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Quiver flag varieties and mirror symmetry

Abstract

Quiver flag zero loci are subvarieties of quiver flag varieties cut out by sections of

representation theoretic vector bundles. Grassmannians are an example of quiver

flag varieties. The Abelian/non-Abelian correspondence is a conjecture relating the

Gromov–Witten invariants of a non-Abelian GIT quotient to the same invariants

of an Abelian GIT quotient. In the first chapter, we show how the conjecture in

the case of Grassmannians arises from Givental’s loop space mirror heuristics. We

then prove the Abelian/non-Abelian Correspondence for quiver flag zero loci: this

allows us to compute their genus zero Gromov–Witten invariants. We determine the

ample cone of a quiver flag variety. In joint work with Tom Coates and Alexander

Kasprzyk, we use these results to find all four-dimensional Fano manifolds that

occur as quiver flag zero loci in ambient spaces of dimension up to 8, and compute

their quantum periods. In this way we find at least 141 new four-dimensional Fano

manifolds. In the last chapter, we describe a conjectural method for finding mirrors

to these fourfolds, and implement this in several examples.
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0
Introduction

Quiver flag varieties are a generalization of type A flag varieties that were introduced

by Craw [18] based on work of King [35]. They are fine moduli spaces for stable

representations of the associated quiver (see 2.1.3). Like flag varieties and toric

complete intersections, quiver flag varieties can be constructed as GIT quotients of

a vector space (see 2.1.1). Unlike toric varieties, the quotienting group for a quiver

flag variety is in general non-Abelian; this increases the complexity of their structure

considerably: specifically, it places them largely outside of the range of known mirror

symmetry constructions.

The Abelian/non-Abelian Correspondence of Ciocan-Fontanine–Kim–Sabbah re-

lates the Gromov–Witten theory of a non-Abelian GIT quotient to that of an Abelian

GIT quotient. In Chapter 1, we show how this relation can be seen for the Grass-

mannian just from considering the loop space of Givental. This calculation isn’t

rigorous, but can be seen as motivation for the rest of the thesis. In Chapter 2,

the main focus is to prove the Abelian/non-Abelian correspondence for quiver flag

varieties.

The two perspectives on quiver flag varieties – as fine moduli spaces and as GIT

quotients – give two different ways to consider them as ambient spaces. From the

moduli space perspective, smooth projective varieties with collections of vector bun-

dles together with appropriate maps between them come with natural maps into the

quiver flag variety. From the GIT perspective, one is led to consider subvarieties

which occur as zero loci of sections of representation theoretic vector bundles. If

the ambient GIT quotient is a toric variety, these subvarieties are toric complete
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intersections; if the ambient space is a quiver flag variety, we call these subvarieties

quiver flag zero loci. While in this thesis we emphasize the GIT quotient perspec-

tive, the moduli space perspective should be kept in mind as further evidence of the

fact that quiver flag varieties are natural ambient spaces. All smooth Fano varieties

of dimension less than or equal to three can be constructed as either toric complete

intersections or quiver flag zero loci. These constructions of the Fano threefolds

were given in [13]: see Theorem A.1 there as well as the explicit constructions in

each case. While there is an example in dimension 66 of a Fano variety which is

neither a toric complete intersection nor a quiver flag zero locus (see [13]), one might

nevertheless hope that most four-dimensional smooth Fano variety are either toric

complete intersections or quiver flag zero loci. The classification of four dimensional

Fano varieties is open.

Chapter 2 studies quiver flag varieties with a view towards understanding them as

ambient spaces of Fano fourfolds. Specifically, [16] classified smooth four dimen-

sional Fano toric complete intersections with codimension at most four in the ambi-

ent space. This heavily computational search relied on understanding the geometry

and quantum cohomology of toric varieties from their combinatorial structure. The

guiding motivation of the chapter is to establish comparable results for quiver flag

varieties to enable the same search to be carried out in this context. For example,

we determine the ample cone of a quiver flag variety from the path space of the asso-

ciated quiver: in this way, we are able to efficiently determine a sufficient condition

for whether a quiver flag zero locus is Fano.

The main result of this thesis is the proof of the Abelian/non-Abelian Correspon-

dence of Ciocan-Fontanine–Kim–Sabbah for Fano quiver flag zero loci. This allows

us to compute their genus zero Gromov–Witten invariants∗. From the perspective

of the search for four dimensional Fano quiver flag zero loci, the importance of this

result is that it allows us to compute the quantum period. The quantum period

(a generating function built out of certain genus 0 Gromov–Witten invariants) is

the invariant that we use to distinguish deformation families of Fano fourfolds: if

two quiver flag zero loci have different period sequences, they are not deformation

equivalent.

In Chapter 3, which reports on work which is joint with Tom Coates and Alexan-

der Kasprzyk, we use the structure theory developed in Chapter 2 to find four-

dimensional Fano manifolds that occur as quiver flag zero loci in ambient spaces

of dimension up to 8, and compute their quantum periods. 141 of these quantum

periods were previously unknown. Thus we find at least 141 new four-dimensional

∗Another proof of this, using different methods, has recently been given by Rachel Webb [49].
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Fano manifolds. The quantum periods, and quiver flag zero loci that give rise to

them, are recorded in Appendix A. Figure 1 overleaf shows the distribution of degree

and Euler number for the four-dimensional quiver flag zero loci that we found, and

for four-dimensional Fano toric complete intersections. Our primary motivation is

as follows. There has been much recent interest in the possibility of classifying Fano

manifolds using Mirror Symmetry. It is conjectured that, under Mirror Symmetry,

n-dimensional Fano manifolds should correspond to certain very special Laurent

polynomials in n variables [12]. This conjecture has been established in dimensions

up to three [13], where the classification of Fano manifolds is known [32, 41]. Little

is known about the classification of four-dimensional Fano manifolds, but there is

strong evidence that the conjecture holds for four-dimensional toric complete inter-

sections [16]. The results of Chapter 3 will provide a first step towards establishing

the conjectures for these four dimensional Fano quiver flag zero loci.

In the final chapter of the thesis, Chapter 4, we discuss future directions of this work.

Specifically, we discuss toric degenerations of quiver flag varieties, and their role in

finding mirrors of Fano quiver flag zero loci. For a certain family of quivers, we

provide a systematic (and still conjectural) method of finding Laurent polynomial

mirrors of quiver flag zero loci which are subvarieties of these quivers.
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Figure 1: Degrees and Euler numbers for four-dimensional Fano quiver flag zero loci and toric complete intersections; cf. [16, Figure 5]. Quiver flag zero loci
that are not toric complete intersections are highlighted in red.
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1
Mirror heuristics

In [23], the authors Galkin and Iritani recover the Laurent polynomial mirror of pro-

jective space using Givental’s equivariant loop space heuristics. In this chapter, we

find the analogue for Grassmannians. We show how the Abelian/non-Abelian corre-

spondence for Grassmannians arises from the same considerations. That is, we use a

heuristic argument to produce the mirror oscillatory integral to the Grassmannian,

and show that it takes the form predicted by Hori–Vafa and the Abelian/non-Abelian

correspondence.

1.1 Quantum cohomology and the quantum differential equations

We first briefly review quantum cohomology and the quantum differential equations.

LetX be a smooth Fano variety. The quantum cohomology ring is defined by giving a

deformation of the usual cup product of H∗(X) for every t ∈H∗(X). The structural

constants defining the new product are given by Gromov–Witten invariants.

A nodal curve C is a projective, connected curve with singularities that are at most

nodes, that is, of the local form xy = 0. An n-pointed nodal curve is pair (C, ε)
where C is a nodal curve, and ε is a set {p1, . . . , pn} of n non-singular points on C.

The moduli space of stable maps M g,n(X,β) parametrizes stable maps f ∶ C → X

up to isomorphism. Here C is a possibly nodal curve of arithmetic genus g, with n

marked points, and f∗([C]) = β. In general, M g,n(X,β) may have components of

different dimensions; however, it is possible to define a virtual fundamental class of
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the expected dimension:

(dim(X) − 3)(g − 1) + ∫
β
c1(X) + n.

There are natural maps evi ∶M g,n(X,β) → X, where evi([f ∶ C → X]) = f(pi). Let

α1, . . . , αn ∈H∗(X).

Definition 1.1.1. A Gromov–Witten invariant of X is

∫
[M0,n(X,β)]virt

ev∗1(α1) ∪⋯ ∪ ev∗n(αn)

for some n ∈ Z>0, αi ∈H∗(X) and β ∈H2(X).

Let {Ti} be a homogenous basis of H∗(X,C) and {T i} a dual basis. Let t ∈
H2(X,C). The small quantum product is defined by

⟨T a ○t T b, T c⟩ ∶= ∑
d∈H2(X)

e∫d t∫
[M0,3(X,d)]virt

ev∗1(T a)ev∗2(T b)ev∗3(T c).

If T1, . . . , Tr are a basis of H2(X,C), and ti a parameter for Ti, define qi ∶= eti . For

d = ∑r
i=1 diTi, write qd = qd11 ⋯q

dr
r . We can re-write the above as

⟨T a ○ T b, T c⟩ ∶= ∑
d∈H2(X)

qd∫
[M0,3(X,d)]virt

ev∗1(T a)ev∗2(T b)ev∗3(T c),

This gives a product on T ∗(H∗(X)) = H∗(X) × H∗(X) at every point in H2X.

Associated to this product structure is the quantum differential equations. As

H∗(X)×H∗(X) is trivial over H∗(X), there is a natural flat connection d given by

the parameters on the base.

∇z
i = ∇ ∂

∂ti

s = zd ∂
∂ti

s + Ti ○ .

In fact, this is a flat connection (see, for example, [5]). The quantum differential

equations are the differential equations satisfied by the sections.

This connection also gives quantum cohomology H∗(X) ⊗ C[z][[q1, . . . , qr]] the

structure of a D module. Here we follow [31]. Let D be a Heisenberg algebra:

D ∶= C[z][[q1, . . . , qr]][p1, . . . , pr],

with deg(qi) = ∫PD(ti)
c1(TX), and deg(pi) = deg(z) = 2. The commutation relations
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are given by

[pa, qb] = zδab qb, [pa, pb] = [qa, qb] = 0, [pa, f] = z
∂

∂qa
f, f ∈ C[[q1, . . . , qr]].

