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Motivation: The need for alternative enerqgy sources

Million metric tons of carbon

Global carbon dioxide emissions from human activities, 1750-2004
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The zones in the maps correspond to low temperatures. As warmer zones cover more of the United States, different
types of plants will grow in many areas.
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In the winter, Georgia is Serviceberries and A warmer New York helps In Seattle, it is more
now hospitable to plants dogwoods can be planted  atype of fungus harmful to  difficult to grow black-eyed
like firebush. in Nebraska. Canadian hemlock. susans.

1990 zones are by the United States Department of Agricuiture. 2006 zones are by the National Arbor Day Foundation.

Sources: Nationa! Arbor Dav Foundation: National WikMe Federation The New York Times
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Positive proof of global warming.
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http://www.celsias.com/2007/03/20/channel-4-distances-
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The challenge of sustainable energy sources

10 Scenario A3
Traditional renewables . Time and resources
» B running out —
E & - fundamental science
- near can play key role in
. : enabling technology
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The dye-sensitized solar cell (M. Graetzel, 1991)

The Principle: separate light-absorption and charge
collection processes

O = Counter Electrode

Major issues:
- stability
el officiency (Inc.Ph.Cur.Eff.)




Charge injection dynamics:
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3) Cherepy et al., JPCB (1997).



Design of Dye Acceptors for Photovoltaics from First-Principles Calculations
Sheng Meng, Efthimios Kaxiras, Md. K. Nazeeruddin, and Michael Gratzel
J. Phys. Chem. C 2011, 115, 92769282



Water splitting ¢

CH,OH CO, + H,0

Photocatalytic water splitting system H, production from organic

utilizing Pt/TiO,/IrO,: molecules using TiO, nano-particles
TiO, is light absorber, Pt is the hydrogen as photo-catalysts

evolution catalyst, and IrO, is the oxygen (Argonne National Lab)

evolution catalyst.

(P. Kamat, U. Notre Dame)



Simulation of photo-oxidation of
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Rutile TiO, (110) — a model photocatalyst

Titania (TiO,) — one of the most widely studied materials in transition metal
oxide photocatalysis since the seminal publication of Fujishima [1] in 1972
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Rutile bulk crystal structure

Ti = 6-fold coordinated
O - 3-fold coordinated

1- A. Fujishima, K. Honda. Nature, 238:37-38 (1972) Model of the (110) surface
2- U. Diebold, Surf. Sci. Rep., 48:53-229 (2003)



Water photooxidation — experimental data

Water can undergo photodissociation under UV illumination,
as shown in an STM study [1]

However, it is contradictory to the earlier experimental data:
No hydrogen is formed upon illumination of rutile TiO2 in
presence of water vapor at RT [2]

S. Tan et al., JACS. 134:9978-9985 (2012)
S.

1 —
2 —S. Sato, J. White, Chem Phys Lett, 72:83 (1980)



Methanol photochemistry — experimental data

Photo-inactive Photo-active
e |

’ Bridging Oxygen, O,
‘ Oxygen Adatom, O,

Next step: methoxy dissociation:
CH;O(,) + O/t + h™ — H,COg) + OH(y/py

M. Shen, M. Henderson, JPCC, 116:25465 (2012)



Main issue: coupled electron-ion dynamics

Previous work:

-Schroedinger eq. with model Hamiltonian
Thoss, Miller, Stock, JCP (2000);

Rego& Batista, JACS (2003);...

excited states

-semiempirical Hamiltonian (tight-binding)
Allen et al., JIMO (2003);...

-ground state DFT + TDDFT
Prezhdo et al., PRL (2005); JACS (2007)... Cromnt J

Our method:
TDAP: self-consistent TDDFT with atomic motion

Coupled electron-ion dynamics without empirical parameters
Meng & Kaxiras, J. Chem. Phys. (2008).



Kohn-Sham Hamiltonian

" Nuclei are
assumed to be ’
_ glassical
X v, 2 /
HI\S(f) — 9 + ’l“’(z:z:t(ra f) + "If"(zl—'nru,(:(ry R(f)) + UHartree [P] (I') + Uze [P] (I'_, f)

'This term contains
all complex
. e-e interactions

‘l-".r.c[p](r, ?L) - 'Ua*c[p(r,‘ t' < t)](r t)“

|

/" In principle,
it depends ’
\___on history

(In this work we will assume
locality in time.)



