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Abstract

Drug copayment coupons to reduce patient cost-sharing have become nearly ubiquitous for

high-priced brand-name prescription drugs. Medicare bans such coupons on the grounds

that they are kickbacks that induce utilization, but they are commonly used by commercially-

insured enrollees. We estimate the causal effects of coupons for branded drugs without

bioequivalent generics using variation in coupon introductions over time and comparing

differential responses across enrollees in commercial and Medicare Advantage plans. Using

data on net-of-rebate prices and quantities from a large Pharmacy Benefits Manager, we

find that coupons increase quantity sold by 21-23% for the commercial segment relative

to Medicare Advantage in the year after introduction, but do not differentially impact

net-of-rebate prices, at least in the short-run. To quantify the equilibrium price effects of

coupons, we employ individual-level data to estimate a discrete choice model of demand

for multiple sclerosis drugs. We use our demand estimates to parameterize a model of

drug price negotiations. For this category of drugs, we estimate that coupons raise negoti-

ated prices by 8% and result in just under $1 billion in increased U.S. spending annually.

Combined, the results suggest copayment coupons increase spending on couponed drugs

without bioequivalent generics by up to 30%.
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Introduction
The U.S. health care system is well known for its high prices and spending: in 2019,

health care absorbed 17 percent of GDP in the U.S., compared to an average of 11.4

percent among the next five highest-spending countries and 8.6 percent among other

OECD countries.1 Comparative analyses find that higher prices for health care prod-

ucts and services are the most significant factor explaining the substantially higher

level of spending in the U.S.2 While higher prices for hospital and physician services

have long – and rightly – been critiqued as the primary driver of high spending, in

recent years concern about high and rising prescription drug prices has reached a fever

pitch.

There are multiple sources for the public outcry over prescription drug prices, in-

cluding the rise of high-deductible plans in which consumers face higher costs for drugs

at the point of purchase, high-profile examples of pharmaceutical manufacturers hiking

prices of old drugs abruptly (e.g., Turing Pharmaceuticals and Daraprim) or steadily

over time (e.g., Mylan and EpiPen), and the increase in launch prices for new drugs.

International comparisons of drug prices have also sparked outrage, culminating in leg-

islation that permits importation of drugs from Canada under certain circumstances,

and proposals to link U.S. prices to indices of international prices. In 2021, a RAND

study found branded drug prices in the U.S. were 3.4 times higher, on average, in the

U.S. than in 32 other countries; generic drug prices were slightly lower (Mulcahy et al.,

2021).3

In this study, we consider a rarely mentioned potential driver of this pricing phe-

nomenon: drug copayment coupons. These popular programs (also known as “copay

cards”) defray consumers’ out-of-pocket cost-sharing at the point of purchase. Coupon

availability has accelerated rapidly since they first appeared in the early 2000s: Dafny

et al. (2017) report that the share of branded drug spending with a coupon increased

from 26 percent to 54 percent between June 2007 and December 2010. While coupons

1Source: OECD 2019 statistics. The next five highest-spending countries are Switzerland (12.1 per-
cent), Germany (11.7 percent), France (11.2 percent), and Japan (11.1 percent).

2See, for example, Accounting for the cost of U.S. health care: A new look at why Americans spend
more, McKinsey Global Institute Report 2008; and U.S. Health Care from a Global Perspective, 2019:
Higher Spending, Worse Outcomes?, Commonwealth Fund Issue Brief, 2020.

3The RAND researchers relied on prices from insurance claims data, which do not reflect manufacturer
rebates or discounts. They estimate prices were around 1.9 times higher after applying adjustments
based on aggregated published estimates of “the relative differences between manufacturers and net
prices.” As we discuss later, rebate information is highly proprietary, hence virtually all academic
research relies on list prices.
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may enable individual consumers to access drugs they couldn’t otherwise afford, they

may also lead to higher medication prices and insurance premiums. Coupons dimin-

ish price competition among drugs and limit insurers’ ability to discourage use of

certain drugs via tiered formularies. Under tiering, preferred drugs are assigned to

lower tiers with lower patient cost-sharing, e.g., $25 for preferred brands in Tier 1

and $50 for non-preferred brands in Tier 2, etc. In the absence of coupons or other

copay-assistance programs, insurers can negotiate lower prices with manufacturers in

exchange for steering patients toward these drugs by placing them in lower tiers. In-

surers can also encourage utilization of generic drugs through tiering, and may offer a

lower generic-specific copay, like $5 or $10, further heightening price competition with

branded therapeutic alternatives. Finally, tiering enables insurers to contain spending

by discouraging utilization of drugs for which cheaper options are available (e.g., two

separate generic medications rather than a single, branded combination of the two).

The rise of coupons has reduced the effectiveness of tiering and cost-sharing in

general as tools in insurers’ arsenal to contain spending. By 2014, the Chief Medical

Officer of CVS, one of the largest PBMs, wrote that “traditional tiered formularies

are becoming less effective in the face of manufacturers’ copayment or coupon pro-

grams, which continue to proliferate” (Lotvin et al., 2014). For our analysis, we build

a database of coupon introductions spanning a decade, using historical snapshots of

multiple online databases supplemented by manual searches. We find that the reach of

coupons has increased substantially: by 2017, we estimate over 93 percent of branded

spending occurred in couponed drugs. As tiering has become less effective, insurers

have increasingly turned to step-therapy programs, which are more onerous and pre-

scriptive, requiring patients to undergo specific regimens or to “fail first” using certain

medications or treatments before approving coverage for a drug. Prior authorization

requirements and complete exclusion of drugs from formularies are also increasingly

common. Indeed, recent research finds that couponed drugs are more likely to be

excluded from coverage (Agha et al., 2020).

Although prior researchers have highlighted the mechanisms through which coupons

may drive higher prices and spending, there are only two peer-reviewed empirical anal-

yses of coupons, and both consider a specific, limited type of coupon: coupons for

branded drugs with bioequivalent generics. Lee (2020) simulates the impact of a single

(hypothetical) coupon for Zocor, a branded statin with a bioequivalent generic available

during the study period, under the assumption that the effect of the coupon is limited
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to its impact on cost-sharing (e.g., there is no advertising or spillover effect of coupons

on non-utilizers). In this setting, introducing a single coupon is predicted to soften

price competition, and Lee projects significant coupon-induced increases in prices and

insurer spending, the magnitude of which vary depending on various modeling assump-

tions. Consumer welfare (excluding insurer spending and thus the effect of coupons on

premiums) can either increase or decrease, again depending on the assumptions.

Dafny et al. (2017) estimate the effects of these types of coupons using a sam-

ple of natural experiments generated when branded drugs introduced coupons at the

time of generic entry. They compare the “generic efficiency ratio” (i.e., the share of

prescriptions for a given drug that are dispensed as generic when both branded and

generic options are available) for a set of drugs newly experiencing generic entry in

New Hampshire as compared to Massachusetts, where this specific type of coupon is

banned.4 Dafny et al focus on the commercially insured population, as the federal anti-

kickback statute prohibits the use of coupons, which are deemed a potential inducement

for purchase, by individuals with government health insurance. Using monthly data

from 2007-2010, they find that coupons increase branded sales among the non-elderly

population by 60+ percent, and this increase comes entirely from reduced sales of bioe-

quivalent generics, i.e. there is no market expansion, only increased cost. In the first

five years following generic entry, they estimate couponing increased total spending by

$30 to $120 million per drug, where the higher number incorporates the faster observed

price growth of branded drugs with versus without coupons. Given the very high rates

of generic efficiency in the U.S., however, the aggregate impact of coupons is likely to

be greater for drugs without bioequivalent generics. No states ban coupons for these

medications, necessitating a different identification strategy.

In this paper, we study the impact of copay coupons on prices and quantities of

branded drugs without bioequivalent generics using two distinct and complementary

approaches: (1) estimating a difference-in-differences model that quantifies the impact

of coupon introductions by comparing pre vs. post-coupon prices and quantities for

the commercially insured vs. the Medicare Advantage population, which is ineligible

to use coupons and (2) building and calibrating a stylized model of demand and pricing

for a specific drug segment (medications for multiple sclerosis), and using the model to

predict the equilibrium effect of coupons on list prices. The model shows that the effect

4When the study was published, Massachusetts was the only state with such a ban. California passed
a similar ban in 2017.
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on price of introducing coupons for drugs without perfect substitutes is theoretically

ambiguous. The difference-in-differences analysis is performed using proprietary data

at the drug-month-segment level (where segment is commercial or Medicare Advantage)

from one of the largest PBMs, for the period January 2014–June 2017. The price

variable we use is net of rebates and discounts, a significant advantage relative to the

vast majority of prior studies analyzing drug prices. We limit attention to drugs that

do not experience generic entry during the study period, and which have been on the

market without a coupon for at least 9 months. Medicare Advantage enrollees, who are

not permitted to redeem coupons, serve as a natural control group for each drug. This

analysis yields a relatively clean estimate of the short-term effect of coupons because

data constraints limit the post-period to 12 months. Moreover, this effect may be

conservative. Branded drugs typically have coupons at launch. Drugs with relatively

late coupon introductions may be those for which coupons are expected to have the

least impact on manufacturer revenues. We find substantial quantity effects: couponing

is followed by an almost immediate quantity surge on the order of 20 percent. We do

not find changes in relative net-of-rebate prices, which may be due to the use of a

control group as well as the short time series used in this analysis. Because list prices

are the same for both customer segments, a relative change in net-of-rebate price for

the commercial versus the Medicare Advantage segment would require a renegotiation

of segment-specific rebates within the first 12 months of a coupon introduction.

The second analysis explores the equilibrium effect of coupons on drug prices by

estimating a demand model and using it to calibrate a bargaining model between in-

surers and manufacturers. We make use of claims data over the period 2009 through

2017 from the Health Care Cost Institute, which includes claims for roughly 25% of

commercially insured individuals and 35% of Medicare Advantage enrollees in the U.S.

The analysis incorporates rich detail on a specific drug category – disease-modifying

therapies for multiple sclerosis (MS) – and incorporates a fully-specified model of de-

mand as well as insurer-manufacturer negotiations over prices, allowing for simulations

of a key policy option: banning coupons. Rather than modeling the determination of

list prices and rebates separately, we collapse the problem to a single dimension by

specifying a model of bargaining over net-of-rebate prices. The simulations indicate

that prices of MS drugs are around 8% higher during the 2015-2017 period due to the

availability of coupons, which drive demand through two mechanisms: (1) reducing

patients’ price elasticity and (2) an advertising effect. We document the distributional
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impacts of a ban, which lowers out-of-pocket spending for those whose cost-sharing

varies with price and lowers premiums for all, but increases out-of-pocket spending

for commercially insured individuals who previously used coupons. We predict that

total savings (for the MS drug market) would outweigh the increase in out-of-pocket

payments by 4 to 1. We discuss potential mechanisms to address the distributional

consequences of a ban.

The paper proceeds as follows. Section 1 provides background information on copay

coupons, multiple sclerosis, and related literature. Section 2 presents our difference-

in-differences analysis of the impact of coupon introductions on drug utilization. In

Section 3, we build a model that serves as the foundation for our demand estimation

and counterfactual simulations. Section 4 presents our data and demand estimates for

the effects of coupons on multiple sclerosis drugs. Section 5 presents counterfactual

simulations for a policy that bans coupons and examines the sensitivity of the predic-

tions to several different assumptions. We discuss the implications of our findings in

Section 6.

1 Background

1.1 Drug Coupons

A copay coupon is an offer by a manufacturer to pay some or all of a consumer’s

copay for the manufacturer’s drug. By offering a copay coupon, a manufacturer can

reduce the out-of-pocket price for its drug, as well as any difference between the out-of-

pocket price for its drug and competing drugs, thereby encouraging consumers to buy

the manufacturer’s drug. Manufacturers’ coupons pertain to specific (branded) drugs,

and may not be utilized by individuals purchasing drugs with public health insurance

such as Medicare. The federal Anti-Kickback Statute prohibits manufacturers from

providing anything of value that may induce a purchase or service financed by a federal

health care program. (However, manufacturers may donate to independent charitable

foundations that offer copay assistance programs to publicly insured enrollees with

certain health conditions (e.g., multiple sclerosis), provided the manufacturers abide

by certain restrictions, including not earmarking their donations specifically for their

own medications.)

