
Online Appendix

A Coupon Data

We combine data from InternetDrugCoupons.com, RxPharmacyCoupons.com, and
NeedyMeds.org to code coupon introduction dates from January 2009 through Jan-
uary 2018. The data were assembled using historical snapshots of the three websites
stored on the Internet Archive (webarchive.org). No single source is available and reli-
able for the entire time period. The quality of InternetDrugCoupons data, the source
used in Dafny et al. (2017) and extended to encompass the period from January 2008
to October 2017, decreases after June 2015 due to a change in website structure that
resulted in fewer snapshots. Snapshots from RxPharmacyCoupons.com are available
between March 2012 and October 2017, but the website does not appear to be updated
frequently. Data from NeedyMeds.org is available for the entire study period, but its
quality is best from January 2015 onward.54

By combining all three sources, we are able to obtain at least one snapshot for most
of the year-months over this time frame, as depicted in Appendix Figure A1) below.
In some months, only a small number of drugs have archived snapshots. The main
gap in coverage that overlaps with our study period occurs between September 2014
and November 2014. When the same drug has a coupon in multiple datasets, we use
the earliest coupon introduction date. We manually verify coupon introduction dates
for all drugs are included in our difference-in-differences analysis, using the method
described in Appendix Section B.2.

54Webpages on NeedyMeds.org are arranged in alphabetical order, which leads to fewer snapshots
for drugs beginning with letters other than “A.” However, we are still able to obtain a reasonable
density of snapshots for other letters starting in January 2015.
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Appendix Figure A1: Coupon Data Availability
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Notes: Figure shows availability of coupon data scraped from InternetDrugCoupons.com,
RxPharmacyCoupons.com, and NeedyMeds.org. Blue bars indicate the maximum number
of drugs observed in each year-month across the three websites.

B Data Construction

B.1 Harmonizing Drug Names
The coupon data contain coupon availability by drug name but do not include other
standardized drug identifiers such as National Drug Codes (NDCs). Drug names may
differ across datasets; for example, the drug name is sometimes followed by its salt
(e.g. hydrochloride, phosphate, acetate, etc.) or dosage form (e.g. Tablet, Capsule,
etc.).

To enable merging across various datasets, we remove special characters, company
names, and other extraneous words. The first word of what remains is the “standard-
ized drug name” for each drug.

B.2 Manual Verification of Coupon Introduction Dates
We manually verify the coupon introduction dates for the subset of drugs that underpin
our identification strategies in the difference-in-differences analysis (Section 2) and
demand estimation (Section 4).

For the difference-in-differences analysis, the drugs that contribute identifying vari-
ation to our estimates are branded drugs without generic equivalents (defined as in
Appendix Section B.3) for which we can observe at least a 9-month pre-period prior
to coupon introduction and a 12-month post-period.55

55This corresponds to drugs that introduced a coupon at least 9 months after a drug is approved and
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We first established a set of drugs to manually verify. Because manually verified
coupon introduction dates may be earlier but not later than scraped introduction dates,
we limited to drugs with scraped introduction dates no earlier than 10 months after
we first observe the drug in the PBM data (this accommodates the need for at least
a 9-month pre-period). We included drugs with scraped introduction dates that occur
through July 2017, a year past the July 2016 cutoff required for a 12-month post-
period. This yielded 66 drugs. Then, we attempted to manually verify the date of
coupon introduction by locating historic snapshots of manufacturer websites.56 Of the
66 drugs, we were able to manually verify and adjust the introduction dates for 52 of
them.57 One of these drugs did not actually introduce a coupon, leaving 65 remaining
drugs. Of these, coupon introduction dates were revised earlier by a median of 10
months (mean 11.5 months). This includes 17 drugs that were not revised to an earlier
introduction date. Appendix Figure B2 shows the distribution of the revisions applied
to the coupon introduction dates originally scraped from the Internet Archive.

These results imply that the scraped coupon database prior to manual verification
reflects coupon introductions with a lag. However, all regression analyses use coupon
dates that are revised via the above manual verification process. Appendix Section
B.5 describes additional detail from our verification process for the drugs used in our
demand estimation.

appears in our data, and where coupon introduction occurs between October 2014 and July 2016 so
that we can observe a 9-month pre-period and 12-month post-period.

56For drugs where the scraped introduction date is within several months of the initial FDA approval
date, we also search for press releases for the drug approval. In a number of cases, a coupon program
is mentioned in the press release, indicating that coupon introduction actually occurred at the same
time that the drug was approved, rather than a few months after FDA approval as sometimes
indicated by the coupon database.

57For the remaining 14 drugs, we were unable to locate informative archived snapshots of manufacturer
websites, in many cases because archived snapshots were not available far enough back in time. For
these drugs, we kept the original scraped coupon introduction dates. For one additional drug
(Xenical) we determined that no coupon in fact existed and removed this drug from consideration.
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Appendix Figure B2: Lags in Scraped Coupon Dataset
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Notes: Figure shows lags between coupon introduction dates in the scraped dataset and
manually collected introduction dates. Data are shown for the 65/66 drugs fitting our
sample criteria that are confirmed to introduce a coupon (1 drug is excluded as it did not
actually introduce a coupon).

B.3 FDA data
We use the Drugs@FDA database of FDA-approved drugs to obtain drug-specific char-
acteristics such as application approval date, application type (New Drug Application
or Abbreviated New Drug Application), active ingredient at the FDA application level,
and whether or not a drug is an extended-release formulation.58 We use the application
type to help define generic status (all drugs approved via an Abbreviated New Drug
Application are generic drugs). We merged the Drugs@FDA data with the National
Drug Code Directory (also maintained by the FDA) by application number. This al-
lows us to ultimately merge the Drugs@FDA data with our PBM dataset, which defines
a drug product by its 9-digit National Drug Code (NDC). Below, we provide further
details on how we obtained and merged these data sources.

We obtained yearly copies of the Drugs@FDA database for 2009–2018 from the FDA
website.59 We appended these yearly datasets, keeping the most recent information
for each FDA application number. The database contains information on all drugs
currently manufactured, prepared, propagated, compounded, or processed for sale in

58We classify drugs as extended release based on whether their Drugs@FDA dosage form includes
words like “extended,” “release,” or “delayed.”

59U.S. Food and Drug Administration. 2009–2018. “Drugs@FDA: FDA-Approved Drugs.” U.S.
Department of Health and Human Services. https://www.accessdata.fda.gov/scripts/cder/daf/ (last
accessed November 6, 2018).
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the U.S. Each drug product is identified by a unique National Drug Code (NDC). The
first 9 digits of the NDC code (NDC9) identify the drug labeler and drug product, while
the remaining 1 or 2 digits denote the package size. We defined drug products at the
NDC9 level, keeping the most recent information for each NDC9 code. We obtained
yearly copies of the National Drug Code Directory60 for 2009-2018, using the Web
Archive to obtain data prior to 2011. Using yearly snapshots ensures that we observe
NDC codes that may have been changed or discontinued over time. The NDC9 data
also contain FDA application numbers, which allows us to merge the NDC9 codes with
the Drugs@FDA data.61

Using the merged Drugs@FDA and NDC data, we determine whether there are
generic equivalents for a given NDC9 code, where generic equivalents are defined as
generic NDC9 codes that share the same active ingredient, dosage form, route of ad-
ministration, and extended-release status.

B.4 Dataset for Reduced Form Analysis

The unit of observation for the PBM data is the 9-digit NDC (NDC9)- year-segment-
month. The NDC9 codes uniquely identify a drug product by a 4-digit labeler name
(which usually denotes the manufacturer, e.g. Biogen, but can also refer to a repackager
or distributor), a 4-digit product code (which denotes the drug product, which is a
unique combination of strength and dosage form, e.g. “Tecfidera 240mg oral capsule”),
and a 2-digit package code (which identifies the package size and type, e.g. “bottle
of 30 tablets”). The PBM data also includes the name corresponding to each NDC9;
multiple NDC9 codes may map to the same name. The same molecule may have a
branded name as well as a generic name (which correspond to different NDC9 codes).
The PBM data also assigns an indication to each NDC9, corresponding to how that
drug product is most often used.

