Ab-initio of optical excitations in solids and
molecules

‘ With:

Dmitry Vinichenko, Grigory Kolesov, Georgios Tritsaris
Department of Physics,

Department of Chemistry and Chemical Biology, and

School of Engineering and Applied Sciences, Harvard University

Sheng Meng, Jun Ren
Institute of Physics, Chinese Academy of Science

Symposium on Physics of Complex Materials —
in Honor of Prof. Shi-Yu Wu
April 18, 2014, University of Louisville, KY



Collaboration with Shi-Yu involved lots of
little piggies!

Szechuan style pork

Yunan shreded pork

Sweet and sour pork

Twice cooked pork (spicy!!)



PHYSICAL REVIEW B VOLUME 59, NUMBER 11 15 MARCH 1999-I
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The interplay of local energetics, local electron occupancies, and local density of states is the key
to the understanding of chemical reactivity. We define local measures, within a nonorthogonal
tight-binding scheme, which clearly and unambiguously determine these local properties for an
aggregate of atoms, such as a solid or a cluster. Using these measures, we identify the electronic
level mechanisms responsible for the chemical reactivity of clusters of different sizes. A clear and
concise picture of why Si33 is chemically inert while Si49A is reactive emerges from this analysis.
A scheme for quantifying the dangling bonds is also presented in this work.



Motivation: The need for alternative enerqgy sources

Million metric tons of carbon

Global carbon dioxide emissions from human activities, 1750-2004
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The zones in the maps correspond to low temperatures. As warmer zones cover more of the United States, different
types of plants will grow in many areas.
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In the winter, Georgia is Serviceberries and A warmer New York helps In Seattle, it is more
now hospitable to plants dogwoods can be planted  atype of fungus harmful to  difficult to grow black-eyed
like firebush. in Nebraska. Canadian hemlock. susans.

1990 zones are by the United States Department of Agricuiture. 2006 zones are by the National Arbor Day Foundation.
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Positive proof of global warming.
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The challenge of sustainable energy sources

10 Scenario A3
Traditional renewables . Time and resources
» B running out —
E & - fundamental science
- near can play key role in
. : enabling technology
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Water splitting ¢

CH,OH CO, + H,0

Photocatalytic water splitting system H, production from organic

utilizing Pt/TiO,/IrO,: molecules using TiO, nano-particles
TiO, is light absorber, Pt is the hydrogen as photo-catalysts

evolution catalyst, and IrO, is the oxygen (Argonne National Lab)

evolution catalyst.

(P. Kamat, U. Notre Dame)



The Principle: separate light-absorption and charge
collection processes

e & Counter Electrode
Major issues:
- stability

Y _ cfiiciency (Inc.Ph.Cur.Eff.)
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Light absorption by solids:
the pn-junction in semiconductors
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Bulk semiconductor (inorganic)
-delocalized states (band structure)
-nearly free electrons

-single band-gap




Light absorption by hybrid cells

e The Problem: materials for carrier transport with large band gaps
TiO, gap =3.2 eV (200 nm < A <400 nm)

DIRECT SOLAR IRRADIANCE AT SEA LEVEL
AIRMASS = 1.5
WATER VAPOR = 2.0 cm
OZONE = 0.34 cm
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Main issue: coupled electron-ion dynamics

Previous work:

-Schroedinger eq. with model Hamiltonian
Thoss, Miller, Stock, JCP (2000);

Rego& Batista, JACS (2003);...

excited states
-semiempirical Hamiltonian (tight-binding)
Allen et al., JIMO (2003);...

-ground state DFT + TDDFT
Prezhdo et al., PRL (2005); JACS (2007)...

Ground state J

Our method:
TDAP: self-consistent TDDFT with atomic motion

Coupled electron-ion dynamics without empirical parameters
Meng & Kaxiras, J. Chem. Phys. (2008).



TDAP: improved TDDFT (computationally
efficient) + Ehrenfest dynamics

Electrons are propagated according to time-dependent Kohn-
Sham equations

Nuclei are propagated classically
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TDAP: an improved TDDFT
scheme (computationally
efficient)

w/ Ehrenfest dynamics
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Self-consistent

e propagation
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Tonic motion

Break down
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Example: ozone photolysis

e Excitation HOMO to LUMO: slow dissociation

2 eV

Matsumi, Y. & Kawasaki, M. Photolysis of atmospheric ozone in the
ultraviolet region. Chemical reviews 103, 4767-4782 (2003).



Bond length d,,A
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Example: ozone photolysis

* Excitation HOMO to LUMO+1: quick
dissociation

8.4 eV
- =




2"d excited state trajectory
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2"d excited state trajectory

“o*

* Movie:
o3split.mov




Methoxy splitting on TiO, surface

* Formaldehyde was photochemically produced
from methoxy on TiO, (110) surface

A, CH,OH+hv > CH,0+H,

Phillips, K. R., Jensen, S. C., Baron, M., Li, S.-C. & Friend, C. M.
Sequential photo-oxidation of methanol to methyl formate on TiO2 (110).
Journal of the American Chemical Society 135, 574-577 (2013).



Hole: HOMO-4 State




LUMO state

Electron
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TDDFT trajectory

* Movie:

mxsplit.mpg



Approximately complete surface
coverage (i.e. densest possible
packing of dye molecules)

dye

~20 nm sized faccetted anatase nanoparticles
(101) (0o1)

|

Nano-size: helps in many aspects (e.g.
efficiency, transparency, transport, ...)




Charge injection dynamics:
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Importance of coupled e-ion dynamics
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Coupling of electron-phonon motion
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Design of new dyes (not yet fried in experiments)
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Design of Dye Acceptors for Photovoltaics from First-Principles Calculations

Sheng Meng, Efthimios Kaxiras, Md. K. Nazeeruddin, and Michael Gratzel
J. Phys. Chem. C 2011, 115, 92769282



Enhanced dye binding to TiO,
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D-nt-A Dye System Containing Cyano-Benzoic Acid as Anchoring

Group for Dye-Sensitized Solar Cells

Masataka Katono, Takeru Bessho, Sheng Meng, Robin Humphry-Baker, Guido
Rothenberger ,Shaik M. Zakeeruddin, Efthimios Kaxiras, and Michael Gratzel
Langmuir 2011, 27, 14248-14252
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