Copay coupons (also called “copay cards”) may apply to only a subset of a drug’s

formulations, e.g., the extended release version but not the immediate release version,

and may contain caps on the total amount the manufacturer will pay for a given pre-

5



scription or on behalf of an individual in a given time period. A recent study by Sen

et al. (2021) used a proprietary dataset of prescription drug transactions from U.S.

pharmacies over 2017–2019 and finds that manufacturer-sponsored “offset” programs,

such as coupons, reduce out-of-pocket cost sharing by a median of 87 percent.5 Manu-

facturer offset programs insulate consumers not only from high out-of-pocket spending,

but also from price variation across therapeutic substitutes.

1.2 Multiple Sclerosis

In the second of our two analyses, we focus on medications to treat multiple sclerosis.

Multiple sclerosis (MS) is a disease characterized by inflammation of the brain and

spinal cord. It usually onsets between 20 and 40 years of age and affects over 850,000

individuals in the United States (Wallin et al., 2019). While MS does not usually

result in decreased life expectancy, it can cause substantial disability through impacts

on sensation and motor, autonomic, and neurocognitive function. MS initially presents

in a relapsing-remitting form (RR-MS, which accounts for 85-90% of cases) or a steadily

progressing form (primary progressive MS, or PP-MS, which accounts for 10-15% of

cases). Relapsing-remitting MS usually progresses to secondary progressive SP-MS

(Sospedra and Martin, 2005). In RR-MS, relapses are characterized by one or more

new neurological symptoms or a worsening of prior symptoms.6

We study the market for drugs called “disease modifying therapies” (DMTs), which

are currently the best available treatment for slowing the course of MS. The majority of

DMTs (and all of the DMTs that we study) have been approved for treating relapsing

forms of MS (RR-MS) and some cases of secondary progressive MS (SP-MS).7 DMTs

for MS are expensive, and prices have increased significantly over time. Estimates for

actual spending range significantly across sources. One recent study estimated that

total Medicaid spending on DMTs has increased from $172 million in 2008 to $1.3

billion in 2018 (Elsisi et al., 2020). Using data on individuals covered through both

commercial and Medicare Advantage plans, The Health Care Cost Institute estimated

spending on DMTs per person diagnosed with MS increased from $9,400 per year to

5The data do not reflect payments made by the charitable foundations described above, as these
payments are not made at the point of service.

6See Disease-Modifying Therapies for MS, National Multiple Sclerosis Society, 2020.
http://www.nationalmssociety.org/NationalMSSociety/media/MSNationalFiles/Brochures/Brochure-
The-MS-Disease-Modifying-Medications.pdf

7Ibid. DMTs are ineffective for patients with disabilities, patients with PP-MS, and patients with
SP-MS without relapses (Lonergan et al., 2009; Torkildsen et al., 2016).
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nearly $21,000 per year between 2009 and 2015.8 Both sources find that increases in

the list price of DMTs were the largest component of cost increases. Neither study

was able to adjust for rebates. However, a study performed by the Massachusetts

Attorney General’s office, which used subpoena authority to obtain rebate information,

concluded that net-of-rebate prices for DMTs per commercially-insured patient in the

state nearly doubled between 2011 and 2015, from approximately $3000 to $5-6000

per month.9 Consistent with these high prices, pharmacy claims data suggest that

up to 75% of commercially insured MS patients use coupons when they are available

(see Starner et al. (2014) and Appendix Section B.7 for details). In sum, DMTs for

multiple sclerosis are very expensive and becoming more so, and patients utilizing these

medications rely heavily on copay coupons and assistance programs.

1.3 Related Literature

In previous work, Dafny et al. (2017) find that copay coupons increase branded drug

sales at the expense of newly released bioequivalent generics. That paper focused

exclusively on “multi-source” drugs, i.e. branded drugs for which bioequivalent generics

were also available. Our paper extends this work by considering the impact of coupons

on “single-source” branded drugs without generic equivalents. Branded drugs account

for roughly three-quarters of U.S. prescription drug spending. In light of the fact that

the “generic efficiency ratio” – the rate at which generics are dispensed in place of a

brand when both are available – exceeds 95 percent, assessing the impact of coupons on

single-source drugs is of critical policy interest. Coupons may have a greater impact on

the volume of sales for single-source as compared to multi-source drugs, as consumers

lack access to an inexpensive bioequivalent substitute. While Dafny et al. (2017) did

not find an increase in aggregate molecule-level demand as a result of coupons, coupons

for single source drugs may result in both share shifts (i.e., business-stealing among

therapeutic substitutes) as well as market expansion.

Our paper is also related to the previous industrial organization literature that

models price negotiations in vertical settings. Our simulations apply the Nash-in-Nash

model of price negotiations that has been extensively used in previous empirical work

studying insurer-hospital negotiations (e.g. Gowrisankaran et al. (2015), Ho and Lee

(2017)), negotiations between hospitals and device manufacturers (Grennan (2013)),

8The Rising Cost of Specialty Drugs Drove Spending Increases for People with Multiple Sclerosis,
Health Care Cost Institute Issue Brief, 2018.

9Examination of Health Care Cost Trends and Cost Drivers Pursuant to G.L. c. 12C, §17, Common-
wealth of Massachusetts Office of the Attorney General, October 7, 2016.
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and also in non-health care settings (Draganska et al. (2010), Crawford and Yurukoglu

(2012)).

2 Difference-in-Differences Analysis

2.1 Data Sources

Drug Coupon Data We construct a dataset spanning 2009 through 2018 using his-

torical snapshots of three online databases of drug coupons: InternetDrugCoupons.com,

RxPharmacyCoupons, and NeedyMeds.org.10 We record the earliest date a copay

coupon is observed on any site for any given drug. The unit of observation is the drug

name, where drug names reflect those appearing on coupons (e.g., Effexor and the

extended release version, Effexor XR, are unique observations). Coupons may become

available prior to being posted on the websites, or there may be gaps in the data during

which snapshots are unavailable. For the subset of drugs we ultimately include in our

estimation sample, we manually verify coupon dates using historical snapshots of man-

ufacturer websites as well as press releases. Appendix Section A contains additional

details on the coupon dataset. Appendix Section B.1 describes our process for har-

monizing drug names across sites and over time, and Appendix Section B.2 provides

additional details on the manual verification process. In general, we find that prior to

these manual checks, the drug coupon database captures coupons with a median lag

of 10 months.11

Pharmacy Benefits Manager Data We leverage a proprietary dataset from a

large pharmacy benefits manager (PBM) for January 2014 through June 2017. The unit

of observation is the NDC9-month-customer segment, where the customer segments are

commercial insurance and Medicare Advantage plans. NDC9 codes are highly granular,

9-digit drug codes that identify the drug labeler (typically a manufacturer) and product

(a unique combination of strength, dose, and formulation). The data include a field for

the common name of the drug, which differs for branded and generic manufacturers

of the same molecule, e.g. Lipitor is the branded version of atorvastatin. For each

10Historical snapshots of both sites were scraped from https://web.archive.org/
11We do not assemble data on when/whether coupons are withdrawn. Our understanding is that

coupon withdrawal for branded drugs is rare, although it may occur particularly when a drug
manufacturer is seeking to shift users of one formulation toward another. Unfortunately, identifying
coupon removal is very difficult. We revisit this issue in our analysis of multiple sclerosis drug
utilization (see Appendix 4.1).
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observation, the data include the average net-of-rebate price per day supplied, total

days supplied, total out-of-pocket spending, an indicator for whether the drug is a

generic, and the major condition treated (out of 101 categories constructed by the

PBM). Rebates negotiated by PBMs are closely-held, hence the data source masked

the actual net-of-rebate prices. The masking obscures price levels but allows us to

study relative prices and price growth over time.

The price data are highly unique as they reflect net-of-rebate prices, whereas most

pharmaceutical research has relied on list prices, wholesale acquisition cost (WAC), or

allowed amounts from claims data. Recent exceptions are Sood et al. (2020) and Kakani

et al. (2020), who make use of rebates for a subset of drugs estimated by a private

company, SSR Health. Kakani et al. (2020) estimate that average rebates increased

from 32 to 48 percent of list prices between 2012 and 2017, although they exclude

many products owing to limitations in the SSR Health data. Notably, their analysis

excludes injectable drugs, which account for the majority of MS DMTs we study in our

structural analysis. The authors generously provided us with their estimated rebates

for MS drugs, however, which decline from a share-weighted average of 24% in 2012 to

a low of 7% in 2014 before rising again to 18% in 2017. We make use of these estimates

in our stylized model in Section 3.

Additional Data We obtained data on drug approval dates and active pharmaceu-

tical ingredients from FDA databases, for the time period 1939 through October 2018.

The unit of observation is the NDC9, which enables us to merge these data directly

to the PBM data. Below, we describe how we use the two data sources to identify (1)

which drugs are generic and (2) which drugs have generics. Additional details on the

FDA data are in Appendix B.3.

2.2 Sample Construction and Descriptive Statistics

To construct our estimation sample, we begin by merging together the PBM and

FDA data using the NDC9 codes in both, and dropping observations lacking an FDA

match.12 The combined data account for more than 97 percent of total PBM spending

in each segment; unmatched items include medical supplies, vaccinations, and other

miscellaneous items billed to the PBM but not listed in the FDA data. Details are

12We applied an additional filter for branded drugs, dropping the NDC9s that correspond to a given
brand if at least half of the PBM spending for that brand occurs in NDC9s that do not have a direct
match in the FDA data. See Appendix for details.
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available in Appendix Figure B1.

We use the combined data to construct two key indicator variables. The indicator

is generic takes a value of 1 if a drug was approved through an Abbreviated New Drug

Application (ANDA) or is designated as a generic in the PBM data.13 For branded

drugs (i.e., drugs not defined as generic), we construct the indicator has generic, which

takes a value of 1 if a bioequivalent generic is available for that drug at any point during

the study period, i.e. by June 2017. We define a bioequivalent generic as an NDC9 code

with is generic = 1 and the same active ingredient list, dosage form, dosage strength,

route of administration, and extended-release status as its branded counterpart.

We collapse the resulting data to the drug-month-segment level, where drug is

defined by the common name included in the PBM data.14 Using fuzzy text matching

techniques supplemented by manual checks, we merge in the coupon data, creating an

indicator for “coupon” that takes a value of 1 beginning in the relevant drug-month in

which it is first observed.15 Only branded drugs are observed to have coupons.

The merged PBM-FDA-coupon dataset contains 1,854 unique drugs. About half of

the drugs (906) are branded. Of all spending in the original PBM dataset (and matched

to FDA codes), total spending on these branded drugs accounts for 65 and 66 percent

of commercial and Medicare Advantage spending, respectively. These figures are net

of rebate, hence the share of spending on branded drugs is lower than that reported

elsewhere using gross spending data. For example, the Health Care Cost Institute

reports that in 2017, spending on brands for the under-65 employer-insured population

was nearly 76 percent; however they note this figure is gross of any rebates.16

In Figure 1, we plot the share of monthly branded spending accounted for by

couponed drugs, separately by segment. Because Medicare enrollees are not permitted

to redeem coupons, and therefore manufacturers should be less likely to release coupons

for drugs primarily targeting Medicare enrollees, we expect to see somewhat lower

shares for the Medicare population.17 The data reveal this to be the case, although

the difference between the two data series narrows substantially by the end of the

13One reason these definitions are not equivalent is that so-called “authorized generics” are unbranded
but manufactured under NDAs.

14Price is constructed as the cost per day supplied by dividing the total cost by the total number of
days supplied.

15Drugs that do not merge to an observation in the coupon data are assigned a 0 for coupon status
throughout the study period.

162017 Health Care Cost and Utilization Report, Health Care Cost Institute, 2019.
17The expectation of different couponed shares assumes (1) different utilization levels across the two

segments; and (2) non-trivial cost of introducing a coupon program.
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study period, when coupons are virtually ubiquitous for branded drug spending in

both segments (94 percent of commercial, and 92 percent of Medicare).