Then D operates on the quantum cohomology ring H∗(X) ⊗ C[z][[q1, . . . , qr]] by

qa ↦ qa and pa ↦ ∇z
a.

In [26], Givental conjectured that equivariant Floer cohomology (not rigorously de-

fined) should have the structure of a D module, and that this D module should be

isomorphic to the quantum D module.

Let LX be the loop space of X: that is, the space of free contractible loops in X.

The symplectic form ω on X induces a symplectic form on LX: vector fields on X

can be identified with vector fields on X over a loop γ; given two such vector fields

w, v, the symplectic form is given by

∮ ω(w(γ(t), v(γ(t)))dt.

Reparametrization of loops gives an action of S1 on LX which preserves the sym-

plectic form; however, the Hamiltonian associated to it is multivalued: it assigns to

a loop the symplectic area of a disc contracting the loop. To make this better de-

fined, let L̃X be a covering space of LX. Givental then discusses the S1 equivariant

Floer cohomology of L̃X: by definition this is the cohomology of the critical set of

the Hamiltonian. That is, it is the cohomology of the fixed points of the S1 action,

which are constant loops. We therefore get a copy of X at each level of the covering

space. Assuming that X is simply connected, we can identify π2(X) with H2(X,Z).
Note that the deck transformation group of L̃X → LX is π1(LX) = π2(X). Let

q1, . . . , qr be a basis of the lattice. As an additive object, the cohomology is then

identified with

H∗(X,C[z][q±1 , . . . , q±r ]).

Here z is the equivariant parameter, and the qi can be understood as determining

the level in L̃X. Givental shows that the Heisenberg algebra D above acts on this

cohomology as follows. Given a basis Poincaré dual to the chosen one for H2(X,Z),
let ω1, . . . , ωr be the associated S1 equivariant symplectic forms on L̃X. Then we

obtainH1, . . . ,Hr, the Hamiltonians for the S1 action with respect to each symplectic

form. Define the action of pi in D on the Floer cohomology by mapping

pi ↦ ωi + zHi.

One can check that this gives the Floer cohomology the structure of a D module.
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Givental conjectured that these two D modules - the one associated to quantum

cohomology and the one associated to Floer cohomology - are isomorphic. Suppose

there exists c ∈M ∶=H∗(X,C[z][q±1 , . . . , q±r ]) such that the cohomology is generated

by c as D module (otherwise, we can simply consider the sub-D module generated

by c). This gives an identification of the equivariant Floer cohomology with D/Ic,
where Ic is the ideal of operators which annihilate c. Givental’s conjecture implies

that c is a solution to the quantum differential equations.

H∗(X,C) can be mapped intoM: given a Poincaré dual cycle γ, consider the cycle

in the critical set at each level in L̃X. Then take the downwards gradient flow with

respect to the Hamiltonian (a infinite dimensional version of the unstable manifold):

the corresponding cycle is the desired element inM. If H∗(X) is generated in degree

2 (which is not the case for the Grassmannian), then the Poincaré dual of the image

of the fundamental cycle gives the proposed c. It consists of the boundary values of

all holomorphic discs in X. Givental did a formal computation to find a solution,

which is the I function (later proved to be a solution to the quantum differential

equations using different methods). Below, we do a formal calculation to show that

one obtains the oscillatory integrals that satisfy the quantum differential equations

of the Grassmannian given the Abelian/non-Abelian correspondence. In the second

chapter of the thesis, we prove the Abelian/non-Abelian correspondence for quiver

flag varieties rigorously.

1.2 The algebraic loop space for GIT quotients

Following Givental and [23], we use an algebraic analogue of the loop space. Let V

be a C vector space, equipped with a G action for a group G that is a product of

Gl(ri), so that G acts linearly. Choosing coordinates on V , we have the standard

symplectic form ω. By the Kempf–Ness theorem, the GIT quotient (after choosing a

stability condition) X ∶= V //G is diffeomorphic to the symplectic quotient µ−1(u)/K,

where K is the maximal compact subgroup of G such that KC = G, and µ ∶ V → k∗

is a moment map for the action.

Example 1.2.1 (The Grassmannian). Let V = Mat(r × N ;C) where G = Gl(r)
acts by multiplication on the left. K ∶= U(r) is the unitary group. k is the skew

Hermitian matrices, and k∗ is identified with Hermitian matrices via the pairing

⟨h1, h2⟩ ∶= i tr(h1h2) ∈ R. One can check that this action is Hamiltonian with moment

map µ(A) ∶= πAA∗ where the symplectic form is

ω ∶=
N

∑
i=1

r

∑
j=1

√
−1

2
dai,j ∧ dai,j.

8



Example 1.2.2 (Quiver flag varieties). Let (Q, r) be the data giving a quiver flag

variety (see 2.1.1). Let K ∶=∏ρ
i=1U(ri), and

V ∶= ⊕
a∈Q1

HomC(Crs(a) ,Crt(a))

acting by change of basis. Write coordinates on V as [[a(a)i,j ]1≤i≤rs(a),1≤j≤rt(a)]a∈Q1 . Let

ω be the standard symplectic form. Then this action is Hamiltonian with moment

map

µ((Aa)a∈Q1) = (π ∑
a∈Q1,t(a)=i

AaA
∗
a − π ∑

a∈Q1,s(a)=i

A∗
aAa)

ρ
i=1.

Let V [ζ, ζ−1] ∶= ⊕∞
n=−∞V ζ

n be the infinite dimensional vector space over C identified

with replacing the scalar entries of a vector in V with Laurent polynomials in ζ.

This induces an action of G (and K) on V [ζ±1]. If bi were coordinates on V , then

we can write coordinates on V [ζ±1] as b
(n)
i , n ∈ Z and define

ω∞ ∶=∑
n∈Z

dim(V )

∑
i=1

b
(n)
i ∧ b(n)i .

We can similarly define

µ∞ ∶ V [ζ±1]→ k∗;µ∞((vn)n∈Z)↦∑
n∈Z

µ(vn).

Because the K action was defined just by extending linearly, it follows that µ∞ is a

moment map for the K action on V [ζ±1]. The polynomial loop space of X is defined

to be

Lpoly(X) ∶= µ−1∞ (u)/K.

Let ωu be the induced symplectic form.

Lpoly(X) should be considered as the algebraic analogue of the covering of the infinite

loop space. An element of Lpoly(X) defines a loop in X by varying ζ ∈ S1. S1 acts

on Lpoly(X) by re-parametrizing the loops; that is ζ ↦ λζ for λ ∈ S1. Let Hu be the

Hamiltonian for this action; it is the restriction and quotient to Lpoly(X) of

π∑
n∈Z
∑
i

n∣b(n)i ∣2

on V [ζ±1].

The analogue of the deck transformation of the covering space is an action for each

element of π2(X) ≅ H2(X) ≅ χ(G)∨ (assuming X is simply connected and a Mori

dream space). Given a co-character χ ∶ C∗ → G, we get an action on of C∗ on V ,
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which for some choice of basis and βi is given by, for ζ ∈ C∗:

ζ ⋅ [b(n)i ]↦ [ζβib(n)i ].

Hence we can interpret this as a deck transformation on V [ζ±1] in the obvious way.

Example 1.2.3. Suppose X ∶= Pn×Pm, so that G ∶= C∗×C∗ acts on V = Cm+1×Cn+1

by scaling each factor. An element of V [ζ±1] is (f, g) where f is an n + 1 tuple of

Laurent polynomials in ζ, and g is an m + 1 tuple. Hom(C∗,G) ≅ Z2, so taking

(a, b) ∈ Z2, the corresponding deck transformation is

(f, g)↦ (ζaf, ζbg).

Now we are ready to start considering the integral indicated by Givental, which

we have discussed in the first section. For each co-character χ, there is copy of X

denoted Xχ at the level χ in Lpoly(X). That is, Xχ is the equivalence classes of

elements of χ(V ). X0 is just the image of the constant polynomial V in V [ζ±1]
in Lpoly(X). The image of the fundamental class of X under the map H∗(X) →
M = H∗(X,C[z][q±1 , . . . , q±r ]) is given by the class Poincaré dual to the closure of

the stable manifold of X0. The class of the closure of the stable manifold, denoted

△, is the image of V [ζ]∩µ−1∞ (u) under the quotient µ−1∞ (u)→ Lpoly(X). △ defines a

class in M ∶=H∗(X,C[z][q±1 , . . . , q±r ]).

1.3 Mirror heuristics for Grassmannians

For Grassmannians, we can be much more explicit. From now on, assume we are

in the case of the Grassmannian, using the notation of Example 1.2.1: V = Mat(r ×
N,C) with coordinates aij. The coordinates on V [ζ±] are given by a

(n)
ij . The moment

map is

µ(A) = π∑
n

A(n)(A(n))∗,

if A(n) = [a(n)ij ]1≤i≤r,1≤j≤N . In these coordinates, H is given by

π∑
n∈Z
∑
i,j

n∣a(n)ij ∣2.

Givental conjectures that △ satisfies the quantum differential equations of X. As

he suggests, one can instead take the Fourier transform: consider the integral

∫
△
eωu/z−Hu . (1.1)

10



For shorthand, we refer to this integral as the mirror integral for the rest of this

chapter.

Following the case of projective space (in [23]), we would like to write this as an

integral over V [ζ] instead.

Suppose φ is a principal one form for the principal K bundle π ∶ µ−1(u)→ Lpoly(X).
By definition, φ is a k-valued one form which is K equivariant. Choose a basis

f1, . . . , fk of k∗. We can define k scalar-valued one forms φ1, . . . , φk via φi ∶= ⟨φ, fi⟩.
As the restriction of φ1 ∧⋯ ∧ φk to a fiber is the volume form,

∫
△
eωu/z−Hu = ∫

µ−1(u)∩V [ζ]
eω/z−Hφ1 ∧⋯ ∧ φk.

We then change coordinates a
(n)
ij ↦

√
za

(n)
ij (having chosen φ such that φi are invari-

ant under this change of coordinates, as in [23]), and obtain

∫
µ−1(u/z)∩V [ζ]

eω−zHφ1 ∧⋯ ∧ φk.

