (eV) 3.12 -0.09
t; (meV) 14 -0.29
t, (meV) | 2.6 0.044
t3 (meV) | 0.091 0.26

Table 3.1: Parameters for the on-site (¢) and hopping matrix elements (¢;,i = 1, 2, 3),
for the valence and conduction bands of unstretched poly(CG)-poly(CG) DNA.

diagonalized to obtain the eigenvalues

Ef = ¢ + 2tscos(2k)+ \/tf +tZ + 2 t1ty cos(2k)

with the momentum sum carried out over the reduced Brillouin zone. Using these
expressions for the band structure energies, the density of states v(w) = % YknO(w—
E{™) is readily obtained.

To summarize the results of this section, we have used a density-functional theory
method to calculate the electronic structure of stretched DNA. Using these detailed
results, we developed a method to calculate the input parameters €, 1 2 3 of the simple

tight-binding hamiltonian given in Eq. 3.7 for different stretching magnitudes.

3.3 Electronic localization in the presence of dis-
order

In this section, we first discuss the calculated results for the hoppings used in
Eq. 3.7, then later move on to discuss the resulting electronic localization. In Table 1
we give the calculated values we obtain for unstretched poly(CG)-poly(CG) DNA for
these hopping matrix elements. For the valence and conduction states, the electron

hops between nearest and next-nearest neighbor sites centered on the G and C bases
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Figure 3.3: The valence and conduction band bottleneck hopping as given by Eq. 3.8
for the different modes of stretching. The dominant hopping process as defined in
Fig. 3.2 is indicated in parenthesis.

respectively; matrix elements for farther hopping are much smaller in magnitude.
Now consider a hole or electron injected into the valence or conduction band: if
to = t3 = 0 the electron will not be able to migrate along the DNA molecule even if
ty is quite large. From this simple picture, it is evident that the conductivity will be
limited by the hopping of minimum magnitude with the requirement that an electron
or hole must participate in this process while traversing the DNA molecule. More

quantitatively, this “bottleneck” hopping is given by

t = max (min(|t|, [ta]), [t3]) - (3.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3: Electronic properties of DNA 62

In Fig. 3.3 we show the bottleneck hopping calculated as a function of stretching. This
indicates that hopping conductivity will dramatically decrease by several orders of
magnitude upon stretching the molecule and that the hopping will decrease more from
stretching in the 3’-3’ mode than in the 5’-5" mode. This is due to the conformational
changes induced by the different stretching modes, described earlier.

The evolution of the density of valence band states upon stretching is given in
Fig. 3.4 where similar behavior is seen for the conduction band. The dramatic nar-
rowing of the dispersion in the band structure energies as revealed in the density of
states is suggestive of electronic localization [7], in this case induced by stretching.
Such behavior was indeed observed in the recent experiment of Heim et al. [64]. In
this experiment, ropes of A-DNA on a substrate are overstretched by a receding menis-
cus technique. It was estimated that the DNA ropes are slightly positively charged,
with a depletion of a few electrons per 1000 base pairs. Electrons are then injected
into the DNA and the resulting localization length is measured by an electron force
microscope. For the unstretched DNA, the charge is found to delocalize across the
entire molecule, extending several microns. On the other hand, the charge injected
into the overstretched DNA is localized, extending over a few hundred nanometers
only.

To quantify the amount of localization that is expected in stretched DNA molecules,

we add a term to the hamiltonian in Eq. 3.7 of the form
Hais = Z Unclcn (3.9)

which is meant to emulate disorder arising from a variety of sources such as interac-

tion with stray water molecules and ions or interaction with the substrate. U, are
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Figure 3.4: (bottom) The density of electronic states for the valence band stretched in
the 3’-3’ mode. For comparison, the on-site energy parameter, ¢, has been set to zero.
(top) The localization length L;, defined in Eq.(3.11), computed for each eigenstate
with disorder strength v = 0.3 meV.
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uncorrelated random energy variations chosen according to a Gaussian distribution

of zero mean and width ~

PU) = ﬁ exp <—2U—j2> . (3.10)

Once the disorder hamiltonian is constructed with a specific set of random onsite
energies, by direct diagonalization we find the eigenstates |¢;) of H + Hais and then

calculate the localization length defined as

Ly = (Wl 22 ) — (s] 2 |y (3.11)

where 7 = 3, nclc,. We note that for a single-hopping model with weak disorder,
the localization length scales as L~ (t/~)? for electrons near the middle of the band
[153], but the more complicated effective hamiltonian considered here is not amenable
to simple analytic treatment. In Fig. 3.4 we show the localization length for each
eigenstate for a 1500 base-pair DNA strand for different amounts of stretching. For
the disorder strength we take v = 0.3 meV which is much smaller than the band
width of the unstretched DNA, but becomes comparable to the band width as the
molecule is stretched. The magnitude of such variations in onsite energies are in
line with those produced by the dipole potential terms, produced for instance by a
stray water molecule situated on the substrate roughly 15 A away from the bases.
However, we note that changing v in either way by an order of magnitude will not
affect our qualitative picture. Note that the localization length is not a strict function
of the energy, as it depends on the disorder near where a given state happens to be
localized. As the molecule is stretched, the localizaiton length dramatically decreases

until (for 60% stretching) the eigenstates are localized on single base pairs. This
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change of localization length by up to three orders of magnitude is in line with the

experimental observations of Heim et al. [64] discussed above.

3.4 Conclusion

In conclusion, we have described and implimented a bottom-up method to derive
effective tight-binding models describing the dynamics of conduction and valence elec-
trons in stretched DNA, starting from an all-atom quantum mechanical calculation.
With these models, we find that stretching dramatically narrows the band widths
close to the Fermi energy. As a result, adding a random potential in line with that
from stray water molecules will cause the electronic states to become localized as the

molecule is stretched.
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Chapter 4

Superconductivity and
charge-density wave instabilities in

carbon nanotubes

4.1 Introduction

It has been over a decade since the discovery of carbon nanotubes (CNTs) [72] and
the interest level in these systems continues to be high. The majority of theoretical
work on CNTs focuses on understanding the effects of the electron-electron interac-
tions using the celebrated Luttinger liquid theory.[43] Experimental observation of
superconductivity in ropes of nanotubes [86] and small-radius nanotubes in a zeolite
matrix [152] has also motivated theoretical studies of the electron-phonon interactions
(EPI), including the analysis of charge density wave (CDW) [113, 70, 140, 42] and

superconducting (SC) [12, 141, 20, 54, 80] instabilities. In this work we study the

66
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electron-phonon interactions in CNTs and discuss possible instabilities to the CDW
and SC orders. Our approach provides reliable parameters for the effective Hamil-
tonians we use in contrast to the Luttinger liquid treatments where obtaining such
accurate quantities is quite difficult.

A conventional starting point for discussing the electron-phonon interaction in

solids is the Frohlich Hamiltonian [139]

1
Z 814:7'0]97-001670 + Z Q qua"m 2)

kto
+ Z ngle/uCLTgck‘lTlo'(aqu + a..qu)- (41)
kTk'T'ou
Here ¢}, creates an electron with quasimomentum k in band 7 with spin o, aT

creates a phonon with lattice momentum ¢ and polarization u, and ¢ = k—k’ modulo
a reciprocal lattice vector. The energies of electron quasiparticles and phonons (in

the absence of EPC) are given by e, and qu respectively. The EPC vertex is given

by
g LIV (4.2)
kTk'T'p — P ————— Y i .
s ZQSM NN, .
with
oV
Mirkrrry = N (Yrr| Z 2R, ~Equ(2) [Yrrrr) - (4.3)

Here |ty,) = cl.|0) is a quasistationary electron state in band 7 with quasimomentum
k, é,.(4) is the phonon polarization vector on atom i in the unit cell, IV, is the number
of atoms per unit cell, M is the mass of a single C atom, IV is the total number of
unit cells in the system, and 0V /0Ry; is the derivative of the crystal potential with
respect to the ion position Ry;.

A common approach to obtaining parameters of the Hamiltonian Eq. (4.1) for

the CNTs is the zone-folding method (ZFM) [135]. The essence of this method is to
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take the electron band structure and the phonon dispersion for graphene and quantize
momenta in the direction of the wrapping. The main results of such a procedure may
be summarized as follows. The only bands crossing the Fermi level in graphene are the
bonding and the antibonding combinations of the atomic p, orbitals. Hence, the zone-
folding method predicts that these are the only bands which may cross the Fermi level
in carbon nanotubes. The condition for the quantized momenta to cross the Dirac
points of the graphene gives the condition for the (N,M) CNT to be metallic: N — M
should be divisible by 3. The ZFM also predicts that the electron-phonon coupling
in the CNTs should be dominated by the in-plane optical modes. This follows from
the fact that the latter have the largest effect on the overlaps between the p, orbitals
of the neighboring carbon atoms.

While the ZFM was shown to provide a quantitatively accurate description of
the larger radius nanotubes, it is expected to fail as the radius of the nanotubes
is decreased and the curvature of the C-C bonds becomes important. Determining
the band structure, the phonon dispersion, and the electron-phonon coupling of the
small radius CNTs requires detailed microscopic calculations. In this paper we use
the empirical tight-binding model [110] to provide such analysis for three types of
small-radius nanotubes: (5,0) with the diameter 3.9 A, (6,0) with the diameter 4.7
A, and (5,5) with the diameter 6.8 A. We find that the large curvature of the C-
C bonds leads to qualitative changes in the band structure of the (5,0) and (6,0)
nanotubes. Previous work on the band structure of small-radius carbon nanotubes
can be found in Refs. [16, 62, 81, 150, 98, 99, 104, 174]. For example, the (5,0) CNT

becomes metallic from strong hybridization between the o and 7 bands (see Fig. 4.4).
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Figure 4.1: The first Brillouin zone (a), electronic band structure (b), and phonon
dispersion (c) of graphene.
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Frequencies of the phonon modes in small radius CNT's are also strongly renormalized
from their values in graphene. Not only does the out-of-plane acoustic mode become
a finite frequency breathing mode, [135] but even the optical modes change their
energy appreciably (see e.g. Fig. 4.7). Finally, the electron-phonon coupling changes
qualitatively in the small-radius CNTs. It is no longer dominated by the in-plane
optical modes but by the out-of-plane optical modes which oscillate between the spo
bonding of graphene and the sp; bonding of diamond (see discussion in Sec. 4.6). We
find that the strong effects of the CNT curvature decrease rapidly with increasing
the tube radius. Already for the (5,5) nanotubes the ZFM gives a fairly accurate
description of the band structure as well as the electron-phonon interactions.
Determining parameters of the Frohlich Hamiltonian for a one-dimensional system
is not as straightfoward as for two and three-dimensional metals. Traditional meth-
ods for analyzing EPI from first-principles calculations are mean-field and, therefore,
suffer from instabilities intrinsic to one-dimensional systems. In particular, the frozen-
phonon approximation, which is commonly used to determine the phonon frequencies,
qu, in Eq. (4.1) gives imaginary frequencies close to the nesting wave vector ¢ = 2kp.
This is the result of the giant Kohn anomaly, [87] which corresponds to the Peierls
instability of the one-dimensional electron-phonon system [123]. An important result
of our paper is that we developed a new formalism, which combines the frozen-phonon
approximation with the Random-Phase Approximation (RPA) analysis of the EPL.
This allows us to extract effective non-singular parameters of the Frohlich Hamilto-
nian from first-principles calculations or from the empirical tight-binding model. This

technique should be applicable to many systems other than carbon nanotubes.
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After determining parameters of the Frohlich Hamiltonian Eq. (4.1) for the (5,0),
(6,0), and (5,5) CNTs we discuss possible superconducting and charge-density wave
instabilities in these systems. We find that neglecting the residual Coulomb inter-
action leads to much stronger CDW instabilities in all three cases (in such analysis
Coulomb interaction is included only at the mean-field level via the energy of the
single-particle quasi-stationary states, €x,). In the mean-field approximation we find
the onset of the Peierls instability at temperatures 160, 5, and 107 K for (5,0),
(6,0), and (5,5) CNTs respectively. However, including the Coulomb interactions at
the RPA level [97] can lead to a stronger suppression of the CDW transition tem-
peratures, Tepw, than the superconducting Tsc. For instance, we find by using the
model Coulomb interaction of Ref. [44] that for the (5,0) CNT, the CDW transition is
suppressed to very low temperatures while superconductivity becomes the dominant
phase with transition temperature of Tsc = 1 K.

This chapter is organized as follows. In Sec. 4.2 we discuss our method for ex-
tracting parameters for the one-dimensional Frohlich Hamiltonian. We then apply
this method to the (5,0), (6,0), and (5,5) CNTs in Sec. 4.3. In Sec. 4.4, we use the
constructed Hamiltonian for these CNTs to study their instabilities toward super-
conductivity and charge-density wave states. The effect of introducing the residual
Coulomb interacting between electrons is covered in Sec. 4.5. Finally all of the results

are discussed and summarized in Sec. 4.6.
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4.2 Extraction parameters of the effective Frohlich
hamiltonian from the first principles calcula-
tions

Now we discuss our methods for calculating input parameters to the Frohlich
Hamiltonian Eq. (4.1) for the representative nanotubes. Our analysis relies on the the
empirical tight-binding model [110] but it is easily amenable to any density-functional

theory [67, 88] treatment of the system.

4.2.1 Band structure

To compute the electronic structure of the CNTs we study, we use the NRL
tight-binding method [110] which has been tested and provided accurate results on a
variety of materials. In this method, the Slater-Koster tight-binding matrix elements
are parametrized and are fit to reproduce the first-principles density-functional band
structures and total energies, with around 70 adjustable parameters per element.

We study the (5,0), (6,0), and (5,5) CNTs which are shown in Figs. 4.4,4.8, and
4.10. The smallest possible unit cells for these CNTs contain 20, 24, and 20 atoms
respectively. These CNTs are relaxed by minimizing their total energy per unit
cell with respect to the atomic coordinates using 35 k-points in the first Brillouin
zone. Matrix elements between neighboring atoms of up to 5.5 A were used, which
is used for the parameterization of Carbon in the NRL tight-binding method. The
calculations were performed on an orthorhombic lattice with spacing between parallel

CNTs of 16 A, a distance sufficiently large to ensure negligible dispersion from inter-
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tube hopping. Once the CNTs are relaxed, the band structure is calculated.