For our analysis, we use the standardized name in the PBM data as the unique
drug identifier (see Appendix Section B.1 for the construction of the standardized drug
name), but we first merge the PBM and FDA datasets using the more granular NDC9
codes. We are able to match 98% and 97% of the total PBM costs for the commercial
and Medicare segments respectively to an NDC9 code in the FDA data. The drugs
for which we were not able to find matches in the FDA data consist primarily of
lower-cost and distinct indications that are billed to the PBM but are not listed in the
FDA drug data, including vaccinations, medical supplies, alternative therapies, topical
antiseptics, diagnostic aids, and nutrition-related products. We eliminate indications
where more than 50% of the PBM’s costs for that indication consist of NDC9s that
we are unable to match in the FDA data. These indications include: vaccinations,
alternative therapies, and medical supplies, among others. In total, these indications
account for 1.6% of total costs in the PBM data.

60U.S. Food and Drug Administration. “National Drug Code Directory.” U.S. Department of
Health and Human Services. https://www.fda.gov/drugs/drug-approvals-and-databases/national-
drug-code-directory (last accessed November 8, 2018)

61Multiple NDC9 codes may map to a single FDA application number.
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After the above merge process, we standardize the drug names (following the process
described in Appendix Section B.1) and arrive at a sample of 1,608 (1,656) unique drugs
in the Medicare (commercial) segment with both FDA and PBM data. Next, we drop
generic drugs as well as branded drugs with generic equivalents. At this point, only
496 (507) unique branded drugs in the Medicare (commercial) segment without generic
equivalents remain.

Because our main analysis relies on comparisons across commercial and Medicare
segments, we further limit the sample in two ways. First, we limit the sample to drugs
that are observed in both segments for at least one month. Second, we limit the sample
to drugs with similar utilization in both segments. To do this, we first calculate the
average utilization share sjk for each drug d and segment k, defined as

sjk =
1

|Tj|
∑
t∈Tj

dsjmk∑
j∈Jm dsjmk

,

where Tj is the set of months where drug j is marketed in the data, dsjmk is days
supplied in the relevant year-month, and Jm is the set of drugs marketed in each
month m. This gives us a measure of the average share of overall utilization (measured
by days supplied) accounted for by each drug in a given segment. For each drug, we
then construct the following measure of how utilization differs between segments:

∆uj =
sj,commercial − sj,Medicare

1
2
(sj,commercial + sj,Medicare)

This measure reflects the degree to which a drug makes up a larger share of pre-
scriptions in the commercial segment as compared to the Medicare Advantage seg-
ment. For example, if a drug has sj,commercial = 7% and sj,Medicare = 1%, then
∆uj = (7 − 1)/(0.5 ∗ (1 + 7)) = 6/4 = 1.5. The distribution of this statistic is
provided below. We exclude drugs with a difference greater than 1.5 in absolute value;
this excludes 48 drugs. Of these excluded drugs, 40 are used disproportionately more
in the commercial segment, with the most common MCIs being skin conditions or
infections, diabetes, growth deficiency, and hormonal supplements. The drugs dis-
proportionately utilized in Medicare are medications to treat diabetes, asthma, and
inflammatory conditions.

After applying all of these restrictions, the sample contains 364 drugs.
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Appendix Figure B3: Distribution of Segment Utilization Difference Statistic ∆uj
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Next, we manually verified coupon introduction dates for the 66 drugs that appear
to introduce a coupon in the scraped data between October 2014 and July 2017, inclu-
sive.62 We manually verified these drugs following the procedure outlined in Appendix
Section B.2. After manual verification, the sample contains 68 “switchers” that intro-
duced a coupon during our study period (i.e., between January 2014 and June 2016).63

Of these, a subset of 33 drugs have a sufficient number of pre- and post-periods for our
regression.64

Table B1 presents the sequential list of sample restrictions we apply, beginning with
the original PBM data and ending with the estimation sample. The table contains the
number of unique drug names and total spending on all in-sample drugs by segment,
relative to total PBM spending by segment.

62Setting the minimum month to October 2014 allows for at least a 9-month pre-period. Because
coupon introductions are often observed with a lag in the scraped data, using a July 2017 cutoff
allows us to include coupon introductions that are observed with up to a 12-month lag. For example,
a drug with a scraped coupon introduction date of July 2017 could have a revised coupon date of
June 2016. This drug would then have at a 12-month post-period and could be included in our
estimation sample.

63These 68 drugs are a different set compared to the set of 66 drugs that we manually verify as the
former are identified after manual verification and have coupon introduction dates in a different
time period (January 2014–June 2016 vs. October 2014–July 2017).

64We require a 9-month pre-period and 12-month post-period.
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Appendix Table B1: Effect of Sample Restrictions

Medicare Advantage Commercial
Share of spending Unique Share of spending Unique

Step after step Drugs after step Drugs

Original PBM data 100% 1,929 100% 1,999
Exclude drugs not present in FDA data 97.5% 1,608 97.9% 1,656
Exclude generics 64.7% 758 63.7% 762
Exclude brands with 53.8% 496 54.6% 507

generic equivalents
Exclude brands with dissimilar 48.3% 366 47.1% 366

utilization across segments
Restrict to switchers only 4.6% 68 4.9% 68
Restrict to switchers with sufficient 3.6% 33 2.9% 33

pre and post period for regression

Notes: “Drugs” are defined by our drug name standardization process and may correspond
to multiple NDC9 codes. Drugs “not present” in FDA data include any drug for which at
least 50 percent of spending for the drug’s category lacks a match in the FDA data.

B.5 Dataset Construction for Demand Model Estimation

Selecting the drugs in the choice set
We use National Drug Code (NDC) and HCPCS codes to identify prescription drug

and medical claims for MS drugs. The 11 MS drugs we include in our choice set are
the most common MS drugs in the HCCI data and account for 99.9% of spending
on DMTs during our study period. We excluded MS drugs with very few observed
prescriptions, including Extavia, Lemtrada, Ocrevus, Novantrone, and two additional
Copaxone generics (Glatiramer 20mg and Glatiramer 40mg).

Defining coupon status for each drug
Taking the scraped coupon data as a starting point, we manually verified the coupon

status of all MS drugs in our choice set using snapshots of each drug’s website from the
Internet Archive. In some cases, we determined whether a drug had a coupon at the
time of FDA approval based on contemporary press releases, which usually mention a
coupon or copay assistance program if one exists.

Among the interferon-based therapies, only Rebif is coded to have a coupon. Rebif
(interferon beta-1a) is the earliest drug to introduce a coupon (October 2007) and is
always couponed during our sample period. Avonex (another drug containing interferon
beta-1a) introduced a free trial program in October 2011, but this program saw very
little use (< 3% of scripts according to a contemporary industry report65, and we
code Avonex as having no coupon during our sample period. Plegridy, a longer-acting

65Avey, Steve and Alaina Sandhu. 2014. Copay Coupons for Specialty Drugs: Strategies for Health
Plans and PBMs. Atlantic Information Services, Inc.
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version of Avonex approved in August of 2014, also lacks a coupon in our scraped
coupon database. Betaseron (interferon beta-1b) is the oldest MS drug (approved
July 1993), but our coupon dataset only shows a coupon starting in December 2017.
The above industry report suggests that there may have been a copay program for
Betaseron, but that it had low utilization (< 5%). Hence, we code Betaseron as not
having a coupon in our analyses.

Copaxone 20mg was approved January 1996 and couponed starting in August 2011.
In the second quarter of 2012, Teva increased the coupon benefit of Copaxone 20mg
from $500 to $2,500 per prescription and from $6,000 to $12,000 per year. Because
coupon databases do not always distinguish between Copaxone 20mg and 40mg, one
concern is that we do not know precisely if or when the coupon for Copaxone 20mg
expires. Researchers with access to coupon redemption data verified that the coupon
was still redeemed at least until April 2015, when the generic version of Copaxone 20mg
(Glatopa) entered the market. Thus, we assume that the coupon for Copaxone 20mg
shuts off starting April 2015. Our estimates are robust to lengthening the lifespan of
the Copaxone 20mg coupon, including the case where the coupon never expires.