TDDFT Ehrenfest dynamics

Nuclei are propagated classically:

0°R.;
Ot?

Forces are calculated according to:

Kunert, T. & Schmidt, R. Non-adiabatic quantum molecular dynamics:
General formalism and case study h2+ in strong laser fields. The Furo-
pean Physical Journal D-Atomic, Molecular, Optical and Plasma Physics

25, 15-24 (2003).

My = (F;) = —Vr, Vislp(r, t)](R)

Ojanperi, A., Havu, V., Lehtovaara, L. & Puska, M. Nonadiabatic ehren-
fest molecular dynamics within the projector augmented-wave method.
The Journal of chemical physics 136, 144103 (2012).



Finite, localized, atom-centered basis

()n | R f Z(nk Xk r, R( ))
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Overlap matrix: Sij = (XilX;)



Forces

Hellmann-Feinman (HF) forces
(correct when @ are eigenstates!):

Fggn, atomJ — Z<()TI|VR]H91’C)N> — —VRJ Eel [/)] + Z fnﬁnC:VRJS(_in
n

n

Energy-conserving (EC) forces:

. . B (‘)X
Fg((;n.atom J — _VREel [/)] + Z f'n.cn (HS 1<Xl’ 8R,J]> + (f.(f.) Cn




Propagation of electronic KS

wavefunctions
0o, A
20— s o060

Solution:

¢n<t) — u(tvt0)¢n(t0)
U(t,ty) = Texp (—i /t HKS(t’)dt’)



Propagation : finite time steps

On(t + At) =U(t 4+ At, ), (1)

U(t+ At t) = exp{—iAtﬁKS (t | A;)}

. At . . -~ .
Flres (t i _) : obtained s_eIf cons_lsten_tly,
2 by calculating hamiltonian
at the end of each time-step



1.

4.
5.
6.

Ehrenfest dynamics scheme
System is heated to desired temperature
Electronic excitation (using ASCF method)

Electron propagation with TDDFT (to self-
consistency)

Calculation of forces on nuclei

Nuclei propagation with Verlet MD
Go to 3.

Meng, S. & Kaxiras, E. Real-time, local basis-set implementation of

time-dependent density functional theory for excited state dynamics sim-
ulations. The Journal of chemical physics 129, 054110 (2008).



Example: ozone photolysis

e Excitation HOMO to LUMO: slow dissociation

e Excitation HOMO to LUMO+1: quick dissociation

Matsumi, Y. & Kawasaki, M. Photolysis of atmospheric ozone in the
ultraviolet region. Chemical reviews 103, 4767-4782 (2003).
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Ozone 1st excited state trajectory:

HF force
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Ozone benchmark: importance of
accurate forces — EC vs. HF
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2nd excited state trajectory: ozone
dissociates with either type of forces
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2"d excited state trajectory
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* Movie:
o3split.mov




Methoxy splitting on TiO, surface

* Formaldehyde was photochemically produced
from methoxy on TiO, (110) surface

CH3O(3) + O(a/br) + ht — HgCO(a) + OH(a/br)

Phillips, K. R., Jensen, S. C., Baron, M., Li, S.-C. & Friend, C. M.
Sequential photo-oxidation of methanol to methyl formate on TiO2 (110).
Journal of the American Chemical Society 135, 574-577 (2013).



Hole: HOMO-5 State




LUMO state

Electron
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Computational setup

System was heated to 200K

Excitation modeled by promoting electron from

- HOMO-5 to LUMO: no splitting after ~200 fs
- HOMO to LUMO : splitting after ~70 fs

In experiment 3-6 eV UV band was used

The excitation was about 2.9 eV



TDDFT trajectory:
charge density difference from
electronic ground state (identical ionic)

-H 1.76 . 0.0 fs
1+15




A simple physical picture for excited state dynamics:

} Energy excited state trajectory
N NN TN N

A B Configuration

ot

the “Birthday effect”



TDDFT trajectory:
dp/dt of excited state electronic density
(excluding changes from atomic motion)

O-H 1.75 0.0 fs
C-H 1.19 nmm




TDDFT trajectory:
dp/dt of ground state electronic density
(excluding changes from atomic motion)

7 0.0 fs
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