4.2.2 The phonon modes

To calculate the electron-phonon coupling vertices and the phonon frequencies
which will be discussed in the subsequent sections, one needs to have the ionic dis-
placements corresponding to the normal vibrational modes of the CNT. As pointed
out previously, [136, 135] we find that it is typically sufficient to use the zone-folded
modes of a graphene sheet, even for the small-radius CNTs we study as will be dis-
cussed below.

Following the method used in the book of Saito et al., [135] we have computed
the 60 x 60 dynamical matrix of a (5,0) CNT and in Fig. 4.2 we compare the result-
ing phonon dispersions with the zone-folding results. The ionic displacement modes
obtained by the two different methods are very similar except for a few special cases.
For instance, the zone-folding results give three acoustic modes which correspond
to translating the graphene sheet in different directions. Upon rolling the graphene
sheet, these modes get mapped to two acoustic modes corresponding to rotation about
the ONT axis and translation along the CNT axis and the optical breathing mode.
Conversely, diagonalizing the dynamical matrix of the CNT gives four acoustic modes
corresponding to translations in three directions and the rotating mode (actually us-
ing the method of Ref. [135], one obtains a small spurious frequency for the rotating
mode as pointed out in this reference). Upon unrolling the CNT to the graphene
sheet, the rotating mode and the mode corresponding to translation along the CNT

axis will become acoustic modes of the graphene sheet. However, the two CNT trans-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Superconductivity and charge-density wave instabilities in carbon
nanotubes 74

lational modes which are perpendicular to the CNT axis will get mapped to ionic
displacements which are not eigenmodes of the graphene sheet which are mixtures
of in-plane and out-of-plane oscillations. In addition, using the dynamical matrix of
the CNT, we find that there is mixing between the breathing and stretching modes
around k = 0.3. In this vicinity, there is level repulsion from the lifting of the degen-
eracy of these modes. Away from this point, the modes are, to a good approximation,
decoupled.

In our analysis of the electron-phonon coupling we use the displacements obtained
from the zone-folding method to simplify the calculations, as well as to give a clear
conceptual picture. We then check that none of the important electron-phonon cou-
plings come from any of the few graphene modes for which the zone-folding method

breaks down.

4.2.3 The electron-phonon coupling vertices

The electron-phonon coupling (EPC) matrix in Eq. (4.3) can be evaluated by

using the finite difference formula

Mka:"r’u = % <wk‘7l (V;][.L - Vb) ‘wk’r’> (44)

where V,,, and 1} are the perturbed and the unperturbed lattice potentials respectively
and u is the magnitude of the displacement. A method for calculating the expression
(4.4) with a plane-wave basis set was previously developed [93]. In this paper we

extend this procedure to tight-binding models. We introduce the standard tight-
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Figure 4.2: The phonon dispersions of a (5,0) CNT determined by (a) the zone-folding
method and (b) diagonalizing the full dynamical matrix of the CNT.
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binding notation

[Vkr) =D Akrit | Xkit) (4.5)

il

|szl \/7 Z ezk R \(bml (46)
Here |¢,;) are the electron states for isolated carbon atoms, n runs over unit cells,
i runs over basis vectors in the unit cell, and [ runs over orbital type. We find (for

details, see Appendix A.1)

Mgy = Z Abra (Xl (¥ — Er) IXE) Az (4.7)

zlz’l’

This expression can be computed by evaluating the tight-binding Hamiltonian and
overlap matrices for the distorted lattice, evaluating the coefficients Ay; and Ag of
the wave functions for the undistorted lattice, and performing the above sum.

In all the calculations presented in this paper we used the ZFM to find phonon
eigenvectors in the nanotubes starting from the phonon eigenvectors in graphene [135].
The latter have been obtained using the 6 x 6 dynamical matrix of graphene given in
Ref. [78]. We emphasize that we use the ZFM only to find the phonon eigenvectors
in small nanotubes, but not the phonon frequencies. The frequencies are affected
strongly by the CNT curvature, and should be computed directly. This is discussed

in detail in Sec. 4.2.4 and Sec. 4.3.

4.2.4 Phonon frequencies

A standard method of calculating the bare phonon frequencies €7, in Eq. (4.1) is

the frozen-phonon approximation (FPA) [171]. In this approach

QQM \/— \/AEcos + AEsin (Q) (48)
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Figure 4.3: The phonon propagator evaluated within the RPA.

where u is the amplitude of the displacement, and AE.x(q) and AEg,(q) are the
energy differences per unit cell between the distorted and equilibrium lattice struc-
tures where the distortion corresponds to the real and imaginary parts of 6R,; =
ueiqR"équ(i) respectively. When we apply this procedure to one-dimensional CNTs,
we find that AFE.s(q) + AEgn(q) becomes negative around certain wave vectors (see
e.g. Fig. 4.7). A closer inspection shows that such anomalous softening always corre-
sponds to one of the 2k wave vectors of the electron bands indicating the presence
of the giant Kohn anomaly.

It is important to realize that the divergence of €1, obtained in the FPA does not
imply the divergence of Q2 in the Fréhlich Hamiltonian Eq. (4.1). The frequencies €,
are calculated after the electron-phonon interaction in Eq. (4.1) have been included,
which gives anomalous softening at 2kr due to the well-known Peierls instability of
electron-phonon systems in 1d. In two and three dimensional systems renormalization
of the phonon frequency by electrons in the conduction band is typically negligible. So,
one can use phonon energies obtained in the FPA as a direct input into the Frohlich
Hamiltonian. By contrast, nesting of the one-dimensional Fermi surfaces, leads to
dramatic renormalization of the phonon dispersion by electrons in the conduction
band.

To extract the bare phonon frequency qu from the numerically computed €,,, we
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point out a connection between the FPA and the RPA for the Frohlich Hamiltonian.
For negligible interband coupling (this condition is satisfied for all modes showing
the giant Kohn anomaly, which we discuss in this paper) Dyson’s equation for the

phonon propagator D(q, ivy,), as shown in Fig. 4.3 is given by

D(,1m) = Dou(q, ivim) (1 + I1u(q, m) Dy(q, ivm)) - (4.9)

Here v,,, = 2omT are the bosonic Matsubara frequencies and

20,
(ivm)? = (§2g,)?

is the non-interacting phonon Green’s function. The phonon self-energy evaluated in

Do,(q, ivm) = (4.10)

the RPA is given by

Hu((L Z.Vm) = 2T Z |gprp+q7,ui2GO‘r(p + q, iwm-ﬁ—n)GOT(pa iwn) (4'11)

npT
where non-interacting electronic Green’s functions are given by G, (p, iw,) = (iw, —
€pr) "t and wy, = w(2n + 1)T for integer n are the fermionic Matsubara frequencies.

Summing over n, we obtain for Eq. (4.11)
M,(g; m) = 2 Y |Ggrul*X0r (¢, iVm) (4.12)
where the bare susceptibility is given by

f (51)7— — (EP'HJT)
(a, Z . 413
Xo q ZVm “/m 5;07' 8p+q7' ( )

with f(e,,) = (1 + €®77)~! being the Fermi-Dirac distribution function.
The poles of the phonon Green’s function g, (we put vy, — €y, in D,(g, ivm)),

which give the dressed phonon frequencies, will satisfy the equation

()i = (2, ) + 209 TL,(g, Q) (4.14)
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Due to the large energy difference between electrons and phonons, it is typically a
good approximation to set {2y, — 0 in II,(g,2,). This approximation results in an
expression that can be derived by doing stationary second-order perturbation theory
to obtain the change in energy due to the presence of the phonon. That is, setting

Qqu — 0 in TI(g, Q4,) corresponds to the frozen-phonon approximation
2 0)? 0
(Qqu)ppa = (Qqu) + 22, 11,,(g, 0). (4.15)

We can typically approximate well the quasiparticle energy by a plane-wave state
with given effective mass m*. Then, by incorporating the FPA, at zero temperature

the integral in Eq. (4.13) can be done which will enable us to obtain

(4.16)

9 B 0 2 9 2m*a QkF’T —dq
(Qqu)rpa = (Qqu> + ET: | Mokl TM N kg, log ‘ 2k, + q| .

This expression explicitly shows the logarithmic divergences in the phonon dispersion
at the nesting wave vectors of the Fermi surface. This is the famous Peierls instability
to a CDW state. Our procedure for determining the elusive undressed frequencies
is then as follows. We take ();, obtained from the FPA and fit them with the ex-
pression Eq. (4.16) using qu as an adjustable parameter. The coefficients of the log
divergences at the nesting wave vectors of the Fermi surface are fixed hy the effective
masses m* and kg, (known from the band structure) and the computed EPC matrix
elements Mog,-,. In all cases we found excellent agreement of the calculated FPA
frequencies with Eq. (4.16) in the vicinity of the singular points, which provides a

good self-consistency check for our analysis.
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Figure 4.4: The band structure of the (5,0) CNT obtained through zone-folding (a)
and calculated directly (b) along with the atomic structure (c).

4.3 Results for representative nanotubes

4.3.1 (5,0) nanotube

The zig-zag (5,0) CNT has a diameter of around 3.9 A making it close to the the-
oretical limit [124]. Nanotubes of this size have been experimentally realized through
growth in the channels of a zeolite host [152]. Through the Raman measurement of
the frequency of the radial breathing mode, the (5,0) CNT is thought to be a likely
candidate structure for these experiments [98].

We first compute the band structure of this tube by using the zone-folding method
[135]. To do this, we use the band structure of graphene, which is shown in Fig. 4.1,
computed by using the NRL tight binding method. Shown in this figure are four

valence bands and four conduction bands, coming from the three sp, and one p,
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bonding and antibonding states respectively. There is a degeneracy between the
p, bonding and antibonding states at the Fermi energy at the K point in the first
Brillouin zone which accounts for the semimetallic behavior of graphene. The zone-
folding band structure of the (5,0) CNT is shown in the right of Fig. 4.4. Since 5/3
is not an integer, zone-folding predicts this CN'T to be semiconducting.

Fig. 4.4 (b) shows the band structure of the (5,0) CNT calculated directly by
using a unit cell of 20 atoms. One sees that there are significant qualitative differences
between the two band structures, one being that the directly computed band structure
predicts metallic behavior. The inner band (with smaller Fermi point k%) is doubly
degenerate while the outer band (with larger Fermi point kB) is nondegenerate. The
strong curvature effects causes hybridization between ¢ and 7 bands, pushing them
through the Fermi energy and therefore making the tube metallic. Furthermore, for
the (5,0) CNT, we see that inner band is close to the Van Hove singularity at k£ = 0,
which produces a large density of states at the Fermi energy. The calculated density
of ¥(0) = 0.16 states/ eV / C atom is around a factor of five larger than that of larger
radius metallic armchair CNTs.

After the band structure is calculated, we consider all possible scattering processes
of electrons between Fermi points —kB, —k#, k&, and k2 due to phonons with wave
vectors ¢ that satisfy the momentum conservation condition. As a starting point
for the phonon spectrum, we use the dynamical matrix of Jishi et al. [78] which
uses a fourth nearest-neighbor model, and we employ the zone-folding method. The
reproduced phonon dispersion of graphene is shown in Fig. 4.1. For a given process,

we calculate the coupling for all of the 3 x N, distinct phonon modes where N, = 20 is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Superconductivity and charge-density wave instabilities in carbon

nanotubes 82
10 : . I
o
8 - i
<
S 6+ -
2
o
g | °
% 4 L o J
o
o
2 - 4
0000 0OaMPbe 0 00 0
0 500 1000 1500 2000

frequency (1/cm)

Figure 4.5: The coupling My for the outer band 2k2 process for each of the 3 x 20
= 60 phonon modes respectively vs. graphene frequency.

the number of atoms per unit cell. Shown in Fig. 4.5 is an example of the outcome for
one of these calculations. Shown is the coupling for the outer band 2k# processes vs.
graphene frequency. One can immediately see that most couplings vanish which can
be explained by symmetry of the electronic wave functions and the phonon modes.
To keep this paper concise, we cannot present all of the coupling results for each
scattering process. Instead, we show the most dominant couplings. These dominant
couplings were found to be from intraband 2ky processes. The largest couplings for
the (5,0) CNT occur for phonons along the I'M line of graphene at the appropriate

wave vector corresponding to the particular 2kg. For the inner band, the largest
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Figure 4.6: 1-6: The phonon modes at the I" point in the first Brillouin zone of
graphene. 7: An in-plane optical phonon mode at the K point of the first Brillouin
zone of graphene. The out-of-plane optical mode 4 is the leading cause of the CDW
instability in the (5,0) and (6,0) CNTs.
couplings, in descending order, occur for the out-of-plane optical mode, the radial
breathing mode, and the in-plane acoustic stretching mode. For the outer (with
larger kr) band, the dominant couplings occur for the out-of-plane optical, an in-
plane optical, the radial breathing, and in-plane stretching modes. These results are
summarized in Fig. 4.6 and Table 4.1. Although the magnitunde of the dominant
coupling matrix element for the outer band is larger than that of the inner band,
the inner band processes are significantly more important in the study of instabilities
because their contribution to the total density of states at the Fermi energy is signif-
icantly larger than that of the outer band. This is due to the small Fermi velocity of
the inner band and its degeneracy.

It is interesting to note that the phonons that have the strongest coupling to elec-
trons at the Fermi surface are out-of-plane modes. This is different than intercalated

graphene where in-plane phonon modes are responsible for superconductivity.[40] The

fact that the out-of-plane modes are the most important for this CNT are presumably
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(5,0) | mode | wgr®Ph (cm™?) | My (eV/A)

kA | 4 853 5.55
3 39 4.46
5 1588 4.24

2kB | 4 829 8.56
5 1593 5.23
3 133 4.97
2 684 4.10

Table 4.1: Calculated values for the dominant coupling processes for the (5,0) CNT.
The numbering scheme here corresponds to that given in Fig. 4.6. 2k% and 2k2
correspond to inner and outer band processes respectively. Phonon frequencies are
given for graphene.

due to the large curvature effects. For instance, we find that the bond angles of the
relaxed (5,0) CNT structure (having the values of 119.4° and 111.9°)are intermediate
between the sp; bond angle (found in graphene) of 120° and the sp; bond angles
(found in diamond) of 109.4°.