Soon after this increase in coupon generosity for Copaxone 20mg, the oral medi-
cation Aubagio was approved and launched with a 3-month free trial plus a coupon
that reduced out-of-pocket costs to $35. Hence, we code Aubagio as being couponed at
approval (September 12, 2012). In the first quarter of 2013, the Aubagio coupon was
revised to reduce out-of-pocket costs to $10 per prescription. Like Aubagio, the other
oral medications in our choice set are also couponed. Gilenya introduced a coupon
in October 2011, a year after the drug’s approval in September 2010. Tecfidera was
approved and launched with a coupon in March 2013.

Tysabri is the only drug in our choice set that must be infused at a physician’s
office. Because it is usually covered by medical insurance rather than prescription drug
insurance, it is not couponed.

According to msfocus.org, all of the above drugs are first line therapies for MS
except for Gilenya and Tysabri. Table B2 shows characteristics for the MS drugs in
our choice set.

Constructing average allowed amounts
As a proxy measure of the list price of a drug, we use the average allowed amount

for a given drug, market segment (commercial vs. Medicare), and year-quarter. We
compute this using all MS drug claims (across all patients in the HCCI database).
First, we extract all claims from the HCCI database for MS drugs based on National
Drug Code (NDC) and Healthcare Common Procedure Coding System (HCPCS) codes,
restricting to claims with a positive allowed amount. This yields N = 2,540,002 claims.
For each NDC/HCPCS code, we filter out claims where the days supply does not match
the modal value (this excludes 264,547 observations). We also drop NDC/HCPCS
codes that comprise <= 1000 claims or <= 2% of claims for a given drug (this excludes
an additional 479 observations). Next, we drop claims with allowed amounts <= $100
(2,907 observations), which are likely to represent errors given the high prices of MS

9



Appendix Table B2: Drug Characteristics

Drug Form US Approval Firm Coupon status
Aubagio Daily pill 2012 Sept 12 Sanofi Always

Copaxone 20mg
(Glatiramer Acetate)

Daily injection 1996 Jan 28 Teva 8/2011–4/2015

Copaxone 40mg
(Glatiramer Acetate)

Thrice-weekly
injection

2014 Jan 29 Teva Always

Glatopa
(Glatiramer Acetate;
generic for Copaxone
20mg)

Daily injection 2015 Apr 16
Sandoz
(Novartis)

Never

Avonex
(Interferon Beta-1a)

Weekly injection 1996 May 17
2012 Feb 28
(in pen form)

Biogen Never

Plegridy
(Interferon Beta-1a)

Biweekly injection 2014 Aug 15 Biogen Never

Tecfidera Twice-daily pill 2013 March 27 Biogen Always

Tysabri 1-hour infusion
per month

2004 Nov 23 Biogen None

Betaseron
(Interferon Beta-1b)

Injection every
other day
(usually by physician)

1993 July Bayer None

Rebif Thrice-weekly
injection

2002 March 8 Merck From 10/2007
(Always for
study period)

Gilenya Daily pill 2010 Sept 21 Novartis From 10/2011

Notes: Table provides summary characteristics for all of the MS drugs in our choice set.
Column 1 gives the drug brand name, with non-proprietary (generic) name in parentheses.
Column 2 describes the dosage form and route of administration. Column 3 shows the first
U.S. FDA approval date. Column 4 shows the drug manufacturer. Column 5 provides coupon
information for each drug.
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drugs.
Next, we exclude claims with extremely low or high values for the allowed amount

relative to other claims for the same drug, plan characteristics, and time period. For
each drug, we perform a claim-level regression of allowed amount on dummies for
year-quarter, NDC/HCPCS code, segment, specialty drug status, mail order status,
insurance plan type, and whether the insurance plan is a high-deductible plan. We
treat missing values for specialty and mail-order status as separate bins. For each drug,
we exclude claims where the residual from this regression is below the 1st percentile or
above the 99th percentile.

For some drugs in the choice set, the number of pills in a single prescription varies
between 28 and 30. This occurs when a manufacturer changes the number of pills or
doses in a single prescription. To establish a single allowed amount for these drugs,
we rescale the allowed amounts to correspond to the most common prescription size.
For example, allowed amounts for Gilenya prescriptions for a 30-day supply of pills are
rescaled by 28/30 to correspond to the more common 28-day supply. After applying
these cleaning steps, we found that for each drug, most of the variation in allowed
amount can be accounted for by year-quarter and NDC/HCPCS fixed effects. This
suggests that we can treat average allowed amounts as a proxy measure of the list
price charged to insurers, and that this allowed amount predominantly varies over
time rather than across insurance plans or across segment.66

Figure B4 demonstrates how average allowed amounts for MS drugs have evolved
over time. Although there is some price variation across drugs, average allowed amounts
for MS drugs have generally increased in lock-step, from about $2500 in 2009 to about
$6500 in 2017.

66Note, this does not include rebates, which may vary across insurers.
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Appendix Figure B4: Average Allowed Amounts for MS Drugs Over Time

(a) Average Allowed Amounts (b) Relative Allowed Amounts

Notes: Panel (a) shows average allowed amounts over time. Panel (b) shows the same, but
subtracting the lowest price in each period to better visualize relative prices. Note that
the price of Copaxone20 rises quickly after the introduction of Copaxone40, to facilitate the
product hop. Also notice that the price of the Glatopa generic is initially pretty high (right
below Copaxone40), but it doesn’t grow along with the other drugs, so it ends up being quite
a bit cheaper (nonetheless, Glatopa is not very popular as a result of the product hop to
Copaxone 40)

B.6 Defining out-of-pocket prices

The prices that enter our demand model are the out-of-pocket prices paid by patients,
which are usually only a small fraction of list prices. These out-of-pocket prices are
challenging to infer from the HCCI data since neither plan copays and coinsurance
rates for MS drugs nor plan identifiers are available. Moreover, most individuals only
take one or two different drugs throughout their enrollment period, so it is not possible
to directly observe copays or coinsurance rates at the patient-drug level. To surmount
this issue, we make assumptions on how out-of-pocket prices vary.

For each patient-year, we first infer whether a patient’s plan uses copays or coin-
surance, using the complete set of RX and medical claims filled in each patient-year.
Importantly, this includes both claims for MS drugs and claims for all other drugs and
medical services.

We first categorize each claim as on deductible, no cost sharing, copay, or coin-
surance. Claims on deductible are those where the deductible column in the data
is greater than zero or where the total patient cost sharing is equal to the allowed
amount.67 Claims where patient cost sharing is $0 are coded as such. Copay claims
are those where total patient cost sharing is a multiple of $1, no more than $300 in

67The data contains columns for copay, coinsurance, and deductible amounts, but these fields are not
reliable, since coinsurance and deductible payments are frequently entered in the “copay” field.

12



total, and not already coded as a deductible claim. Coinsurance claims are those that
are not already coded as a deductible claim, and where patient cost sharing is not a
multiple of $1 or greater than $300. The coinsurance rate for a claim is defined as
patient cost sharing divided by the total allowed amount, rounded to the nearest 5%.
We re-classify claims with coinsurance rates greater than 40% as deductible claims.

After classifying each claim, we calculate the share of coinsurance claims out of the
total number of coinsurance or copay claims (excluding deductible claims and those
with $0 cost sharing). We calculate this share at the patient-year level, separately by
plan type (i.e. prescription drug insurance or medical insurance), and over all claims
(i.e. not only those for MS drugs).68 Patient-year-plan type combinations with a share
of coinsurance claims ≥ 50% are classified as using coinsurance, where the coinsurance
rate is defined as the median coinsurance rate for all claims in that patient-year-plan
type.

This method relies on the supposition that plans either operate on a coinsurance or
copay basis, such that MS drugs would not be on coinsurance if all other drugs were
on a copay basis, and vice versa. Moreover, it supposes that coinsurance rates do not
vary within plan across different drugs. This is necessary to guarantee that we can
define both RX and medical coinsurance rates for all drugs for all individuals. To the
extent that these assumptions do not hold, measurement error will be introduced into
our estimates of the price coefficient.

For patient-year-drug combinations that use coinsurance rates, we define the out-
of-pocket price as the coinsurance rate times the average allowed amount, where the
coinsurance rate is defined as the median coinsurance rate on all RX scripts in the
patient-year. We allow the average allowed amount to vary by drug, segment, and
year-quarter.69 For individuals whose plan charges copays for MS drugs, we assume
that the copay amount is the same across all MS drugs in the choice set. Hence,
copays only vary across individuals and thus do not contribute to pinning down the
price sensitivity parameters in our demand estimates.70

For patient-year-plan types that use copays, we set pOOPijkt to the average copay on
all DMT prescriptions for that patient-year. If the average DMT copay is missing, we
assign the average copay across all drugs.