Figure 1 also includes a time series labeled “Medicare Part D,” obtained by com-

bining our coupon data with annual Medicare Part D spending by drug, limited to

the same set of drugs present in our merged PBM-FDA data. For this time series, we

use coupon status as of June in the relevant year. The additional time series shows

that the share of Part D spending potentially impacted by coupons is similar to that

observed for the Medicare segment of our PBM data, suggesting the PBM data are

likely to be representative of Medicare spending.18

[Figure 1 Here]

The sharp increases in the couponed share of spending in late 2014 for both the

commercial and Medicare segments can mostly be accounted for by the new intro-

duction of a coupon for Revlimid, a cancer drug with high spending, the approval of

Harvoni for hepatitis C19 and large spending increases for Levemir (a couponed in-

sulin). The subsequent decline in couponed spending share that occurs only in the

commercial segment in early 2015 is driven by a concurrent decrease in the spending

share of Harvoni and an increase in the spending share of Viekira, a non-couponed

alternative.

Our empirical analysis explores the impact of coupons on single-source drugs, so

we eliminate branded drugs with generics at any point in the study period, which

leaves 589 branded drugs but retains the vast majority of spending: net-of-rebate

spending for single-source drugs accounts for 86 percent of branded spending in the

commercial population and 83 percent in the Medicare population. Next, we exclude

drugs without utilization in both populations, or which have very different utilization

levels in the commercial and Medicare populations (e.g., drugs for attention deficit

hyperactivity disorder). Including these drugs may result in a violation of the parallel

trends assumption for commercial and Medicare populations absent coupons. Further

details, and a summary of the impact of all sample restrictions on the share of PBM

spending included in the estimation sample, are provided in Appendix B.4.

18While the time series plotted using our data reflect net-of-rebate spending shares, the time series
plotted using Part D drug spending is not net of rebates. Nevertheless, the trends illustrate the
similarity in the relative utilization of couponed drugs included in our Medicare Advantage data
and in Medicare Part D.

19Like many drugs, Harvoni’s coupon coincided with its introduction.
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After applying the utilization restrictions, there are 366 drugs remaining. Of these,

263 are always observed to have a coupon during the study period (“always-couponed”),

35 are not couponed at any point in the study period (“never-couponed”), and 68 in-

troduce a coupon during the study period (“switchers”). Table 1 contains summary

statistics for these drugs, separately by coupon status. The top panel contains aggre-

gate statistics for each category of drugs, including the distribution of total spending

across the three coupon categories. Always-couponed drugs account for around 80

percent of spending in both the commercial and Medicare Advantage segments in this

sample. Drugs with new coupon introductions during the study period account for

9-10 percent of spending in each segment, while never-couponed drugs account for less

than 2 percent of spending. The major condition treated by switchers is cancer.

The second panel of Table 1 presents drug-level statistics. The average annual

list price (obtained from the first year a drug is observed in the Medicare Part D

data) is highest for switchers and lowest for never-couponed drugs.20 The average

compound annual growth rate (CAGR) in price is fairly similar across all three groups.

There is wide variation in the volume of drug utilization across categories, as well as in

utilization growth. Average monthly days supplied per always-couponed drug is around

66,000 as compared to 16,000 per switcher and 8,700 per never-couponed drug. The

CAGR for days supplied is largest among switchers, at 101 percent (as compared to 29

percent for always-couponed and 14 percent for never-couponed drugs, on average).

Table 1 also lists the leading medical conditions for drugs included in each category.

Diabetes drugs appear frequently in all three groups. HIV drugs, which have very high

prices, are common in the “always couponed” group. Taken together, these summary

statistics suggests that always-couponed or never-couponed drugs are not ideal con-

trol groups for switchers. Hence, our analysis and identification strategy focuses on

switchers only.

[Table 1 Here]

2.3 Empirical Specifications

To assess the impact of coupon introduction on net-of-rebate prices and quantities, we

pursue a difference-in-differences approach, comparing the change in outcomes before

20As previously noted, the PBM data include only a normalized price measure, and the normalization
differs by segment, so price levels from the PBM data are uninformative. For this reason we rely
on list prices from Medicare Part D for these general summary statistics. The analyses below use
net-of-rebate prices from the PBM data.
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vs. after coupon introduction for the treatment group (the commercial segment) with

that of the control group (the Medicare segment). The key identifying assumption is

that the trends in outcomes absent the coupon would have been similar in the two

groups. The ability to include drug-specific control groups (rather than to rely on a

simple pre vs. post comparison for the treatment group) is particularly valuable given

that coupons may not be exogenously introduced, and may in fact be introduced when

current or future price or quantity growth is expected to decline.21 As long as any

omitted factors impacting utilization or price have a common proportional effect on

commercial and Medicare enrollees, the differences-in-differences estimate will capture

the short-term effect of coupons. We expect the estimates to be conservative, however,

as Medicare enrollees may utilize patient assistance programs, which cover cost-sharing

for all drugs used to treat eligible conditions, in lieu of coupons, and such programs

may be contemporaneously introduced or expanded for the same reasons underlying a

coupon introduction. Moreover, price effects may not be captured by this identification

strategy if list prices are jointly determined for both market segments.

We estimate the following specification using observations at the drug-month-segment

level:

Yjkt =
∑

q∈{−3,3}\−1

γq1(quarter = q) · 1(commercial)k

+
∑

q∈{−3,3}\−1

ηq1(quarter = q) + αjk + δt + εjtk
(1)

where Yjtk is either log quantity (defined as the number of days supplied) or log

net-of-rebate price for drug j in period t and segment k. The data are monthly,

with t reflecting each month from January 2014 through June 2017. The variable

quarter denotes the number of quarters before or after coupon introduction, with

quarter = 0 for the first 3 months a coupon exists for drug j. γq are the coefficients of

interest: they capture the difference in outcomes in the commercial segment relative to

21The recent literature on difference-in-differences and event study estimation highlights potential
problems that may arise if treatment effects are heterogeneous (Borusyak et al., 2021; Sun and
Abraham, 2021; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020). With staggered treatment
introductions, control groups may contain a mix of pre- and post-treatment periods of other treated
units, and treatment effects for certain units may receive negative weight. Our setting avoids these
issues by including a natural drug-specific control group: each drug’s Medicare outcomes. Our
estimator can thus be interpreted as recovering an average of these drug-specific commercial vs.
Medicare differences.
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Medicare before and after coupon introduction. The ηq coefficients capture common

changes in Yjtk leading up to, and following coupon introductions. (We use quarters

rather than months to gain precision in our estimates of interest, and because there

is some uncertainty around the exact timing of coupon introduction.) The αjk and

δt coefficients denote drug-segment and year-month fixed effects. The former control

for time-invariant differences within drugs across segments, and the latter allow us to

control more flexibly for trends in outcomes. The results are very similar if we include

year and month fixed effects in place of year-month fixed effects, or if we include

a higher-order set of interactions: drug-year-month fixed effects. For parsimony, we

present specification with year-month effects. We cluster standard errors at the drug

level.

The estimation sample includes drugs denoted as “switchers” in Table 1 above,

restricted to those observed at least 9 months before and after the quarter of coupon

introduction. The panel is balanced so each drug is included for 21 months in total,

although the calendar months vary across drugs. Descriptive statistics for this sample

are included in Column 4 of Table 1.

2.4 Results

Table 2 presents the coefficients of interest from estimating equation (1) on the balanced

switchers sample, using either logged quantity (Columns 1-2) or logged price (Columns

3-4) as the dependent variable. We estimate equation (1) by unweighted and weighted

OLS, weighting each observation by the share of within-segment spending accounted

for by the relevant drug in the 6 months prior to coupon introduction.22 The weighted

specifications (Columns 2 and 4) may better represent the average impact of coupons

on spending, as coupon effects for drugs that account for a larger share of total spending

receive more weight.

Figure 2 plots the corresponding estimated coefficients from the unweighted and

weighted models, with results for quantity in the top panel and price in the bottom

panel. The figure plots the point estimates and 95% confidence intervals for the quar-

terly interaction terms with the commercial segment indicator (i.e., γ̂q) in equation 1

above). The figures confirm that for 3 of the four specifications, there is no differential

trend in quantity or price for commercial relative to Medicare enrollees in the quarters

22The masking procedure applied by the PBM data source affects relative spending between segments.
To account for this, we normalize the average weight across drugs to be the same for Medicare and
commercial segments.
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prior to coupon introduction. However, there is a modest increase in relative price for

commercial enrollees (2 percent) in the 3 quarters preceding coupon introduction in

the weighted model, suggesting for this outcome the parallel trends assumption may

not be satisfied.

The quantity graphs show clear and large increases in quantity beginning in the

second quarter after coupon introduction (i.e., months 4-6 after the month of introduc-

tion). The magnitude of the quantity effect increases over time, perhaps due to coupon

introductions that occur mid-year but primarily affect demand in the following year

as deductibles and out-of-pocket maximums reset. Both the unweighted and weighted

specifications imply increases in the relative quantity of couponed drugs used in the

commercial segment of 21-23 percent by the third quarter after coupon introduction.

The relative similarity of the results for weighted and unweighted models suggests

similar responses across drugs with different revenue levels.

To determine whether this quantity effect is driven by increases in commercial uti-

lization, decreases in Medicare utilization, or both, we estimate specifications that in-

clude separate quarter interactions for each segment. This illuminates absolute changes

in segment-specific quantity for newly couponed drugs. The results show that demand

for newly couponed drugs is increasing in both segments prior to coupon introduc-

tion, but post-introduction demand surges upward only for the commercially insured

population (see Appendix C.1 for more details).

[Table 2 Here]

[Figure 2 Here]

In contrast, the price specifications do not show post-coupon increases in net-of-

rebate prices for drugs supplied to the commercial versus the Medicare population.

The lack of a price response may be due to the fact that list prices are common to

all segments, so that changes in price for a specific segment would require changes in

segment-specific rebate arrangements with the PBM. While the source of PBM data

reports that segment-specific rebates do occur, so that manufacturers could attempt

to negotiate lower rebates for the commercial sector after introducing a coupon–or

propose smaller increases in rebates for the commercial sector as compared to the

Medicare sector–we do not find evidence of such renegotiations within the 12 months

following a coupon introduction.
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2.5 Robustness and Extensions

As a robustness check, we re-estimate both the weighted and unweighted regressions

for quantity responses, dropping drugs from our sample one at a time, and pooling

the post-coupon period into a single indicator variable. The pooled quantity effect for

the full 33-drug sample is 16.6% for the unweighted specification and 17.7% for the

weighted specification.23 The unweighted estimates obtained when dropping one drug

at a time all lie between 14.8% and 18.7% with similar standard errors. With the

exception of dropping Revlimid (an oral chemotherapy approved to treat various blood

cancers), the weighted estimates all lie between 15.2% and 18.9%. Dropping Revlimid,

a high-revenue coupon-switcher drug, leads to a slightly smaller weighted estimate of

14.3%.

We also estimated models that attempted to discern whether the coupon-induced

utilization growth arises primarily from market expansion or from “business stealing”

by newly couponed drugs. However, due to significant difficulties in identifying thera-

peutic substitutes for all 33 index drugs, as well as the fact that many couponed drugs

accounted for a very small share of their respective drug markets (as defined using

drug-level data), the effort was not fruitful. See Appendix C.2 for details.

In sum, the reduced-form analysis of coupon introductions suggests that coupons

can induce a significant increase in the volume of prescription drugs sold, consistent

with studies showing a high elasticity of consumer demand for prescription drugs with

respect to out-of-pocket cost-sharing. The analysis does not find that coupons are

associated with relative price changes; however, list prices do not vary across segments

and rebates (which can differ across segments) may take more time to adjust than we

observe in our one-year post-coupon study period. In the next section, we estimate

a model of demand and parameterize a stylized model of supply that enables us to

quantify the extent to which the optimal pooled price is likely to change (for the drugs

in question) in the presence of coupons.

3 Model for Estimation

In this section, we present a framework for drug demand and manufacturer-insurer

bargaining that accounts for the existence of coupons. We apply this framework to the

23While the specification with a pooled post-period is convenient for performing robustness checks, our
preferred specification is equation (1), which disagreggates the post period into quarters. Coupon
effects are likely to build over time, at least within the year after introduction.
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market for multiple sclerosis drugs, and estimate the model using claims data for both

commercially insured and Medicare Advantage enrollees included in the Health Care

Cost Institute (HCCI) dataset.