Now we calculate the CN'T phonon frequencies by using the frozen-phonon ap-
proximation with the eigenvectors from graphene. The circles shown in Fig. 4.7 are
the frequencies obtained for phonon modes along the I'M line of graphene for the
out-of-plane optical mode which was found to be the most important mode. First,
we see that the calculated FPA frequencies are significantly lower than the corre-
sponding ones in graphene. This can be understood as follows. The strong curvature
of the nanotube changes the C-C bonds so that they are in an intermediate regime
between the sp, bonding (found in graphene) and sp3 bonding (found in diamond).
The out-of-plane optical mode oscillates between these two bonding configurations

and is therefore significantly softened. Next, we notice that there are divergences at

q = 2kp and ¢ = 2k2. This result is the giant Kohn anomaly.
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Figure 4.7: (a): Phonon dispersion for the (5,0) CNT along the T'M line of graphene.
The X’s denote values for which the frozen-phonon approximation gave imaginary
frequencies for the out-of-plane optical mode in the vicinity of 2k%. (b): The mode
showing the most softening fit to the RPA expression.

To extract the bare phonon frequency of the Frohlich Hamiltonian Eq. 4.1 for
the (5,0) CNT we follow the procedure discussed in Sec. 4.2.4. The dressed phonon

frequencies are given by

Q2= () & Dylog|2KE—4 417
(qu)_(qu> + Aogm (4.17)
kB q
Dgl £
+ Uslog Qk:Ei-l—q}
where
2mia
9 A
and
_ s Mpa
Dg = |Mygs)| TMNE (4.19)

All of the quantities needed to calculate the coefficients D5 and Dghave been obtained
already. We assume that the bare phonon frequencies are fit well by the form (€29,)* =
ag + a1q + axq®. We then use ag, a; and ay as fitting parameters to fit our expression

for 2, to the calculated FPA frequencies. Doing this thereby enables us to extract the
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important bare frequency dispersion Qg which is shown in Fig. 4.7. Extracting these
bare frequencies Q) allows us to calibrate the effective Frolich Hamiltonian Eq. (4.1)
which will be used to study instabilities of the electron-phonon system. With our
previously calculated quantities, we obtain Da = (219 cm™1)? and Dg = (146 cm™})2.

Using these values we thereby extract Qg=2k§ =433 cm™L.

4.3.2 (6,0) nanotube

The band structure of the (6,0) CNT was considered extensively by Blase et al. in
Ref. [16]. This tube has a slightly larger diameter of 4.7 A. The zone-folding band
structure of this CNT is shown in the left of Fig. 4.8. As is typical of metallic zig-zag
tubes, there are two bands crossing at £ = 0 at the Fermi energy. The band structure
directly computed with 24 atoms in the unit cell is shown in the right of Fig. 4.8.
As discussed before [16], these band structures differ qualitatively which is a result
of the hybridization of the sp, and p, bands. Here the inner band (with smaller k2)
is nondegenerate and originates from the p, bonds in graphene while the outer band
(with larger k%) is degenerate and originates from the spy bonds in graphene.

The coupling matrix elements for the (6,0) CNT were computed and the coupling
for the most dominant modes are shown in Fig. 4.6 and Table 4.2. The dominant
inner band couplings were for intraband processes and are, in descending order, to
the out-of-plane optical and an in-plane optical. The dominant outer band couplings
processes were found to be the out-of-plane optical mode, an in-plane optical mode,
the radial breathing mode, and the in-plane acoustic stretching mode.

Using the same procedure as was used for the (5,0) CNT in the previous section
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Figure 4.8: The band structure of the (6,0) CNT obtained through zone-folding (a)

Energy (eV)

Energy (eV)

and calculated directly (b) along with the atomic structure (c).

(6,0) | mode | w9 (em™) | Myw (eV/A)

kA | 4 857 727
) 1585 6.80

KB | 4 847 6.84
6 1591 6.12
3 68 3.73
2 493 2.31

Table 4.2: Calculated values for the dominant coupling processes for the (6,0) CNT.
The numbering scheme here corresponds to that given in Fig. 4.6. 2k% and 2k2
correspond to inner and outer band processes respectively. Phonon frequencies are

given for graphene.
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Figure 4.9: (a): Phonon dispersion for the (6,0) CNT along the I'M line of graphene.
(b): The mode showing the most softening fit to the RPA expression.

for extracting the bare phonon frequency at 2k%. From the previously computed
values for the electron-phonon coupling matrix elements and the band structure, we
find Dy = (166 cm™')? and Dg = (107 cm™1)%. After fitting, we extract the value

ng%? = 480 cm~ L.

4.3.3 (5,5) nanotube

Finally, we study the more conventional armchair (5,5) CNT which has a diameter
of around 6.8 A. As shown in Fig. 4.10, the zone-folding and directly computed band
structure for this larger diameter tube agree quite will. Both of these band structures
show two bands which originate from p, orbitals which cross at the Fermi energy at
around k = 22

The largest couplings for the CNT were found to again be from the intraband
processes and are shown in Fig. 4.6 and Table 4.3. The only significant intraband
coupling is for an in-plane mode shown denoted by 7 in Fig. 4.6. The wave vector for

this mode is at the K point in the first Brillouin zone of graphene. For the interband
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Figure 4.10: The band structure of the (5,5) CNT obtained through zone-folding and

calculated directly are shown in the upper right and left. Bottom: the structure of
the (5,5) CNT.

(5,5) | mode | wg*" (cm™!) | My (eV/A) |
7 1479 11.60
3 542 4.64

Table 4.3: Calculated values for the dominant coupling processes for the (5,5) CNT.

The numbering scheme here corresponds to that given in Fig. 4.6. Phonon frequencies
are given for graphene.

processes, there is coupling to the the radial breathing mode, but this is significantly
smaller.
For the (5,5) CNT, applying our method of extracting the bare phonon frequencies,

we obtain Dg = (228 cm™1)2. Note that for this system, only 7 bands are relevant at

the Fermi surface. We extract QO_%B = 1469 cm™!.

It is worth pointing out that there has been some controversy about the relevant

phonon mode which couples the electrons at the Fermi surface for the (5,5) CNT.[70,
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Figure 4.11: (a): Phonon dispersion for the (5,5) CNT along the M K line of graphene.
(b): The mode showing the most softening fit to the RPA expression.

140] Our results confirm the study of Ref. [140]. The 2kr processes couple to the

phonons at the K point of graphene and the relevant graphene mode has polarization

vectors €,(1) = %(z, 1,0) and €,(2) = %(1,@0). This out-of-phase circular motion

is qualitatively different from the linear oscillations thought to couple previously.

4.4 Instabilities of the electron-phonon system

4.4.1 Charge-density wave order

The RPA analysis presented in Sec. 4.2.4 can be used to investigate the CDW

(Peierls) transition temperature.

This instability corresponds to softening of the

phonon frequency to zero, so we can obtain it from the condition Qg, = 0in Eq. (4.14)

where (), = 2kp, is one of the nesting wave vectors of the Fermi surface.

The

electron polarization evaluated at temperature T is given by xor(2kp,,w = 0,T) =

1v,(0) log(T'/4ep), where v,(0) = 2m?/Lkg, is the contribution to the total density
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’ (5’0) | (6’0) ‘ (555) ’

mode 4 4 7
ngp (cm_l) 433 | 480 1469
ACDW 0.26 | 0.12 0.024

Toow (K) | 160 | 5 [7x107™

Table 4.4: The dominant mode for the CDW instability, the extracted bare phonon
frequency, the CDW coupling parameter, and the CDW transition temperature for
the various CNTs studied.

of states from band 7. We introduce the CDW coupling constant

2v,.(0
ACDW ,rp = ——IQQ}’;L ©) (4.20)
Qrp

where 7 specifies which of the 2kr nesting wave vectors we are considering and p
labels the phonon mode. Note, that distinguishing between various phonon modes
is important, since it tells us about the nature of the distortion of atoms below the
Peierls transition (i.e. the in the plane vs out of the plane). One finds for the CDW

transition temperature
Topw - = depre” 1/ AcPWr, (4.21)

Corrections to this equation due to an additional band with different Fermi wave
vector (e.g. the term with the logarithmic divergence at 2kZ in Eq. 4.17) is small
and will be neglected. Degenerate bands (e.g. the A band for the (5,0) CNT), are
accounted for by an additional factor of 2 in the density of states is Eq. (4.20). In

Table 4.4 we summarize our results for the CDW instability for the CNTs studied.

4.4.2 Superconductivity

To analyze the superconducting instability of the CNTs we use the Migdal-Eliashberg

theory. The isotropic Eliashberg equations for the one-dimensional case, neglecting
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the Coulomb interaction, can be written as (see Appendix A.2 for details)
Zpn =14 fasn Y _An—n')sy (4.22)

ZnAn = Z )\(’I’L — n’)fn/An/ (4.23)

where f, = 1/|2n+ 1|, s, =sgn(2n + 1), A, = ¢,/ Z,, and the frequency dependent
coupling constant A\(n) is given by

1

)‘(n - n,) - _V—(O) Zk-rk"r’u 6(5197)5(5/%’7’)'9’6’9’#12

X D,(k—kK,n—-n') (4.24)

where v,(0) is the density of states per spin at the Fermi energy. When analyzing su-
perconductivity in two and three dimensional systems using the Eliashberg equations
it is sufficient to take the bare phonon propagators Do(k — k',n — n’) in Eq. (4.24).
This is justified since in the absence of Fermi surface nesting there is typically little
difference between the bare and the dressed phonon frequencies and propagators. In
one-dimensional systems, however, there is a strong temperature dependent renormal-
ization of the phonon spectrum which needs to be taken into account. The simplest
way to do so is to use the FPA form of the phonon propagator (see Eqns. (4.9) -
(4.15))

202,
(iVm)? — (Qqu)Q'

Here Q,, is the dressed phonon frequency in the FPA given in Eq. (4.15). Taking a

DEPA(q, W) =

(4.25)

soft dressed phonon propagator immediately leads to the enhancement of the electron
pairing via the increase of A(n). Enhancement of superconductivity by the giant

Kohn anomaly in one-dimensional systems has been discussed previously by Heeger
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in Ref. [63]. The main subtlety of the Eliashberg equations in this case is that the
phonon frequency €2, now has temperature dependence which needs to be found
using the finite temperature form of the polarization operator II(g,0) in Eq. (4.15).

When we analyze the (5,0) nanotube following this strategy, we find, however, that
the CDW instability always appears before the superconducting one. This is in agree-
ment with the general argument proposed in Ref. [53] that in strictly one-dimensional
electron-phonon systems Peierls instability alway dominates, since it involves all elec-
trons in the band, compared to the superconducting instability, which involves only
electrons in the vicinity of the Fermi surface.

To introduce a quantitative measure of the strength of superconducting pairing
we use the bare phonon propagator in Eq. (4.24). This approximation will be more
carefully considered in Sec. 4.5.4, along with inclusion of the Coulomb interaction. A
useful approximate solution of the Eliashberg equations (4.22) - (4.24) is given by the

McMillan formula (again in the absence of Coulomb interaction) [109, 3]

Too = D e {_M} .

A 4.26
- (4.26)

1.20

Here Agc is the zero frequency component of Eq. (4.24) where, again, the bare phonon

frequencies are used

)\sc = —L 26(5k)6(5k’)|gkk’l2DO(k — k/, 0) (427)
V(T(O) kk/

In accordance with Ref. [12], we take (£2) = 1400 K. The superconducting coupling
constants and transition temperatures calculated in this manner are summarized in
Table 4.5. We emphasize, however, that these numbers should be taken with some
skepticism, since within the same approximation the CDW instability is usually the

dominant one and appears at much higher temperatures (compare to Table 4.4).
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(50| (60| (55 |
Asc 0.57 | 0.12 0.031
Tsc (K) | 64 |0.071 | 1.11 x 10712

Table 4.5: The SC coupling parameter, and the SC transition temperature for the
various CNTs studied. The CDW instability and the residual Coulomb interaction
between electrons are neglected in the calculation of these quantities.

Finally, it is known that ¢ & 0 scattering processes due to acoustic phonons can be
important in one-dimensional electron-phonon systems [164, 9, 49]. However, in the
approximations leading to Eq. 4.27 these contributions were neglected. In Appendix
A.3 we show that while these processes can be important for some systems, their
inclusion leads to only a small correction to Agc for the CNTs we study. This is due
to the fact that the dominant contributions to the superconducting coupling constant

are from optical phonons.

4.5 Role of the Coulomb interaction

In the discussion above we concentrated on the electron-phonon interaction with
electron-electron Coulomb interaction included only at the mean-field level via the
band structure. It is useful to consider how the residual Coulomb interaction can

modify the analysis of the Peierls and superconducting instabilities discussed above.

We take
H = He_ph + He_e (4.28)
H =1 E |% /C]L CJr Ci'+'o'C
e—e T 2 qT7' ChtqroCk! —qr' ol Ck'T/0' CkTo
kk'grT'oo’!

where H._,y, is still given by Eq. (4.1) and we will always assume & and &’ around the

Fermi surface. Note that we have neglected interband scattering which is typically
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small due to the orthogonality of the wave functions from different bands. In the
following, we will consider how introducing this Coulomb interaction modifies the

results.

4.5.1 Coulomb interaction potential
For the Coulomb interaction between conduction electrons, we take the form used
by Egger et al. in Ref. [44]
N = e?/k
\/(ar — ')+ (2Rsin (yg;lg'))? +a?

Here, the y-direction is chosen to be along the perimeter of the CNT and & measures

V(ir—r

(4.29)

the distance along the CNT axis. A measure of the spatial extent of the p, electrons
perpendicular to the CNT is given by a, ~ 1.6 A and R is the CNT radius. We note
that the spatial extent of these electrons will differ inside and outside of the CNT,
but the error from this approximation does not affect the magnitudes of the Coulomb
matrix elements (which we evaluate below) significantly. Note that this interaction
potential is periodic in the y-direction. For the dielectric constant due to the bound
electrons, we will take the value k &~ 2 predicted by the model of Ref. [13].

We can now use Eq. (4.29) to obtain the Coulomb interaction entering Eq. (4.28)

Vo = [ &rd*'V(r —1) (4.30)

X ¢Z+q7(r)¢kr(r)¢1}k/—q7'(r/)wk’r' (I’/).