Of the remaining observations that lack an out-of-pocket price, some can be inferred
to have $0 cost sharing, if at least 50% of DMT claims or 50% of all claims have no cost
sharing. These individuals are likely those with enough costs to hit their out-of-pocket
maximums.

The remaining patients are assumed to be making their choice at a time when their
spending is lower than their deductible, and hence their out-of-pocket price for each
drug is set equal to the minimum of the average allowed amount (as a proxy for the

68We must consider medical insurance because Tysabri is typically delivered at a physician office and
hence appears in medical rather than prescription drug claims.

69Using the weighted average acquisition cost (WAC) instead of the average allowed amount yields
similar results.

70This is because the conditional logit model implicitly controls for patient fixed effects.
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list price) and estimated deductible.71 In practice, most patient-drug out-of-pocket
price observations (98.4%) are coded as coinsurance, copays, or $0 cost sharing (see
Appendix Table B3 for more details).

Appendix Table B3: Source of Out-of-Pocket Prices by Segment

Type of price Medicare Advantage Commercial

Avg DMT copay (MD) - 0.1%
Avg DMT copay (RX) 6.5% 58.6%
Avg copay (MD) 8.3% 6.0%
Avg copay (RX) 12.2% 11.6%
List price (MD) 0.3% 0.3%
List price (RX) 0.2% 0.6%
No CS on DMTs (MD) - 0.1%
No CS on DMTs (RX) 3.4% 5.0%
No CS on all drugs (MD) 0.4% 0.9%
No CS on all drugs (RX) - 0.2%
Deductible (RX) - 0.1%
Deductible (RX + MD) 0.2% 1.0%
Coinsurance (MD) 2.3% 4.9%
Coinsurance (RX) 66.1% 10.7%
Total Observations 9,733 29,419

Notes: Table shows the source of out-of-pocket prices in the HCCI demand estimation sample,
separately by segment.In Column 1, Avg DMT copay refers to the average copay on all
DMT prescriptions for a given patient-year. Avg copay refers to the average copay on all
prescriptions for a given patient-year. Coinsurance reflects cases where ≥ 50% of claims in
a patient-year are classified as coinsurance, where the median coinsurance rate is used to
define the out-of-pocket price. Cost-sharing under the deductible is captured by Deductible;
List price covers cases where the average allowed amount is used as the out-of-pocket price.
No CS on DMTs and No CS on all drugs reflects cases where individuals have reached their
out-of-pocket maximums and are observed to have no cost sharing. (MD) denotes medical
insurance, which covers Tysabri, and (RX) denotes prescription drug insurance, which covers
all other drugs in the choice set. Deductible (RX+MD) refers to a common deductible across
prescription drug and medical insurance.

B.7 Share of Coupon Users

We derive our baseline value for the share of commercial enrollees who use coupons (λ)
using pharmacy claims data reported by (Starner et al., 2014). Starner et al. find that
46% of prescriptions for MS drugs among commercially insured patients are associated
with a coupon. Their sample of MS drugs included Gilenya (fingolimod), Copaxone
20mg (glatiramer acetate), interferon beta-1a (Avonex and Rebif), interferon beta-1b

71We estimate the total deductible in a patient-year by summing together all medical and RX de-
ductible claims.
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(Betaseron), and Tysabri (natalizumab). Their sample period was from July 2010 to
December 2012.

To calibrate λ from the estimates in Starner et al 2014, we first note that not
all of the drugs in their sample have a copay coupon: we do not observe coupons for
Avonex, Betaseron, and Tysabri. This suggests that, for the drugs where a coupon was
available, the usage rate λ was higher than 46%. The share of commercial prescriptions
in our data that correspond to a couponed drug between July 01, 2010 and Dec 31,
2012 was 61.3%. This suggests that of the 61.3% of prescriptions that could have had
a coupon, 75% of them were associated with a coupon. Assuming that coupon users
and non-users fill a similar number of prescriptions per person, we can calibrate λ =
0.75. That is, 75% of commercially insured individuals taking a couponed MS drug
will use the coupon.

Thus, our preferred specification sets λ = 0.75. We also test robustness of our
estimates and simulation results to λ = 0.60 and λ = .90.

C Details for Difference-in-Differences Analysis

C.1 Segment-specific Trends

To examine absolute trends in quantity for the treatment (commercially insured) and
control (Medicare Advantage enrollees) groups, we estimate a variant on equation (1)
that shows the segment-specific time trends before and after coupon introduction.
Figure C5 below shows the results from this specification for quantity.72

72We do not find any changes in time trends relative to coupon introduction for prices.
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Appendix Figure C5: Segment-specific Trends in Utilization
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(b) Cost Weighted

-.1

0

.1

.2

.3

ln
(d

ay
s 

su
pp

ly
)

-3 -2 -1 0 1 2 3
Relative Quarter

Commercial Medicare p < 0.05 p < 0.01

Notes: Figure shows segment-specific trends in drug utilization relative to coupon introduc-
tion. Panel (a) shows results without weights; Panel (b) shows cost-weighted results. The
estimated specification regresses log(days supply) on relative-quarter fixed effects interacted
with dummies for each segment. As in specification (1) in the main text, we include drug-
segment fixed effects; however, we exclude year-month fixed effects to allow us to interpret
the time trend levels for both segments around coupon introduction (rather than just the
between-segment differences, as in our main specification).

The results show that for the set of drugs in our estimation sample, days supplied
is increasing prior to coupon introduction for both the commercial and Medicare Ad-
vantage segments, but demand surges up for the commercial segment after coupon
introduction. Table C4 below presents coefficient estimates from a specification that
pools the post-coupon period, and confirms that the increase in quantity after coupon
introduction is statistically significant at p < 0.01 for the commercially insured popu-
lation.
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Appendix Table C4: Segment-specific Trends Pooled Specification

Unweighted Cost Weighted
(1) (2)

Medicare × Post 0.076 0.045*
(0.061) (0.026)

Commercial × Post 0.242*** 0.206***
(0.058) (0.048)

*** p < 0.01, ** p < 0.05, and * p < 0.10.

Notes: Table shows coefficient estimates from a pooled regression of log days supply on a
post coupon introduction indicator, separately by segment. Standard errors are clustered at
the drug level. Column (1) and (2) show unweighted and cost-weighted results respectively.

C.2 Challenges in Distinguishing Between Market Expansion
and Business Stealing in the Differences-in-Differences
Analysis

The welfare effects of coupons cannot be deduced from the reduced form analyses for
a range of reasons, including the fact that we do not evaluate whether the coupons
resulted in a net increase in drug utilization.

To the extent that coupons induce substitution toward the couponed drug in lieu of
therapeutic substitutes (“business stealing”), rather than growth in overall utilization
(“market expansion”), coupons are less likely to be welfare-enhancing (assuming more is
better for prescription drug utilization). (Even if the increase in demand were entirely
due to market expansion, however, this analysis would not enable us to definitively
assess the welfare implications of coupons as we lack an estimate of the benefit from
incremental utilization net of its price.)

We attempted to discern between business stealing and market expansion effects
by defining markets around each index drug in our PBM analysis sample. Following
prior research on pharmaceutical markets, we began by including the therapeutic sub-
stitutes for each drug as those with the same ATC4 code, and then we used the PBM
designation of “medical indication” for each drug to restrict the market to drugs with
the same broad medical indication. In addition, we manually reviewed all 219 sub-
stitute—index drug pairs, excluding cases where the candidate substitute drug does
not treat the same specific medical indication (and thus should not be included in the
index drug’s market). For instance, we further separated rescue inhalers from long-
acting inhalers (both may share the same ATC4 code and treat COPD but are not
substitutable). Similarly, many cancer medications share the same ATC4 code but are
used to treat different specific types of cancer. Using this methodology, we classified
some of our index drugs as monopoly markets, for which coupon effects likely reflect
market expansion, however the majority of drugs have substitutes.
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In principle, differential decreases in commercial utilization relative to Medicare
Advantage utilization among substitutes following coupon introduction for the index
drug would suggest business stealing effects, whereas differential increases in overall
market quantity (without decreases for substitutes) would reflect market expansion.
However, we concluded this analysis was not appropriate due to ill-defined markets
and small expected effect sizes.