Note that µ∗(δu/zf1 ∧ ⋯ ∧ fn) = δ(µ − u/z)dµ1 ∧ ⋯ ∧ dµk where δ is the Dirac delta

function and the dµi are defined as follows. The one form dµ is k∗-valued. Let

e1, . . . , ek be a dual basis to the f1, . . . , fk: define dµi = ⟨dµ, ei⟩. Now note that the

mirror integral can be written as

∫
V [ζ]

eω−zHδ(µ − u/z)φ1 ∧⋯ ∧ φk ∧ dµ1 ∧ ⋅ ⋅ ⋅ ∧ dµk.

Suppose that φ is scaled so that the top degree term of eω∧φ1∧⋯∧φk∧dµ1∧⋅ ⋅ ⋅∧dµk
is

dvol =
r

⋀
i=1

N

⋀
j=1
⋀
n∈Z

√
−1

2
da

(n)
ij ∧ da(n)ij .

Then, in analogue to the finite dimensional situation, we write the mirror integral

as

∫
V [ζ]

δ(µ − u/z)e−zHdvol.

As µ is vector (or rather, matrix) valued, we use the matrix δ function defined by

[50]: for C an r × r Hermitian matrix,

δ(C) ∶= 1

2rπr2 ∫k∗
eiT r(XT

t)[dT ],

dT ∶=
r

∏
j=1

dtjj ∏
1≤i<j≤r

dRe(tij)dIm(tij).

11



Here tij are the usual coordinates on Hermitian matrices. We take the transpose

(which amounts to changing variables) just to ease notation. This is equivalent to

taking a product of scalar delta functions, one for each coordinate.

Using the definitions of H and µ, the mirror integral becomes

1

2rπr2 ∫k∗
[dT ] ∏

1≤i≤r,
1≤j≤r

(e−itijuij/z)∫
V [ζ]

dvol
∞

∏
n=0

( ∏
1≤i,j≤r

N

∏
k=1

(eiπa
(n)
ik

a
(n)
jk

tij) ∏
1≤i≤r,
1≤j≤N

e−πnz∣a
(n)
ij ∣2).

We can compute the integral over V [ζ] as it is an (infinite) product of Gaussian

integrals. Recall that

∫
∞

−∞
e−ax

2+bx+cdx =
√
π

a
e
b2

4a
+c. (1.2)

It’s easiest to do this by fixing n and l and considering the integral over a
(n)
il for all

i. Recall that i and l index the rows and columns of elements of V = Mat(r×N ;C).
In the proof of the following proposition, we start at the bottom row, i = r, and go

up, and show that that the following recursive definition gives the integral:

A
(n)
r (i) = itir,C(n)

r = nz − itrr, i < r

A
(n)
k (i) ∶= itik +

r

∑
j=k+1

(A(n)
j (k))tA(n)

j (i)/C(n)
j , i < k

C
(n)
k ∶= nz − itkk −

r

∑
j=k+1

A
(n)
j (k)(A(n)

j (k))t/C(n)
j .

Here taking the transpose means tij ↦ tji in the formula.

Proposition 1.3.1. The mirror integral is

1

2rπr2 ∫k∗
[dT ] ∏

1≤i,j≤r

(e−itijuij/z)
∞

∏
n=0

r

∏
k=1

1

(C(n)
k )N

Proof. From now on, we suppress the (n) notation as n is fixed.

We compute the integral step by step, starting by integrating out the arl, arl vari-

ables. We claim that after integrating up to k (so from r, . . . , k + 1), the term

involving akl is

eπ(∑
k−1
i=1 Ak(i)ail)akl+π(∑

k−1
i=1 A

t
k(i)ail)akl−πC

(n)
k

∣akl∣
2

. (1.3)

As the k = r step (the induction step) is straightforward, assume the statement is

true for j > k. After changing coordinates to the real and imaginary parts of ajl, we

12



can use (1.2) twice to see that at the jth step we get a contribution of

1

Cj
eπ(∑

j−1
i=1 Aj(i)ail)(∑

j−1
i=1 A

t
j(i)ail)/Cj .

Note that here we use the identity −(a − b)2 + (a + b)2 = 4ab.

Now we gather all the terms involving akl, including the contributions from the

original integrand and each of the k − 1 integrations previously - and it is precisely

as given in (1.3).

To prove the proposition, note that for k = 1, the final step, we are computing

∫
C
e−πC

(n)
1 ∣a1l∣

2
r

∏
i=2

1

C
(n)
i

da1l ∧ da1l,

which yields the proposition.

We can write this in a much nicer form. To do this we use the following lemma.

Let A be an n × n matrix. If S,T ⊂ {1, . . . , n},#S = #T , then AST denotes the

determinant of the minor of A obtained by removing rows S and columns T . If

S = {i}, T = {j} we denote it Aij.

Lemma 1.3.2. Let A be an n × n matrix, 1 < i < j < n.

B ∶=
⎡⎢⎢⎢⎢⎣

Aii Aij

Aji Ajj

⎤⎥⎥⎥⎥⎦

Then if A{i,j}{i,j} ≠ 0,

det(A) = det(B)/A{i,j}{i,j}.

Proof. The base case n = 2 is obvious. Suppose it is true for n − 1. It suffices to

prove the case {i, j} = {1,2}. By induction, we can write

A12 = det(
⎡⎢⎢⎢⎢⎣

A{1,2}{1,2} A{1,2}{2,3}

A{1,3}{1,2} A{1,3}{2,3}

⎤⎥⎥⎥⎥⎦
)/A{1,2,3}{1,2,3}.

We can similarly expand the other entries in B. Taking the determinant of B, one

gets

(A{1,2}{2,3}(−A{1,3}{1,3}A{2,3}{1,2} +A{1,3}{1,2}A{2,3}{1,3})
+A{1,2}{1,3}(A{1,3}{2,3}A{2,3}{1,2} −A{1,3}{1,2}A{2,3}{2,3})

+A{1,2}{1,2}(−A{1,3}{2,3}A{2,3}{1,3} +A{1,3}{1,3}A{2,3}{2,3}))/A{1,2,3}{1,2,3}.
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Each term can be re-written using the induction step. For example,

−A{1,3}{1,3}A{2,3}{1,2} +A{1,3}{1,2}A{2,3}{1,3}/A{1,2,3}{1,2,3} = A31.

Then we get

1

A{1,2,3}{1,2,3}

(A{1,2}{2,3}A31 −A{1,2}{1,3}A32 +A{1,2}{1,2}A33).

Expand the n− 2×n− 2 minors using Laplace’s formula, going across the third row.

The first term in each expansion looks like, for i = 1,2,3,

a3iA{1,2,3}{1,2,3}A3i.

Cancelling the A{1,2,3}{1,2,3}, the sum of these first terms is:

det(A) −
n

∑
i=4

(−1)i+1a3iA3i.

The rest of the expansion of Laplace’s formula contributes

1

A{1,2,3}{1,2,3}

n

∑
i=4

(−1)i+1a3i(A{1,2,3}{i,2,3}A31 −A{1,2,3}{1,i,3}A32 +A{1,2,3}{1,2,i}A33).

So it suffices to show that

A{1,2,3}{i,2,3}A31 −A{1,2,3}{1,i,3}A32 +A{1,2,3}{1,2,i}A33 −A{1,2,3}{1,2,3}A3i = 0.

In fact, this is one of the quadratic Plucker relations cutting out the complete flag

variety (see [40, pp. 277]). Let τ = {1,4, . . . , n} − {i} and σ = {2, . . . , n}. Let π be a

permutation of {1, . . . , n}. Define

π(τ) = {π(1),4, . . . , î, . . . , n},

π(σ) = {π(2), . . . , π(n)}.

Denote pS,T as the Plücker coordinate given by taking the determinant of the matrix

with rows taken from S and and columns from T . Then the relation is equivalent

to

∑
π∈Sn

sign(π)p{4,...,n},π(τ)p{1,2,4,...,n},π(σ) = 0.

This is multi-linear and alternating in the n columns of the n− 1×n matrix formed

by removing the third row of A. As these columns form at most an n−1 dimensional

space, the relation is identically zero.
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Proposition 1.3.3. Let I be the r× r identity matrix. Let E(n) ∶= nzI − [itij]. Then

r

∏
k=1

C
(n)
k = det(E(n)).

Proof. We suppress n from the notation. Denote the entries of E by eij. We prove

by induction on k (starting at r) that for i < k:

Ak(i) =
−1

∏r
j=k+1Cj

E{1,...,i−1,i+1,...,k}{1,...,k−1},

Atk(i) =
−1

∏r
j=k+1Cj

E{1,...,k−1}{1,...,i−1,i+1,...,k}.

We use this to extend the definition of Ak(i) to i = k, and prove that

Ck = −Ak(k) ∶=
1

∏r
j=k+1Cj

E{1,...,k−1}{1,...,k−1}.

If k = r this is obvious. Suppose it is true for j > k for some k ≥ 1. Note that

Ak(i) ∶= −eik +
r

∑
j=k+1

(Aj(k))tAj(i)/Cj,

Ck ∶= ekk −
r

∑
j=k+1

Aj(k)(Aj(k))t/Cj.

So the relation between Ck,Ak(k) is clear. Now by induction:

Ak(i) =
1

∏r
j=k+1C

j−k
j

(−eik
r

∏
j=k+1

Cj−k
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term A

+
r

∑
j=k+1

(E
{1,...,j−1}{1,...,k̂,...,j}E{1,...,̂i,...,j}{1,...,j−1})

∏r
s=k+1C

(s−k)
s

Cj∏r
s=j+1C

2
s

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term B

).
(1.4)

Note that ∏r
s=tCs = E{1,...,t−1}{1,...,t−1}, t > k. So in particular

r

∏
j=k+1

Cj−k
j =

r

∏
i=k+1

E{1,...,i−1}{1,...,i−1},

∏r
s=k+1C

(s−k)
s

Cj∏r
s=j+1C

2
s

=
j−1

∏
s=k+1

E{1,...,s−1}{1,...,s−1}

r

∏
s=j+2

E{1,...,s−1}{1,...,s−1}.

Consider the sum of term A and the j = r contribution of term B in (1.4). Together,
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they simplify to

r−1

∏
i=k+1

E{1,...,i−1}{1,...,i−1}(erkeir − eikerr)

= −(
r−2

∏
i=k+1

E{1,...,i−1}{1,...,i−1})E{1,...,̂i,...,r−1}{1,...,k̂,...,r−1}E{1,...,r−1}{1,...,r−1}.