The region of integration above is over areas of length L along the z-direction where

L is the length of the system and of width 27 R along the y-direction. For backward
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e
w - OO

Figure 4.12: Dyson’s equation for the phonon propagator (a) where the Coulomb
interactions are taken into account within the RPA (b).

(a) ~oo =

scattering processes (¢ =~ 2kp) between the inner bands of the (5,0) and (6,0) CNTs
we find that Vg, is independent of 7 and 7/, and (see Appendix A.5 for derivation)

1 : /
V, ® vﬁ/dwdw'eﬂq(z_””)

27TR dy 27TR dy’
X
/o 27 R Jo 2R

V(e —-r) (4.31)

where v = 0.59 and 0.0016 for the (5,0) and (6,0) CNTs respectively. This is sig-
nificantly reduced from the value of v = 1 that one obtains for larger radius CNTs
[44] which is due to the fact that wave functions at the Fermi points have different
symmetries for the (5,0) CNT and (6,0) CNTs. More specifically, it can be found
that pcpw is very small for the (6,0) CNT due to the fact that for metallic zig-zag
nanotubes, the wave functions at —k and k close to the Fermi energy are nearly or-
thogonal within the unit cell of the CNT since they correspond to symmetric and

antisymmetric combinations of atomic orbitals in the graphene sheet.

4.5.2 Modification of CDW instability due to Coulomb in-

teraction

The simplest approximation (beyond mean-field) which includes the Coulomb re-

pulsion is the RPA shown in Fig. 4.12 (see e.g. Refs. [139, 97]), Eq. (4.14) now
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becomes for a one-band system

2 IACRUM)
(Qqu)2 = (qu) +20 ‘ -

TV (g)xola, 2ap) (4.52)

where IL,(q, Qqu) = |9qul*X0(q, Q). We immediately see that including the Coulomb
interaction can suppress the CDW instability. The second term in Eq. (4.32) no
longer diverges when ¢ = 2kp and the softening of the 2kr phonons occurs only for
picpw < Acpw,u, Where

1
Hcow = §V(O)‘/;]=2kF' (4.33)

From equation (4.32) we also find how the Coulomb interaction modifies the Peierls

transition temperature

1
feow = derexp (_ [Acow,u — HCDW]) ' (4.34)
H

We will now estimate the magnitude of ucpw from this residual Coulomb interac-
tion for the (5,0) which was seen above to be the most unstable toward the formation
of a CDW from distortion of the out-of-plane optical mode shown in Fig. 4.6. Carrying
through the straightforward generalization of the RPA analysis for the multiple-band
system, and carrying out the integrals in Eq. (4.31) for the Coulomb backward scatter-
ing interaction, we obtain ucpw = 0.24. Note that this is quite close to Acpw = 0.26
for this particular instability. This indicates that it is possible that the Coulomb in-
teraction can significantly suppress the CDW transition temperature or even remove
the CDW instability altogether. Indeed, taking these values we find that Tcpw is
suppressed to less than 1078 K.

For the (6,0) CNT, we calculate the smaller value pcpw = 0.0019. This will not

change the value of Tcpw = 5.0 K that we calculated previously for the (6,0) CNT.
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4.5.3 Phonon vertex renormalization through screening

It can be seen that the Coulomb interaction further can screen the electron-phonon
vertex. By including screening through the RPA, we find that the screened vertex is
given by [139]

G, = — Jdm 4.35
Gqu 1— V:]XO(Q) ( )

for a one-band system where x0(q) = x0(q, Qg = 0). Thus we see that the inclusion
of screening reduces the electron-phonon vertex. We note that in the treatment in
Sec. 4.5.2 of the CDW instability it would be inappropriate to use the screened vertices
since this would lead to double-counting.

Full charge self-consistent calculations will determine the dressed electron-phonon
vertex (see Appendices A.1 and A.4). This is desirable in 3d, where the renormal-
ization is presumably small. However in 1d, one would calculate greatly suppressed
values for the couplings, dominated by the screening due to the logarithmic diver-
gence of the susceptibility at 2kr. Because of the subtle interplay between these
divergences, it is desirable to calculate the bare vertex and then manually put in the
Coulomb interaction as we do.

Since with the method we use, the charge distribution is not calculated self-
consistently, we calculate the bare electron-phonon vertex g,,. We point out, however,
that there is an approximation here. The true bare electron-phonon vertex should
be calculated in the absence of the conduction electron entirely which is separately
accounted for in the residual Coulomb term. In our method, however, the conduction
electron is taken to adiabatically follow the ion through the distortion. Because of

this, we expect our results to slightly underestimate the bare electron-phonon coupling
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vertices.

4.5.4 Modification of superconducting instability due to Coulomb

interactions

To include the Coulomb interaction in the Eliashberg equations, it is necessary
to dress both electron-phonon vertices shown in Fig. A.1 according to Sec. 4.5.3 as
well as the phonon propagator according to Sec. 4.5.2. This leads to the modified

phonon-mediated interaction between electrons of

2
T el 4.36
|9qul"Dyu(q, ) (1 — Vaxo(g))? o
203,
y :
Q2 —(29,)% = 292u|9qu|217)€/%%(%)

Using this leads to a modified result for the superconducting coupling constant Asc.
For a specific process of wave vector ¢, coupling points on the Fermi surface, we find

that the renormalized contribution to the superconducting coupling constant is given

by

1 1 o
Aow = ((1 - V;]XO(Q))2> 1+ %’:—Pkﬁg(q) /\qu 437
where )\Su is the unrenormalized contribution. All such contributions must be summed
over to determine the total Agc. The first and second factors tend to decrease and
increase the electron-phonon coupling, respectively. Physically, the first factor is due
the screening of the electron-ion interaction due to conduction electrons. The second

factor is due to the softening of particular modes due to the Kohn Anomaly which

will in turn enhance the overall electron-phonon coupling. Since these renormalization
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factors depend on temperature through the susceptibility xg, Tsc must be determined
self-consistently.

In addition to the renormalization of the Coulomb vertex, there is also the direct
Coulomb repulsion between electrons that is taken into account through the Coulomb

pseudopotential pge which is included in McMillan’s expression [109, 3]

@) 1.04(1 + Asc)
foo =T P <— [Asc — pgc(1+ 0-62/\80)]> (438)

where

_ Hsc
1+ pscln (%)

ic (4.39)

and ugc is the screened Coulomb interaction averaged over the Fermi surface.

We will now estimate pgo. Taking into account screening within the RPA one

finds

V,
Vs — q
1~ Vixolg)

for the screened Coulomb interaction. In 1d for ¢ = 2kp, V) = 0. This is due to

(4.40)

the divergence of xo(q) at ¢ = 2kr. Also, one finds that for ¢ ~ 0, V*(q) =~ 1/v(0).
Using this RPA screened Coulomb interaction we find for our three band system of

the (5,0) CNT

_ 1
Usc = 75 (0)

Z 6(5167)5(619'7")‘/7:97’(]{7 - k’,) = (.25. (441)
kTk!T!

Then, using Eq. (4.39), we obtain pf- = 0.19 for the Coulomb pseudopotential with
the calculated values of the Fermi energy and Debye frequency.
We now see how taking into account the Coulomb interaction in this manner

modifies the superconducting transition temperature for the (5,0) CNT. The most
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significant renormalization of the total superconducting Asc given by Eq. (4.37) will
be for the 2kr process that couples to the out-of-plane optical mode which was pre-
viously seen to have the overall strongest coupling. That is, at temperatures where
the renormalized Agc will start to differ from the bare A2, all of the renormalization
will come from this mode. Using Eqns. (4.37) and 4.38, we find that a self-consistent
solution for the superconducting transition temperature occurs at Tsq ~ 1.1 K which
is larger than the previously calculated CDW transition temperature. This there-
fore shows that the Coulomb interactions can favor superconductivity over the CDW
instability.

For the (6,0) CNT, we see that the value of Tgc without the inclusion of Coulomb
interaction is smaller than Tcpw = 5K that we computed in the previous section with
the inclusion of the Coulomb interaction. We therefore conclude that the CDW will

be dominant for the (6,0) CNT.

4.5.5 Summary of Coulomb effects

In the above, we have shown that the introduction of the residual Coulomb inter-
action will lower both the SC and CDW transition temperatures. We also illustrated
the possibility that the CDW instability can be suppressed so much by Coulomb in-
teractions that SC will be dominant at low temperatures. However, we stress the
difficulty of obtaining such quantitative results. In principle, to obtain an accurate
Coulomb interaction in our basis of Bloch states, one needs to use the interaction

62

g e (e (1) (4.42)

]‘ IR 3 * !
ka’k”k”’ = E/d37”d37“ wk(r)wk/(r)
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where the 1;’s are Bloch state wave functions of the CNT which is difficult to ob-
tain. The Coulomb interaction V, we used is only a rough approximation to this
more realistic interaction. On the other hand, the SC and CDW transition temper-
atures have exponential dependence on the Coulomb interaction parameters. One
also has to be very careful not to double-count the electron-electron interaction terms
taken into account in the single-particle energies ¢; through the Hartree term. As
shown in Appendix A.4, using a method in which the charge density is calculated
self-consistently will give more accurate values for the phonon frequencies calculated
through the FPA. However, there are serious difficulties with calculating the bare

electron-phonon vertex with such a method as discussed in Sec. 4.5.3.

4.6 Discussion

4.6.1 Comparison to other carbon based materials

As a consistency check, we now compare our results for the attractive potential
due to electron-phonon coupling to established results for other carbon based solids,
namely the intercalated graphene KCg and the carbon fullerene K3Cg. Calculations
of the density of states at the Fermi energy yield v(0) = 0.24 (Ref. [74]) and 0.29
(Ref. [8]) states/ eV / C atom for KCg and K3Cgo respectively. Estimates of Agc for
these are 0.21 (Ref. [74]) and 0.7 (Ref. [12]). In the BCS theory, Agc is expressed
in terms of the product of the electronic density of states at the Fermi level and
the attractive pairing potential strength Asc = v(0)V. [139] Now that we have the

magnitude Agc and v(0), we can extract the magnitude of the pairing potential for
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| KCs | K3Ceo | (5,0) CNT | (6,0) CNT | (5,5) CNT |

v(0) (eV-1) | 0.24 | 0.29° 0.16 0.068 0.034
Asc 0.212 | 0.7 0.57 0.12 0.031
V(eV) |0875| 24 3.6 1.8 0.92

Table 4.6: Density of states at the Fermi energy, the superconducting coupling
strength, and the attractive potential strength for various carbon materials. Su-
perscripts a, b, and ¢ denote Refs. [74], [[8]], and [12] respectively.

the intercalated graphene, the fullerene, and the CNTs we study. The results are
summarized in Table 4.6.

The following analysis will be very similar to that of Benedict et al. in Ref. [12]
The central idea in their analysis is as follows. Since curvature increases the amount
of hybridization between ¢ and 7 states at the Fermi energy, the strict selection rules
for phonon scattering between pure 7 states in graphene will be lifted. The amount
of ¢ — 7 hybridization has roughly a 1/R dependence on the radius of curvature, so
the matrix elements and therefore the attractive potential due to curvature will go as
1/R? [12].

Neglecting presence of pentagons in fullerenes, we write the attractive potential
for the fullerene Va1 as the sum of contributions from that of the graphene sheet Vg,

and that from curvature effects Voyrve

Voall = Vaatr + Veurve- (4.43)

This relation enables us to obtain the value for Ve = 1.5 €V. Now we can write the

expected attractive interaction for the CNT

Ro/2\’
V;ube(R) = Vﬂat + ‘/;urve <—ORL> (444)
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0 > 3 4 5 6
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Figure 4.13: Viube(R) from Eq. (4.44) calibrated with parameters from intercalated
graphene and fullerenes (solid line) compared to the attractive potentials calculated
for the representative CNTs (filled circles).

where Ry = 5 A is the radius of a fullerene and the factor of two comes in because
there is twice as much o — 7 hybridization in a fullerene as there is in a CNT of radius
Ry. [12] In Fig. 4.13, we show that Eq. (4.44), which was calibrated by using only
quantities from intercalated graphene and fullerenes, is consistent with the attractive

potentials we obtain for the (5,0), (6,0), and (5,5) CNTs.
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4.6.2 Beyond mean field theory

One-dimensional electron-phonon systems have several competing instabilities and
the true ground state may be found only by analyzing their interplay. [160, 161] Hence,
one may be concerned that we use a mean-field approach to analyze a 1d CNT. We
point out that when we calculate the superconducting Tsc we include the interplay
of the CDW and SC orders. That is, the effective superconducting coupling Agc that
we obtain in Eq. 4.37 includes softening of the 2kr phonon mode. Such an approach
is equivalent to the two parameter RG analysis used in Ref. [59]. The mean-field
transition temperature obtained by our method is equivalent to the coupling constants
becoming of the order of unity in the RG analysis. At Tgc electrons start to pair,
but the system has strong fluctuations in the phase of the SC order parameter. The
most important kind of fluctuations are thermally activated phase slips, discussed
originally for superconducting wires in Refs. [94, 107]. Phase slips lead to only a
gradual decrease of resistivity with temperatures below Tyc.

For an incommensurate CDW, long range order may not appear at finite tem-
perature either. To understand the physical meaning of the mean-field transition,
we can introduce a Landau-Ginzburg formalism. [24] Here we concentrate on the
(5,0) and (6,0) CNTs which have three partially filled bands with Fermi points
k# and k2 where the exact relation 2ka = k2 is satisfied. We introduce a com-
plex order parameter U;(x) related to the amplitude of the lattice distortion as
g(z) = €27 U (z) + e 2k U1(z). At low temperature the free energy is given
by F,[¥1] = [dz(a]¥|® + b|Ty|* + ¢|Z2|?). Below the mean-field transition tem-

perature Tepw we have a < 0 and the system develops an amplitude for the order
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parameter U;. The phase of ¥y, however, is still fluctuating, leading to short range
correlations for the CDW order (¥ (z)¥%(0)) ox e~*/4T). Even at T = 0 we can have
at best a quasi long-range order for ¥; due to the incommensurate value of 2k#. Lat-
tice distortions at 2k2 can be included by introducing another complex field ¥y(x)
that contributes eX*7% Uy(z)+e~2k7 U3 () to the distortion amplitude. The relation
2k$ = kB implies that the free energy allows coupling between ¥; and ¥, of the form
Frol¥1, 03] = v [dz(¥2T3 + U320,), so when the amplitude of ¥; is established,
it will immediately induce the amplitude for ¥, (although none of the fields have a
long-range order). Appearance of such amplitudes should lead to a pseudogap state
of the system below Tcpw. [24] The dominant contribution to electrical conductivity
in a clean system would then come from the Goldstone mode of the phase of the ¥’s,
i.e. sliding of CDWs (Frohlich mode). Any kind of disorder (e.g. impurities or crystal
defects), however, gives strong pinning of the CDW phase and suppresses collective
mode contributions to transport. Therefore, we expect insulating behavior of the low
temperature resistivity in most experimentally relevant circumstances if CDW is the

dominant low temperature phase.