For instance, potential substitute drugs often treat multiple indications that only
partially overlap with an index drug. This is especially true for cancer drugs. Gleevec
can be used to treat the same indications as the index drug Stivarga, but Gleevec
also treats other cancer indications that Stivarga does not, and Gleevec’s quantity sold
swamps that of Stivarga. Thus, searching for quantity effects of a Stivarga coupon on
aggregate Gleevec sales, or on sales of all therapeutic substitutes in the relevant market
using the data available to us, is not likely to be an effective approach to assessing which
mechanism prevails.

In addition, the expected size of business stealing or market expansion effects are
small, as index drugs often account for only a small share of the overall market. Thus,
even if our estimated coupon effect of 20% were entirely due to business stealing, this
would only lead to a 1-2% decrease in the quantity of substitutes for index drugs
with a 5-10% market share (which is approximately their actual median market share
using the market definitions described above). The expected magnitude of any market
expansion effects would be similarly small.

In summary, high variance in the outcome variable due to ill-defined markets, cou-
pled with small expected effect sizes, severely limit our statistical power to assess
market-level outcomes and thus to differentiate between business stealing and market
expansion.

D Further Model Details

D.1 More Detailed Demand Framework

We estimate the demand model introduced in Section 3.1 via maximum likelihood,
taking the share of commercially insured enrollees who use coupons (λ) as given. The
log likelihood function is:

lnL(θ) =
∑

i∈ĪMA,t

ln
(∑
j∈Jt

sMA
ijt

)
×1[choseni = j]+

∑
i∈Īcom,t

ln
(∑
j∈Jt

λscijt+(1−λ)sncijt
)
×1[choseni = j].

The shares sMA
ijt , scijt, and sncijt are given by:

sgijt =
exp(ugijt)∑
l∈Jt exp(ugilt)

, for g = MA, c, and nc,

where the utilities uMA
ijt , ucijt, and uncijt are as defined in Section 3.1.
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D.2 Further Details of Price Negotiation Model

This appendix provides details of the terms determining markups in the Nash Bar-
gaining model. Recall from Section 3.3 that we model the insurer’s objective function
as:

V (Jt, p) = CS(Jt, p)− TC(Jt, p)

The total consumer surplus in period t is modeled as:

CSt(Jt, p) =
1

αcom

[ ∑
i∈ĪMA,t

ln
(∑
j∈Jt

exp(uij,MA,t)
)

+
∑

i∈Īcom,t

ln
(∑
j∈Jt

exp(uij,com,t)
)]
,

where the factor 1
αcom

ensures that CSt(·) is in dollar units.
The total drug cost to the insurer for MS drugs is:

TCt(Jt, p) =
∑
j∈Jt

[ ∑
i∈ĪMA,t

sMA
i,j,t

(
pjt − pOOPijt

)
+
∑

i∈Īcom,t

(λscijt + (1− λ)sncijt)
(
pjt − pOOPijt

)]
where pjt is the negotiated net-of-rebate price, and pOOPijkt = fi(pjt) is the out-of-pocket
price paid by the enrollee, which is related to pjt in a way that depends on the cost-
sharing rules faced by each individual i, and the rebate, as in equation (5).

For each drug j, we can write the first order condition:

pcouponjt = cjt + w(.)λcouponj,t
∑

i∈Icom,t

scijtp
OOP
ijt +

s̄jt − λcouponj,t
∑

i∈Icom,t
scijt

∂pOOP
ijt

∂pjt

−
(
[1−η
η

] V ′(Jt,p)
∆V (Jt,pj,t)

s̄jt +
¯∂sjt
∂pjt

)
where the weight w(.) is defined as w(.) ≡ 1/[s̄jt+

η
1−η

∆V (Jt,pj,t)

V ′(Jt,p)
∂s̄jt
∂pjt

]. The terms V ′(Jt, p)

and ∆V (Jt, Jt\j, pj,t), shown below, provide additional constraints on markups relative
to the Nash Bertrand price-setting model. The second term reflects the portion of the
manufacturer’s cost of offering coupons that is passed through to prices.

The term V ′(Jt, p) captures the effect of increasing list price on the insurer’s objec-
tive, which can be broken down into how changes in price affect consumer surplus and
total costs.
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V ′(Jt, p) =
∂V (Jt, p)

∂pj
=
∂CS

∂pj
−
∂TC

∂pj

=
∑

i∈Icom,t

[coup availj ]× (1− λ)snc
ijt

∂ũnc
ijt

∂pOOP
ijt

∂pOOP
ijt

∂pjt
+ [no coup availj ]× scomijt

∂ũcomijt

∂pOOP
ijt

∂pOOP
ijt

∂pjt︸ ︷︷ ︸
∂CS/∂pj

−
[ ∑
i∈IMA,t

sMA
ijt (1−

∂pOOP
ijt

∂pjt
) +

∑
i∈Icom,t

scomijt (1−
∂pOOP

ijt

∂pjt
)

+
( ∑

l∈Jt

∑
i∈Icom

[no coup availj ]×
∂scomilt

∂pOOP
ijt

∂pOOP
ijt

∂pjt
(plt − pOOP

ilt ) + [coup availj ]×
(

(1− λ)
∂snc

ilt

∂pOOP
ijt

∂pOOP
ijt

∂pjt
(plt − pOOP

ilt )

))
︸ ︷︷ ︸

∂TC/∂pj

]

The first line of this expression is ∂CS/∂pj. The second line is the first-order effect of a
small change in pj on TC: a direct effect on insurer costs, net of rebates and consumer
out-of-pocket payments. Line three contains terms allowing a change in pj to affect
market shares through an effect on out-of-pocket prices. These terms are non-zero only
for commercial enrollees (because MA enrollees are insensitive to price) and only for
those who do not use a coupon.

The term ∆V (Jt, Jt \ j, pj,t) captures how excluding a drug j affects the insurer’s
objective. Removing a drug from the choice set decreases consumer surplus, but it may
also decrease total costs if consumers substitute to cheaper alternatives.

∆V (Jt, Jt \ j, pj,t) = ∆CS(Jt, Jt \ j, pj,t)−∆TC(Jt, Jt \ j, pj,t)

=
∑

i∈IMA,t

ln
∑
l∈Jt

exp(ũMA
ilt )− ln

∑
l∈Jt\j

exp(ũMA
ilt )


+
∑

i∈Icom,t

λ

ln
∑
l∈Jt

exp(ũcilt)− ln
∑
l∈Jt\j

exp(ũcilt)

+ (1− λ)

ln
∑
l∈Jt

exp(ũncilt)− ln
∑
l∈Jt\j

exp(ũncilt)


−
(∑
l∈Jt

 ∑
i∈IMA,t

sMA
ilt (plt − pOOPilt ) +

∑
i∈Icom,t

(λscilt + (1− λ)sncilt)(plt − pOOPilt )


−
∑
l∈Jt\j

 ∑
i∈IMA,t

sMA
ilt (j)(plt − pOOPilt ) +

∑
i∈Icom,t

(λscilt(j) + (1− λ)sncilt(j))(plt − pOOPilt )

)
where skilt(j) indicates the share when drug j is excluded from the choice set.

The final two lines in the above equation reflect ∆TC(Jt, Jt \ j, pj,t) and the pre-
ceding two lines reflect ∆CS(Jt, Jt \ j, pj,t).

Note that the derivative ∂silt
∂pjt

is with respect to the net price pjt, and can be written
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as

∂silt
∂pjt

=
∂silt
∂pOOPijt

×
∂pOOPijt

∂pjt
=

{
∂silt
∂pOOP

ijt
× ρi

1−r if i ’s plan uses coinsurance rate ρi and j is not couponed

0 otherwise,

where
∂pOOP

ijt

∂pjt
is also with respect to the net price. However, because coinsurance rates

for drugs are applied to list prices, we evaluate this derivative with respect to list price
using a change of variables: the coinsurance ρi is multiplied by 1/(1 − r), where r is
the fixed rebate percentage, which we take from outside data on rebates from Kakani
et al. (2020).