We assume that, prior to the stages we model, insurers set coinsurance and copays,

consumers decide which insurance plans to purchase, and drug manufacturers make

decisions about whether to offer coupons. Insurers are responsible both for non-drug

benefits and for drug benefits, which may be outsourced to a PBM. We assume that all

coupons fully offset consumer cost-sharing. Because we do not observe plan formularies,

we assume that no drugs are excluded from any formulary in equilibrium; however,

the threat of exclusion impacts negotiated prices. Taking these attributes as pre-

determined, a model of price-setting and demand in this market has the following

stages:

1. Drug manufacturers choose list prices and negotiate rebates with insurers

2. Insurers set premiums for the following year

3. Consumers choose a drug from the set of options available for their diagnosis. A
subset of consumers redeem a coupon for their purchase.

We allow coupons to increase demand in two ways. First, they directly reduce the

out-of-pocket prices of patients who use them. Second, coupons may have an advertis-

ing effect on all individuals, regardless of whether they actually redeem a coupon.24 In

particular, physicians may be aware that a drug is couponed - as sales representatives

typically advise them of this fact and may share coupon cards to distribute - and the

knowledge that a drug can be obtained at a low out-of-pocket cost may increase the

likelihood that a physician prescribes it and therefore gains experience with the drug.

This increased propensity to prescribe couponed drugs may therefore impact all of the

physician’s patients, even those who do not ultimately use coupons. Both demand

effects are likely to exert upward pressure on drug prices and premiums.25 However,

there are offsetting effects, largely due to the impact of negotiations with insurers,

24Our empirical analysis allows for the advertising effect of coupons to differ across Medicare and
commercial enrollees. The effect for Medicare enrollees is captured through the coupon indicator,
which applies to both market segments and also addresses the potential endogeneity of coupon
introduction, which may occur in response to demand shocks. Our focus in the model is on the
incremental advertising effect for commercial enrollees.

25It is possible that, by attracting new consumers through the advertising effect, coupons could
increase the price elasticity of the marginal consumer and hence reduce the optimal markup. This
seems unlikely, particularly in our setting where all diagnosed patients are assumed to take a drug.
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that make both the magnitude and the direction of the overall price effect of coupons

theoretically ambiguous. 26

Our model is designed to tease out these effects and allow us to quantify the impact

of coupons on prices and spending in equilibrium. The model relies on a number

of simplifying assumptions necessitated by data constraints. First, we assume that

consumer selection into plans takes place in an initial step before our model begins:

that is, consumers do not switch plans based on changes in out-of-pocket drug prices

or the impact of drug price changes on premiums.27 Second, we assume insurance plan

markups and non-pharmaceutical costs are invariant to the introduction of coupons.

Third, we combine the setting of list prices and negotiation over rebates into a single

step in which the insurer and manufacturer negotiate over net-of-rebate price.

In the following subsections, we work through the stages of the model in reverse

order, introducing our assumptions and explaining how we bring each stage to the

data. We begin with a model of drug demand (Stage 3), then specify how insurers

set premiums (Stage 2), and finally show how net-of-rebate prices are determined in

a model of insurer-manufacturer negotiations (Stage 1). We use the resulting model

to clarify the mechanisms through which coupons affect prices. Then we combine our

demand estimates with the pricing model to conduct counterfactual simulations that

show how prices change when coupons are banned. We present our demand estimates

in Section 4 and simulation results in Section 5.

3.1 Drug Demand

We model each consumer’s choice of drug as a discrete choice among options available

to treat a particular condition. This choice varies based on individual characteristics,

including the individual’s insurance segment (i.e., commercial or Medicare Advantage).

Medicare enrollees are prohibited from utilizing coupons, however as previously noted

we allow for the possibility that their choices are affected by an “advertising effect” of

26Corts (1998) shows that, even without price bargaining, coupons may generate either lower or higher
list prices because they allow firms to price discriminate, sorting customers into multiple groups,
only some of which use coupons. If consumer preferences across firms are not symmetric then
coupons can generate reduced list prices for some firms.

27This assumption is plausible for enrollees in employer-sponsored health insurance, as employers
typically offer a limited selection of plans. Even when multiple plans are offered, they often utilize
the same PBM and hence the same drug benefit design (i.e., set of drugs that are covered and copay
tier associated with each), so that their enrollees effectively have a single option for drug insurance.
For Medicare enrollees, plan switching is uncommon: a prior literature argues that enrollees rarely
switch between Part D plans, in part because of inattention regarding changes in plan coverage and
premiums. See, for example, Ho et al. (2017).
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coupons. The utility of a Medicare Advantage enrollee i choosing drug j in year t can

be written:

uMA
ijt = δjt + γcouponjt + αpOOPijt +X ′ijtβ + εijt (2)

where drug-year fixed effects δjt allow the mean utility of each drug to vary flexibly over

time. The indicator couponjt equals 1 when a coupon is in place for a particular drug;

γ measures the change in utility upon coupon introduction for Medicare Advantage

enrollees. It combines the effect of any within-year demand shocks that coincide with

coupon introduction28 with potential advertising effects of coupons for these enrollees.

It is common for all couponed drugs and time periods. Out-of-pocket prices pOOPijt

depend on consumers’ coinsurance rates or copay amounts. The variables Xijt denote

drug time-since-approval bins and their interactions with gender, which capture the

ramp-up of each drug’s sales in the months after its introduction.29 The error term εijt

is distributed Type 1 extreme value.

We assume that there are two types of commercially insured consumers. With

probability λ a particular consumer will redeem coupons for drug purchases and face

no cost-sharing, while with probability 1−λ she does not use them. All commercially-

insured consumers are affected by coupons’ commercial advertising effect, which might

be different from the effect for Medicare Advantage enrollees.30 The utility specification

for commercially insured consumer i who chooses drug j in year t is therefore

ucomijt =

ucijt = δcomj + δjt + (γ + γcom)couponjt +X ′ijtβ + εijt with proba. λ

uncijt = δcomj + δjt + (α+ αcom)pOOPijt + (γ + γcom)couponjt +X ′ijtβ + εijt with proba. 1− λ
(3)

where δcomj allows the mean utility of each drug to vary by segment; this captures any

fixed differences in drug preferences between segments. The parameters γcom and αcom

allow the coupon advertising effect and the effect of price to differ between commercial

28While the reduced form analysis suggests that coupons are not, on average, introduced to coincide
with negative demand shocks, we still allow for the possibility in this particular sample of drugs.

29We define drug age as the time since FDA approval. To capture the non-linear increase in adoption
of a drug over time, we specify the time since FDA approval using indicators for under 6 months
(omitted category), 6-12 months, 1-2 years, 2-3 years, 3-5 years, and 5+ years. We find adoption
trends vary by gender, hence we include gender interactions. The results are insensitive to the
inclusion of these terms.

30We also test alternative specifications where the commercial advertising effect is larger for coupon
users, which may reflect the scenario where the advertising effect and coupon usage are both linked
to knowledge of a coupon’s existence. See section 5.3 for details.
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and Medicare Advantage enrollees.

In practice, since we do not observe coupon usage at the individual or drug level, we

fix λ = 0.75 based on estimates of coupon utilization for MS drugs reported in Starner

et al. (2014) and estimate the remaining parameters of equations (2) and (3) jointly by

maximum likelihood. Appendix Section D.1 provides additional details, including the

likelihood function. In Section 5.3 we discuss alternative assumptions for λ, including

allowing it to vary depending on the magnitude of the patient’s cost-sharing. We

assume that every diagnosed consumer chooses a drug, i.e., there is no outside option

in this specification. This assumption is necessary because we do not reliably observe

patients with MS who never take a drug, as an MS diagnosis without an associated

medication claim may not appear in our claims data. Moreover, we do not observe

the timing of individuals’ decisions to forgo any MS drug. Thus, our analysis does not

allow for market expansion effects of coupons.

3.2 Insurance Premiums

The average premium for a plan in segment k and period t is the marginal cost per

enrollee plus a markup:

Premiumkt =
1

N I
kt

∑
i∈Ikt

[
µikt + ωikt +

∑
j∈Jt

sijkt
[
pjt − pOOPijkt

]]
(4)

where N I
k,t is the total number of enrollees in segment k and year t and Ik,t is that set

of enrollees, µikt is the markup for consumer i (measured in dollars) which might vary

across consumers and across plans, ωikt is the insurance plan’s non-drug cost of enrolling

that consumer, sijkt is the probability that patient i chooses drug j (determined by the

demand model outlined above), and pjt is the negotiated net-of-rebate price for drug

j.

A full premium-setting model would require a framework of consumer plan choice as

an input into insurers’ choice of profit-maximizing premiums. We simplify by assuming

that the insurer markup and non-pharmaceutical costs in the premium expression are

determined by broader factors outside the pharmaceutical market; they are unaffected

by the introduction of coupons and can be held fixed in our simulations. We normalize

them to zero and consider the component of premiums that covers the insurer’s drug

costs.
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3.3 Drug Pricing

A full model of drug pricing would distinguish between two components: list prices—

which manufacturers set—and rebates, which manufacturers negotiate with insurers

and which may depend on the formulary placement of each drug relative to its sub-

stitutes. The manufacturer’s payment (the net-of-rebate price) is the list price after

applying the negotiated rebate rate. Because we lack insurer identifiers and information

on each drug’s formulary placement, we do not develop and estimate such a model.

Instead, we use a simpler framework that focuses attention on the impact of coupons

on net-of-rebate prices without requiring the additional assumptions or data that would

be needed for a fully-specified model. We collapse the problem into a single dimension

by assuming that drug manufacturers and insurers engage in Nash-in-Nash bargaining

over net-of-rebate prices.31 This allows us to focus on the pricing incentives due to

coupons’ effects on manufacturer revenues and insurer costs, which (as shown in the

equations below) are functions of this net-of-rebate price. The impact of coupons on

net-of-rebate prices that is predicted by our model reflects both list price effects (e.g.

due to the reduction in out-of-pocket prices for consumers redeeming coupons) and

effects on the insurer’s ability to steer consumers to lower-priced drugs, which might

operate via rebates and drug tiering. To compute consumer out-of-pocket prices, we

need to recover the list price separately from the net-of-rebate price. We do so by

applying a rebate percentage that is informed by external data. In our counterfactual

simulations, we explore robustness to different rebate rates and alternative assumptions

over whether and how much rebates adjust when coupons are removed.

Our approach has the additional advantage that the bargaining framework is a

simple way to account for sources of insurer leverage that would be difficult to capture

in the more fully-specified model. These include the insurer’s ability to require prior

authorization, increase hassle costs, and/or alter copay and coinsurance parameters in

response to very high list prices.32

31One could alternatively model price-setting using a Nash Bertrand pricing assumption, where man-
ufacturers choose prices to maximize profits given the estimated demand model. This approach
leads to implausibly high prices, as manufacturers are able to charge very high markups in the face
of inelastic demand.

32Note that this last channel is also impacted by coupons: insurer responses that threaten to increase
cost sharing are weakened by the existence of coupons. Because we do not include this insurer
response in our model, our simulations may understate the impacts of coupons.
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Consumer Cost-Sharing Insurer cost-sharing requirements are an important in-

put into the pricing equilibrium: consumer price sensitivity constrains equilibrium

prices only if consumers pay some portion of the price. Cost-sharing in our setting

takes the form of a percentage coinsurance rate or a fixed copay. If the consumer pays

a coinsurance rate ρi, she pays a fixed percentage of the list price, so the out-of-pocket

price is pOOPijkt = ρipjt/(1 − rjt) where pjt is the net-of-rebate price and rjt is the re-

bate percentage. Other consumers pay a fixed copay, which we assume is invariant to

changes in list prices. As previously noted, we assume that consumers who use coupons

have zero out-of-pocket costs. Details on how we construct out-of-pocket prices from

our data are provided in Appendix Section B.6.

The impact of a change in the net-of-rebate price on the out-of-pocket price paid

by the consumer,
∂pOOP

ijt

∂pjt
is therefore given by:

∂pOOPijkt

∂pjt
=


ρi/(1− rjt) if i ’s plan uses coinsurance rate ρi, no coupon

0 if j has a coupon and i uses coupons

0 if i ’s plan uses copays.

(5)

Only the minority of enrollees who face a coinsurance rate actually pay a portion of

the negotiated price. Coupon introduction reduces this proportion of enrollees still

further, leading to upward pressure on prices.

Manufacturer-Insurer Price Negotiations We assume that the net-of-rebate

price of every drug, pjt, is determined via simultaneous bilateral Nash bargaining be-

tween the manufacturer and insurer. Given our limited data, we simplify by assuming

that a single insurer covers the entire market through an array of plans, and that all

branded MS drugs are included on its formulary in equilibrium. A single price for a

particular drug applies jointly to both commercial and Medicare Advantage markets.