4.6.3 Experimental Implications

Proximity induced [82, 118] as well as intrinsic [86, 152] superconductivity has
been experimentally observed in carbon nanotubes. On the other hand, the CDW
state, despite being endemic to quasi 1d systems has never been reported for carbon
nanotubes. As we discuss above, one needs to have very small carbon nanotubes to

have electron-phonon interaction strong enough to make either the CDW or the SC
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instabilities appear at experimentally relevant temperatures. In this work we address
quantitatively both of these instabilities. Our main conclusion is that when we include
Coulomb interaction between electrons, the CDW instability does not appear even
for the ultrasmall nanotubes, whereas the superconducting Tsc may be in the few
Kelvin range.

In the work by Kociak et al. in Ref. [86], electronic transport through ropes of
single-walled CNTs suspended between normal metal contacts was measured. The
ropes are composed of several hundred CNTs in parallel with diameters of the order
1.4 nm. It was found that below 0.5 K, the resistance abruptly drops, an effect
which is destroyed by the application of an external magnetic field of order 1 T.
The largest radius CNT we study is the (5,5) CNT, which was seen to be in the
regime where zone-folding is applicable. For this CNT, we calculated Agc = 0.031,
a value far too small to support superconductivity at this temperature even without
the inclusion of the Coulomb interaction. This small value of Agc is consistent with
the experimental measurements of the electron-phonon coupling in CNTs of similar
diameter by Hertel et al. in Ref. [65]. It is possible that the interactions between CNTs
in the rope play a tantamount role for superconductivity in the experiment of Ref. [86]
as suggested by Gonzalez in Ref. [54]. Another possibility is that a small number of
nanotubes in the rope have a small diameter. For nanotubes with a diameter of 4
A we find superconducting Tsc in the 1 K range which would be consistent with
these experiments. A small number of superconducting nanotubes could provide a
short-circuiting in transport measurements or even induce superconductivity in other

CNTs via the proximity effect.
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In the experimental work of Tang et al. in Ref. [152], electrical transport was mea-
sured through a zeolite matrix containing single-walled CNTs. In the zeolite matrix,
the CNTs are well-separated from each other creating an idealized one-dimensional
system. The diameters of the CNTs were determined to be approximately 4 A by
measuring the radial breathing phonon mode frequency by Raman spectroscopy. The
superconducting transition temperature for this system was found to be 15 K from
transport measurements. In addition, the Meissner effect was observed through the
temperature dependence of the magnetic susceptibility suggesting that the large cur-
rents observed in transport measurements are not from the sliding charge-density
wave collective mode, but are indeed from superconducting correlations.

The ultrasmall (5,0) CNT we study is the likely candidate structure for the CNTs
confined in the zeolite matrix in these experiments. We find for this system that the
electron-phonon coupling is very strong. We find in the mean-field theory, neglecting
Coulomb interactions, that Tepw = 160 K and Tsc = 64 K, indicating that the
charge-density wave instability is stronger in this approximation. However, putting
in the Coulomb interaction as in Eq. (4.28), the charge-density wave transition was
suppressed to very low temperatures, making superconductivity dominant with Tgc =
1 K. Discrepancy between our calculated Tg¢ and the experimentally observed 15 K
should not be a reason for concern. The superconducting transition temperature in
Eq. 4.38 is exponentially sensitive to the strength of the Coulomb interaction, and

our estimates of the latter are not very accurate.
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4.7 Summary and Conclusions

In this work, we have used the Frohlich Hamiltonian written in Eq. (4.1) to study
three types of small-radius CNTs. For this Hamiltonian, the band structure energies
were computed by using an empirical tight-binding method [110] to first relax the
structure, and then to compute the eigenvalues of the secular tight-binding equation.
The electron-phonon interaction gi,+,, is evaluated for scattering between all Fermi
points. The dressed phonon frequencies §,, are computed by using the frozen-phonon
approximation given in Eq. (4.8) by the displacement vectors from the dynamical
matrix of graphene given in Ref. [78]. The undressed frequencies qu, which enter
the Frohlich Hamiltonian in Eq. (4.1), are then extracted by using the previously
computed quantities of the band structure and the electron-phonon coupling, and
the RPA analysis of the Peierls instability. This method is elaborated in Sec. 4.2.4.
After the calculation of these quantities, the effective Frohlich Hamiltonian has been
fully constructed. The remarkable agreement of the coefficients of the logarithmic
divergences computed by using quantities from the band structure and the electron-
phonon coupling with the frozen-phonon frequencies is a consistency check for this
method.

With the Frohlich Hamiltonian, we then used the RPA analysis of the Peierls
instability (in Sec. 4.4.1 ) and the McMillan equation (in Sec. 4.4.2 and Appendix
A.2) to obtain the charge-density wave and superconducting transition temperatures,
the result with the higher transition temperature being the dominant phase at low

temperatures. For instance, when the CDW is dominant, the Fermi surface will be

destroyed around Tpw eliminating superconductivity altogether. By this method, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Superconductivity and charge-density wave instabilities in carbon
nanotubes 110

provided an exhaustive analysis of three types of CNTs: (5,0), (6,0), and (5,5). The
more conventional larger-radius (5,5) CNT was seen to be stable against the CDW
and SC transitions down to very low temperatures (< 1K) if we only include electron-
phonon interactions. For the ultrasmall radius (5,0) and (6,0) CNTs, however, the
CDW was found to be the dominant phase, with transition temperatures of 160 and 6
K respectively. For both of these CNTs, 2kr is incommensurate with the underlying
lattice. Furthermore, in contrast to larger radius CNTs which have dominant electron-
phonon coupling to the in-plane phonon modes, the ultrasmall (5,0) and (6,0) CNTs
were found to have dominant coupling to the out-of-plane phonon modes (see Fig. 4.6),
as seen from the direct computation of the electron-phonon matrix elements Mpy,p/7/,.
This is further supported by the frozen-phonon computation of frequencies which
show the most robust Kohn anomalies for these modes (see Fig. 4.6).

When we include the Coulomb interaction, for the (5,0) CNT we find that the
CDW order is suppressed much more strongly than superconductivity. More specifi-
cally, our analysis presented in Sec. 4.5 shows that the CDW transition is pushed down
to unobservably low temperatures, whereas the superconducting Tsc is reduced to 1
K. Hence our calculation supports the possibility of observing superconductivity in
ultrasmall CNTs. It is quite foreseeable that a more detailed model for the Coulomb
interaction could raise Tsc to the value seen experimentally, especially considering
the exponential dependence of the superconducting transition temperature on the
Coulomb interaction strength. For the (6,0) CNT, we found that the CDW remains
dominant when the Coulomb interactions are included due to the weak Coulomb

interaction between electrons at the Fermi points, and occurs at around Tepw =5K.
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Chapter 5

Quantum magnetism with dipolar
molecules and spin two bosons in

an optical lattice

5.1 Spin two bosons in an optical lattice

5.1.1 Hyperfine interaction

In this section, we consider alkali atoms in an optical lattice. These atoms have
a nuclear spin of I = 3/2 and electronic spin of J =5 =1/2 (L = 0). The hyperfine

interaction enters the hamiltonian as

th:AI-ng(FQ—IQ—ﬁ) (5.1)

where F = I + J. This will split the degeneracy of the spin states into states with

F =1and F = 2. This splitting for 'Rb is around 7 GHz. The case of F = 1 was
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worked out in Imambekov et al. [73], so here we consider F' = 2 bosons.

5.1.2 From the two-body scattering interaction to the onsite

interaction

First we start with the two-body scattering problem of spin two bosons. Since the
overall wave function must be symmetric, the interaction potential between two such

bosons is
V(x1 —x2) = 6(x1 — %2){90Po + 92P2 + 94Ps). (5.2)

We can use the identities

Po = P (5.3)
4 10 1

Py = 5= —Po—-Fi-F
3 3 1

Py = ?+?'P0+?F1-F2

where we note that F; - Fy = —6, —3, 4 for combined spin S = 0, 2, 4 to rewrite the

interaction as

1 1 1
V(x1—x2) = 6(x1—X2) (;(492 + 3g4) + ?(790 — 10g2 + 394)Po + 5(94 —g2)F1 - F2> .

(5.4)

This then leads to the onsite interaction

1 1 1
Hy = 5Usn(n — 1) + S0Py + 5Us(F? — 6n) (5.5)
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where n = ala, and F = a} Topag. Tus are the spin-2 matrices given by

02 0 0 0
2 0 +v6 0 0
TZ:% 0v6 0 v6 0 (5.6)
0 v6 0 2
00 0 2 0

]

0 -2 0 0 0
2 0 —/6 0 0
Tyzéo\/éo_\/éo (5.7)
00 v6 0 =2
0 0 0 2 0
200 0 O
010 0 O
T" = 1000 0 0 (5.8)
000 -1 0
000 0 -2

The onsite interaction parameters are given by Uy = 2(4g2 + 3g4), U1 = (790 —
10g2+3g4), and Uz = % (g4 — g2) where « is a constant depending on the shape of the

onsite Wannier functions.
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5.1.3 Effective spin interaction for one boson per site

For one boson per site there will be a macroscopic degeneracy if there is no tun-

neling between sites. The tunneling hamiltonian

Hy=—J (al,aj0 +h.c.) (5.9)
(i)

will break this degeneracy which will be described by the effective hamiltonian

HJ |m mlHJ
Ey—-E,

eﬁ'—PZ

m#0

P (5.10)

where P projects onto states with single occupancy. This effective hamiltonian can

be written as
eff —PZESZPU (511)
s=0 <1,J

where P;;(S) projects for neighboring sites into a state with total spin S. We find

that
—4J? —4J? —4J?

Up+ 10, — 60, 2 Up—3U, 7 Up+40,

€ = (5.12)

and €; = e3 = 0.

5.1.4 Phase diagram

We now consider the phase diagram for one boson per site obtained from the
effective spin hamiltonian. To do so, we use the translationally invariant wave function

of the form
= [ A« o), (5.13)
where A, are variational parameters satisfying A%A, = 1 and |a), is the eigenstate

of F;, with eigenvalue & (the sum over @ = —2, —1,0, 1, 2 is implicit). Since this wave
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function is translationally invariant, (P;;(S)) will not depend on site indices so we

will suppress them. Then we have for the energy,
E/N = 60<P(0)> + 62(?(2)) + 64<P(4)> = (60 - 64)<P(0)> + (62 — 64)(73(2)) +€ (5.14)

where we note that (P(1)) = (P(3)) = 0. Evaluating the expectation values of the

projection operators leads to the somewhat cumbersome expressions
(P(0)) = é |AgAp — 241 A_1 + 24, A_,|? (5.15)
and
(P(2)) = (P(2,2)) + (P(2,1)) + (P(2,0)) + (P(2,-1)) + (P(2,-2))  (5.16)
where
(P(2) = ViAo - VBAAf
(P(2,1)) = % [2V342A; — V24, A
(P(2,0) = % 2V2424 5 + VEAIAL — VEAA|
(P(2,-1)) = % [2v3414_, — V2AAL|
(P2,-2)) = =[2vadod s —VBA A"

Minimizing over A, (checked numerically), we find that depending on the parameters

of our hamiltonian, we can have the possible phases
wa) = T[12) (5.17)
1 1 1
e = T (312 7510, - 32 (5.15)

i

[¥B2) = i([l— \/12) (5.19)

ve) =TT (gt l-2,+cost) ), + Fssin@[2)). 620
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E2 - E4

EO0 - E4

Figure 5.1: Phase diagram for spin two bosons. The x and y axes correspond to
€0 — € and €y — ¢4 respectively. Shown are the points for 8"Rb and 23Na. The energy
—4J

units are o

These wave functions will maximize (or minimize) (P(0)) or (P(2)) which will be

desirable if €g — €4 or €5 — €4 is negative or positive. With these wavefunctions we find

(Al PO A) = 0 : (0al P2) i) =0 (521
(s PO ) = 0 5 (sl PO) i) = (5.22)
(el POe) = ¢ & Wl PO o) == (5.23)

Note that phases B1 and B2 are degenerate here and phase C' is independent on the
angle n. The resulting phase diagram is shown in Fig. 5.1. Thé phase boundaries are
given by € — €4 = j:%(eo —€) and € = €.

Now we consider where particular Alkali atoms will lie in this diagram. For 8"Rb,
we have ay = 89.4ap, ay = 94.5ap, and a4 = 106ap. This gives U; /Uy = —0.00172

and Up/Us = 0.0165 50 e — e4 = =220.114 and €y — & = =220.173. For ®Na
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the scattering lengths are ag = 34.9ap, a; = 45.8ap, and a4 = 64.5ap. This gives

U1/Us = —0.0536 and U /Up = 0.0496 50 €3 — €4 = =22-0.341 and €9 — €5 = =:0.646.

We see that both of these points will lie in phase C in the diagram.