E Details of Counterfactual Simulations

E.1 Calibration of the bargaining parameter

The bargaining parameter η describes the weight placed on manufacturer profits versus
the insurer’s objective in the Nash Product (Equation 8). Bargaining nests Nash
Bertrand pricing (this is the case when η = 1). When η < 1, the insurer has additional
leverage in constraining list prices or increasing rebates, since the insurer can threaten
to exclude a drug from its formulary. Thus, the value of η captures the degree to which
the insurer can constrain prices beyond consumer cost sharing.

Because the value of η is not observed, we calibrate η to match the simulated net
prices (Equation 9) to net prices that we infer from the simulation data, assuming
zero marginal costs of drug manufacturing. We calculate inferred net prices from the
data by multiplying the allowed amounts (a proxy for list prices) by 1 - r, where r
is the fixed rebate share that we assume to be 0.15. Figure E6 shows how simulated
net prices vary with η, and how these prices compare to the observed prices (defined
as (1 − r) times the average allowed amount for each drug). As expected, increasing
η results in higher simulated prices. We calibrate η to minimize the mean squared
distance between the vectors of simulated and observed prices.
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Appendix Figure E6: Calibrating the Manufacturer Bargaining Weight η

Notes: Figure shows how we calibrate the manufacturer bargaining weight to approximately
match the prices observed in the data. Line colors represent different drugs; dashed lines
indicate couponed drugs. Y-axis shows simulated and observed prices. X-axis shows the
manufacturer bargaining weight η.

E.2 Sensitivity of simulation results to parameter choices

Our simulation results depend on the assumed values of the share of eligible consumers
who use a coupon λ and the magnitude of the fixed rebate share r. Recall that the bar-
gaining parameter η is calibrated conditional on λ and r to match the share-weighted
average simulated and observed prices. Below, we demonstrate that the broad conclu-
sions from our simulations are robust to a range of different values of these parameters.

Robustness to λ: To assess how our assumption of λ = 0.75 affects our results,
we consider λ = 0.60 and λ = 0.90 while holding r constant at 0.15. In addition, we
estimate specifications where λ is assumed to vary with cost sharing. In one version,
we set λ = 0.7 for individuals whose cost sharing amount (averaged across drugs) is
less than $150 and λ = 0.9 for individuals whose average cost sharing exceeds $150.
In another version, we set λ = 0.5 for cost sharing below $75, 0.7 for cost sharing
between $75 and $150, and 0.9 for cost sharing above $150. Given each specification
for λ, we re-estimate demand (Sections 3.1 and D.1) and re-calibrate η to arrive at new
simulation results. Table E5 below shows demand estimates under these alternative
specifications for λ.
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Appendix Table E5: Maximum Likelihood Estimates, Varying λ

(λ = 0.60) (λ = 0.75) (λ = 0.90) (λ = (0.7, 0.9)) (λ = (0.5, 0.7, 0.9))
OOP Price 0.049 + 0.049 + 0.049 + 0.049 + 0.049 +

(0.026) (0.026) (0.026) (0.026) (0.026)
OOP Price X Commercial -0.121 ∗∗ -0.099 ∗∗ -0.080 ∗∗ -0.079 ∗∗ -0.079 ∗∗

(0.030) (0.029) (0.028) (0.028) (0.028)
Coupon X Commercial 0.367 + 0.373 + 0.388 + 0.390 + 0.390 +

(0.208) (0.208) (0.209) (0.208) (0.208)
Coupon -0.261 -0.263 -0.264 -0.264 -0.263

(0.246) (0.246) (0.245) (0.245) (0.245)
Drug Age (6-12 mo) 0.634 + 0.632 + 0.633 + 0.633 + 0.633 +

(0.269) (0.269) (0.269) (0.269) (0.269)
Drug Age (1-2 yr) 1.303 ∗∗ 1.300 ∗∗ 1.299 ∗∗ 1.299 ∗∗ 1.300 ∗∗

(0.280) (0.280) (0.280) (0.280) (0.280)
Drug Age (2-3 yr) 1.522 ∗∗ 1.518 ∗∗ 1.516 ∗∗ 1.516 ∗∗ 1.517 ∗∗

(0.322) (0.322) (0.322) (0.322) (0.322)
Drug Age (3-5 yr) 1.826 ∗∗ 1.821 ∗∗ 1.818 ∗∗ 1.818 ∗∗ 1.818 ∗∗

(0.354) (0.354) (0.353) (0.354) (0.354)
Drug Age (5+ yr) 1.825 ∗∗ 1.816 ∗∗ 1.809 ∗∗ 1.809 ∗∗ 1.809 ∗∗

(0.420) (0.420) (0.420) (0.420) (0.420)
Drug Age (6-12 mo) X Female -0.352 -0.351 -0.352 -0.352 -0.351

(0.288) (0.288) (0.288) (0.288) (0.288)
Drug Age (1-2 yr) X Female -0.495 + -0.493 + -0.493 + -0.494 + -0.494 +

(0.257) (0.257) (0.257) (0.257) (0.257)
Drug Age (2-3 yr) X Female -0.625 + -0.624 + -0.623 + -0.623 + -0.624 +

(0.263) (0.263) (0.263) (0.263) (0.263)
Drug Age (3-5 yr) X Female -0.838 ∗∗ -0.836 ∗∗ -0.834 ∗∗ -0.834 ∗∗ -0.834 ∗∗

(0.261) (0.261) (0.261) (0.261) (0.261)
Drug Age (5+ yr) X Female -0.316 -0.315 -0.314 -0.314 -0.314

(0.231) (0.231) (0.231) (0.231) (0.231)
Drug FE Yes Yes Yes Yes Yes
Drug-Year FE Yes Yes Yes Yes Yes
Drug-Segment FE Yes Yes Yes Yes Yes

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Table shows maximum likelihood estimates of Equations 2 and 3 across different assumptions
for the share of coupon users λ. All columns include drug, drug-year, and drug-segment fixed effects.
Columns 1, 2, and 3 show estimates assuming λ = 0.60, 0.75, and 0.90 respectively. Columns 4 and 5
show results when λ is assumed to vary with cost sharing.

Table E6 below shows the simulated price effects of coupons under alternative spec-
ifications for λ. When λ = 0.60, banning coupons coupons results in a slightly larger
average decrease in list prices of 7.7%. In contrast, when λ = 0.90, banning coupons re-
sults in a smaller decrease in prices of 6.7%. Assuming that λ varies with out-of-pocket
costs (Columns 9-10 and 11-12) gives similar results, with average price decreases of
6.6% (under the specification λ = 0.7, 0.9) and 6.5% (under the specification λ = 0.5,
0.7, 0.9).
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Appendix Table E6: Sensitivity of Coupon Price Effect to λ

λ = 0.60 λ = 0.75 λ = 0.90 λ = (0.7, 0.9) λ = (0.5, 0.7, 0.9)

Drug
Coupon
Status

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

Aubagio Always -7.6 -6.5 -7.4 -6.4 -6.7 -6.4 -6.6 -6.4 -6.5 -6.4
Avonex Never -6.7 26.5 -5.9 26.6 -4.6 26.7 -4.4 26.7 -4.4 26.6
Betaseron Never -6.9 24.6 -6.1 24.8 -4.8 24.9 -4.7 24.8 -4.6 24.7
Copaxone20 Aug 2011 -7.0 28.4 -6.2 28.5 -4.9 28.6 -4.7 28.5 -4.7 28.4
Copaxone40 Always -7.8 -7.7 -7.7 -7.7 -7.2 -7.6 -7.1 -7.6 -7.0 -7.6
Gilenya Oct 2011 -8.6 -8.9 -8.5 -8.8 -8.1 -8.7 -7.9 -8.7 -7.9 -8.7
Glatopa Never -7.1 30.9 -6.3 31.0 -5.0 31.1 -4.8 31.0 -4.8 30.9
Plegridy Never -7.0 29.0 -6.2 29.2 -4.9 29.3 -4.7 29.2 -4.7 29.1
Rebif Always -7.8 -6.8 -7.6 -6.7 -7.1 -6.6 -6.9 -6.6 -6.8 -6.6
Tecfidera Always -7.9 -7.6 -7.7 -7.5 -7.2 -7.4 -7.1 -7.4 -7.0 -7.4
Tysabri Never -10.0 39.8 -8.4 36.6 -5.8 32.8 -5.6 32.5 -5.6 32.3

Notes: Table shows how simulated changes in net price and shares vary across assumptions of λ.
The average change in net price, weighting by baseline simulated shares, is -7.7%, -7.4%, and -6.7%
for λ=0.60, 0.75, and 0.90 respectively. Columns 4 and 5 show results when λ is assumed to vary
with cost sharing. For these cases, the average change in net price is -6.6% and -6.5% for these cases
respectively.