We make the common simplifying assumption (e.g., Capps et al. (2003), Gowrisankaran

et al. (2015)) that our single insurer maximizes consumer surplus (net of consumer cost-

sharing for drugs) less total pharmaceutical costs. The insurer’s objective function is

then:

V (Jt, pt) = CS(Jt, pt)− TC(Jt, pt) (6)

where Jt is the complete set of MS drugs available to enrollees from all manufacturers
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at time t, pt is the vector of their net-of-rebate prices, CS(·) denotes consumer surplus

and TC(·) denotes total drug costs.33 Both consumer surplus and total costs depend

critically on the predicted drug choices of both commercial and Medicare Advantage

enrollees as a function of prices and coupon availability, obtained from the demand

model. Details are provided in Appendix Section D.2.

The manufacturer’s objective function is its profit:

πj,t(pj,t) =
∑
k

∑
i∈Ik,t

sijkt
(
pjt − cjt

)
− λcouponj,t

∑
i∈Icom,t

scijtp
OOP
ijt (7)

where Ik,t denotes the enrolled population for segment k in period t, cjt is the manu-

facturer’s marginal production cost for drug j in period t, and the last term reflects the

additional cost to the manufacturer (of a couponed drug) from paying the out-of-pocket

costs of commercially insured individuals who redeem coupons.

The negotiated price for product j maximizes the Nash product:

pj,t = arg max
p

(
πj,t(p)

)η(
V (Jt, p)− V (Jt \ j, p)

)1−η
(8)

where η is the Nash bargaining parameter (assumed constant across all manufacturers).

Predicted price without coupons. Consider first the case where no coupons are

offered. Taking logs and setting the first order condition to zero yields:

pnocouponjt = cjt +
s̄jt

−
(
[1−η
η

] V
′(Jt,pt)

∆V (Jt,pt)
s̄jt +

¯∂sjt
∂pjt

) (9)

where V ′(Jt, pt) = ∂V (Jt,pt)
∂pjt

, ∆V (Jt, pt) = V (Jt, pt) − V (Jt \ j, pt), and s̄jt indicates a

weighted sum of sijt across Medicare Advantage and commercially insured enrollees.34

The model nests the Nash Bertrand model of manufacturers setting prices (the case

with η = 1). The solution differs from Nash Bertrand only through the denominator

of the second (markup) term, which now accounts for the insurer’s gains from trade as

well as those of the manufacturer. While the impact of a change in price on consumer

33Our measure of consumer surplus accounts for consumer out-of-pocket payments but does not include
premiums paid. We account for the disutility from high premiums by including insurer total costs
in the objective function.

34That is: s̄jt ≡
∑
i∈ĪMA,t

sMA
ijt +

∑
i∈Īcom,t

(λscijt + (1 − λ)sncijt) and ¯dslt
dpjt

≡
∑
i∈ĪMA,t

∂sMA
ilt

∂pjt
+ (1 −

λ)
∑
i∈Īcom,t

∂snc
ilt

∂pjt
+ λ(1− couponjt)

∑
i∈Icom,t

∂scilt
∂pjt

.
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out-of-pocket prices—and hence consumer choices—may be small, the insurer’s costs

increase almost one-for-one with prices. This is reflected in the much lower equilibrium

markups under this model than under Nash Bertrand. The term ∆V (Jt, pt) is an

important input into prices: it is the change in consumer surplus when drug j is

added, less the change in insurer costs. It measures the net gain to the insurer from

including the drug in its formulary: all else equal, the higher this term, the higher the

price.

Unpacking the markup term further, we see that three bargaining-related factors

have important effects on price. First, if the drug is particularly attractive to con-

sumers, ∆CS(Jt, pt) will be high, implying a sizeable loss to the insurer from excluding

the drug and a relatively high price. Second, if excluding a drug prompts enrollees to

substitute to more expensive alternatives, then ∆TC(Jt, pt) will be negative, and the

equilibrium price will be higher. This “reinforcement effect” implies that the prices of

substitute drugs tend to move together in equilibrium; see Ho and Lee (2017). Finally,

there is an effect due to coinsurance. As in Gowrisankaran et al. (2015), insurers can

use coinsurance rates to steer consumers to low-priced products; this may reduce the

downwards pressure placed on prices by the insurer, particularly for relatively costly

drugs.

Prices when coupons are offered. The first order condition defining the net-of-

rebate price is different when coupons are offered:

pcouponjt = cjt+w(.)λcouponj,t
∑

i∈Icom,t

scijtp
OOP
ijt +

s̄jt − λcouponj,t
∑

i∈Icom,t
scijt

∂pOOP
ijt

∂pjt

−
(
[1−η
η

] V ′(Jt,p)
∆V (Jt,pj,t)

s̄jt +
¯∂sjt
∂pjt

) (10)

Comparing the two equations allows us to unpack the predicted change in price in

response to coupon introduction. There are two new terms that reflect the manufac-

turer’s cost of offering a coupon. First, a portion of this cost is passed through to

prices (the second term of the equation): the fraction passed through, denoted w(.),

is a function of model primitives including the Nash bargaining weights.35 Second,

the manufacturer now accounts for the fact that an increase in list price generates

an increased out-of-pocket price for consumers whose plans charge a coinsurance rate,

inflating the manufacturer’s own costs when consumers redeem coupons. This is the

35The weight is defined as: w(.) ≡ 1/[s̄jt + η
1−η

∆V (Jt,pj,t)
V ′(Jt,p)

∂s̄jt
∂pjt

].
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second part of the numerator in the markup term; it exerts a new downward pressure

on price.

Now consider the elements of the markup that are common to the two equations.

They are functions of variables that change in response to coupon introduction. First,

coupon availability increases the product’s market share s̄jt and reduces
∂s̄jt
∂pjt

. These two

effects have a positive impact on manufacturer markups and they may dominate the

others: the larger the consumer response to the coupon, the larger the price increase.

The first term in the markup denominator will also change. ∆CS increases for the

newly-couponed drug, generating a further upwards pressure on price. Offsetting this,

coupons reduce the effectiveness of steering through coinsurance, implying a greater

cost to the insurer of offering relatively high-priced drugs and generating increased

downwards pressure on price. Finally, the change in the reinforcement effect, operating

through ∆TC, is difficult to sign because it is affected by changes in demand in response

to coupons and is also a function of the equilibrium prices of all drugs.

Overall, the net effect of coupons on negotiated prices is an empirical question.

As detailed in Section 5, our simulations predict that a coupon ban would reduce the

prices of all drugs.

4 Demand Estimation

4.1 Claims Data

We use claims data from the Health Care Cost Institute (HCCI) to derive individual-

level drug choices from 2009 through 2017. We focus on the market for multiple sclerosis

(MS) drugs. In particular, we restrict to choices over disease-modifying therapies

(DMTs), believed by experts to be the best strategy currently available for slowing

the natural progression of MS.36 We focus on this set of drugs because the choice set is

well-defined, there is a good deal of coupon variation, and there are no generic versions

of most of these drugs during our sample period.37 Generic drugs can have significant

36Disease-Modifying Therapies for MS, National Multiple Sclerosis Society, 2020.
http://www.nationalmssociety.org/NationalMSSociety/media/MSNationalFiles/Brochures/Brochure-
The-MS-Disease-Modifying-Medications.pdf

37Another benefit of studying MS drugs is that, unlike categories such as cancer drugs and antide-
pressants, they are not a “protected class” for Medicare Part D prescription drug plans. Medicare
Advantage insurers are required to cover all drugs within a protected class; this would complicate our
model of price negotiations because Medicare Advantage plans would not have the option of drop-
ping a particular drug from the formulary. Further, DMTs for MS are costly specialty medications;
the DMTs that we study account for 0.058% of all prescriptions but 4.6% of the total prescription
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impacts on market shares and prices of therapeutic substitutes, so the limited role of

generics in this segment during our study period helps us to isolate coupon effects.38

Over the course of our study period, eleven DMTs are offered.39 Of these, six are

introduced midway through the sample period (these are Aubagio, Copaxone 40mg,

Glatopa, Plegridy, Tecfidera, and Gilenya). See Appendix Table B2 for more details

on these drugs. All of these products are branded drugs without generic equivalents,

except for Copaxone 20mg, for which a generic (Glatopa) was approved later in our

sample.40

Two of the DMTs introduce a coupon during our sample period (Copaxone 20mg

and Gilenya), five are never couponed during our sample period, and the remaining

drugs are always observed with a coupon.41 More modern drugs (approved after 2011)

are almost invariably couponed at introduction. Older drugs (approved in the 1990s

or early 2000s) tend to introduce coupons around 2010 or not at all. Copaxone 20mg

and Gilenya are somewhat older drugs42 that chose to introduce coupons.

Inferring Out-of-Pocket Prices The prices that enter our demand model are the

out-of-pocket prices paid by patients, which are usually only a small fraction of list

prices. These out-of-pocket prices are not directly observed in the claims data except

for the enrollee’s actual spending on their chosen drug. In addition, we lack fields

containing information on plan copays and/or coinsurance rates, and plan identifiers

are not included, so we cannot aggregate observations within a specific plan to infer

the out-of-pocket price of other drugs in the enrollee’s choice set. To address this issue,

we impute cost-sharing using each patient’s annual history of claims data for all drugs,

drug costs in the HCCI data. (These statistics exclude Tysabri, which is usually reimbursed via
medical insurance, rather than prescription drug insurance.)

38The only generic drug in our sample is Glatopa, which is the generic version of Copaxone 20mg.
39These are Aubagio, Avonex, Betaseron, Copaxone 20mg, Copaxone 40mg, Gilenya, Glatopa, Ple-

gridy, Rebif, Tecfidera, and Tysabri. Of these, Avonex, Plegridy, Rebif, Betaseron, and Tysabri are
biologic drugs delivered via infusion (Tysabri) or injection (all others); Copaxone 20mg, Copaxone
40mg, and Glatopa are formulations of Glatiramer Acetate (a small-molecule drug delivered via
injection); and Gilenya, Aubagio, and Tecfidera are small-molecule drugs delivered orally

40Glatopa was introduced in April 16, 2015. Its list price is only around 20% percent lower than
its branded equivalent (Copaxone 20mg), whose price increased significantly after generic entry.
Glatopa is only 5% cheaper than Copaxone 40mg during our study period, and its share is minimal
(less than 1%).

41The never-couponed drugs are Avonex, Plegridy, Betaseron, Tysabri, and Glatopa. The always-
couponed drugs are Aubagio, Copaxone 40mg, Rebif, Tecfidera.

42Copaxone was first approved by the FDA in January 1996, but Gilenya is a newer oral medication
that was first approved in September 2010.
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assigning the same fixed copays to all MS drugs when fixed copays are relevant, and

applying the same coinsurance rate to the average allowed amount for each drug-year

when an individual appears to face coinsurance.

A small fraction of individuals are classified to either pay no cost sharing (i.e.,

to have reached their out-of-pocket maxima) or full cost sharing (to have not yet hit

their deductible). Approximately 76 percent of the commercially insured sample and

27 percent of the Medicare Advantage sample face fixed co-pays. Around 16 percent

of the commercially insured and 68 percent of the Medicare Advantage sample have

coinsurance when making their first MS drug purchase. See Appendix Section B.6 and

Appendix Table B3 for further details.

[Table 3 Here]

Estimation Sample Our estimation sample consists of patients who have filled a

prescription for any MS drug in our choice set. Because we observe that individuals’

DMT choices are very persistent over time, we limit the data to choices that are likely to

be active choices, defined as cases where we observe that a patient is enrolled in a plan

for at least 180 days before filling their first multiple sclerosis prescription. Limiting the

sample to these “active choices” enables us to abstract away from dynamic concerns

such as patient inertia or learning.43 To mitigate concerns about unobserved differences

between individuals who are commercially insured or in Medicare, we limit the sample

to the age groups immediately before Medicare eligibility (ages 55-64) and immediately

after Medicare eligibility (ages 65-74). We are unable to condition on finer age groups

(e.g. age 64 vs. 65) because our version of the HCCI dataset only includes 10-year

age bins. Moreover, the population prevalence of multiple sclerosis is low, especially

among the older population, so conditioning on finer age groups would substantially

reduce statistical power.

