Ab-initio studies of optical excitations in solids and molecules

- Motivation
- Short review of experimental results
- Methodology
- Applications

Thomas Young Center,
University College London
July 3, 2014

Motivation: The need for alternative energy sources

Global carbon dioxide emissions from human activities, 1750-2004

The zones in the maps correspond to low temperatures. As warmer zones cover more of the United States, different types of plants will grow in many areas.

http://www.celsias.com/2007/03/20/channel-4-distances-itself-from-global-warming-documentary/

1990 zones are by the United States Department of Agriculture. 2006 zones are by the National Arbor Day Foundation.

Canadian hemlock.

in Nebraska.

Sources: National Arbor Day Foundation: National Wildlife Federation

like firebush.

The challenge of sustainable energy sources

Time and resources running out – fundamental science can play key role in enabling technology

Report of Intergovernmental Panel on Climate Change

The dye-sensitized solar cell (M. Graetzel, 1991)

The Principle: separate light-absorption and charge collection processes

Major issues:

- stability
- efficiency (Inc.Ph.Cur.Eff.)

Charge injection dynamics:

Design of Dye Acceptors for Photovoltaics from First-Principles Calculations

Sheng Meng, Efthimios Kaxiras, Md. K. Nazeeruddin, and Michael Gratzel J. Phys. Chem. C 2011, **115**, 9276–9282

Water splitting

Photocatalytic water splitting system utilizing Pt/TiO₂/IrO₂:

TiO₂ is light absorber, Pt is the hydrogen evolution catalyst, and IrO₂ is the oxygen evolution catalyst.

(P. Kamat, U. Notre Dame)

H₂ production from organic molecules using TiO₂ nano-particles as photo-catalysts (Argonne National Lab)

Simulation of photo-oxidation of water and methanol on TiO₂ (110)

Dmitry Vinichenko, Grigory Kolesov, Georgios Tritsaris (SEAS, Harvard)

in collaboration with the group of Prof. C. M. Friend (Dept. CCB, Harvard)

Rutile TiO₂ (110) – a model photocatalyst

Titania (TiO_2) – one of the most widely studied materials in transition metal oxide photocatalysis since the seminal publication of Fujishima [1] in 1972

Rutile bulk crystal structure

Ti → 6-fold coordinated

O → 3-fold coordinated

1- A. Fujishima, K. Honda. Nature, 238:37-38 (1972)

2- U. Diebold, Surf. Sci. Rep., 48:53-229 (2003)

Model of the (110) surface

Water photooxidation – experimental data

Water can undergo photodissociation under UV illumination, as shown in an STM study [1]

However, it is contradictory to the earlier experimental data: No hydrogen is formed upon illumination of rutile TiO2 in presence of water vapor at RT [2]

^{1 –} S. Tan et al., JACS. 134:9978-9985 (2012)

^{2 –} S. Sato, J. White, Chem Phys Lett, 72:83 (1980)

Methanol photochemistry – experimental data

Next step: methoxy dissociation:

$$CH_3O_{(a)} + O_{(a/br)} + h^+ \rightarrow H_2CO_{(a)} + OH_{(a/br)}$$

M. Shen, M. Henderson, JPCC, 116:25465 (2012)

Main issue: coupled electron-ion dynamics

Previous work:

-Schroedinger eq. with model Hamiltonian

Thoss, Miller, Stock, JCP (2000);

Rego& Batista, JACS (2003);...

-semiempirical Hamiltonian (tight-binding)

Allen et al., JMO (2003);...

-ground state DFT + TDDFT

Prezhdo et al., PRL (2005); JACS (2007)...

Our method:

TDAP: self-consistent TDDFT with atomic motion

Coupled electron-ion dynamics without empirical parameters

Meng & Kaxiras, J. Chem. Phys. (2008).

Kohn-Sham Hamiltonian

TDDFT Ehrenfest dynamics

Nuclei are propagated classically:

$$M_J \frac{\partial^2 \mathbf{R}_J}{\partial t^2} = \langle \mathbf{F}_J \rangle = -\nabla_{\mathbf{R}_J} V_{KS}^J [\rho(\mathbf{r}, t)](\mathbf{R})$$

Forces are calculated according to:

Kunert, T. & Schmidt, R. Non-adiabatic quantum molecular dynamics: General formalism and case study h2+ in strong laser fields. *The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics* **25**, 15–24 (2003).

Ojanperä, A., Havu, V., Lehtovaara, L. & Puska, M. Nonadiabatic ehrenfest molecular dynamics within the projector augmented-wave method. *The Journal of chemical physics* **136**, 144103 (2012).

