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In March 2020...

I ... COVID-19 cases and deaths took off

I ... States announced NPIs

I ... UI claiming skyrocketed
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Impact of NPIs on UI?

I Want to disentangle effects of NPIs from other things happening

I Fiscal externality matters for policy: what NPIs reduce virus spread without much
externality?

I Use high-frequency Google search data

I Use KFF database on NPIs: restaurant and bar limitations, non-essential business
closures, stay-at-home orders, large-gatherings bans, school closures, public health
emergency

I State-day variation in NPIs
I Translate search volumes into estimates of UI claiming

I Framework: unemployment expectations

I Only a small share of increased UI claiming is a direct effect of NPIs
I Large-gatherings bans, school closures, public health emergencies have no direct

effect
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Contributions and Literature

1. Estimate effect of 6 different NPIs on Google search volume

2. Show how to translate Google search volume estimates into UI claims estimates

3. Jointly estimate different effect sizes across multiple policies

I Work on NPIs: Baek et al. (2020), Lin and Meissner (2020), Correia et al. (2020)

I Labor markets during the COVID-19 pandemic: Bartik et al. (2020a), Kahn et al. (2020),
Dingel and Neiman (2020), Mongey et al. (2020), Coibion et al. (2020)

I Broader literature on economic activity: Lewis et al. (2020), Baker et al. (2020b), Bartik
et al. (2020b), Hassan et al. (2020), Baker et al. (2020a)

I Macro models: Atkeson (2020), Bethune and Korinek (2020), Eichenbaum et al. (2020),
Jordà et al. (2020), Glover et al. (2020), Guerrieri et al. (2020), Krueger et al. (2020),
Ludvigson et al. (2020), Rampini (2020)

I Economics work using Google Trends: Stephens-Davidowitz and Varian (2015) Baker and
Fradkin (2017), Goldsmith-Pinkham and Sojourner (2020)
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COVID-19 Pandemic in the U.S.

I Coronavirus disease 2019 (COVID-19): infectious disease caused by by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

I Spread to U.S. January 2020

I Highly infectious: R0=2.2-2.7 (or higher)

I Symptoms: fever, cough, shortness of breath, difficulty breathing, chills, muscle
pain, headache, sore throat, and new loss of taste or smell

I Can cause wide spectrum of disease: mild illness, moderate and severe
pneumonia, respiratory failure, and death

I 1.19 million cases and 68,551 deaths have been reported in the U.S.
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Non-Pharmaceutical Interventions

I Currently no vaccine or specific treatment exists for COVID-19

I U.S. states and cities have adopted NPIs
I We study six:

I Restaurant and bar limitations
I Non-essential business closures
I Stay-at-home orders
I Large-gatherings bans
I School closures
I Emergency declarations

There is significant policy and timing variation across states

8 / 42



Non-Pharmaceutical Interventions

I Currently no vaccine or specific treatment exists for COVID-19

I U.S. states and cities have adopted NPIs
I We study six:

I Restaurant and bar limitations
I Non-essential business closures
I Stay-at-home orders
I Large-gatherings bans
I School closures
I Emergency declarations

There is significant policy and timing variation across states

8 / 42



Non-Pharmaceutical Interventions

I Currently no vaccine or specific treatment exists for COVID-19

I U.S. states and cities have adopted NPIs

I We study six:
I Restaurant and bar limitations
I Non-essential business closures
I Stay-at-home orders
I Large-gatherings bans
I School closures
I Emergency declarations

There is significant policy and timing variation across states

8 / 42



Non-Pharmaceutical Interventions

I Currently no vaccine or specific treatment exists for COVID-19

I U.S. states and cities have adopted NPIs
I We study six:

I Restaurant and bar limitations
I Non-essential business closures
I Stay-at-home orders
I Large-gatherings bans
I School closures
I Emergency declarations

There is significant policy and timing variation across states

8 / 42



Non-Pharmaceutical Interventions

I Currently no vaccine or specific treatment exists for COVID-19

I U.S. states and cities have adopted NPIs
I We study six:

I Restaurant and bar limitations
I Non-essential business closures
I Stay-at-home orders
I Large-gatherings bans
I School closures
I Emergency declarations

There is significant policy and timing variation across states

8 / 42



Data
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Google Search Data

I Google Trends releases data on search volumes

I Search term: “file for unemployment”

I Published search volumes are relative, we normalize to highest point in California

I We download data through API 100 times to account for sampling variation
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Evolution of Google Search Volume for Claiming Unemployment Insurance
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NPI Timing Data

I Use Kaiser Family Foundation data on NPI dates by states
I Dates for six NPIs:

I Restaurant and bar limitations
I Non-essential business closures
I Stay-at-home orders
I Large-gatherings bans
I School closures
I Emergency declarations

I If multiple announcements, use first

Map: Restaurant Limitation Map: Business Closure Map: Stay Home

Map: Gatherings Ban Map: School Closure Map: Health Emergency
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States Not Implementing Same Policies At Same Time
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Other Data

I Confirmed COVID-19 cases and deaths from JHU Dashboard

I National UI claims from Department of Labor

I Industry employment shares from QCEW and ACS

I State level UI by industry from MA, NY, and WA state governments
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Empirical Strategy
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Conceptual model

I Firms and workers internalize the effects of NPIs on their future employment
prospects

I Firms make layoff decisions based on how NPI affects future conditions
I 72% of small businesses expect to re-open in December 2020 if the pandemic lasts 1

month, 47% if 4 months (Bartik et al., 2020b)

I Implies workers change Google search behavior immediately in response to the NPI

I Concern: under- or over-reaction to NPI policies

I Only a problem if bias is different compared to other causes of search volume

I Still a problem if NPIs cause future layoffs and these are not internalized, and
other searches are caused by actual layoffs

I But we don’t see evidence of delayed effects
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Single-Policy Event Study

Sit =
6∑

τ=−7

γτ × 1 {r = τ}+ αi + αt + εit (1)

I Sit : Google search volume in state i and date t

I r : days relative to the date the policy was announced (r = 0)

I αi : state FE

I αt : calendar date FE

I γτ : coefficient of interest, differential increase in search volume relative to r = −1
on relative day τ

I Normalize γτ=−1 = 0

I Bin periods before and after into τ = −7 and τ = 6.