Table 3 shows descriptive statistics for the estimation sample. From 2009 to 2017,

average allowed amounts (our measure of list prices) increased substantially for all

drugs in the choice set, from about $3,000 in 2009-2011 to about $6,000 in 2015-

2017. Out-of-pocket costs also approximately doubled over the same period, averaging

43Because MS typically onsets at earlier ages, many individuals in our sample may have prior expe-
rience – which we are unable to observe – with a drug in the choice set. However, recurrence of
symptoms can prompt an active choice and a potential switch to a different drug. Source: Interview
with Joshua P. Klein, MD, PhD, Chief, Division of Hospital Neurology, Brigham and Women’s
Hospital, March 2019.
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about $250 per prescription for commercially insured patients and $550 for Medicare

Advantage enrollees in 2015-2017.

4.2 Demand Estimation Results

We estimate the parameters of equations (2) and (3) jointly by maximum likelihood,

setting λ to 0.75 based on reported estimates of coupon utilization for MS drugs

(Starner et al., 2014). Our primary identifying assumption for the effect of coupons

on demand is that individuals just above and below the age 65 threshold for Medicare

eligibility have preferences over MS drugs that evolve similarly over time in the absence

of coupons.

We estimate three specifications, the results of which are shown in Table 4. Our

main specification (Column 3 of Table 4) includes drug-by-year fixed effects, which

allow preferences for each drug to vary flexibly over time, and drug-segment fixed

effects, which allow commercially insured patients to systematically prefer different

drugs than Medicare patients. Thus, identifying variation in our main specification

primarily comes from drugs that we can observe before and after they introduce a

coupon, specifically Copaxone 20mg and Gilenya. Changes in the choice set when new

drugs are introduced, with or without coupons, also generate useful variation. Our

second demand specification (Column 2 of Table 4) omits drug-segment fixed effects,

allowing identifying variation for the estimated coupon effect to come from comparisons

of always- vs. never-couponed drugs across segments, since fixed differences in demand

across segments are no longer netted out. Medicare enrollees cannot redeem coupons,

so greater attractiveness of a drug for commercial enrollees just below the Medicare age

threshold would—in this specification—imply a positive effect of coupons on demand.

Our last specification (Column 1 of Table 4) omits both drug-segment fixed effects and

the Xijt terms, which are the drug time-since-approval bins and their interactions with

gender.

The drug-year and drug-segment fixed effects in our main specification also absorb

demand shocks that could confound our estimates of the price coefficient. We estimate

a price coefficient using variation in out-of-pocket prices across consumers: enrollees

with a relatively high coinsurance rate face greater differences in out-of-pocket prices

across products than do enrollees with a low coinsurance rate. That is, the identify-

ing price variation comes from coinsurance variation across plans, which we assume to

be exogenous.44 As noted above, many individuals do not pay coinsurance rates but

44Recall that the menu of insurance plans offered by each employer often uses a single PBM, addressing
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instead pay a fixed copay amount per prescription. Because copays vary across indi-

viduals but not across drugs for a given individual, copay variation does not contribute

to estimation of the price coefficients. However, individuals with fixed copays provide

useful variation to estimate other model parameters.45

[Table 4 Here]

Across specifications, we find that demand for MS drugs is highly inelastic with

respect to out-of-pocket price. The price sensitivity of Medicare enrollees is not signifi-

cantly different from zero. Recall that commercially insured enrollees who use coupons

do not face cost sharing, and are thus assumed to be unresponsive to price. The price

sensitivity of commercially insured enrollees who do not use coupons has the expected

sign and is highly significant (p = 0.001 for the Price X Commercial interaction term),

illustrating that coupons reduce the price elasticity of demand.

However, even commercially insured enrollees who do not use coupons are relatively

price inelastic. In our preferred specification, a $100 increase in a drug’s out-of-pocket

price leads to only a 4.2% drop in market share on average.46 The overall own-price

elasticity for commercially insured individuals is -0.104. This is within the range of

other estimates in the literature, albeit at the low end. Using data on retirees in the

California Public Employees Retirement System (CalPERS), Chandra et al. (2010)

estimate arc-elasticities for prescription drug consumption of -0.03 to -0.15. Using

data on Medicare Part D enrollees, Abaluck et al. (2018) and Dalton et al. (2020)

estimate price elasticities of -0.13 and -0.38, respectively.47 Einav et al. (2018) show

that elasticity varies across drugs: they find a mean elasticity of -0.24, with a standard

deviation is 0.49. Given their sample consists of the most commonly purchased drugs,

for which substitutes (including generics) are more readily available, it is unsurprising

that elasticity for MS drugs would be on the low side.

the potential concern that enrollees select plans with low coinsurance for their preferred drug.
Medicare enrollees have a choice of prescription drug plans, but a prior literature documents low
switching rates across plans that is largely due to consumer inattention (Ho et al., 2017).

45Copays may vary between preferred and non-preferred drugs in a given plan, but our data do not
allow us to observe these within-plan copay differences for MS drugs.

46We compute this by, for each drug, increasing out-of-pocket prices by $100 and using the estimated
demand equation to predict how the share of that drug changes for commercially insured individuals
who do not use coupons. Then, we take the average of these effects across all drugs in the choice
set. The effect of a $100 out-of-pocket price increase is similar across drugs, ranging from -3.2% to
-4.8% with a standard deviation of 0.5%.

47Dalton et al. (2020) report an elasticity of -0.54 in their estimation sample, and an elasticity of -0.38
in a nationally representative sample.
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The estimated effect of coupon introduction on overall demand (common to Medi-

care and commercial segments, Row 3 of Table 4) is not statistically significant in

any specification. In our preferred specification, the point estimate is -.263 and noisy

(p = 0.284). This estimate is likely to be downward-biased, however, as coupons may

be introduced to stem a decrease in demand or in anticipation of a competitive threat.

For this reason, we do not rely on the time-series impact of coupons on demand to

estimate our coupon effect; rather, we focus on the differential effect for commercial

and Medicare enrollees.48

The positive estimated coefficient on Coupon X Commercial indicates that coupon

introduction is associated with an increase in demand for the commercial segment,

consistent with a causal advertising effect of coupons that goes beyond the price effect of

coupons on the demand elasticity. This point estimate is large and similar in magnitude

whether we include drug-segment fixed effects (Column 1) or not (Columns 2-3). When

drug-segment fixed effects are omitted, the estimated advertising effect coefficient is

highly significant at p < 0.001. The estimate is noisier when drug-segment fixed effects

are included and identification comes from the only two drugs that introduce a coupon

midway through the sample period (p = .073). The estimated coefficient on Coupon

X Commercial is quite large; it implies that removing a drug’s coupon causes a 30.6%

decrease in the market share of that drug, ceteris paribus.49 The effect of removing all

coupons at once results in smaller decreases in shares for couponed drugs, on the order

of 9.7%.

As previously noted, these estimates are subject to several caveats. Coinsurance

rates and copays are imperfectly observed, and we do not know which consumers choose

to redeem coupons nor their exact redemption values. Our measure of consumer out-

of-pocket prices is based on various assumptions, including that no branded MS drug

is excluded from consumers’ formularies and that all branded MS drugs are placed

on the same formulary tier for a given consumer. However, fixed effects do account

for differences in formulary exclusion across drugs and over time, as well as any time-

48Because we interpret this coefficient to reflect the timing of coupon introductions rather than a
causal effect of coupon introduction, we will hold this effect constant when simulating the removal
of coupons in Section 5.

49We compute this comparative static using our main specification by removing the coupon for each
ever-couponed drug in the sample one-by-one, observing how this affects the market share of the
drug in question, and then taking the average of these effects across all ever-couponed drugs. The
effect of coupon removal is similar across drugs, with effects ranging from -28.5% to -33.2% and a
standard deviation of 2.0%.
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invariant drug-specific differences across segments.

5 Counterfactual Simulations

We use the demand estimates from Section 4 as an input to simulations that quantify

the potential price effects of coupon introduction. We follow the framework of the

model outlined in Section 3. As noted there, since coupons reduce consumer sensitivity

to out-of-pocket prices, they generate upward pressure on list prices for couponed

drugs. However, there are offsetting effects due to bargaining, and the overall effects

on equilibrium prices are an empirical question. The estimated demand model allows us

to quantify these effects and the resulting changes in consumer out-of-pocket spending

and premiums.

To generate counterfactuals, we simulate consumer demand following Equations (2)

and (3) with a coupon user share for commercial enrollees of λ = 0.75, inferred from

the literature. We estimate demand coefficients via maximum likelihood conditional

on this choice of λ, as described in Section 4 and further in Appendix Section D.1.

Given this framework for consumer demand, we simulate net prices by solving the

system of Nash-in-Nash first order conditions introduced in Section 3.3. To compute

out-of-pocket prices, our simulations assume a constant rebate percentage r = 0.15

across all drugs and both segments, which is based on unpublished data from Kakani

et al. (2020).We then compute insurer drug costs, premiums, and cost-sharing following

Section 3.2.

In the following subsections, we report predictions for the effect of coupons on net

prices and patients’ out-of-pocket costs. We also provide predictions for the impact

of coupons on insurer costs and hence (under reasonable assumptions) on average

premiums. In Section 5.3 and Appendix Section E.2, we explore how our predictions

vary with changes in the rebate magnitude and in the proportion λ of consumers who

use coupons when available.

5.1 Impact of Coupons on Prices and Market Shares

Table 5 shows the predicted impact of coupons on prices and market shares. We

calibrate η = 0.69 to provide a reasonable match of observed prices (Column 2) to

their predicted values in the presence of coupons (Column 4). Appendix E.1 outlines

our method for calibrating this parameter; note that values closer to 1 imply a greater

share of surplus accrues to the pharmaceutical manufacturer. We assume the marginal

production cost cj,t is zero for all drugs and that each manufacturer produces a single
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product. Our simulation sample is restricted to the time period where all drugs in our

choice set are available, April 2015 through December 2017. Baseline simulated shares

(Column 5) are close to the observed shares (Column 3). These baseline simulations

include the observed set of coupons, shown in Column 1.

[Table 5 Here]

Columns 7-10 of the table provide the predicted equilibrium net prices and market

shares of MS drugs in the scenario where all coupons are banned. The market shares

of previously couponed drugs fall by 6-9% as consumers substitute to never-couponed

drugs, whose shares increase by about 25-37% (these increases are larger due to the

smaller baseline shares of non-couponed drugs). Prices decline for all drugs, with

previously couponed drugs typically experiencing larger declines in price when coupons

are banned. The share-weighted average price reduction is 7.4%.50

5.2 Impact on Premiums and Out-of-Pocket Costs

Table 6 summarizes the predicted impact of the coupon ban on insurer costs and

consumer out-of-pocket prices. Columns 5-7 report effects on out-of-pocket costs for

different types of consumers, categorized by segment, coupon use, type of cost-sharing,

and drug choice.51 Coupon removal would have sizeable distributional implications.

Note first that out-of-pocket costs are higher on average for individuals in Medicare

Advantage, whose plans often use coinsurance rather than copays. Medicare Advan-

tage enrollees are predicted to experience a decrease in their out-of-pocket costs when

coupons are banned as a result of lower list prices and hence lower coinsurance pay-

ments.52 In contrast, individuals with commercial insurance have lower initial out-of-

pocket costs but the coupon ban increases these costs on average, as individuals who

previously redeemed coupons must now pay their full copay or coinsurance amount.

50Removing coupons for some drugs leads to reductions in all drugs’ prices because of the substitution
effects already noted. If a drug’s price is higher than those of its substitutes, the insurer’s total cost
decreases when that drug is dropped, and this puts downwards pressure on the drug’s equilibrium
markup. This reinforcement effect means that prices of substitute drugs tend to move together (Ho
and Lee (2017)).

51We only model consumer cost sharing for the first MS drug prescription filled, and we do not
account for out-of-pocket maxima. Hence, our results may overstate the impact of a coupon ban on
out-of-pocket payments, as some consumers will reach their out-of-pocket maximum in subsequent
prescriptions.

52Note that Medicare Advantage enrollees who face copays in their prescription drug coverage may
pay coinsurance rates in their medical insurance, which is utilized for the infused drug, Tysabri.
This leads to small decreases in out-of-pocket costs for individuals who are listed as paying copays.
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The increases are especially large for commercially insured individuals who pay coinsur-

ance rather than copays. Appendix Figure E7 presents the distribution of the change

in cost-sharing for each segment. Among commercially insured enrollees, those who

do not use coupons and those who take non-couponed drugs experience reductions in

their out-of-pocket expenses when coupons are removed.