5.1.5 Characterizing the phases

We now set out to gain a better understanding of the the variational states found
above. It turns out that finding the maximally polarized states which are orthogonal
to these variational states will completely characterize the states. The maximally

polarized state with coordinates § and ¢ where
(Fy) = Fsin(f) cos(¢) ; (F,) = Fsin(f)sin(¢) ; (F,) = F cos(6) (5.24)

is given by
€)= ¢*[-2) +2¢|-1) + V6P 0) +2¢ (1) + |2) (5.25)

where ( = e®tan(6/2) is the stereographic mapping of the complex plane to the
unit circle. Note that this wave function is not normalized. This state can be found

most easily by directly solving the eigenvalue problem
F-n[¢) = F[() (5.26)

in the basis of states that are eigenvalues of F, where i = (sin(6) cos(¢), sin(6) sin(¢), cos(f)

is a unit vector. In fact, for general spin £, we will have

0= 3\ (1), (5.27)

Now, as indicated before, we want to find the states |{) for which ({|¥) = 0,

which will provide the symmetry properites of the wavefunction |¢)). For the spin
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2 case, this will yield a polynomial of fourth degree, having four roots. The roots
corresponding to phase A are degenerate, so this phase has only the symmetry of the
rotation about the ferrmagnetic axis. Actually, developing such a technology is not
necessary for phase A. On the other hand, the insights gained for phase B and C will

turn out to be quite useful. For phase B1, the characteristic polynomial is
1.4 o 1
(€l = 3¢+ V3= 5 =0. (5.28)

The roots of this equation lie at the vertices of a regular tetrahedron in the zyz coordi-
nate system. Therefore, the symmetry of the wavefunction is that of the tetrahedron.
Using this method, it is also found that phase B2 also transforms as a tetrahedron,
and it can be obtained by rotating phase B1.

For phase C, our characteristic polynomial is

% sin(n)¢* + V6 cos(n)¢? + % sin(n) = 0. (5.29)

The roots of this equation all lie at the vertices of a rectangle (within a given plane).
For 0 < n < 7/3, /3 <n < 2n/3, and 27/3 < 1 < 7 the rectangle will lie in the
2y, xy, and zz planes respectively. For the special values n = nr/3 for integer n, we
will have two degenerate roots. This corresponds to a uniaxial nematic with a U(1)
symmetry about the nematic axis and a Z, inversion symmetry. Otherwise, the roots

will be distinct and we will have a biaxial nematic.
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The nematic phase

We now consider the nematic phase B which has (F; ,, ,) = 0. The order parameter

of the nematic state is the matrix defined by
1 1 9
Qab = 5 ((Fan> + <FbFa>) - §5ab<F > (530)

If the eigenvalues of this 3 x 3 matrix are distinct then we will have a biaxial nematic.
Otherwise we will have a uniaxial nematic. Uniaxial nematics are much more com-
mon in nature. In addition, the biaxial nematic has non-Abelian defects. From the

previous section, phase C' is a nematic and the eigenvalues of Qg for this case are
Eig(Quw) = (—2 cos(26), cos(26) + v/3sin(26), cos(26) — \/gsin(%)) . (5.31)

From this, we see that depending on the value of 6, we can either have a uniaxial or
biaxial nematic. It is an interesting question to ask how can we access this range of

¢ that will be a biaxial nematic experimentally.

5.1.6 The phase diagram with fixed magnetization with quadratic

Zeeman splitting

In the previous section, we placed no constraints on (F,) during our minimizations.
However, in real experiments the time it takes such a quantity to relax is longer than
the lifetime of the condensate. This is reflected by the fact that F, commutes with
our model Hamiltonian. In this section, we will consider the possible phases for
fixed magnetization M = (F,)/N and also under the presence of quadratic Zeeman

splitting. We will consider phases A, B, and C separately.
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Quadratic Zeeman Effect

Experiments for spin one bosons in the presence of an external magnetic field was
reviewed by Stamper-Kurn and Ketterle [144]. The Hamiltonian for a single atom in

the presence of an external magnetic field is
Ao 2
th=AI-J=§(F —I°—J*%) - BS,. (5.32)

Here we have absorbed the factor of the Bohr magneton into the magnetic field
giving B units of energy. We also point out that we have neglected the coupling of
the external electric field to the nuclear spin since this is reduced by a factor on the
order of m./m, compared to the coupling of the electron. The energy eigenstates of
this can be computed exactly. However, for our purposes we assume that A > B and
compute the eigenvalues to order B2 which will give the linear and quadratic Zeeman

splittings. Then to second order in B, the eigenenergies of the total spin two states

will be

B

E(F=2F,=2) = 3A-~ (5.33)
B 3B?
B2

E(F=2F,=0) = 34+ —
B 3B?

(F=2F, ) BA+ -+ oo
B

E(F=2F. =-2) = 3A+.

We point out that these energies will be reproduced up to a constant by the hamil-

tonian acting in the F' = 2 subspace

1
H = —5BF. - YF2, (5.34)
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where v = 3%%. Since the total magnitization is conserved, we can neglect the linear
term.

Phase A

As seen in the previous section, the phases
(A_g, A_l, AQ, Al, Ag) = (1, O7 0, 0, 0) and (O, O, 0, 0, 1) (535)

minimize the energy where we did not take into account any constraints on the mag-
netization. To enforce the constraint of mixed magnetization, we will use a Lagrange

multiplier ¢ which couples to the magnetization as —uM where
M =2 Ay + | A — |A4|? — 2| Ao (5.36)
Using this, we find for the energy
E4/N = =2|u| — 4v. (5.37)

The kink in the energy as a function of y implies phase separation. That is, for a
fixed magnetization, 5 (1 — £!) of the atoms will be in the state (1,0,0,0,0) while

2 (1+ %) will be in the state (0,0,0,0,1)

Phase B

In the previous section, we saw that for zero magnetization and for no quadratic
Zeeman shift, the ground state is (—%, 0,0, %) It is important to note, however,
that this state is degenerate with (0, %,(), 0, %’) [t turns that both states are

important for finite v and p. It is found that the two states are sufficient to describe
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phase B are

Bi: (sin(@) sin(¢)e™, 0, cos(#), 0, sin(8) COS(QZS)E_M) (5.38)
and

2 (oI e 00 (59

where the a’s are arbitrary phases. This expression for B2 is only valid for y > 0
which gives positive magnetization; it is easy to generalize to the case of negative
magnetization. An analytic expression for the phase boundary can be obtained in
the limit ||, |u| < |€g — €4], |2 — €4] and is found to be

_ (e —e) — f5(e0 — &)
(64 — 62) -+ 1—70(60 — 64) '

2u=¢y ¢ (5.40)

For 2p < ¢~y we will have phase B1 while for 2y > (v we will have phase B2.

Phase C

We found that for u =y = 0 the state (0,0, 1,0,0) will minimize the energy. This
is degenerate, however, with (%, 0,0,0, %) It is clear that the latter state will be
favored for v > 0. It is found that the state sufficient to describe phase C with finite

magnetization and -y is

C: (” _2%4./\/1_61-(11,07 0,0,4/ Z%Mei‘”) (5.41)

where a1 and «ay are arbitrary phases. This is the only relevant phase in region C.

Example

Now that we have determined what happens to each of the phases for finite magne-

tization and quadratic Zeeman term, it is instructive to do an example. We consider
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E2 - E4

EO - E4

Figure 5.2: Phase diagram for 2u = v.

the case 2u = 7. The resulting phase diagram is shown in Fig.5.2.

5.2 Dipolar molecules in an optical lattice

5.2.1 Introduction

In ultracold physics, systems with long-range dipolar interactions have recently
attracted considerable attention both theoretically and experimentally (for a recent
review of ultracold dipolar molecules see [39] and references therein). For atoms,
dipolar interactions come from their magnetic moments and become important for
large electronic spin [55]. Recent experiments demonstrated the relevance of such
dipolar interactions for the expansion of Cr atoms from the BEC state [149]. On

the other hand, for heteronuclear molecules, dipolar interactions arise from their
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electric dipole moments. Recent experiments have succeeded in trapping and cooling
several types of heteronuclear molecules [39, 145, 75, 134]. In a state with a well-
defined angular momentum, molecules do not have a dipole moment. However, when
an external electric field is used to polarize the molecules, dipolar moments can be
induced. There has been considerable theoretical effort to study the resulting dipole
interactions and many-body physics associated with such systems [169, 137, 37, 56,
117, 111].

Here, we consider an alternative mechanism for obtaining the 1/r2 dipolar interac-
tions, and the important concomitant directional character. Namely, we investigate a
mixture of heteronuclear dipolar molecules in the lowest (¢ = 0) and the first excited
(£ = 1) rotational states. For such a system, the origin of the long-range interaction is
the exchange of angular momentum quanta between molecules. We demonstrate that
when loaded into an optical lattice, such mixtures can realize various kinds of non-
trivial spin systems with anisotropic and long-range interactions. Several approaches
for realizing spin systems using cold atoms have been discussed before, including
bosonic mixtures in optical lattices in the Mott state [105, 41, 92, 76|, interacting
fermions in special lattices [32], and trapped ions interacting with lasers [38]. The
system we consider has the practical advantages of the high energy scale for spin-
dependent phenomena (set by dipolar interactions) and the new physics associated
with the long-ranged nature of the dipole interactions. Experimental realization of
the system will give insight into several open questions in condensed matter physics
including competition between ferro and antiferroelectric orders in crystals [138, 103]

and systems with frustrated spin interactions [114].
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5.2.2 Hamiltonian definition/discussion

Consider the system that contains bosonic molecules in the lowest (¢ = 0,¢, = 0)
and first excited (£ = 1, £, = —1,0,1) rotational states where we let s' and tT_l’OJ
create these respective states. We will often use the change of basis t{ = (t4{—+—tT_1) /V2,
tl = —i(t] —t1,)/v/2, and ¢} = t}. To describe molecules in an optical lattice we use

the one-band Hubbard type effective model
H = Hkin + HHub + Hdip- (542)

The first term on the right hand side of (5.42) is the kinetic energy from nearest-
neighbor hopping Hiin = —J X5 (s:' 55 + t;-ratja + h.c.). Operators s; and t}a create
molecules on site ¢ (here and after the summation over repeating indices a = z, y, 2 is
implied). The last term in (5.42) describes the dipolar interaction between molecules

from different sites

8 diad joo T 3diaei 'ad i€
Haip = o ; ’ R; — R]]-|3 = (5.43)
i#j g

2
where R; are lattice vectors, e;j, is the a-component of the unit vector along R; — R,

and parameter v equals 2d?/3, where d is the value of the dipole moment associated
with the / = 0 — ¢ = 1 transition, and d; is the dipole moment operator at site 7.

The a-component of the operator d; is written as
dig = S;_rtiae—mBet + t;rasiemBet, (5_44)

where we absorbed the energy difference between the rotational levels Ey_; — Ep—g =
2B, into the time dependence of the ¢t operators. Since the rotational constant B, is
considerably larger than any other energy scale in the system, we assume that the

terms in (5.43) that oscillate at frequencies £4B, average to zero. This forces the
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number of molecules in the £ = 0 and ¢ = 1 states to be independently conserved.

Dropping such terms, (5.43) reduces to

¥ 3 (sitl,siti + ) (8ap — Beijacisn)

Haip = 2
X [R; — Ry[?

(5.45)

The second term on the right hand side in (5.42) is the Hubbard on-site interaction.
For two s molecules in the absence of an external electric field, the long-range part of
their interaction potential is dominated by the van der Waals tail Cg/R® originating
from second order terms in the dipole-dipole interaction operator. For polar molecules
with large static rotational polarizabilities one can estimate Cg ~ —d*/6B,. For
the RbCs molecule (d = 0.5 a.u.,, B, = 7.7 x 107® a.u.) we have Cg ~ 1.5 x 10°
a.u. For molecules with smaller dipole moments and larger rotational constants like,
for example, CO (d = 0.043, B, = 9.0 x 107%), the van der Waals interaction is
comparable in magnitude to interatomic forces. In any case the range of the potential,

which scales as R, = (mCg)'/*

, is not much different from typical ranges of interatomic
potentials (for RbCs it equals R, =~ 400a¢ where qq is the Bohr radius). First order
terms in the dipole-dipole operator are also absent for two molecules with ¢ = 1.
In this case, apart from a weak quadrupole-quadrupole contribution proportional
to R75, the long-range part of the intermolecular potential is given by the van der
Waals interaction with a comparable Cg coefficient. Thus, the interactions between
molecules with the same ¢ are all short ranged and, in an ultracold system, can be
modeled by contact potentials. Then, averaging them over the Gaussian on-site wave
functions gives the Hubbard on-site interaction.

The interaction between s and ¢, molecules (without loss of generality we consider

o = z here) is similar to the resonant interaction of an electronically excited atom
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and a ground state atom. For even partial waves the intermolecular potential is
asymptotically given by W,(R) = v(1 — 3 cos? §,)/2R3, where 8, is the angle between
R and the z-axis. We consider the weakly interacting regime where the characteristic
energy scale of this interaction, AE ~ Iy, is smaller than the Bloch band separation.
Here Iy is the oscillator length of the on-site harmonic confinement. Then, the two-
body problem in a harmonic potential can be solved in the mean-field approximation
by using the pseudopotential approach (see [170] and references therein). Due to the
anisotropy of W,(R) the corresponding on-site interaction energy, V, can be tuned
at will by changing the aspect ratio of the on-site confinement [170].

We arrive at the following expression for Hyyp:

U U,
Huuw = Z[Ensi(nsi —-1)+ ?antai(ntai —1)
i
+ Z UapNiyifitgi + Valisifitgi| - (5.46)

a#fB
It is easy to see that (5.46) holds for arbitrary filling factors as long as the on-

site density profiles remain Gaussian. However, for the purpose of this paper it is
sufficient to consider on average one or two molecules per site, which also reduces
inelastic losses. The ten coupling constants in Eq. (5) are virtually impossible to
control independently. However, in certain cases not all of them are relevant. For
instance, for a mixture of s and ¢, molecules the relevant coupling constants are U,
U., and V,. These are tunable through trap aspect ratio and/or Feshbach resonance.
Another example is the Mott insulating state with one molecule per site. As long as
the on-site interaction energies are much larger than J, the particular values of the
coupling constants are not important and can be formally set to any desired values.

For simplicity, let us restrict ourselves to the case U, = Uy = U, = U, Uys = 0, and
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Vo=V, =V, =V.

5.2.3 The Mott Insulating state

We now discuss the resulting phase diagram, first focusing our attention on the
Mott insulating state. For this, each site contains an integer n number of molecules.