I Cluster standard errors at the state level
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Multiple-Policy Event Study

Sit =
∑
p∈P

6∑
τ=−7

ηp,τ × 1 {r(p) = τ}+ αi + αt + νit (2)

I Sit : Google search volume in state i and date t,
I P: set of included policies
I r(p): days relative to the date that policy p was announced (r = 0)
I αi : state FE
I αt : calendar date FE
I ηp,τ : coefficient of interest, differential increase in search volume for policy p

relative to r(p) = −1) on relative day τ , controlling for the time-varying effects of
the other policies in P

I Normalize ηp,τ=−1 = 0 for all policies p
I Bin periods before and after into τ = −7 and τ = 6.
I Cluster standard errors at the state level
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Alternative Approach: Difference-in-Differences

Compare early and late states (based on first NPI in state)

Sit = α + δ × 1 {Early Adopter} × 1 {Post}+ β × 1 {Early Adopter}+ ξt + µit , (3)

19 / 42



Robustness

I Exclude CA, WA, NY

I Weight states by total employment

I Control for case growth and number of death

I Divide into early and late first death states

I Show not related to epidemiological events (case growth, deaths)

I Difference-in-differences comparing early vs late adopters

I Case study of food services industry
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Results
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Event Study: Restaurant and Bar Limitations
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Event Study: Non-Essential Business Closures
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Event Study: Stay-at-Home Orders
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Event Study: Large-Gatherings Bans
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Event Study: School Closures
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Event Study: Public Health Emergencies
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Robustness: Alternative Specifications
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Robustness: Epidemiological Outcomes

Case Growth
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(b) Non-Essential
Business Closures

-2
00

0
20

0
40

0
60

0
80

0
R

el
at

iv
e 

se
ar

ch
 v

ol
um

e

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Days relative to announcement

(c) Stay-at-Home
Orders

Deaths
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(e) Non-Essential
Business Closures

-1
00

0
10

0
20

0
30

0
R

el
at

iv
e 

se
ar

ch
 v

ol
um

e

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Days relative to announcement

(f) Stay-at-Home
Orders 29 / 42



Case Study: Food Servies
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Difference-in-Differences
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Alternative Approach: Difference-in-Differences
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Estimating Policy Effects
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Estimating Policy Effects with Proxy Outcomes

Goal: estimate causal effect βp of policy on the overall change in U over time (call this
Ũ, known) using proxy S .
I Typical process:

1. Estimate relationship between outcome of interest U and proxy S , parameterized by
θU,S .

2. Estimate causal effect γp of policy p on S

3. Feed γ̂p through estimated relationship θ̂U,S

I Benefits:
I Works for any set of policies
I Works for any relationship between U and S
I Directly tests relevance of the proxy S

I Drawbacks:
I Requires data on U sometimes not available
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Approach we use

Goal: estimate causal effect βp of policy on the overall change in U over time (call this
Ũ, known) using proxy S .
I Our approach

1. Assume a function such that F (S) is proportional to U
2. Assume we can estimate γp for a set of policies P that fully accounts for U

3. Multiply Ũ by

Share of Ũ caused by NPI =
γ̂p∑

k∈P γ̂k
(4)

I Benefits:
I Requires minimal data on the outcome variable U

I Drawbacks:
I Requires defining and estimating P (but can define p of interest and everything else)
I Relevance of proxy is not directly tested
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Application to UI Claiming

I Assume UI claims proportional to search volume (area under curve)

I Assume all increase in UI from March 14-28 is due directly to NPIs or other
pandemic effects

I Compare integral under event study estimates to integral under overall time trend:

Share of UI claims caused by NPI =
INPI

INPI + Iα,t1,t2
(5)
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Quantitative UI Estimates: Restaurant and Bar Limitations
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Quantitative UI Estimates: Non-Essential Business Closures
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Quantitative UI Estimates: Stay-at-Home Orders
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Quantitative UI Estimates: Stay-at-Home Orders

Between March 14 and 28, share of total UI claims due to

I restaurant limitations: 4.3%

I non-essential business closures: 8.4%

I stay-at-home orders: 0%
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Discussion

I Overall small share of UI claims direct consequence of NPIs

I Some NPIs don’t directly increase UI claims but could slow spread of virus
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Thank You!
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Geographic Distribution of NPI Adoption: Restaurant and Bar Limitations
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Geographic Distribution of NPI Adoption: Non-Essential Business Closures
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Geographic Distribution of NPI Adoption: Stay-at-Home Orders
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Geographic Distribution of NPI Adoption: Large-Gatherings Bans
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Geographic Distribution of NPI Adoption: School Closures
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Geographic Distribution of NPI Adoption: Public Health Emegencies
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Robustness: Restaurant and Bar Limitations
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Robustness: Non-Essential Business Closures
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Robustness: Stay-at-Home Orders
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Robustness: Large-Gatherings Bans
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Robustness: School Closures
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Robustness: Public Health Emergencies
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