We also consider the impact of coupons on premiums. As discussed above, a full

premium-setting model would require a framework for consumer plan choice as an input

into insurers’ choice of premiums to maximize their profits. Instead, we simplify by

assuming that the insurer markup and non-pharmaceutical costs in the full premium

expression from Section 3 (equation (4)) are held fixed when coupons are introduced

and hence not relevant for our analysis; we normalize them to zero and consider the

component of premiums that covers the insurer’s drug costs. For MS drugs, this

component is simply the average of TCt across enrollees. Our predictions for the effect

of coupons on insurer costs (and hence premiums) are set out in Columns 2-4 of Table

6. Insurer costs decline substantially in both commercial and Medicare Advantage

markets when coupons are removed. The average cost reduction is approximately $385

per enrollee per month, or 7.6% of total costs. The decline is primarily caused by lower

list prices and applies to all subgroups of individuals regardless of coupon use or type

of cost-sharing. The shift in market share towards never-couponed drugs, whose prices

are lower than couponed drugs, also contributes to the reduction in insurer costs and

hence premiums.

[Table 6 Here]

Overall, under our assumptions, we find that banning coupons leads to premium

reductions from reduced insurer costs that are nearly 4 times as large as the increases in

out-of-pocket payments. A coupon ban therefore has the potential to reduce costs for all

enrollees, and if an appropriate redistributional mechanism can designed, may be both

politically feasible and Pareto-optimal, at least in a static sense (i.e. not accounting for

any effects of reduced manufacturer profits on pharmaceutical innovation, profits, and

social surplus). We estimate net savings from a coupon ban would amount to $287 per

prescription. Given annual net-of-rebate U.S. spending on multiple sclerosis drugs of

around $15.9b, this translates into savings of about $950 million per year from banning

coupons on this category of drugs alone.53

53We estimate net-of-rebate spending as 85 percent of total invoiced spending on MS drugs in 2017,
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5.3 Robustness to Modeling Assumptions

To explore the sensitivity of our results to our modeling assumptions, we conduct

analyses that vary the share of coupon users (λ), including versions where consumers

with higher out-of-pocket expenses are more likely to use coupons. We also assess the

effect of varying the fixed rebate percentage and evaluate the implications of an upward

rebate adjustment that could occur in response to a coupon ban. Lastly, we consider

the impact of assuming that the advertising effect of coupons has a greater impact on

users than non-users (rather than an equal effect, as in the baseline). Our results are

qualitatively unchanged across these sensitivity analyses, as we summarize below. See

Appendix Section E.2 for further details.

In our baseline simulation, we assumed a λ = 0.75 share of commercially insured

individuals use coupons when they are available. This assumption affects both our

demand estimates and simulation results. We assess the robustness of our results

to the alternative assumptions of λ = 0.60 and λ = 0.90. Because λ may not be

fixed in the population, we also evaluate two versions where λ is heterogeneous and

correlated with out-of-pocket expenses. This matches the empirical observation that

the likelihood of coupon use increases with the magnitude of pre-coupon cost sharing

(see, for example, Brouwer et al. (2021)). In version 1, we assume that λ = 0.7 for

consumers whose average OOP amount is less than $150 and 0.9 for consumers whose

OOP amount exceeds $150. In version 2, we assume that λ = 0.5 for OOP amounts

below $75, 0.7 between $75 and $150, and 0.9 above $150. These values allow us to

introduce heterogeneity in λ while maintaining an average λ of similar magnitude to

our baseline assumption of λ = 0.75, given the observed distribution of out-of-pocket

expenses we observe in the data.

Our demand estimates are similar across all specifications for λ, although the esti-

mated price elasticity for commercial individuals who do not use coupons is larger when

λ is smaller. A larger demand elasticity corresponds to a larger coupon price effect,

which is necessary to fit the data when the assumed share of coupon users is smaller.

The average simulated effect of a coupon ban on prices is therefore slightly larger when

λ = 0.60 (-7.7%) and slightly smaller when λ = 0.90 (-6.6%). The versions where λ

is correlated with OOP expenses are similar to the latter case, with price effects of

-6.6% and -6.5%. Moreover, a larger value of η is required to match baseline simulated

which was $18.7 billion. Source: Medicines Use and Spending in the U.S. A Review of 2016 and
Outlook to 2021. Report by the Quintiles, IMS Institute. May 2017
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prices to observed prices, which also tends to increase the price effect of coupons, as

the
∂sjt
∂pjt

becomes a greater determinant of the markup in Equation 10. Reducing λ also

reduces the number of individuals who use coupons, which exerts an opposing effect

that tends to reduce the price effect of coupons. But this effect is outweighed by the

higher estimated price elasticity. The opposite situation applies when λ is higher (or

heterogeneous): η and the demand elasticity are both smaller, and the resulting price

effect of coupons is smaller in magnitude.

Changing λ also affects the distributional effects of a coupon ban. When λ = 0.60,

the increase in out-of-pocket prices is smaller and cost savings are larger. In this

case, savings outweigh out-of-pocket increases by 5.5 to 1. When λ = 0.90, nearly

all consumers use coupons, so out-of-pocket prices increase by a larger amount. That

said, savings still outweigh out-of-pocket increases by nearly 3 to 1. Results are similar

when λ is heterogeneous, with a ratio of savings to out-of-pocket increases of 2.8 to 1.

Assuming a larger fixed rebate r increases the price effects of coupons, but this effect

is small. Rebate shares of 0.10, 0.15 (our baseline results), 0.2, and 0.25 correspond

to average coupon price effects of -7.2%, -7.4%, -7.6%, and -7.7%. For a fixed net

price, higher rebates imply higher list prices, greater cost sharing, and thus increased

importance of coupons.

Our baseline simulations assume rebates remain fixed when coupons are banned.

However, in fact this change may lead to increased rebates as insurers’ ability to use

tier placement as a negotiation device increases (Ho and Lee, 2022). As mentioned

previously, we lack the data on formulary placement and rebates necessary to simulate

bargaining over both rebates and prices. That said, we can test robustness to the

existence of a rebate response by assuming that rebates increase after coupons are

banned. We simulate the impact of increasing the rebate rate from 15% to 20% at the

same time as (i.e., in response to) a coupon ban. This exercise yields a similar average

change in net price of -7.6%. Because this price reduction is partially due to increased

rebates, out-of-pocket prices increase more when coupons are banned. The ratio of

savings to out-of-pocket price increases is 3.6 to 1, compared to a baseline of about 4

to 1.

Lastly, we tested the sensitivity of our results to the assumption in our demand

model that the advertising effect of coupons affects all commercially insured enrollees

equally, regardless of whether they use coupons. We re-estimated demand under al-

ternative assumptions where the advertising effect is 1.5x larger for coupon users, 2x
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larger for coupon users, and where the advertising effect only affects coupon users.

As the advertising effect becomes more restricted to coupon users, its magnitude (as

estimated by maximum likelihood) increases, from 0.373 when both coupon users and

non-users are equally affected to 0.693 when only coupon users are affected. The sim-

ulated average price effect of coupons also increases, from -7.4% to -8.7% when only

coupon users are affected.

6 Discussion and Conclusions

As branded drug prices continue to rise and new drugs are launched at ever higher

prices, consumers and policymakers are intensifying their opposition to the status quo.

However, current market prices reflect, among other things, the willingness of patients

and insurers to pay the going rate. Lowering prices would require greater elasticity of

downstream demand, more bargaining leverage on the part of insurers/PBMs, greater

supply-side competition, regulation, or some combination of all four.

In this paper, we consider the role of manufacturer-sponsored coupons in contribut-

ing to higher spending through the channels of price as well as quantity. We pursue

two complementary approaches. Our difference-in-differences analysis quantifies the

short-term impact of coupon introduction by comparing responses of the commercially

insured and Medicare-Advantage populations. Using a novel proprietary dataset with

monthly data on drug quantities and net-of-rebate prices by enrollee segment, and

focusing on drugs without bioequivalent generics, we find new coupon introductions

between 2014 and 2016 led to an average increase in drug volume (as measured by

days supplied) of more than 20 percent within 12 months post-coupon. We do not find

any differential change in net-of-rebate prices, although theoretically coupons should

enable manufacturers to offer lower rebates, ceteris paribus, for commercially-insured

enrollees (or, similarly, to raise list prices and to offer higher rebates for the Medicare

Advantage segment). Unfortunately, the post-coupon period of analysis is short, which

may explain why we do not observe a differential effect on prices.

We supplement the difference-in-differences analysis by developing and estimating

a model of drug choice, characterizing the bargaining between insurers and pharma-

ceutical manufacturers, and using the results of the drug choice model together with

estimated rebate information to calibrate the bargaining model. We use data on “first

choices” of multiple sclerosis drugs by individuals in the HCCI claims data, over the

period 2009 through 2017. Two of the drugs experience coupon introductions during
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our study period. The estimation does not allow for a change in market size, an as-

sumption that is necessary given the data available to us and likely less restrictive for

this condition than for many others given the medical benefit and limited availability

of substitute products. Our simulations indicate that prices of MS drugs are about 8

percent higher than they would be if coupons were banned. A coupon ban would raise

out-of-pocket spending for MS patients who currently use coupons, but we estimate

the savings for insurers would be nearly 4 times as large. Net savings for MS drugs

alone would amount to nearly a billion dollars annually. The estimates are robust to

a wide set of changes in assumptions, ranging from the rate of coupon utilization to

rebate levels as well as changes in these levels in the wake of a coupon ban.

A coupon ban would restore the ability of downstream insurers to use cost-sharing to

steer patients toward preferred therapies, and in so doing, provide insurers with leverage

to negotiate lower drug prices. Our findings imply that utilization of couponed drugs,

and prices of both couponed and non-couponed drugs, would decline. However, the

distributional effects of such a ban – which we assume would apply uniformly to branded

drugs – are significant. Many patients who currently utilize coupons would face higher

cost-sharing for their medications. To mitigate the distributional effects of a coupon

ban, a ban could be accompanied by a mechanism to transfer savings from removing

coupons to consumers who would be made worse off. This could be achieved via fixed

lump-sum contributions to the health savings accounts of enrollees with conditions

treated by costly drugs, or through targeted premium reductions. The objective would

be to preserve price incentives to utilize cost-effective therapies, while nevertheless

minimizing the financial burden for patients with high drug costs. Notably, our results

suggest that popular policy proposals such as capping cost-sharing, or requiring plans

to shift from coinsurance to fixed (and low) copays are likely to lead to drug price

inflation. These reforms would likely exacerbate the underlying problem of high prices

while addressing a symptom (high patient cost-sharing).