(1.5)

Now consider the sum of (1.5) and the j = r−1 term in term B in (1.4): this simplifies

to

(
r−2

∏
i=k+1

E{1,...,i−1}{1,...,i−1})(E{1,...,r−2}{1,...,k̂,...,r−1}E{1,...,̂i,...,r−1}{1,...,r−2}

−E
{1,...,̂i,...,r−1}{1,...,k̂,...,r−1}E{1,...,r−2}{1,...,r−2})

The right hand factor is a determinant of the form found in the lemma for the

3 × 3 matrix obtained from E by removing rows {1, . . . , î, . . . , r − 2} and columns

{1, . . . , k̂, . . . , r − 2}. Applying the lemma we obtain:

−(
r−3

∏
i=k+1

E{1,...,i−1}{1,...,i−1})E{1,...,̂i,...,r−2}{1,...,k̂,...,r−2}E{1,...,r−3}{1,...,r−3}E{1,...,r−1}{1,...,r−1}.

We now see that we will be able to repeat this process until we have simplified to a

single term (inside the brackets of (1.4)):

−
r

∏
s=k+2

E{1,...,s−1}{1,...,s−1}E{1,...,̂i,...,k},{1,...,k−1}.

When we consider the factor, we arrive at the induction statement. The statement

for the ‘transpose’ follows from the invariance of the determinant under transpose.

This proves the proposition, as it implies that

C1 =
1

C2 . . .Cr
detE(n).

Therefore the mirror integral is

1

2rπr2 ∫k∗
[dT ](e−iT r(uT t)/z)

∞

∏
n=0

1

det(E(n))N
.

We can change variables again to remove the transpose. The infinite product looks

like a matrix version of the Zeta function. Before we can use zeta function regu-

larization, however, we have to use the Harish-Chandra formula, which allows us to
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integrate over just diagonal Hermitian matrices.

Let a1, . . . , an be the entries of a diagonal matrix A. Then the Vandermonde deter-

minant of A is

V (A) =∏
i<j

(ai − aj).

Theorem 1.3.4 (The Harish-Chandra formula). Let Φ be a conjugation invariant

function of Hermitian matrices, let U be an r× r Hermitian matrix with eigenvalues

u1, . . . , un. Let U ′ be the diagonal matrix conjugate to U . Then

∫
k∗

Φ(T )e−itr(TU)[dT ] = (−2πi)r(r−1)/2V (U ′)−1∫
Rr

Φ(D)e−itr(DY )V (D)dD,

where D is a real diagonal matrix.

Applying this to the integral we have obtained (taking U = diag(u1, . . . , ur)):

(−2πi)r(r−1)/2
2rπr2V (U) ∫

Rr
[dD]

r

∏
i=1

(e−idiui/z)
r

∏
j=1

∞

∏
n=0

1

(−idj + nz)N
V (D).

1.4 Zeta function regularization

The zeta function is

ζ(s, a) ∶=
∞

∑
n=1

(n + a)−s.

It converges for s such that Re(s) > 1, but can be extended meromorphically to the

whole plane by analytic continuation. This gives a way of making sense of infinite

sums and products where they may not converge. In particular, we can apply this

to products of the form

∞

∏
n=1

(an + b) = exp(
∞

∑
n=1

log(an + b)).

Let f(s) = a−sζ(s, b/a) = ∑∞
n=1(an + b)−s. Then

f ′(s) =
∞

∑
n=1

log(an + b)(an + b)−s,

and hence
∞

∏
n=1

(an + b) = exp(f ′(0)).
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On the other hand, as ζ(0, b/a) = −1/2 − b/a and

∂

∂s
ζ(0, b/a) = 1/2 log(2π) + log(Γ(b/a + 1)),

we also see that:

f ′(0) = ((− log(a))a−sζ(s, b/a) + a−s ∂
∂s
ζ(s, b/a))∣s=0 =

((−1/2 − b/a) log(a) + log(Γ(b/a + 1) + 1/2 log(2π).

So we conclude that

∞

∏
n=1

(an + b) ∼ a−1/2−b/aΓ(b/a + 1)(2π)1/2.

We can apply this to remove the infinite sum in the mirror integral, as

r

∏
j=1

∞

∏
n=0

1

(−idj + nz)N
∼

r

∏
j=1

((2πz)−1/2z−idj/zΓ(−idj/z))N .

Together with a change of coordinates dj → zdj, the mirror integral is

(−2πi)r(r−1)/2
2rπr2(2πz)Nr/2V (U)

zN ∫
Rr

r

∏
j=1

(ddje−i(uj+N log z)dj)Γ(−idj)N)V (D).

The integral representation for the Gamma function is

Γ(w) = ∫
∞

0
xw−1e−wdx.

Placing this in the mirror integral, we obtain

(−2πi)r(r−1)/2
2rπr2(2πz)Nr/2V (U)

zN

∫
Rr

r

∏
j=1

(ddj ∫
[0,∞)N

dxj1
xj1

⋯
dxjN
xjN

e−i(uj+N log z+∑Ni=1 log(xji))dje∑
N
i=1 xji)V (D).

This is the mirror for (PN−1)r with an extra factor of V (D). It matches precisely

with the mirror from Hori-Vafa.

There doesn’t seem to be a way to get a Laurent polynomial mirror from this integral,

unlike in the case of projective space. In Chapter 4, we suggest different methods

for finding mirrors of quiver flag varieties and their subvarieties.
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2
Four dimensional Fano quiver flag Zero

loci

In this chapter, which is based on work which appears in [33], we discuss quiver flag

varieties and certain of their subvarieties, which we call quiver flag zero loci. We

give a different construction of quiver flag varieties as subvarieties of products of

Grassmannians, and use this to prove the Abelian/non-Abelian correspondence for

quiver flag zero loci.

2.1 Quiver flag varieties

Quiver flag varieties are generalizations of Grassmannians and type A flag varieties

([18]). Like flag varieties, they are GIT quotients and fine moduli spaces. We begin

by recalling Craw’s construction. A quiver flag variety M(Q, r) is determined by a

quiver Q and a dimension vector r. The quiver Q is assumed to be finite and acyclic,

with a unique source. Let Q0 = {0,1, . . . , ρ} denote the set of vertices of Q and let

Q1 denote the set of arrows. Without loss of generality, after reordering the vertices

if necessary, we may assume that 0 ∈ Q0 is the unique source and that the number

nij of arrows from vertex i to vertex j is zero unless i < j. Write s, t ∶ Q1 → Q0 for

the source and target maps, so that an arrow a ∈ Q1 goes from s(a) to t(a). The

dimension vector r = (r0, . . . , rρ) lies in Nρ+1, and we insist that r0 = 1. M(Q, r)
is defined to be the moduli space of θ-stable representations of the quiver Q with

dimension vector r. Here θ is a fixed stability condition defined below, determined

by the dimension vector.
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2.1.1 Quiver flag varieties as GIT quotients.

Consider the vector space

Rep(Q, r) = ⊕
a∈Q1

Hom(Crs(a) ,Crt(a))

and the action of GL(r) ∶= ∏ρ
i=0 GL(ri) on Rep(Q, r) by change of basis. The

diagonal copy of GL(1) in GL(r) acts trivially, but the quotient G ∶= GL(r)/GL(1)
acts effectively; since r0 = 1, we may identify G with ∏ρ

i=1 GL(ri). The quiver flag

variety M(Q, r) is the GIT quotient Rep(Q, r)//θG, where the stability condition θ

is the character of G given by

θ(g) =
ρ

∏
i=1

det(gi), g = (g1, . . . , gρ) ∈
ρ

∏
i=1

GL(ri).

For the stability condition θ, all semistable points are stable. To identify the θ-stable

points in Rep(Q, r), set si = ∑a∈Q1,t(a)=i rs(a) and write

Rep(Q, r) =
ρ

⊕
i=1

Hom(Csi ,Cri).

Then w = (wi)ρi=1 is θ-stable if and only if wi is surjective for all i.

Example 2.1.1. Consider the quiver Q given by

1 rn

so that ρ = 1, n01 = n, and the dimension vector r = (1, r). Then Rep(Q, r) =
Hom(Cn,Cr), and the θ-stable points are surjections Cn → Cr. The group G acts

by change of basis, and therefore M(Q, r) = Gr(n, r), the Grassmannian of r-

dimensional quotients of Cn. More generally, the quiver

1 an b ... c

gives the flag of quotients Fl(n, a, b, . . . , c).

Quiver flag varieties are non-Abelian GIT quotients unless the dimension vector

r = (1,1, . . . ,1). In this case G ≅ ∏ρ
i=1 GL1(C) is Abelian, and M(Q; r) is a toric

variety. We call such M(Q, r) toric quiver flag varieties. Not all toric varieties are

toric quiver flag varieties.
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2.1.2 Quiver flag varieties as ambient spaces: Quiver flag zero loci

As mentioned in the introduction, GIT quotients have a special class of subvarieties,

sometimes called representation theoretic subvarieties. In this subsection, we discuss

these subvarieties in the specific case of quiver flag varieties.

We have expressed the quiver flag variety M(Q, r) as the geometric quotient by G of

the stable locus Rep(Q, r)s ⊂ Rep(Q, r). A representation E of G, therefore, defines

a vector bundle EG →M(Q, r) with fiber E; here EG = E×GRep(Q, r)s. In the next

chapter, we will study subvarieties of quiver flag varieties cut out by regular sections

of such bundles. If EG is globally generated, a generic section cuts out a smooth

subvariety. We refer to such subvarieties as quiver flag zero loci, and such bundles

as representation theoretic bundles. As mentioned above, quiver flag varieties can

also be considered natural ambient spaces via their moduli space construction ([18],

[19]).

The representation theory of G = ∏ρ
i=1 GL(ri) is well-understood, and we can use

this to write down the bundles EG explicitly. Irreducible polynomial representa-

tions of GL(r) are indexed by partitions (or Young diagrams) of length at most r.