Finite, localized, atom-centered basis

$$\phi_n(\mathbf{r}, \mathbf{R}, t) = \sum_k c_{nk}(t) \chi_k(\mathbf{r}, \mathbf{R}(t))$$
$$i \frac{\partial \phi_n}{\partial t} = \hat{H}_{KS} \phi_n$$

Overlap matrix: $S_{ij} = \langle \chi_i | \chi_j \rangle$

Forces

Hellmann-Feinman (HF) forces (correct when φ_n are eigenstates!):

$$\mathbf{F}_{el\ on\ atom\ J}^{HF} = -\sum_{n} \langle \phi_{n} | \nabla_{\mathbf{R}_{J}} \hat{H}_{el} | \phi_{n} \rangle = -\nabla_{\mathbf{R}_{J}} E_{el}[\rho] + \sum_{n} f_{n} \epsilon_{n} \mathbf{c}_{n}^{*} \nabla_{\mathbf{R}_{J}} \mathbf{S} c_{n}$$

Energy-conserving (EC) forces:

$$\mathbf{F}_{el\ on\ atom\ J}^{EC} = -\nabla_{\mathbf{R}} E_{el}[\rho] + \sum_{n} f_{n} \mathbf{c}_{n}^{*} \left(\mathbf{H} \mathbf{S}^{-1} \langle \chi_{i} | \frac{\partial \chi_{j}}{\partial \mathbf{R}_{J}} \rangle + c.c. \right) \mathbf{c}_{n}$$

Propagation of electronic KS wavefunctions

$$i\frac{\partial \phi_n(t)}{\partial t} = \hat{H}_{KS}[\rho](t)\phi_n(t)$$

Solution:

$$\phi_n(t) = \mathcal{U}(t, t_0) \phi_n(t_0)$$

$$\mathcal{U}(t, t_0) = \mathcal{T}exp\left(-i \int_{t_0}^t \hat{H}_{KS}(t') dt'\right)$$

Propagation: finite time steps

$$\phi_n(t + \Delta t) = \mathcal{U}(t + \Delta t, t)\phi_n(t)$$

$$\mathcal{U}(t + \Delta t, t) \approx exp \left\{ -i\Delta t \hat{H}_{KS} \left(t + \frac{\Delta t}{2} \right) \right\}$$

$$\hat{H}_{KS}\left(t+\frac{\Delta t}{2}\right)$$

: obtained self-consistently, by calculating hamiltonian at the end of each time-step

Ehrenfest dynamics scheme

- 1. System is heated to desired temperature
- 2. Electronic excitation (using ∆SCF method)
- 3. Electron propagation with TDDFT (to self-consistency)
- 4. Calculation of forces on nuclei
- 5. Nuclei propagation with Verlet MD
- 6. Go to 3.

Meng, S. & Kaxiras, E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. *The Journal of chemical physics* **129**, 054110 (2008).

Example: ozone photolysis

Excitation HOMO to LUMO: slow dissociation

Excitation HOMO to LUMO+1: quick dissociation

Matsumi, Y. & Kawasaki, M. Photolysis of atmospheric ozone in the ultraviolet region. *Chemical reviews* **103**, 4767–4782 (2003).

Ozone 1st excited state trajectory: HF forces

- GPAW
 computation
 time 37 days (4
 cores)
- TDAP: 1 hour
- Time step: 5
 attoseconds
 both
- T=0K

Ozone benchmark: importance of accurate forces – EC vs. HF

2nd excited state trajectory: ozone dissociates with either type of forces

2nd excited state trajectory

Movie:o3split.mov

Methoxy splitting on TiO₂ surface

 Formaldehyde was photochemically produced from methoxy on TiO₂ (110) surface

$$CH_3O_{(a)} + O_{(a/br)} + h^+ \rightarrow H_2CO_{(a)} + OH_{(a/br)}$$

Phillips, K. R., Jensen, S. C., Baron, M., Li, S.-C. & Friend, C. M. Sequential photo-oxidation of methanol to methyl formate on TiO2 (110). Journal of the American Chemical Society 135, 574–577 (2013).

Hole: HOMO-5 State

Electron: LUMO state

Computational setup

- System was heated to 200K
- Excitation modeled by promoting electron from
 - HOMO-5 to LUMO: no splitting after ~200 fs
 - HOMO to LUMO : splitting after ~70 fs
- In experiment 3-6 eV UV band was used
- The excitation was about 2.9 eV

TDDFT trajectory: charge density **difference** from **electronic** ground state (identical ionic)

A simple physical picture for excited state dynamics:

the "Birthday effect"

TDDFT trajectory: dp/dt of **excited** state electronic density (excluding changes from atomic motion)

0.0 fs

TDDFT trajectory: dp/dt of **ground** state electronic density (excluding changes from atomic motion)

Thanks for your attention!

Thanks for the hospitality to the Thomas Young Center, UCL, Prof.s Xiao Guo, Chris Pickard