Drug copay coupons are but one form of manufacturer-backed assistance to alleviate

OOP costs. There are a number of additional programs, ranging from free samples to

discount cards, that facilitate both price discrimination as well as patient access. Addi-

tional research on all of these programs would be helpful in developing comprehensive

solutions to enable downstream drug demand to play a role in disciplining upstream

prices.
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Exhibits

Figure 1: Share of branded drug spending with a copay coupon

.75

.8

.85

.9

.95

Co
up

on
ed

 s
pe

nd
in

g 
sh

ar
e

2014m1 2015m1 2016m1 2017m1

Commercial Medicare Medicare Part D

Notes: Figure shows the share of total spending on branded drugs accounted for by drugs
with a copay coupon. Data are shown separately for commercial and Medicare segments in
the monthly PBM data, as well as for annual Medicare Part D spending. Part D spending
is derived from authors calculations using CMS Part D Prescriber data:
Centers for Medicare and Medicaid Services. 2014-2017. “Medicare Provider Utilization and
Payment Data: Part D Prescriber.” https://www.cms.gov/Research-Statistics-Data-and-
Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Part-D-Prescriber
(accessed February 20, 2019).
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Table 1: Descriptive Statistics (Drug-Month Sample)

Always Never Switch Switch
(all) (estimation sample)

(1) (2) (3) (4)
A. Statistics by Category
Number of drugs 263 35 68 33
% commercial spending 83.38 1.13 9.77 5.72
% Medicare spending 82.64 1.49 8.97 6.90
Top MCI (number of drugs) Diabetes (25) Diabetes (5) Cancer (7) Cancer (7)
Second MCI (number of drugs) HIV (22) Asthma (3) Diabetes (6) Ophthalmic (4)
Third MCI (number of drugs) Asthma (19) HBP/Heart Ophthalmic (5) Blood Cell

Disease (2) Deficiency (2)
N (drug-month observations) 19,212 2,402 4,972 2,700
B. Statistics by Drug
Average list price (2014$) 1,672 369 1,788 2,585

(3,841) (367) (2,873) (3,482)
Monthly average days supplied 66,012 8,657 15,829 13,284

(183,093) (16,779) (28,243) (20,352)
Average CAGR in price (%) 7.15 9.02 6.80 10.18

(10.02) (10.50) (10.67) (10.92)
Average CAGR in days supplied (%) 28.87 14.00 100.74 24.01

(71.63) (58.27) (162.21) (62.78)

Notes: Panel A shows statistics at the drug category level, for drugs that are always couponed
in our sample (Column 1), never couponed in our sample (Column 2), introduce a coupon
(switchers) during our study period (Column 3), and introduce a coupon during our study
period and are observed for 9 months before and after the quarter of coupon introduction
(i.e., our estimation sample, in Column 4). Panel B shows drug-level statistics and standard
deviations (in parentheses) for the set of drugs in each category. For both panels, the sample
is limited to branded drugs utilized in both commercial and Medicare populations and with
no generic equivalent available as of July 2017. Average list price is from the 2014 Medicare
Part D data (or the first year the drug appears in Part D data). The compound annual
growth rate (CAGR) in net-of-rebate price for each drug is computed from the first quarter
to the last quarter that the drug is observed in the PBM data.
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Figure 2: Effects of Coupons on Utilization and Price
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Notes: Each graph plots coefficient estimates and 95% confidence intervals from a regres-
sion of ln(days supply) or ln(price) on quarter relative to coupon introduction. Coefficients
plotted reflect the response in the commercial segment relative to the response in Medicare.
All specifications are estimated on a balanced panel of data for switchers, including monthly
observations from 9 months prior to coupon introduction through 12 months after coupon in-
troduction. The quarter prior to introduction is omitted. Panels (a) and (c) show unweighted
results, while Panels (b) and (d) show results weighted by each drug’s share of spending in
each segment in the 6 months prior to coupon introduction.
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Table 2: Difference-in-Differences Estimates

ln(quantity) ln(price)
(1) (2) (3) (4)

Commercial ×
Q = −3 -0.002 -0.032 -0.007 -0.021*

(0.042) (0.038) (0.020) (0.011)
Q = −2 -0.053 -0.021 0.002 -0.012

(0.047) (0.033) (0.013) (0.007)
Q = −1 0 0 0 0

(-) (-) (-) (-)
Q = 0 0.060* 0.037 -0.020 0.004

(0.035) (0.029) (0.013) (0.008)
Q = 1 0.159*** 0.222** -0.008 -0.002

(0.052) (0.093) (0.017) (0.010)
Q = 2 0.168*** 0.189** -0.009 -0.003

(0.059) (0.075) (0.017) (0.010)
Q = 3 0.204*** 0.189*** -0.013 0.009

(0.060) (0.051) (0.020) (0.012)
Weights N Y N Y
*** p < 0.01, ** p < 0.05, and * p < 0.10.

Notes: Standard errors are clustered at the drug level. Weights are defined as the share of
within-segment spending accounted for by the drug in the 6 months before coupon introduc-
tion, normalized so that average weights in each segment are equal. Q = 0 represents the
first three months after coupon introduction. For each drug, we include only observations for
the 9 months prior and 12 months after coupon introduction. The unit of observation is the
drug-month-segment. All specifications include drug-segment and year-month fixed effects.
N=1,386.
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Table 3: Descriptive Statistics for HCCI Estimation Sample

Panel A: Commercial

Share Avg. OOP Price ($) SD ($) Avg. Allowed Amt. ($)

Drug 2009-2011 2015-2017 2009-2011 2015-2017 2009-2011 2015-2017 2009-2011 2015-2017

(1) (2) (3) (4) (5) (6) (7) (8)
Aubagio - 0.126 - 243 - 559 - 5,742
Avonex 0.211 0.078 126 248 354 576 2,706 5,900
Betaseron 0.121 0.036 128 259 361 609 2,750 6,260
Copaxone20 0.399 0.031 135 275 391 655 2,998 6,765
Copaxone40 - 0.311 - 237 - 543 - 5,567
Gilenya 0.086 0.083 210 259 571 612 3,798 6,267
Glatopa - 0.008 - 234 - 548 - 5,415
Plegridy - 0.026 - 247 - 574 - 5,873
Rebif 0.159 0.056 124 260 346 612 2,634 6,275
Tecfidera - 0.230 - 262 - 618 - 6,345
Tysabri 0.074 0.015 284 671 518 1,058 3,251 5,908

Panel B: Medicare

Share Avg. OOP Price ($) SD ($) Avg. Allowed Amt. ($)

Drug 2009-2011 2015-2017 2009-2011 2015-2017 2009-2011 2015-2017 2009-2011 2015-2017

(1) (2) (3) (4) (5) (6) (7) (8)
Aubagio - 0.168 - 515 - 488 - 5,672
Avonex 0.331 0.101 260 508 221 482 2,839 5,584
Betaseron 0.071 0.140 263 548 222 521 2,882 6,040
Copaxone20 0.396 0.028 297 599 253 570 3,235 6,592
Copaxone40 - 0.237 - 490 - 463 - 5,376
Gilenya 0.054 0.014 359 550 286 525 3,755 6,072
Glatopa - 0.008 - 470 - 482 - 5,122
Plegridy - 0.026 - 512 - 487 - 5,634
Rebif 0.130 0.057 253 544 214 517 2,760 5,998
Tecfidera - 0.211 - 558 - 532 - 6,155
Tysabri 0.039 0.014 218 393 481 965 2,831 5,494

Note: Table shows descriptive statistics by drug for the HCCI estimation sample, separately by market
segment. Statistics for the first and last three years of the sample are shown. No new drugs were
approved between 2009 and 2011. Only Glatopa (approved in April 2015) enters the market between
2015 and 2017. Columns 1-2 show market shares for each drug; Columns 3-4 show average out-of-
pocket costs; Columns 5-6 show the standard deviation of out-of-pocket costs across enrollees; and
Columns 7-8 show average allowed amounts (a measure of list prices) The estimation sample contains
N = 3,483 commercially insured enrollees and N = 1,098 Medicare Advantage enrollees.
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Table 4: Maximum Likelihood Estimates

(1) (2) (3)
OOP Price 0.036 0.037 0.049 +

(0.023) (0.023) (0.026)
OOP Price X Commercial -0.081 ∗∗ -0.084 ∗∗ -0.099 ∗∗

(0.027) (0.027) (0.029)
Coupon X Commercial 0.376 ∗∗ 0.357 ∗∗ 0.373 +

(0.085) (0.085) (0.208)
Coupon -0.134 -0.223 -0.263

(0.193) (0.193) (0.246)
Drug Age (6-12 mo) 0.635 + 0.632 +

(0.268) (0.269)
Drug Age (1-2 yr) 1.328 ∗∗ 1.300 ∗∗

(0.280) (0.280)
Drug Age (2-3 yr) 1.562 ∗∗ 1.518 ∗∗

(0.322) (0.322)
Drug Age (3-5 yr) 1.843 ∗∗ 1.821 ∗∗

(0.353) (0.354)
Drug Age (5+ yr) 1.850 ∗∗ 1.816 ∗∗

(0.420) (0.420)
Drug Age (6-12 mo) X Female -0.366 -0.351

(0.288) (0.288)
Drug Age (1-2 yr) X Female -0.508 + -0.493 +

(0.257) (0.257)
Drug Age (2-3 yr) X Female -0.640 + -0.624 +

(0.263) (0.263)
Drug Age (3-5 yr) X Female -0.844 ∗∗ -0.836 ∗∗

(0.261) (0.261)
Drug Age (5+ yr) X Female -0.319 -0.315

(0.231) (0.231)
Drug FE Yes Yes Yes
Drug-Year FE Yes Yes Yes
Drug-Segment FE No No Yes

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Table shows maximum likelihood estimates of Equations 2 and 3 for N = 4,581
enrollees. Column 1 shows estimates with drug fixed effects, drug-year fixed effects, and
drug-segment fixed effects. Column 2 shows estimates omitting drug-segment fixed effects.
Column 3 additionally omits controls for the age of each drug (relative to its approval date)
when each choice is made and interactions between drug age and patient gender.
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Table 5: Impact of a Coupon Ban on Prices and Shares

Data Simulation: Baseline Simulation: Coupons Banned

Drug
Coupon
Status

Net
Price ($) Share

Net
Price ($) Share

Net
Price ($) Share

∆
Price (%)

∆
Share (%)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Aubagio Always 4941 0.148 5077 0.139 4704 0.130 -7.4 -6.4
Avonex Never 5071 0.076 4940 0.082 4646 0.103 -5.9 26.6
Betaseron Never 5395 0.044 4937 0.055 4635 0.068 -6.1 24.8
Copaxone20 Aug 2011 5787 0.030 4873 0.029 4569 0.037 -6.2 28.5
Copaxone40 Always 4753 0.308 5198 0.303 4799 0.280 -7.7 -7.7
Gilenya Oct 2011 5420 0.066 4989 0.067 4563 0.061 -8.5 -8.8
Glatopa Never 4538 0.008 4848 0.008 4544 0.011 -6.3 31.0
Plegridy Never 5060 0.028 4870 0.027 4567 0.035 -6.2 29.2
Rebif Always 5390 0.054 4998 0.056 4616 0.053 -7.6 -6.7
Tecfidera Always 5486 0.224 5135 0.222 4738 0.205 -7.7 -7.5
Tysabri Never 5011 0.015 4499 0.013 4120 0.017 -8.4 36.6

Notes: Table shows observed prices (computed as 0.85 × the average allowed amount) and market
shares in the simulation sample (Columns 2-3). Columns 4-5 show simulated net prices and shares
at baseline, where coupons are as observed in the data (Column 1). Columns 6-10 show results from
a simulation where all existing coupons are banned. Columns 6-7 show the resulting net prices and
market shares; Columns 8-9 express the effects of the coupon ban as a percent of baseline simulated
values. The average change in net price is -7.4%, weighting by the baseline simulated shares in Column
5.
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Table 6: Impact of a Coupon Ban on Insurer and Out-of-Pocket Costs

Group
N
(1)

Insurer costs
with coupons

(2)

Insurer costs
coupon ban

(3)

∆ Insurer
Costs

(4)

OOP Cost
with coupons

(5)

OOP Cost
coupons ban

(6)

∆ OOP
Costs

(7)

Commercial 1,104 5,081 4,690 -391 86 232 146
Coupon Users 828 5,082 4,690 -392 33 232 199
Non-users 276 5,077 4,690 -387 245 232 -14
Copay 910 5,080 4,692 -388 31 76 45
Coinsurance 194 5,086 4,683 -403 343 961 618
Couponed Drugs 895 → 806 5,127 4,731 -396 57 240 183
Non-couponed Drugs 209 → 298 4,888 4,584 -304 234 225 -9

Medicare 388 5,065 4,698 -367 542 503 -38
Copay 120 5,066 4,698 -368 164 154 -10
Coinsurance 268 5,064 4,697 -367 711 659 -51
Couponed Drugs 282 → 282 5,127 4,736 -391 550 509 -41
Non-couponed Drugs 106 → 106 4,901 4,598 -302 521 490 -31

Overall 1,492 5,077 4,692 -385 204 302 98

Notes: Table shows insurer and out-of-pocket costs with and without coupons, separately for selected
subgroups. Insurer costs are expressed in $ per member per month; out-of-pocket costs are expressed
in $ per prescription for enrollees’ first observed choice. Results average over coupon users and non-
users (except where otherwise indicated) based on our assumption that 75% share of commercially
insured patients use coupons. Copay/coinsurance designations apply at the patient level. Patients
are coded as paying copays or coinsurance based on the nature of their prescription drug insurance
(see Appendix Section B.6). Patients facing prescription drug copays may have medical insurance
requiring coinsurance. The number of individuals choosing couponed drugs may change after coupons
are banned; this is reflected in Column 1 in the format [number of individuals when coupons are
available] −→ [number of individuals when coupons are banned].
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