The irreducible representation corresponding to a partition α is the Schur power

SαCr of the standard representation of GL(r) [22, chapter 8]. For example, if α is

the partition (k) then SαCr = SymkCr, the kth symmetric power, and if α is the

partition (1,1, . . . ,1) of length k then SαCr = ⋀kCr, the kth exterior power. Irre-

ducible polynomial representations of G are therefore indexed by tuples (α1, . . . , αρ)
of partitions, where αi has length at most ri. The tautological bundles on a quiver

flag variety are representation theoretic: if E = Cri is the standard representation

of the ith factor of G, then Wi = EG. More generally, the representation indexed

by (α1, . . . , αρ) is ⊗ρ
i=1 S

αiCri , and the corresponding vector bundle on M(Q, r) is

⊗ρ
i=1 S

αiWi.

Example 2.1.2. Consider the vector bundle Sym2W1 on Gr(8,3). By duality –

which sends a quotient C8 → V → 0 to a subspace 0→ V ∗ → (C8)∗ – this is equivalent

to considering the vector bundle Sym2 S∗1 on the Grassmannian of 3-dimensional

subspaces of (C8)∗, where S1 is the tautological sub-bundle. A generic symmetric 2-

form ω on (C8)∗ determines a regular section of Sym2 S∗1 , which vanishes at a point

V ∗ if and only if the restriction of ω to V ∗ is identically zero. So the associated

quiver flag zero locus is the orthogonal Grassmannian OGr(3,8).

2.1.3 Quiver flag varieties as moduli spaces.

To give a morphism to M(Q, r) from a scheme B is the same as to give:
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• globally generated vector bundles Wi → B, i ∈ Q0, of rank ri such that W0 =
OB; and

• morphisms Ws(a) →Wt(a), a ∈ Q1 satisfying the θ-stability condition

up to isomorphism. Thus M(Q, r) carries universal bundles Wi, i ∈ Q0. It is also

a Mori Dream Space (see Proposition 3.1 in [18]). The GIT description gives an

isomorphism between the Picard group of M(Q, r) and the character group χ(G) ≅
Zρ of G. When tensored with Q, the fact that this is a Mori Dream space (see

Lemma 4.2 in [30]) implies that this isomorphism induces an isomorphism of wall

and chamber structures given by the Mori structure (on the effective cone) and the

GIT structure (on χ(G) ⊗Q); in particular, the GIT chamber containing θ is the

ample cone of M(Q, r). The Picard group is generated by the determinant line

bundles det(Wi), i ∈ Q0.

2.1.4 Quiver flag varieties as towers of Grassmannian bundles.

Generalizing Example 2.1.1, all quiver flag varieties are towers of Grassmannian

bundles [18, Theorem 3.3]. For 0 ≤ i ≤ ρ, let Q(i) be the subquiver of Q obtained

by removing the vertices j ∈ Q0, j > i, and all arrows attached to them. Let

r(i) = (1, r1, . . . , ri), and write Yi = M(Q(i), r(i)). Denote the universal bundle

Wj → Yi by W
(i)
j . Then there are maps

M(Q, r) = Yρ → Yρ−1 → ⋯→ Y1 → Y0 = SpecC,

induced by isomorphisms Yi ≅ Gr(Fi, ri), where Fi is the locally free sheaf

Fi = ⊕
a∈Q1,t(a)=i

W
(i−1)

s(a)

of rank si on Yi−1. This makes clear that M(Q, r) is a smooth projective variety

of dimension ∑ρ
i=1 ri(si − ri), and that Wi is the pullback to Yρ of the tautological

quotient bundle over Gr(Fi, ri). Thus Wi is globally generated, and det(Wi) is nef.

Furthermore the anti-canonical line bundle of M(Q, r) is

⊗
a∈Q1

det(Wt(a))rs(a) ⊗ det(Ws(a))−rt(a) . (2.1)

In particular, M(Q, r) is Fano if si > s′i ∶= ∑a∈Q1,s(a)=i rt(a). This condition is not if

and only if.
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2.1.5 The Euler sequence

Quiver flag varieties, like both Grassmannians and toric varieties, have an Euler

sequence.

Proposition 2.1.3. Let X = M(Q, r) be a quiver flag variety, and for a ∈ Q1,

denote Wa ∶=W ∗
s(a)

⊗Wt(a). There is a short exact sequence

0→
ρ

⊕
i=1

W ∗
i ⊗Wi → ⊕

a∈Q1

Wa → TX → 0.

Proof. We proceed by induction on the Picard rank ρ of X. If ρ = 1 then this

is the usual Euler sequence for the Grassmannian. Suppose that the proposition

holds for quiver flag varieties of Picard rank ρ − 1, for ρ > 1. Then the fibration

π∶Gr(π∗Fρ, rρ)→ Yρ−1 from §2.1.4 above gives a short exact sequence

0→W ∗
ρ ⊗Wρ → π∗F∗

ρ ⊗Wρ → S∗ ⊗Wρ → 0

where S is the kernel of the projection π∗Fρ →Wρ. Note that

π∗F∗
ρ ⊗Wρ = ⊕

a∈Q1,t(a)=ρ

Wa.

Pulling back the short exact sequence from the induction hypothesis and summing

with the above, we obtain

0→
ρ

⊕
i=1

W ∗
i ⊗Wi → ⊕

a∈Q1

Wa → π∗TYρ−1 ⊕ S∗ ⊗Wρ → 0,

This shows the proposition.

If X is a quiver flag zero locus cut out of the quiver flag variety M(Q, r) by a regular

section of the representation theoretic vector bundle E then there is a short exact

sequence

0→ TX → TM(Q,r)∣X → E → 0. (2.2)

Thus TX is the K-theoretic difference of representation theoretic vector bundles.

2.2 Quiver flag varieties as subvarieties

There are three well-known constructions of flag varieties: as GIT quotients, as

homogeneous spaces, and as subvarieties of products of Grassmannians. Craw’s
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construction gives quiver flag varieties as GIT quotients. General quiver flag varieties

are not homogeneous spaces, so the second construction does not generalize. In this

section we generalize the third construction of flag varieties, exhibiting quiver flag

varieties as subvarieties of products of Grassmannians. It is this description that will

allow us to prove the Abelian/non-Abelian correspondence for quiver flag varieties.

Proposition 2.2.1. Let MQ ∶= M(Q, r) be a quiver flag variety with ρ > 1. Then

MQ is cut out of Y =∏ρ
i=1 Gr(H0(MQ,Wi), ri) by a tautological section of

E = ⊕
a∈Q1,s(a)≠0

S∗s(a) ⊗Qt(a)

where Si and Qi are the pullbacks to Y of the tautological sub-bundle and quotient

bundle on the ith factor of Y .

Proof. As vector spaces, there is an isomorphism H0(MQ,Wi) ≅ e0CQei, where CQ
is the path algebra over C of Q (Corollary 3.5, [18]). This isomorphism identifies a

basis of global sections of Wi from the set of paths from vertex 0 to i in the quiver.

Let ea ∈ CQ be the element associated to the arrow a ∈ Q1. Thus

H0(MQ,Wi) = ⊕
a∈Q1,t(a)=i,s(a)≠0

H0(MQ,Ws(a))⊕ ⊕
a∈Q1,s(a)=0,t(a)=i

Cea.

Let Fi =⊕t(a)=iQs(a). Combining the tautological surjective morphisms

H0(MQ,Ws(a))⊗OY =H0(Y,Qs(a))⊗OY → Qs(a)

gives the exact sequence

0→ ⊕
t(a)=i,s(a)≠0

Ss(a) →H0(MQ,Wi)⊗OY → Fi → 0.

Thus

(H0(MQ,Wi)∗ ⊗OY )/F ∗
i ≅ ⊕

t(a)=i,s(a)≠0

S∗s(a)

and it follows that E =⊕ρ
i=2 Hom(Q∗

i , (H0(MQ,Wi)∗ ⊗OY )/F ∗
i ).

Consider the section s of E given by the compositions

Q∗
i →H0(MQ,Wi)∗ ⊗OY → (H0(MQ,Wi)∗ ⊗OY )/F ∗

i .

The section s vanishes at quotients (V1, . . . , Vρ) if and only if V ∗
i ⊂ ⊕t(a)=i V

∗
s(a)

;

dually, the zero locus is where there is a surjection Fi → Qi for each i. We now
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identify Z(s) with M(Q, r). Since the Wi are globally generated, there is a unique

map

f ∶MQ → Y =
ρ

∏
i=1

Gr(H0(MQ,Wi), ri)

such that Qi on Y pulls back to Wi on M(Q, r). In particular, f∗(Fi) is the pullback

to MQ of the bundle π∗Fi from §2.1.4 (here π is the projection Yρ → Yρ−1). By

construction of MQ there are surjections

π∗Fi = f∗(⊕a∈Q1,t(a)=iQs(a))→Wi → 0,

so f(MQ) ⊂ Z(s).

Any varietyX with vector bundles Vi of rank ri for i = 1, . . . , ρ and mapsH0(MQ,Wi)→
Vi → 0 that factor as

H0(MQ,Wi)→ ⊕
t(a)=i

Vs(a) → Vi

has a unique map to M(Q, r) as the Vi form a flat family of θ-stable representations

of Q of dimension r. The (Qi∣Z(s))ρi=1 on Z(s) give precisely such a set of vector

bundles. The surjections H0(MQ,Wi) → Qi∣Z(s) → 0 follow from the fact that these

are restrictions of the tautological bundles on a product of Grassmannians. That

these maps factor as required is precisely the condition that s vanishes.

Let g ∶ Z(s) → MQ be the induced map. By the universal property of M(Q, r),
the composition g ○ f ∶ MQ → Z(s) → MQ must be the identity. The composition

f ○ g ∶ Z(s) → M(Q, r) → Y must be the inclusion Z(s) → Y by the universal

property of Y . Therefore Z(s) and M(Q, r) are canonically isomorphic.

Suppose that X is a quiver flag zero locus cut out of M(Q, r) by a regular section

of a representation theoretic vector bundle EG determined by a representation E.

The product of Grassmannians Y = ∏ρ
i=1 Gr(H0(Wi), ri) is a GIT quotient V ss/G

for the same group G (one can see this by constructing Y as a quiver flag variety).

Therefore E also determines a vector bundle E′
G on Y :

E′
G ∶= E × V ss/G→ Y.

We see that X is deformation equivalent to the zero locus of a generic section of the

vector bundle

F ∶= E′
G ⊕ ⊕

a∈Q1,s(a)≠0

S∗s(a) ⊗Qt(a) (2.3)

Although Y is a quiver flag variety, this is not generally an additional model of X

as a quiver flag zero locus, as the summand S∗
s(a)

⊗Qt(a) in F does not in general
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come from a representation of G. We refer to the summands of F of this form as

arrow bundles.