The effect of changing λ comprises two different effects. A lower value of λ = 0.60
results in a larger estimated price coefficient. This case requires a higher value of η to
match simulated and observed baseline prices. The higher inferred bargaining power of
the drug manufacturer reduces the importance of the insurer objective in the negotiated
price (Equation 10) and increases the impact of coupons, which directly affect the

∂s̄jt
∂pjt

term. This tends to increase the effect of coupons on price. On the other hand, the
lower value of λ means that fewer individuals use coupons, which tends to reduce the
effect of coupons on price. On net, the first effect outweighs the second, leading to
a somewhat larger price effect of coupons for λ = 0.60 and a somewhat smaller price
effect of coupons when λ = 0.90.

The distributional consequences of a coupon ban also depend on the specification
for λ, as shown in Table E7 below. When λ = 0.60, there are fewer coupon users who
would be negatively affected by a coupon ban, so the average increase in out-of-pocket
costs is lower at $73, compared to $98 when λ = 0.75. Cost savings are also larger at
$402 compared to $385 when λ = 0.75, due to a larger coupon effect on prices. Taken
together, assuming λ = 0.60 implies that banning coupons would result in cost savings
that are 5.5 times larger than the increase in out-of-pocket costs.

Assuming λ = 0.90 has the opposite effects, resulting in lower cost savings of $361
and a larger increase in out-of-pocket costs of $126, for a ratio of savings to out-of-
pocket cost increases of 2.9. Assuming that λ varies with out-of-pocket costs (Columns
9-10 and 11-12) gives similar results, with a ratio of insurer savings to out-of-pocket
cost increases of 2.8.
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Appendix Table E7: Sensitivity of Distributional Effects to λ

λ=0.6 λ=0.75 λ=0.90 λ=0.7, 0.9 λ=0.5, 0.7, 0.9

Group N

∆ Insurer
Costs

($)

∆ OOP
Costs

($)

∆ Insurer
Costs

($)

∆ OOP
Costs

($)

∆ Insurer
Costs

($)

∆ OOP
Costs

($)

∆ Insurer
Costs

($)

∆ OOP
Costs

($)

∆ Insurer
Costs

($)

∆ OOP
Costs

($)

Commercial 1,104 -408 112 -391 146 -369 183 -350 175 -350 175
Coupon Users 994 -410 196 -392 199 -369 205 -351 201 -351 202
Non-users 110 -403 -13 -387 -14 -365 -13 -347 -12 -347 -12

Medicare 388 -387 -40 -367 -38 -339 -35 -321 -34 -321 -34

Overall 1,492 -402 73 -385 98 -361 126 -342 121 -343 120

Ratio 5.5 3.9 2.9 2.8 2.8

Notes: Table shows how a coupon ban would affect insurer costs (i.e., premiums) and out-of-pocket costs, separately
for commercially insured consumers (separately for coupon users and non-users) and Medicare enrollees. Insurer costs
are expressed in $ per member per month; out-of-pocket costs are expressed in $ per prescription for enrollees’ first
observed choice. Results average over coupon users and non-users (except where otherwise indicated) based on our
assumed specification for the share of commercially insured individuals who use coupons λ.

Robustness to different values of the fixed rebate share r: Varying our as-
sumed fixed rebate percentage (holding λ = 0.75 fixed) does not significantly affect our
conclusions. Our baseline specification assumes a rebate percentage of 15%. Assuming
a lower rebate percentage of 10% results in a small decline in the effect of coupons
on net price, from -7.4% to -7.2%. Assuming higher values of 20% and 25% results in
slight increases in the coupon price effect to -7.6% and -7.7% respectively.

Allowing the rebate share to adjust when coupons are banned: Rebates
may adjust when coupons are banned. To account for this possibility, we simulate the
impact of a coupon ban under the assumption that rebates adjust when coupons are
removed, increasing from 15% to 20%. This results in a similar coupon effect on net
price of -7.6%, as shown in Table E8 below.
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Appendix Table E8: Price Effect of Coupons when Rebates Adjust

Data Simulation: Baseline Simulation: Coupons Banned

Drug
Coupon
Status

Net Price
($)

Share Net Price
($)

Share Net Price
($)

Share ∆ Price
(%)

∆ Share
(%)

Aubagio Always 4941 0.148 4805 0.137 5014 0.129 -7.6 -5.8
Avonex Never 5071 0.076 4676 0.086 4952 0.105 -6.2 22.1
Betaseron Never 5395 0.044 4672 0.058 4939 0.070 -6.4 20.6
Copaxone20 Aug 2011 5787 0.030 4614 0.030 4870 0.038 -6.5 23.4
Copaxone40 Always 4753 0.308 4912 0.298 5110 0.278 -7.9 -6.9
Gilenya Oct 2011 5420 0.066 4723 0.066 4860 0.061 -8.8 -7.9
Glatopa Never 4538 0.008 4590 0.009 4842 0.011 -6.6 25.6
Plegridy Never 5060 0.028 4611 0.029 4866 0.036 -6.5 24.0
Rebif Always 5390 0.054 4734 0.056 4922 0.052 -7.9 -6.0
Tecfidera Always 5486 0.224 4856 0.218 5047 0.203 -7.9 -6.7
Tysabri Never 5011 0.015 4248 0.013 4317 0.018 -10.0 32.7

Notes: Table shows how net prices and shares change when coupons are banned, assuming rebates
adjust from 15% to 20% after the ban. Columns 3-4 show observed prices (computed as 0.85 × the
average allowed amount) and market shares in the simulation sample. Columns 5-6 show simulated
net prices and shares at baseline, where coupons are as observed in the data (Column 2). Columns
7-11 show results from a simulation where all existing coupons are banned. Columns 7-8 show the
resulting net prices and market shares; Columns 9-10 express the effects of the coupon ban as a
percent of baseline simulated values. The average change in net price is -7.6%, weighting by the
baseline simulated shares in Column 6.

Insurer cost savings are slightly larger, but so is the increase in out-of-pocket ex-
penses. This is because a portion of the decrease in net prices operates through rebates,
which does not help reduce cost sharing, since coinsurance rates are applied to list prices
not net prices. Table E9 below shows how insurer and out-of-pocket costs change for
various groups of individuals.
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Appendix Table E9: Distributional Effects when Rebates Adjust

Group N

Insurer costs
with coupons

($)

Insurer costs
coupon ban

($)

∆ Insurer
Costs

($)

OOP Cost
with coupons

($)

OOP Cost
coupons ban

($)

∆ OOP
Costs

($)

Commercial 1,104 5,102 4,700 -402 88 240 153
Coupon Users 828 5,103 4,700 -404 35 240 205
Non-users 276 5,098 4,700 -398 245 240 -4
Copay 903 5,101 4,702 -399 30 69 40
Coinsurance 201 5,107 4,690 -418 348 1,009 661
Couponed Drugs 895 → 806 5,151 4,743 -409 57 251 195
Non-couponed Drugs 209 → 298 4,916 4,593 -323 234 233 -1

Medicare 388 5,090 4,709 -381 544 535 -9
Copay 117 5,091 4,710 -381 123 122 -2
Coinsurance 271 5,090 4,709 -381 726 714 -12
Couponed Drugs 282 → 282 5,152 4,748 -404 553 541 -11
Non-couponed Drugs 106 → 106 4,928 4,609 -319 524 521 -3

Overall 1,492 5,099 4,702 -397 206 317 111

Notes: Table shows average premiums and out-of-pocket costs with and without coupons, separately
for selected subgroups. Rebates adjust from 15% to 20% when coupons are banned. Premiums
are expressed in $ per member per month; out-of-pocket costs are expressed in $ per prescription
for enrollees’ first observed choice. Results average over coupon users and non-users (except where
otherwise indicated) based on our assumption that λ = 0.75 share of commercially insured patients
use coupons. Copay/coinsurance designations apply at the patient level. Patients are coded as
paying copays or coinsurance based on the nature of their prescription drug insurance (see Appendix
Section B.6) Patients with copay-based prescription drug insurance may have medical insurance that
is coinsurance based. The number of individuals choosing couponed drugs may change after coupons
are banned; this is reflected in Column 2 in the format [number of individuals when coupons are
available] −→ [number of individuals when coupons are banned].