We take the variational wave function

Uaiy (cos(8)s] + sin(B)iatly )" [0) (5.47)

1
=173
where 6 describes the fraction of the molecules excited into ¢ = 1 states and 1, is
a normalized complex vector ¥} v;,=1. Here, 1;, is the variational parameter which
descibes the direction the dipole moment points on site i. The variational wave
function (5.47) is motivated by the observation that it maximizes the magnitude
of the dipole moment in individual wells (which is desirable for the range of on-site
parameters we consider), while preserving the freedom to choose their local directions.
We point out that for such a variational wave function to be valid, the on-site |V|
cannot be very much larger than -, the dipolar interaction between neighboring sites.
This allows us to construct variational states that benefit maximally from dipolar
interactions. In all cases discussed below we verified the absence of phase separation
by checking the eigenvalues of the compressibility matrix for s and ¢ bosons [69).
Taking the expectation value of the dipole operator (5.44) with our variational wave

function (5.47) we obtain

(dio) = nsin(20)|1qs] cos(piq — 2B.t) (5.48)
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where we have written v;, = [1,|€*¥*=. Upon taking the expectation value of dipole

Hamiltonian (5.45), we find for the dipolar energy

n? sin?(26
o I_éL_) (5.49)
> (Yia¥jp + c-c.)(0ap — 3eijatisp)
Iy |:R'Z - R‘j|3

When minimizing the energy in (5.49) it is important to keep track of the con-
servation laws that may be present for certain experimental geometries and on the
initial preparation of the system. We will now consider several examples of ordering
in the Mott insulating state. Although the dipole interaction in all cases is described
by (5.49) we will see that different preparation leads to very different types of order.
Though all discussion in this work will be restricted to 2d, we emphasize that there
are nontrivial results in the Mott insulating phase for the 1d and 3d cases as well. As
the first example, we consider the square lattice in the zy-plane defined by vectors
a; = X and ay = ¥. Due to cross-terms such as sTtisty in the dipolar hamiltonian
(5.45), we see that t; molecules can be converted to t, molecules and vice-versa.
Thus, Ny, and N, are not conserved quantities, and, consequently, the only con-
served quantities are N; and N;,. Now consider preparing this system in a mixture of
{=0and ¢{=1,/, =1 states. Then after the system relaxes, taking the constraints
into account, we must have fixed (N,) = N cos?(6), (N, ) + (Ny,) = Nsin*(), and
(Ng,) = 0. This gives the constraints on the variational wave function v;, = 0 and
[¥2]2+ |10y |* = 1. We see that the dipoles are allowed to rotate freely in the zy-plane.
For this case, the dipoles will choose to point head-to-tail in the direction of one of
the bonds, while alternating in the other. Thus, it is straightforward to see that this

gives the ordering wave vector q = (0,,0) with 1, = e{@Ri+te0) and 4, = 1, = 0
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where @q is an arbitrary phase corresponding to a change of phase of the time de-
pendent oscillations of the dipolar moment described by (5.48). We point out that
this configuration is degenerate to the one with dipoles pointing head-to-tail in the
y-direction.

As the next example in two dimensions, we take the same lattice as in the previous
example, but prepare the system in a mixture of £ = 0 and ¢ = 1,£, = 0 states.
Recalling that for this geometry, both N, and N;, are conserved quantities, we find
the constraint on the variational wave function v,; = ¥, = 0 and ¢;, = e, With

this constraint, the dipole interaction energy is

yn?sin?(26) 5 cos(; — ¢;)

Egp = .
o 1 & R-R,P

(5.50)

Here, the dipoles are confined to point in the z-direction, and therefore cannot point
head-to-tail. This gives antiferromagnetic ordering in all directions, q = («,,0),
with 1, = e{@Rit¥0) where ¢, is an arbitrary phase.

For the final example for the Mott insulating state, we consider a lattice in the z2-
plane given by a; = cos(a)X + sin(a)Z and a; = — sin(a)X + cos(a)Z. In addition, we
consider breaking the degeneracy of the (¢ =1, £, = —1,0, 1) states with an external
static magnetic field in the z-direction which will introduce the term proportional
to BL, into our hamiltonian. Preparing the system in a superposition of £ = 0 and
¢ =1,{, = 1 states, we note that because of this degeneracy breaking, there will be no
mixing between other angular momentum states. That is, we can completely neglect
the t_y o states. This will give ¢;, = —ith;, = e¥i/ v/2 and v, = 0 which will confine our

dipoles to rotate in the zy-plane as: (d;(t)) = dgcos(p; —2Bt)X+dgsin(p; — 2Bt)¥.
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Figure 5.3: The ordering wave vector as the lattice is tilted by angle a. As described
in the text, for this situation a magnetic field is used to break the degeneracy between
(¢=1,¢,=-1,0,1) states.

The dipolar energy of this system is therefore

n?sin?(6) 3 cos(pi — ;)1 — %e?jw).

Egip, =
o 8 i#j IR; — R;[®

(5.51)

We use the ansatz ¢; = q - R; + ¢ to find the minimum of this dipolar energy for a

particular lattice defined by the angle , and the results are summarized in Fig. 5.3.

5.2.4 The superfluid state

We now consider melting the Mott insulator, and entering the superfluid (SF)
state. An interesting question to consider is what happens to the ordering wave
vector as the Mott insulating state is melted? For instance, deep in the superfluid
phase, we will have ¢ = 0 which is favorable for Bose-Einstein condensation while we

saw that antiferromagnetic ordering is typically favored in the Mott insulating state
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by dipolar interactions. One possibility is that the wave vector interpolates smoothly
between these two extremes as the hopping J increases. Another possibility is that the
molecules in the s and ¢ states phase-separate. We will show below that both scenarios
are possible depending on on-site energy parameters in our original hamiltonian. For
simplicity, we restrict our attention to the third example we discussed above for the
Mott insulating state which was a two dimensional lattice in the xy plane prepared
with o, polarized light. For further simplicity, we take (N;) = (Ny,) = N/2. As
we saw before, we can neglect populating the ¢, and t, states, and this phase has
antiferromagnetic q = (7, 7, 0) order in the Mott insulating phase.

Allowing for noninteger occupation per site motivates the variational wave func-

tion

0 =T1(S e @ =)o (5.52)
i \no VAl
where

al = cos(#)ePsRis! 4 sin()ePrRig! | (5.53)
and normalization requires 3, |an|?> = 1 (compare with (5.47)). As before, this wave
function maximizes the dipole energy for a given site which is energetically favorable.
We can now use a canonical transformation to write our original hamiltonian in terms
of the boson operators a] (defined above) and b = — sin(#)eP*Ris! 4 cos(g)ePr Rit!,
(a new variable resulting from the transformation), and drop the terms which give

zero when evaluated using the above variational wave function (5.52). This leads to

the following single-site mean field hamiltonian

Hur = —2J > \/cos4(9) + sin*(8) + 2 cos2(0) sin®(6) cos(qa) (aT<a) +ala’) — <aT)(a>>

a=x,y
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Figure 5.4: The phase diagram for V = U (left) and V' = 0 (right). For both cases, the
dipolar interaction strength was fixed at v = U/5. Shown are the antiferromagnetic
MI states with one and two bosons per site labeled MI1 and MI2. SF1 and SF2
correspond to superfluid states with partial and complete phase separation (described
in text). SF3 is a superfluid phase with no phase separation which has an ordering
wave vector that interpolates between the Mott insulating and deep superfluid regime.

T e s@ B L
+ g sin (20)(2nq(ng) — (ny) )Rzi;() TORE + 2U a(Mg — 1) (5.54)
1

+ (V= U)sin?(20)na(ne — 1)

B

where n, = a'a and we have already performed the minimization over the center
of mass momentum p = (p; + ps)/2. The ground state of this hamiltonian for fixed
¢ (relative concentrations) and q = p; — ps (relative momentum) can be determined
self-consistently in (a) and (n,) through iteration numerically. The general approach
will then be to minimize these ground state energies over ¢, , € [0, 7] and 6 € [0, 7/2].
When the minimum occurs for 6 # 7 /4, phase separation will occur.

The resulting phase diagrams are shown in Fig. 5.4. The Mott insulating phases
are antiferromagnetically aligned and were discussed in the previous section. SF1
corresponds to partial phase separation where part of the lattice will have a larger
concentration of s molecules while the other part will have a higher concentration of ¢

molecules. Recall that phase separation will occur for when 6 # 7/4 since we initially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5: Quantum magnetism with dipolar molecules and spin two bosons in an
optical lattice 135

prepare the system to have equal populations of molecules in the s and ¢, states. The
region with more s molecules will have (ps)zy = 0 and (p;)z, = 7. This will allow
the more populated s species to benefit maximally from BEC which prefers zero wave
vector while still giving g,, = 7 which is preferred for the dipole interaction. The
similar situation holds for the region of the lattice with a higher concentration of
t, molecules. SF2 corresponds to the case where the s and ¢, molecules completely
phase separate. Since the dipole interaction is negligible for this case, we will have
(Ps)zy = (Pt)sy = 0 which will favor BEC. Finally, SF3 corresponds to the case
mentioned above where the wave vector q interpolates between the deep superfluid

and Mott insulating states (0 < gz, < m) for which no phase separation occurs

0 = 1/4).

5.2.5 Conclusion

In conclusion, we have shown that polar molecules prepared in a mixture of two
rotational states can exhibit long-range dipolar interactions in the absence of an
external electric field. We have described several novel Mott insulating and superfluid
phases that can be realized as a result of such an interaction. Such states can be

detected by Bragg scattering or by time-of-flight expansion [4].
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Appendices for Chapter 2

A.1 The electron-phonon coupling vertices

The electron-phonon coupling matrix is given by

ov
Mkrk’f’u =N <1/)k7—| Z 8R equ( ) |wk"r’> . (Al)

One can see that the above expression can be evaluated by using the finite difference

formula
1
Mka’T’u - ;L— <wk7' (un - VE)) |wk"r’> . (AQ)

A method for calculating this expression with a plane-wave basis set was previously
developed.[93] This section will be devoted to describing how to calculate My x/r/y

with a tight-binding method. We introduce the standard tight-binding notation

[Vkr) = Z Aprit | Xkit) (A.3)
i

Iszl \/— Z ezk i |¢ml (A4)

136
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Here n runs over unit cells and ¢ runs over basis vectors in the unit cell and [ over
orbital type. Because the kinetic energy operator will be the same in the perturbed

and unperturbed Hamiltonians, we can write

Misirmis = (el (HO = ) [} (A5)

The reason why we keep the ¢p term which clearly is zero through orthogonality will
become clear below. Expanding the wave functions in the tight-binding basis set, we

obtain

1 .
Myriirry = " > A (el (H¥ =€) Ixwrie) Aprrriny (A.6)

gl

Now, we write |x™) = |xra) + |0x5;) where the orbitals of |x7%) are centered on the

perturbed lattice. Inserting this into the above equation, we obtain

Mirirry = — Z Apra ( {(xtal (H™ — eF) |X%/z'> (A7)

U sy
- (<5szl (Hqu — EF) |Xk’i’l’> —+ hC)) Ak”r’i’l"
In the second term we can do the substitution H%* — H, because the effect of doing
this will be second order in u and we are interested in an expression that is accurate

to first order. Then, this term will be

> Ap i ((Oxeitl (H — €5) [xwaw) + hec.) Apprin

il

S An (0l (H — £8) ) + huc. = O, (A8)
il

So we finally have the expression

Mierpirry = Z Abrit Okl (H* — €F) X)) Awrin (A.9)

zlz’l’

This expression can be computed by evaluating the tight-binding Hamiltonian and

overlap matrices for the distorted lattice, evaluating the coeflicients Ag,y; and Agpryp
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of the wave functions for the undistorted lattice, and performing the above sum.
There is a slight technical problem with the above method because k and k' are not
the same in the tight-binding matrix. However, it can be shown that the correct
result will be obtained by using (x| H%* |x#,,) and (x# |x3,) for the tight-binding
and overlap matrices (or the similar expression with k¥ — k') in the limit of a large
supercell. That is, when the distance over which neighboring atoms interact is small
compared to the length of a unit cell, this method becomes exact. When we apply
this method, we checked for convergence of the coupling as a function of the unit cell

size.

A.2 Isotropic Eliashberg equations in 1D

Obtaining quantitative parameters of superconductors described by the BCS the-
ory like the transition temperature and the wave vector-dependent superconducting
gap from microscopic models has developed into a powerful tool for understanding
experimentally realized systems as well as even predicting new superconductors.[29]
Though excellent review articles exist, [3, 130] we will establish the key results of the
theory below in attempt to be as self-contained as possible. We will also show how to
incorporate the electron-phonon coupling into the phonon parameters which become
important in 1d due to the CDW instability.

In the following to simplify notation, we will consider a single band system only.
The central ingredient which, in principle, allows one to calculate the superconducting

transition temperature to high accuracy is Migdal’s theorem [112] which allows one
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Figure A.1: Migdal’s expression for the electronic self-energy. The thick line denotes
the dressed electronic Green’s function and the wavy line denotes the phonon Green’s
functions.

to evaluate the electron self-energy with small error as

. ]- e
Sk iwn) = == Ypw, TGk , 1 ) Ta| e
B

X Dok —k,n—n'). (A.10)

This expression for the self-energy is shown in Fig. A.1. In this equation, 3 is inverse
temperature, 7; are Pauli matrices (i = 0 gives the identity matrix while i = 1,2, 3 give
the z,y, 2 Pauli matrices respectively), Dy is the noninteracting phonon Green’s func-
tion, and w,, = 7(2n + 1)/ are the fermionic Matsubara frequencies. The electronic
Nambu-Green’s function, a 2 x 2 matrix, is given by G(k, iw,) = (iw,7o —exm3— X)L

Now, we can expand X in terms of Pauli matrices
Y =(1— Z)iw,mo + ¢11. (A.11)

We did not include the 73 term because this just shifts the quasiparticle energies and

similarly we neglected the 75 term which can be eliminated by a proper choice of
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phase for ¢. Written in terms of these parameters, the Green’s function becomes

ZiwnTo + €xT3 + ¢T1

G=-—
(an)2 + 5% + ¢?

(A.12)

Inserting this into A.10 we obtain

1 2wy o+ €3 — ¢’y
Y = =
3 Z (Z'ww )2 + €2, + ¢

k'n'p
X ngk’ulQDO/l.(k — k'l, n— TI,/). (A13)

Now, we insert the identity [ded(e — €}) into the above expression to obtain

Z,iwn/TQ —+ T3 — (;5/7'1

1
>y = B/d&" Z 6(5—5k) (Z’wn/)2+62+¢'2

k'n'p

X |gkk’u|2D0u(k - k,: n-— ’I’L/). (A14)

The Lorentzian term in the integrand peaks very strongly at € = ep = 0 with width
on the order of temperature. Assuming that the rest of the integrand doesn’t vary as
rapidly about € = 0, we can replace §(¢ — e/) with d(ex) and perform the ¢ integral

to obtain

Ziwn o — &'
5T S 3(ew) wwTo — @'

km 1 /(len/)2 + d)/Z

This approximation can be seen to break down for small momentum (forward) scat-

|gkrrul* Dou(k — K yn—n'). (A.15)

tering due to acoustic phonons. This case will be discussed in Appendix A.3. When
close to Tsc, ¢ will be small and can be neglected in the denominator of A.15.