Remark 2.2.2. Suppose α is a non-negative Schur partition. Then [47] shows that

Sα(Qi) is globally generated on Y (using the notation as above). This implies that

Sα(Wi) is globally generated on M(Q, r).

2.3 Equivalences of quiver flag zero loci

The representation of a given variety X as a quiver flag zero locus, if it exists, is far

from unique. In this section we describe various methods of passing between different

representations of the same quiver flag zero locus. This is important in practice,

because our systematic search for four-dimensional quiver flag zero loci described in

the Appendix finds a given variety in many different representations. Furthermore,

geometric invariants of a quiver flag zero locus X can be much easier to compute

in some representations than in others. The observations in this section allow us to

compute invariants of four-dimensional Fano quiver flag zero loci using only a few

representations, where the computation is relatively cheap, rather than doing the

same computation many times and using representations where the computation is

expensive (see 3.4 for more details). However, the results of this section will be only

used in the Appendix: the rest of the chapter is independent of this section.

2.3.1 Dualising

As we saw in the previous section, a quiver flag zero locus X given by (M(Q, r),E)
can be thought of as a zero locus in a product of Grassmannians Y . Unlike general

quiver flag varieties, Grassmannians come in canonically isomorphic dual pairs:

1 rn 1 n-rn

The isomorphism interchanges the tautological quotient bundle Q with S∗, where S

is the tautological sub-bundle. One can then dualize some or none of the Grassman-

nian factors in Y , to get different models of X. Depending on the representations

in E, after dualizing, E may still be a representation theoretic vector bundle, or

the direct sum of a representation theoretic vector bundle with bundles of the form

S∗i ⊗Wj. If this is the case, one can then undo the product representation process

to obtain another model (M(Q′, r′),E′
G) of X.

Example 2.3.1. Consider X given by the quiver
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1
0

3
1

8 2
2

and bundle ∧2W2; here and below the vertex numbering is indicated in blue. Then

writing it as a product:

1
0

3
1

8

2
2

8

with bundle ∧2W2⊕S∗1 ⊗W2 (as in equation (2.3)) and dualizing the first factor, we

get

1
0

5
1

8

2
2

8

with bundle ∧2W2 ⊕W1 ⊗W2, which is a quiver flag zero locus.

2.3.2 Removing arrows

Example 2.3.2. Note that Gr(n, r) is the quiver flag zero locus given by (Gr(n +
1, r),W1). This is because the space of sections of W1 is Cn+1, where the image of the

section corresponding to v ∈ Cn+1 at the point φ∶Cn+1 → Cr in Gr(n + 1, r) is φ(v).

This section vanishes precisely when v ∈ kerφ, so we can consider its zero locus to

be Gr(Cn+1/⟨v⟩, r) ≅ Gr(n, r). The restriction of W1 to Gr(n, r) is its tautological

quotient bundle, and the restriction of S is the direct sum of the tautological sub-

bundle on Gr(n, r) with OGr(n,r).

This example generalises. Let M(Q, r) be a quiver flag variety. A choice of arrow

i → j in Q determines a canonical section of W ∗
i ⊗Wj, and the zero locus of this

section is M(Q′, r), where Q′ is the quiver obtained from Q by removing one arrow

from i→ j.

Example 2.3.3. Similarly, Gr(n, r) is the zero locus of a section of S∗, the dual

of the tautological sub-bundle, on Gr(n + 1, r + 1). The exact sequence 0 → W ∗
1 →

(Cn+1)∗ → S∗ → 0 shows that a global section of S∗ is given by a linear map ψ ∶
Cn+1 → C. The image of the section corresponding to ψ at the point s ∈ S is

ψ(s), where we evaluate ψ on s via the tautological inclusion S → Cn+1. Splitting
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Cn+1 = Cn ⊕ C and choosing ψ to be projection to the second factor shows that ψ

vanishes precisely when S ⊂ Cn, that is, precisely along Gr(n, r). The restriction of

S to Gr(n, r) is its tautological sub-bundle, and the restriction of W1 is the direct

sum of its tautological quotient bundle and OGr(n,r).

2.3.3 Grafting

Let Q be a quiver. We say that Q is graftable at i ∈ Q0 if:

• ri = 1 and 0 < i < ρ;

• if we remove all of the arrows out of i we get a disconnected quiver.

Call the quiver with all arrows out of i removed Qi. If i is graftable, we call the

grafting set of i

{j ∈ Q0 ∣ 0 and j are in different components of Qi}.

Example 2.3.4. In the quiver below, vertex 1 is not graftable.

1
0

1
1

2

2
2

If we removed the arrow from vertex 0 to vertex 2, then vertex 1 would be graftable

and the grafting set would be {2}.

Proposition 2.3.5. Let M(Q, r) be a quiver flag variety and let i be a vertex of Q

that is graftable. Let J be its grafting set. Let Q′ be the quiver obtained from Q by

replacing each arrow i→ j, where j ∈ J , by an arrow 0→ j. Then

M(Q, r) =M(Q′, r).

Proof. Define Vj ∶=W ∗
i ⊗Wj for j ∈ J , and Vj ∶=Wj otherwise.

Note that by construction of J , for j ∈ J , there is a surjective morphism

W
⊕dij
i →Wj → 0.

Here dij is the number of paths i→ j. Tensoring this sequence with W ∗
i shows that

Vj is globally generated.

Now we show that the Vj, j ∈ {0, . . . , ρ} are a θ-stable representation of Q′. It suffices
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to check that there are surjective morphisms

⊕
a∈Q′

1,t(a)=j

Vs(a) → Vj.

If j /∈ J , this is just the same surjection given by the fact that the Wi are a θ-stable

representation of Q. If j ∈ J , one must, as above, tensor the sequence from Q with

W ∗
i . The Vj then give a map M(Q, r)→M(Q′, r). Reversing this procedure shows

that this is a canonical isomorphism.

Example 2.3.6. Consider the quiver flag zero locus X given by the quiver in (a)

below, with bundle

W1 ⊗W3 ⊕W⊕2
1 ⊕ detW1.

Notice we have chosen a different labelling of the vertices for convenience. Writing

X inside a product of Grassmannians gives W1⊗W3⊕W⊕2
1 ⊕detW1 on the quiver in

(b), with arrow bundle S∗2 ⊗W1. Removing the two copies of W1 using Example 2.3.2

gives

W1 ⊗W3 ⊕ detW1

on the quiver in (c), with arrow bundle S∗2 ⊗W1. We now apply Example 2.3.3 to

remove detW1 = detS∗1 = S∗1 . As mentioned in Example 2.3.3, W1 on (c) becomes

W1 ⊕O after removing S∗1 . The arrow bundle therefore becomes

S∗2 ⊗ (W1 ⊕O) = S∗2 ⊕ S∗2 ⊗W1.

Similarly, W1⊗W3 becomes W3⊕W1⊗W3. We can remove the new S∗2 and W3 sum-

mands (reducing the Gr(8,6) factor to Gr(7,5) and the Gr(8,2) factor to Gr(7,2)
respectively). Thus, we see that X is given by W1 ⊗W3 on the quiver in (d), with

arrow bundle S∗2 ⊗W1. Dualising at vertices 1 and 2 now gives the quiver in (e),

with arrow bundle S∗1 ⊗W2 ⊕ S∗1 ⊗W3. Finally, undoing the product representation

of §2.2 exhibits X as the quiver flag variety for the quiver in (f).

(a)

1
0

6
2

8

2
3

8

5
1

(b)

1
0

5
18

6
2

8

2
3

8

(c)

1
0

5
16

6
2

8

2
3

8

29



(d)

1
0

4
15

5
2

7

2
3

7

(e)

1
0

1
15

2
2

7

2
3

7

(f)

1
0

1
1

5
2

2

2

2
3

2

2.4 The ample cone

We now discuss how to compute the ample cone of a quiver flag variety. This

is essential if one wants to search systematically for quiver flag zero loci that are

Fano. In [18], Craw gives a conjecture that would in particular solve this problem,

by relating a quiver flag variety M(Q, r) to a toric quiver flag variety. We give

a counterexample to this conjecture, and determine the ample cone of M(Q, r) in

terms of the combinatorics of the quiver: this is Theorem 2.4.14 below. Our method

also involves a toric quiver flag variety: the Abelianization of M(Q, r).

2.4.1 The multi-graded Plücker embedding

Given a quiver flag variety M(Q, r), Craw (§5 of [18], Example 2.9 in [19]) defines

a multi-graded analogue of the Plücker embedding:

p ∶M(Q, r)↪M(Q′,1) with 1 = (1, . . . ,1).

Here Q′ is the quiver with the same vertices as Q but with the number of arrows

i→ j, i < j given by

dim(Hom (det(Wi),det(Wj))/Si,j)

where Si,j is spanned by maps which factor through maps to det(Wk) with i < k < j.
This induces an isomorphism p∗ ∶ Pic(M(Q′,1))⊗R→ Pic(M(Q, r))⊗R that sends

det(W ′
i ) ↦ det(Wi). In [18], it is conjectured that this induces a surjection of Cox

rings Cox(M(Q′,1))→ Cox(M(Q, r)). This would give information about the Mori

wall and chamber structure of M(Q, r). In particular, by the proof of Theorem 2.8

of [37], a surjection of Cox rings together with an isomorphism of Picard groups

(which we have here) implies an isomorphism of effective cones.

We provide a counterexample to the conjecture. To do this, we exploit the fact

that quiver flag varieties are Mori Dream Spaces, and so the Mori wall and chamber

structure on NE1(M(Q, r)) ⊂ Pic(M(Q, r)) coincides with the GIT wall and cham-

ber structure. This gives GIT characterizations for effective divisors, ample divisors,
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nef divisors, and the walls.

Theorem 2.4.1. [21] Let X be a Mori Dream Space obtained as a GIT quotient in

which G acts on V = CN with stability condition τ ∈ χ(G) = Hom(G,C∗). Identifying

Pic(X) ≅ χ(G), we have that:

• v ∈ χ(G) is ample if V s(v) = V ss(v) = V s(τ).

• v is on a wall if V ss(v) ≠ V s(v).