Assuming that the coupon advertising effect selectively affects coupon users
Our baseline specification assumes that the advertising effect of coupons on demand
affects all commercially insured individuals, regardless of whether they redeem coupons
or not. This would be the case if coupons induce physician offices to prefer prescribing
couponed drugs to all patients, with the expectation that many patients will have
reduced out-of-pocket costs via coupons. However, the advertising effect of coupons
may also affect coupon users to a larger degree than non-users, if knowledge that a
coupon exists for a drug drives both coupon use and the advertising effect.

To test the sensitivity of our results to this assumption, we estimate versions of
the demand model where the coefficient representing the advertising effect is 1.5 times
larger for coupon users, 2 times larger for coupon users, and where the advertising
effect only affects coupon users.

Our results are qualitatively similar under these alternative assumptions. The max-
imum likelihood demand estimates corresponding to these versions are shown below in
Table E10. (Note that for the 1.5x and 2x cases, the reported coupon X com coefficient
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applies to coupon non-users). When only coupon users have the advertising effect, the
corresponding coefficient is 0.693, compared to 0.373 in the baseline case. The price
effect of coupons is somewhat larger, at 8.7% compared to a baseline of 7.4%. Table
E11 below reports the price effects of coupons when we assume that only coupon users
have an advertising effect.
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Appendix Table E10: Demand Estimates Under Alternative Advertising Effects

Equal Ad Effects Users 1.5x Users 2x Only Users
OOP Price 0.049 + 0.049 + 0.049 + 0.049 +

(0.026) (0.026) (0.026) (0.026)
OOP Price X Commercial -0.099 ∗∗ -0.101 ∗∗ -0.102 ∗∗ -0.107 ∗∗

(0.029) (0.029) (0.029) (0.029)
Coupon X Commercial 0.373 + 0.301 ∗ 0.251 ∗ 0.693 ∗

(0.208) (0.151) (0.119) (0.275)
Coupon -0.263 -0.297 -0.318 -0.386

(0.246) (0.246) (0.246) (0.248)
Drug Age (6-12 mo) 0.632 ∗ 0.633 ∗ 0.632 ∗ 0.634 ∗

(0.269) (0.269) (0.269) (0.269)
Drug Age (1-2 yr) 1.300 ∗∗ 1.300 ∗∗ 1.301 ∗∗ 1.301 ∗∗

(0.280) (0.280) (0.280) (0.280)
Drug Age (2-3 yr) 1.518 ∗∗ 1.518 ∗∗ 1.519 ∗∗ 1.520 ∗∗

(0.322) (0.322) (0.322) (0.322)
Drug Age (3-5 yr) 1.821 ∗∗ 1.821 ∗∗ 1.821 ∗∗ 1.824 ∗∗

(0.354) (0.354) (0.354) (0.354)
Drug Age (5+ yr) 1.816 ∗∗ 1.816 ∗∗ 1.816 ∗∗ 1.818 ∗∗

(0.420) (0.420) (0.420) (0.421)
Drug Age (6-12 mo) X Female -0.351 -0.351 -0.350 -0.353

(0.288) (0.288) (0.288) (0.289)
Drug Age (1-2 yr) X Female -0.493 + -0.494 + -0.493 + -0.494 +

(0.257) (0.257) (0.257) (0.257)
Drug Age (2-3 yr) X Female -0.624 ∗ -0.624 ∗ -0.624 ∗ -0.624 ∗

(0.263) (0.263) (0.263) (0.263)
Drug Age (3-5 yr) X Female -0.836 ∗∗ -0.835 ∗∗ -0.835 ∗∗ -0.836 ∗∗

(0.261) (0.261) (0.261) (0.261)
Drug Age (5+ yr) X Female -0.315 -0.315 -0.314 -0.315

(0.231) (0.231) (0.231) (0.232)
Drug FE Yes Yes Yes Yes
Drug-Year FE Yes Yes Yes Yes
Drug-Segment FE Yes Yes Yes Yes

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Table shows maximum likelihood estimates of Equations 2 and 3 across different assumptions
for how coupon users and non-users are affected by the coupon advertising effect. Column 1 shows
estimates assuming that both coupon users and non-users are equally affected by the advertising
effect. Columns 2 and 3 show estimates assuming that the advertising effect coefficient (on Coupon X
Commercial) is 1.5 or 2 times as large for coupon users (Note: the reported coefficient estimates are
for non-users in these columns). Lastly, Column 4 shows estimates assuming that only coupon users
are affected by the advertising effect. The advertising effect coefficient in Column 4 corresponds to
coupon users. All columns include drug, drug-year, and drug-segment fixed effects.
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Appendix Table E11: Price Effects of Coupons Under Alternative Advertising Effects

Equal Ad Effects Users 1.5x Users 2x Only Users

Drug
Coupon
Status ∆Price ∆Share ∆Price ∆Share ∆Price ∆Share ∆Price ∆Share

Aubagio Always -7.4 -6.4 -7.6 -7.1 -7.9 -7.5 -8.6 -8.4
Avonex Never -5.9 26.6 -6.2 29.3 -6.5 30.9 -7.2 34.9
Betaseron Never -6.1 24.8 -6.4 27.2 -6.7 28.7 -7.4 32.4
Copaxone20 Aug 2011 -6.2 28.5 -6.5 31.1 -6.8 32.7 -7.5 36.4
Copaxone40 Always -7.7 -7.7 -8.0 -8.4 -8.2 -8.9 -9.0 -10.0
Gilenya Oct 2011 -8.5 -8.8 -8.8 -9.7 -9.1 -10.2 -9.8 -11.5
Glatopa Never -6.3 31.0 -6.6 34.2 -6.9 36.1 -7.5 40.5
Plegridy Never -6.2 29.2 -6.5 32.0 -6.8 33.8 -7.5 38.1
Rebif Always -7.6 -6.7 -7.9 -7.4 -8.2 -7.8 -8.9 -8.7
Tecfidera Always -7.7 -7.5 -8.0 -8.2 -8.3 -8.7 -9.0 -9.8
Tysabri Never -8.4 36.6 -8.9 40.1 -9.3 42.6 -10.2 48.1

Notes: Table shows how simulated changes in net price and shares vary across assumptions on the
advertising effect. Columns 3–4 show results when both coupon users and non-users are equally
affected by the coupon advertising effect (our baseline specification). Columns 5–8 show results when
the advertising effect is assumed to be 1.5x or 2x larger for coupon users. Columns 9-10 show results
when we assume that only coupon users are affected by the advertising effect. The corresponding
average changes in net price, weighting by baseline simulated shares, are -7.4%, -7.7%, -8.0%, and
-8.7%.

E.3 Distributional Implications of a Coupon Ban

As noted in the text, the distributional implications of a coupon ban vary across
individuals and segments. Panel (a) of Appendix Figure E7 below shows the effects of
a ban on per-enrollee insurer expenditures. Insurers’ costs decline across all enrollees
due to the reduction in list prices for all medications. Panel (b) shows the effects
on per-enrollee out-of-pocket costs per claim, which weakly decline for all Medicare
Advantage enrollees, who were not able to redeem coupons so can only benefit from
list price reductions, and can be large and positive for commercial enrollees who relied
heavily upon coupons.
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Appendix Figure E7: Distribution of Coupon Effects on Insurer and Out-of-Pocket
Costs

(a) Coupon effect on insurer costs
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(b) Coupon effect on cost sharing

0

.005

.01

.015

.02

0 1000 2000 3000 4000 -600 -400 -200 0

Commercial Medicare

D
en

si
ty

Change in cost sharing
Graphs by segment

Notes: Figures show the distribution of effects of banning coupons on insurer costs
(Panel (a)) as well as enrollee out-of-pocket costs (Panel (b)) per prescription.
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