Now we perform the so-called isotropic approximation. Multiply both sides of A.15
by &(ex)/vs(0) where v,(0) is the density of states at the Fermi level per spin and
sum over k. In the right-hand side of A.15 we then replace Z(k’,n') and ¢(k',n’)

with their Fermi-surface averages Z, and ¢,/. This approximation is valid when the
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Fermi-surface is fairly isotropic. Now by equating the coefficients of the matrices 7y

and 7; we finally arrive at the equations
Zn =14 fasn > An—n')sy (A.16)

ZpDy =Y (Mn — 1) = pic) fur D (A.17)

n/

where f, =1/|2n+ 1|, s, = sgn(2n + 1), A, = én/Zy, and

)\(n — n I/ Z (5 6k 6kl \gkk’u| Doﬂ(k k' , N — ) (A18)
kk’

The Coulomb pseudopotential ug- was inserted to account for the bare electron-
electron interaction that is not included in our original Hamiltonian Eq. (4.1). The
superconducting transition temperature Tgc is the temperature at which nontrivial
solutions for the gap A, begin to appear. Equations (A.16), (A.17), and (A.18)
are known as the isotropic Eliashberg equations.[46] Input parameters have been
calculated and the Eliashberg equations have been solved to calculate Ty for a variety
of superconductors described by the BCS theory. We also note that a generalization
to the case where the Fermi surface is anisotropic is straightforward.[2]

Now, for typical three-dimensional solids the phonon frequencies are affected very
little by the electron-phonon coupling. Therefore, the above formalism where we
have used the non-interacting phonon Green’s function Dy, works remarkably well
in 3d. This is not the case, however, in 1d where one is encountered with the CDW

instability. A more accurate phonon Green’s function is given by
0
20,
(1n)? — (Qqp)?

where (2), is the undressed frequency (without electron-phonon coupling) and g,

Dyu(k,n) = (A.19)

is the dressed frequency (which, as seen above can have strong temperature depen-
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dence). Calculating the dressed phonon Green'’s function can be challenging because
one needs both 0, and Q,,. However, we notice that when we substitute Eq. (A.19)
into Eq. (A.18) we have the fortuitous cancellation of QJ, in the numerator of D, (k, n)
with that in the denominator of |gw,u|?. Thus one sees that knowledge of the un-
dressed frequencies (which are significantly more difficult to obtain) will not be nec-
essary to construct the Eliashberg equations. By doing the substitution Qg — gy in
Eqns. (A.16), (A.17), and (A.18), one can thereby construct the “dressed” Eliashberg
equations which takes into account the influence of the electron-phonon coupling on
the phonon frequencies which is important in 1d.

Note also that since some modes will have temperature dependence, the Eliashberg
equations must be solved self consistently. That is, we must find a temperature such
that the SC transition temperature determined from the Eliashberg equations is the
same as the temperature used for the input dressed phonon frequencies. This can
be done by iteration. Furthermore, this method allows us to tell which will be the
dominant phase at low temperature of our system. If we find a self-consistent solution
of the Eliashberg equations and Tsc > Tcpw, then superconductivity will be the
dominant correlation. Otherwise, the system will prefer the CDW state.

Finally, we will write down an expression which approximately solves the Eliash-

berg equations, originally developed by McMillan

<Q> 1.04(1 + )\50)

Tso = ~L exp | —
5¢ =120 P | Nac — pic(1 + 0.62)sc)

(A.20)

where Asc = A(0). From the above analysis, we see that to be self-consistent, one

should use the dressed frequencies to evaluate Agc.
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A.3 Incorporating ¢ = 0 scattering from acoustic

phonons in the Eliashberg equations.

In this Appendix, we discuss in detail the role of acoustic phonons for small-
radius nanotubes. Earlier theoretical analysis of the electron-phonon interactions in
1d systems suggested that acoustic phonons can play a dominant role in stabilizing
the superconducting state.[102, 36] We will show, however, that since the dominant
coupling comes from optical modes, that this effect is not important for the CNTs
we study.

We now consider explicitly the contributions to ¢ = 0 scattering processes coupled
to acoustic phonon modes which are not accounted for in the approximations leading

to A.15. For the electron-phonon coupling to acoustic modes, we take

2_ _lal/L
9aul™ = 722 TP (A.21)

where ¢q is a cut-off of order kr and L is the system length. We also take Qg, = c|q|
and e = vp(|k| — kp). Inserting these quantities into A.10, setting Z = 1 for

simplicity, we obtain for the off-diagonal element

1 1 A,
A=o — 1y __/d _Bw A.22
" B4 2n qwﬁ,+(qu)2 ( )

vl 2¢|q|
14+(q/q0)?* (wn —ww)?+ (clg])?

This integral can be evaluated to give

~ A,y
A - T (A.23)
v S |ww|e + |wp — w|up
do do

|wn_wn’|/C+QO . Iwn_wn’|/UF+QO.
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One then sees that scattering from ¢ ~ 0 acoustic phonons gives an approximate
contribution to Asc (when n = n') of ALY = ~/(rvpc).
Now we consider the ¢ ~ 2kp scattering process from the same acoustic phonon.

For this process we obtain
~ 1
Agzq’VQkF) ~ B Z |g‘J=2kF,/»t|2D(2kF> n— nl)
n/

L JANY

This integral can be evaluated to give

dyck? 1 1

Alg~2kF) .
" Bup S (wn — wa)? + (c2kp)? [wry|

(A.25)

One then finds that this gives a contribution of A(chzsz ) = v/(mvpc) to Asc which
is exactly the same as the ¢ ~ 0 scattering contribution. Thus one sees that ¢ =~ 0
scattering from acoustic phonons can be very important in one-dimensional electron-
phonon systems. From such a process the so-called Wentzel-Bardeen instability [164,
9, 49] can occur which has recently been studied in the context of CNTs.[36] We also
note that a similar analysis can be carried out for the optical phonons, and it is found
that the ¢ =~ 0 processes are much smaller than the g =~ 2k process.

With the above method, we now see how to include the contribution from ¢ ~ 0
scattering into Asc. To do this, we simply double the contributions to Agc from
2kr processes which couple to acoustic phonons to include the ¢ ~ 0 contribution.
In practice, we find that using this procedure actually changes Agc by only a small
amount. For instance, for the (5,0) CNT, Agc only increases by less than 1%. This
is because the dominant contributions to Agg are from coupling to the optical modes

as discussed in Sec. 4.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A: Appendices for Chapter 2 145

We also point out that presence of the Wentzel-Bardeen singularity would sig-
nificantly renormalize the acoustic phonon mode frequencies of the CNTs. The fact
that the calculated phonon frequencies using the frozen-phonon approximation for
the CNTs are quantitatively similar to the analogous modes of graphene as shown
in Figs. 4.7, 4.9, and 4.11 further supports the the notion that the Wentzel-Bardeen

instability is unimportant in these systems.

A.4 Limitations of non self-consistent method

In this Appendix, we will discuss the limitations of using a method in which the
charge density is not evaluated self-consistently. For simplicity, we will neglect the
contribution from the exchange-correlation energy Exc in the Kohn Sham energy
functional.

First we will consider the case of the equilibrium lattice structure. For this, the

self-consistent total energy is given by

B = L <—+V£§‘, = d3'"(" )lw»

+ Elecfln ion (A'26)

where the charge-density is given by n(r) = 3; |4 (r)|?, Vi&l is the ionic potential, and
EZ1 . . is the ion-ion interaction. In the above and in what follows, the i summation
is carried out only over occupied electronic states. Applying the variational principle
to Eq. A.26 gives the equation for the wave functions |¢;) and therefore the charge-
density n(r)

H™n] [vi) = & |¥i) (A.27)
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where
, n(r')
v —r|

el = 2 v )+ / d3r (A.28)

2m
In solving this equation, the charge density n(r) entering H[n| must be determined

self-consistently to agree with the eigenfunctions ¢;. Using this, the self-consistent

total energy for the equilibrium lattice is determined to be

ES =3 (| H[n] [} + F*[n] (A.29)
where
c ,n(r)n(r) e
Fefn / dBrd3r T +ES . (A.30)

to be essentially the same as for non-interacting atoms. In the tight-binding limit
we expect the equilibrium electron density to be essentially the same as for non-
interacting atoms. If we denote the latter as ng(r), we can replace n(r) by ng(r) in
ESl and expect the resulting non-self-consistent total energy Exic to be quite close

to the self-consistent total energy for the equilibrium lattice structure:
ExXic = Egt. (A.31)

This approach is the basis for using an effective tight-binding model to calculate band
structures.

Such a method, however, breaks down when we consider a lattice perturbed by
a phonon. In the presence of a lattice distortion, the ionic potential changes to
Vdist = V9 1 §Vion which, in turn, makes the charge-density non-uniform n = ng+6én.

The energy of the distorted structure is then

dest — Z<¢ll ( +‘/121115t /d3 ’ n(l‘r,|> \¢1>

+ El(i)lfslt ion- (A' 32)
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Now replacing n with ng + dn, this can be written as

EGE = > (vl H¥[no] [¢h:) + F™[no] (A.33)

1 3. 3.7 1 /
2/d rd°r (lr_r/|>5n(r)5n(r)

where HYst and F¥* are given by H® and F*9 defined above with Vil and Ef!

on ion—ion

replaced by V.35t and Edist, . The first two terms on the right of Eq. A.33 can be seen

ion—ion*

to be the total energy of the distorted structure computed with the non-self-consistent

method. We therefore obtain

Edst = pdist 4 — /d3Td3 ’( >5n(r)6n(r’). (A.34)
Subtracting Eq. A.31 from this then gives
1 3, 13,7 1 ’
AEgsc = AExsc + 3 /d rd°r r— dn(r)on(r’) (A.35)

where AEgcnsc = EdSnsc — Esénsc- Rewriting the second term in momentum
space gives

1 d3q 9
_ Z v , A.
ABsc = ABxsc + 5 / ok (q)|6n4] (A.36)

which then makes it clear that AFsc > AEnsc. So we see that using the a non-
self-consistent method to calculate phonon frequencies by the frozen-phonon approx-
imation will underestimate the phonon frequencies. More specifically, in a non-self-
consistent method, the Hartree term displayed in Eq. (A.36) is not accounted for.
This should be particularly important in the vicinity of a CDW instability, where

there will be a larger response of the charge distribution to a lattice distortion.
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A.5 Derivation of Eq. (4.31)

In this Appendix, we will derive Eq. (4.31) by evaluating the integral appearing
in Eq. (4.30). To estimate this Coulomb interaction integral, we will take the tight-

binding wave function of graphene

IR O - D
o) = e S (1wt oam). e

Now k is a two dimensional vector in reciprocal space of the graphene lattice and
~v = #£1 corresponds to the conduction and valence bands. Orbitals centered on the
first and second carbon atoms respectively in the nth unit cell are given by ¢p1(r)
and ¢no(r) respectively, and f(k) is given by f(k) = 1 + e~k 4 e~ka2 where a;
and a, are the lattice vectors of graphene. For metallic large radius CNTSs, the Fermi
points correspond to K = 3(by — by) and K’ = Z(b; — by) where by and b, are
the reciprocal lattice vectors corresponding to a; and as. For these points, we have
f(K) = f(K') = 0. However, for the smaller radius CNTs we study, as indicated
by the failure of the zone-folding method, the Fermi points are shifted away from
K and K’. We denote the Fermi points of the inner band 7, of the (5,0) CNT by
k.- =K+kX—-kyand k,,_ =K —k,X —k,¥ and for the other inner band 7, by
k. =K'+kX+ky and k,_ = K' — kX + k,§ where the z-direction is still along
the CNT axis and the y-direction is along the perimeter.

For backward scattering, we take ¢ =~ 2kp,k ~ —kp, k' = kp. Keeping only

products of Carbon orbitals centered on the same atom, we obtain

¢I:+q7a (r)d)k'ra (I') ~ % Z e—iqi'R”% (A38)
( [ (kryt ) f (K,

| (kras ) f (ko) |G (1)]
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o ).
Now we make use of the slow variation of e7*%* compared to the localized orbitals to
write
. —igz 1 1
wk+q7(r)¢kT(r) ~ € N Z 5 (A39)

|6na ()]

) ( 1) ()
(k) £ ()

+ eiq)‘&.t | ¢n2 (I‘) I 2 )

where t = %afc is the basis vector for the second Carbon atom in the primitive unit

cell. Finally, in evaluating the integral in Eq. (4.30) it is sufficient to replace the
functions % S5 |#n1.2(r)|? which vary more rapidly than V(r) by their average values.

That is, we substitute

Viygr(F)¥rr(r) — (A.40)

1 e—iqm 1 ( f*(kTa+)f(kTa_)| + eiq)‘(-t> ]

2rRL 2 | f* (et ) f (Kro—)

Using the same approximations for the factor ¢y _q(r")vr (r'), we obtain for the

Coulomb interaction

2

1 f*(kT +)f(k‘l' —) ig%-t
Virara - : et A4l
q 1|1 (k) F ) (A1)
1 1 _—ig(z—z’
X ﬁ/da:da:e g(z=a')
27TR dy 27TR dy/ ;
x /0 = [ S v -T). (A.42)

We will now evaluate the prefactor in this equation for the inner band of the

(5,0) and (6,0) CNTs. Using the calculated Fermi points along with the zone-folding
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method, we obtain k, = £%2% and k, = % for the (5,0) CNT. From this we

obtain
2

1 f*(keps) (k) igxt| — (.59 (A.43)

1[I ) ) €

For the (6,0) CNT the Fermi points are k, = i%%ﬁ and k, = 0. This gives

2

+ €%t =0.0016 (A.44)

1‘ " (Kro ) f (Kro )
4[] f*(Krys) f (Kry =)

a

which is smaller due to the different symmetry of the wave functions at the Fermi

points. These are the values of the prefactor v appearing in Eq. (4.31).
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