• v ∈ NE1(X) if V ss ≠ ∅.

When combined with King’s characterisation [35] of the stable and semistable points

for the GIT problem defining M(Q, r), this determines the ample cone of any given

quiver flag variety. In Theorem 2.4.14 below we make this effective, characterising

the ample cone in terms of the combinatorics of Q. We can also use 2.4.1 to see a

counterexample to Conjecture 6.4 in [18].

Example 2.4.2. Consider the quiver Q and dimension vector r as in (a). The

target M(Q′,1) of the multi-graded Plücker embedding has the quiver Q′ shown in

(b).

(a)
1

0

3
1

5 2
2

2

(b)

1
0

1
1

10

1
2

45

One can see this by noting that Hom(det(W2),det(W1)) = 0, and that after taking

∧3 (respectively ∧2) the surjection O⊕5 → W1 → 0 (respectively O⊕10 → W2 → 0)

becomes

O⊕10 →W1 → 0 (respectively O⊕45 →W2 → 0).

In this case, M(Q′,1) is a product of projective spaces and so the effective cone

coincides with the nef cone, which is just the closure of the positive orthant. The

ample cone of M(Q, r) is indeed the positive orthant, as we will see later. However,

here we will find an effective character not in the nef cone. We will use King’s

characterisation (Definition 1.1 of [35]) of semi-stable points with respect to a char-

acter χ of ∏ρ
i=0Gl(ri): a representation R = (Ri)i∈Q0 is semi-stable with respect to

χ = (χi)ρi=0 if and only if

• ∑ρ
i=0 χi dimC(Ri) = 0; and

• for any subrepresentation R′ of R, ∑ρ
i=0 χi dimC(R′

i) ≥ 0.

Consider the character χ = (−1,3) of G, which we lift to a character of ∏ρ
i=0Gl(ri)

by taking χ = (−3,−1,3). We will show that there exists a representation R =
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(R0,R1,R2) which is semi-stable with respect to χ. The maps in the representa-

tion are given by a triple (A,B,C) ∈Mat(3× 5)×Mat(2× 3)×Mat(2× 3). Suppose

that

A has full rank, B =
⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎣

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎦
,

and that R′ is a subrepresentation with dimensions a, b, c. We want to show that

−3a − b + 3c ≥ 0. If a = 1 then b = 3, as otherwise the image of A is not contained in

R′
1. Similarly, this implies that c = 2. So suppose that a = 0. The maps B and C

have no common kernel, so b > 0 implies c > 0, and −b + 3c ≥ 0 as b ≤ 3. Therefore

R is a semi-stable point for χ, and as quiver flag varieties are Mori Dream Spaces,

χ is in the effective cone.

Therefore, there cannot exist a Mori embedding of M(Q, r) into M(Q′,1) because

it would induce an isomorphism of effective cones.

2.4.2 Abelianization

We consider now the toric quiver flag variety associated to a given quiver flag variety

M(Q, r) which arises from the corresponding Abelian quotient. Let T ⊂ G be the

diagonal maximal torus. Then the action of G on Rep(Q, r) induces an action

of T on Rep(Q, r), and the inclusion i ∶ χ(G) ↪ χ(T ) allows us to interpret the

special character θ as a stability condition for the action of T on Rep(Q, r). The

Abelian quotient is then Rep(Q, r)//i(θ)T . Let us see that Rep(Q, r)//θT is a toric

quiver flag variety. Let λ = (λ1, . . . , λρ) denote an element of T =∏ρ
i=1(C∗)ri , where

λj = (λj1, . . . , λjrj). Let (wa)a∈Q1 ∈ Rep(Q, r). Here wa is an rt(a) × rs(a) matrix. The

action of λ on (wa)a∈Q1 is defined by

wa(i, j)↦ λ−1s(a)iwa(i, j)λt(a)j.

Hence this is the same as the group action on the quiver Qab with vertices

Qab
0 = {vij ∶ 0 ≤ i ≤ ρ,1 ≤ j ≤ ri}

and the number of arrows between vij and vkl is the number of arrows in the original

quiver between vertices i and k. Clearly i(θ) ∈ χ(T ) is the character prescribed by

§2.1.1. Hence

Rep(Q, r)//θT =M(Qab,1).

We call Qab the Abelianized quiver.
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Example 2.4.3. Let Q be the quiver

1
0

2
1

3
2

1
3

2
4

Then Qab is

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

Martin [39] has studied the relationship between the cohomology of Abelian and

non-Abelian quotients. We state his result specialized to quiver flag varieties, then

extend this to a comparison of the ample cones. To simplify notation, denote MQ =
M(Q, r), MQab =M(Qab, (1, . . . ,1)) and V = Rep(Q, r) = Rep(Qab, (1, . . . ,1)). For

v ∈ χ(G), let V s
v (T ) denote the T -stable points of V and V s

v (G) denote the G-

stable points, dropping the subscript if it is clear from context. It is easy to see

that V s(G) ⊂ V s(T ). The Weyl group W of (G,T ) is ∏ρ
i=1 Sri , where Sri is the

symmetric group on ri letters. Let π ∶ V s(G)/T → V s(G)/G be the projection. The

Weyl group acts on the cohomology of M(Qab,1), and also on the Picard group, by

permuting the Wvi1 , . . . ,Wviri
. It is well-known (see e.g. Atiyah–Bott [4]) that

π∗ ∶H∗(V s(G)/T )W ≅H∗(MQ).

Theorem 2.4.4. [39] There is a graded surjective ring homomorphism

φ ∶H∗(MQab ,C)W →H∗(V s(G)/T,C) π∗Ð→H∗(MQ,C)

where the first map is given by the restriction V s(T )/T → V s(G)/T . The kernel is

the annihilator of e =∏ρ
i=1∏1≤j,k≤ri c1(W ∗

vij
⊗Wvik).

Remark 2.4.5. This means that any class σ ∈H∗(MQ) can be lifted (non-uniquely)

to a class σ̃ ∈H∗(MQab). Moreover, e ∩ σ̃ is uniquely determined by σ.

Corollary 2.4.6. Let E be a representation of G defining representation theoretic

bundles EG →MQ and ET →MQab . Then φ(ci(ET )) = ci(EG).
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Proof. Recall that

EG = (V s(G) ×E)/G→MQ,

ET = (V s(T ) ×E)/T →MQab .

Define

E′
G = (V s(G) ×E)/T → V s(G)/T.

Let f be the inclusion V s(G)/T → V s(T )/T . Clearly f∗(ET ) = E′
G as E′

G is just the

restriction of ET . Considering the square

E′
G = (V s(G) ×E)/T //

��

EG = (V s(G) ×E)/G

��
V s(G)/T π // V s(G)/G,

we see that π∗(EG) = E′
G. Then we have that f∗(ET ) = π∗(EG), and so in par-

ticular f∗(ci(ET )) = π∗(ci(EG)). The result now follows from Martin’s theorem

(Theorem 2.4.4).

Remark 2.4.7. Note that ET always splits as a direct sum of line bundles on

M(Qab, (1, . . . ,1)), as any representation of T splits into rank one representations.

In particular, this means that if (Q,EG) defines a quiver flag zero locus, (Qab,ET )
which is also a toric complete intersection.

The corollary shows that in degree 2, the inverse of Martin’s map is

i ∶ c1(Wi)↦
ri

∑
j=1

c1(Wvij).

In particular, using (2.1), we have that i(ωMQ
) = ωM

Qab
, where ωX is the canonical

bundle of X.

Proposition 2.4.8. Let Amp(Q), Amp(Qab) denote the ample cones of MQ and

MQab respectively. Then

i(Amp(Q)) = Amp(Qab)W .

Proof. Let α be a character for G, denoting its image under i ∶ χ(G) ↪ χ(T ) as α

as well. The image of i is W -invariant, and in fact i(χ(G)) = χ(T )W (this reflects

that W -invariant lifts of divisors are unique).

Note that V ss
α (G) ⊂ V ss

α (T ). To see this, suppose v ∈ V is semi-stable for α as

a character of G. Let λ ∶ C∗ → T be a one-parameter subgroup of T such that
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limt→0 λ(t) ⋅ v exists. By inclusion, λ is a one-parameter subgroup of G, and so

⟨α,λ⟩ ≥ 0 by semi-stability of v. Hence v ∈ V ss
α (T ). It follows that, if α ∈ NE1(MQ),

then V ss
α (G) ≠ ∅, so V ss

α (T ) ≠ ∅, and hence by Theorem 2.4.1 α ∈ NE1(MQab)W .

Ciocan-Fontanine–Kim–Sabbah use duality to construct a projection [10]

p ∶ NE1(MQab)→ NE1(MQ).

Suppose that α ∈ Amp(Q). Then for any C ∈ NE1(MQab), i(α) ⋅C = α ⋅ p(C) > 0. So

i(α) ∈ Amp(Qab)W .

Let Wall(G) ⊂ Pic(MQ) denote the union of all GIT walls given by the G action,

and similarly for Wall(T ). Recall that α ∈ Wall(G) if and only if it has a non-empty

strictly semi-stable locus. Suppose α ∈ Wall(G), with v in the strictly semi-stable

locus. That is, there exists a non-trivial λ ∶ C∗ → G such that limt→0 λ(t) ⋅ v exists

and ⟨α,λ⟩ = 0. Now we don’t necessarily have Im(λ) ⊂ T , but the image is in some

maximal torus, and hence there exists g ∈ G such that Im(λ) ⊂ g−1Tg. Consider

λ′ = gλg−1. Then λ′(C∗) ⊂ T. Since g ⋅v is in the orbit of v under G, it is semi-stable

with respect to G, and hence with respect to T . In fact, it is strictly semi-stable with

respect to T , since limt→0 λ′(t)g ⋅ v = limt→0 gλ(t) ⋅ v exists, and ⟨α,λ′⟩ = ⟨α,λ⟩ = 0.

So as a character of T , α has a non-empty strictly semi-stable locus, and we have

shown that

i(Wall(G)) ⊂ Wall(T )W .

This means that the boundary of i(Amp(Q)) has empty intersection with Amp(Qab)W .

Since both are full dimensional cones in the W invariant subspace, the inclusion

i(Amp(Q)) ⊂ Amp(Qab)W is in fact an equality.

Remark 2.4.9. Note that the proof of this proposition provides a stronger result.

The inclusion of walls in the effective chamber of Q into the walls of the effective

chamber of Qab implies that the wall-and-chamber decomposition of NE1(MQ) is

just the one restricted from NE1(MQab). Notice, however, that it can happen that

V ss
θ (G) = ∅, but V ss

θ (T ) ≠ ∅. So the Weyl invariant part of the effective cone of the

Abelianized quiver may have chambers that do not show up in the effective cone of

the non-Abelian quotient (as flag varieties demonstrate).

Example 2.4.10. Consider again the example

1
0

3
1

5 2
2

2

The Abelianization of this quiver is
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1
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1
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1
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2

2

2

2

2

Walls are generated by collections of divisors that generate cones of codimension 1.

We then intersect them with the Weyl invariant subspace, generated by (1,1,1,0,0)
and (0,0,0,1,1). In this subspace, the walls are generated by

(1,1,1,0,0), (0,0,0,1,1), (−2,−2,−2,3,3).

Combined with Example 2.4.2, this determines the wall-and-chamber structure of

the effective cone of M(Q, r). That is, it has three walls, each generated by one of

v1 ∶= (1,0), v2 ∶= (−2,3), and v3 = (0,1). There are two maximal cones generated by

(v1, v3) and (v2, v3) respectively.

2.4.3 The toric case

As a prelude to determining the ample cone of a general quiver flag variety, we first

consider the toric case. Recall that a smooth projective toric variety (or orbifold)

can be obtained as a GIT quotient of CN by a ρ-dimensional torus.

Definition 2.4.11. The GIT data for a toric variety is an ρ-dimensional torus

K with cocharacter lattice L = Hom(C∗,K), and m characters D1, . . . ,Dm ∈ L∨,

together with a stability condition w ∈ L∨ ⊗R.

These linear data give a toric variety (or Deligne–Mumford stack) as the quotient

of an open subset Uw ⊂ Cm by K, where K acts on Cm via the map K → (C∗)m

defined by the Di. Uw is defined as

{(z1, . . . , zm) ∈ Cm ∣ w ∈ Cone(Di ∶ zi ≠ 0)},

that is, its elements can have zeroes at zi, i ∈ I, only if w is in the cone generated by

Di, i /∈ I. Assume that all cones given by subsets of the divisors that contain w are

full dimensional, as is the case for toric quiver flag varieties. Then the ample cone

is the intersection of all of these.

In [20], the GIT data for a toric quiver flag variety is detailed; we present it slightly

differently. The torus is K = (C∗)ρ. Let e1, . . . , eρ be standard basis of L∨ = Zρ and
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set e0 ∶= 0. Then each a ∈ Q1 gives a weight Da = −es(a)+et(a). The stability condition

is 1 = (1,1, . . . ,1). Identify L∨ ≅ PicM(Q,1). Then Da =Wa ∶=W ∗
s(a)

⊗Wt(a).

A minimal generating set for a full dimensional cone for a toric quiver flag variety

is given by ρ linearly independent Dai , ai ∈ Q1. Therefore for each vertex i with

1 ≤ i ≤ ρ, we need an arrow ai with either s(a) = i or t(a) = i, and these arrows

should be distinct. For the positive span of these divisors to contain 1 requires that

Dai has t(ai) = i. Fix such a set S = {a1, . . . , aρ}, and denote the corresponding cone

by CS. As mentioned, the ample cone is the intersection of such cones CS. The

set S determines a path from 0 to i for each i, given by concatenating (backwards)

ai with as(ai) and so on; let us write fij = 1 if aj is in the path from 0 to i, and 0

otherwise. Then

ei =
ρ

∑
j=1

fijDaj .

This gives us a straightforward way to compute the cone CS. Let BS be the matrix

with columns given by the Dai , and let AS = B−1
S . The columns of AS are given

by the aforementioned paths: the jth column of AS is ∑ρ
i=1 fijei. If c ∈ Amp(Q),

then ASc ∈ AS(Amp(Q)) ⊂ AS(CS). Since ASDai = ei, this means that ASc is in the

positive orthant.

Proposition 2.4.12. Let M(Q,1) be a toric quiver flag variety. Let c ∈ Amp(Q),

c = (c1, . . . , cρ), be an ample class, and suppose that vertex i of the quiver Q satisfies

the following condition: for all j ∈ Q0 such that j > i, there is a path from 0 to j not

passing through i. Then ci > 0.

Proof. Choose a collection S of arrows aj ∈ Q1 such that the span of the associated

divisors Daj contains the stability condition 1, and such that the associated path

from 0 to j for any j > i does not pass through i. Then the (i, i) entry of AS is 1 and

all other entries of the ith row are zero. As ASc is in the positive orthant, ci > 0.

2.4.4 The ample cone of a quiver flag variety

First, note the following corollary of the previous section.

Corollary 2.4.13. Let M(Q, r) be a quiver flag variety, not necessarily toric. If

c = (c1, . . . , cρ) ∈ Amp(Q) and rj > 1, then cj > 0.

Proof. Consider the Abelianized quiver. For any vertex v ∈ Qab
0 , we can always

choose a path from the origin to v that does not pass through vj1: if there is an

arrow between vj1 and v, then there is an arrow between vj2 and v, so any path
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through vj1 can be rerouted through vj2. Then we obtain that the j1 entry of i(c)
is positive – but this is just cj.

Let M(Q, r) be a quiver flag variety and Qab be the associated Abelianized quiver.

Here paths are defined to be directed paths consisting of at least one arrow. A path

passes through a vertex i if either the source or the target of one of the arrows in

the path is i. For each i ∈ {1, . . . , ρ}, define

Ti ∶= {j ∈ Q0 ∣ all paths from the source to vj1 pass through vi1 in Qab}.

Note that i ∈ Ti, as every path from 0 to vi1 passes through vi1 by definition. There

are no paths from the source to the source, which is therefore not in Ti for any i. If

ri > 1 then Ti = {i}.

Theorem 2.4.14. The nef cone of M(Q, r) is given by the following inequalities.

Suppose that a = (a1, . . . , aρ) ∈ Pic(MQ). Then a is nef if and only if

∑
j∈Ti

rjaj ≥ 0 i = 1,2, . . . , ρ. (2.4)

Proof. We have already shown that the Weyl invariant part of the nef cone of MQab ∶=
M(Qab,1) is the image of the nef cone of MQ ∶=M(Q, r) under the natural map i ∶
Pic(MQ)→ Pic(MQab). Label the vertices of Qab as vij, i ∈ {0, . . . , ρ}, j ∈ {1, . . . , ri},
and write coordinates on Pic(MQab) as (bij) (with respect to the basis given by the

tautological line bundles). The inequalities defining the ample cone of MQab are

given by a choice of arrow Aij ∈ Qab
1 , t(Aij) = vij for each vij. This determines a path

Pij from 0→ vij for each vertex vij. For each vij the associated inequality is:

∑
vij∈Pkl

bkl ≥ 0. (2.5)

Suppose that a is nef. We want to show that a satisfies the inequalities (2.4). We do

this by finding a collection of arrows such that the inequality (2.5) applied to i(a)
is just the inequality (2.4).

It suffices to do this for i such that ri = 1 (as we have already shown that the

inequalities are the same in the ri > 1 case). Choose a set of arrows such that

the associated paths avoid vi1 if possible: in other words, if vi1 ∈ Pkl, then assume

k ∈ Ti. Notice that if vi1 ∈ Pkl1 , then vi1 ∈ Pkl2 . By assumption i(a) satisfies the ith

inequality associated to this collection of arrows, that is:

∑
k∈Ti

rkak = ∑
vi1∈Pkl

ak ≥ 0.
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Therefore, if C is the cone defined by (2.4), we have shown that Nef(MQ) ⊂ C.

Suppose now that a ∈ C and take a choice of arrows Akl. Write i(a) = (aij). We

prove that the inequalities (2.5) are satisfied starting at vρrρ . For ρ, the inequality

is aρrρ ≥ 0, which is certainly satisfied. Suppose the (ij + 1), (ij + 2), . . . , (ρrρ)
inequalities are satisfied. The inequality we want to establish for (ij) is

∑
vi1∈Pkl

akl = aij + ∑
k∈Ti−{i}

rl

∑
l=1

akl + Γ = ai + ∑
k∈Ti−{i}

rkak + Γ ≥ 0,

where

Γ = ∑
s(Akl)=vij ,k/∈Ti

(akl + ∑
vkl∈Pst

ast) .

This uses the fact that for k ∈ Ti, vi1 ∈ Pkl for all l, and that if k /∈ Ti, and vkl ∈ Pst,
we also have that s /∈ Ti.

As a ∈ C it suffices to show that Γ ≥ 0. By the induction hypothesis akl+∑vkl∈Pst
ast ≥

0, and therefore Γ ≥ 0. This shows that i(a) satisfies (2.5).

Example 2.4.15. The quiver flag variety given by the quiver

has ample cone defined by the inequalities

c1 + 2c2 ≥ 0, c2 ≥ 0.

Notice that vertex 1 in the previous example can be grafted (by 2.3.5) and that

the resulting quiver flag variety has ample cone given by the positive orthant. This

holds more generally.

Corollary 2.4.16. Let Q be a quiver which has no graftable vertices. Then the nef

cone is the positive orthant.

Proof. The corollary followings from noting that for i ∈ {1, . . . , ρ}, ri > 0 we have

that Ti ≠ {i} if and only if Ti is graftable.

2.4.5 Nef line bundles are globally generated

We conclude this section by proving that nef line bundles on quiver flag varieties

are globally generated. Craw [18] has shown that the nef line bundles det(Wi) on
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M(Q, r) are globally generated; they span a top-dimensional cone contained in the

nef cone (and thus all line bundles in this cone are globally generated). Nef line

bundles on toric varieties are known to be globally generated. This result for quiver

flag varieties will be important for us because in order to use the Abelian/non-

Abelian Correspondence to compute the quantum periods of quiver flag zero loci,

we need to know that the bundles involved are convex. Convexity is a difficult

condition to understand geometrically, but it is implied by global generation.

To prove the proposition, we will need the following lemma about the structure of

the Ti. The set {Ti ∶ i ∈ {1, . . . , ρ}} has a partial order given by

Ti ≤ Tj ⇔ Ti ⊂ Tj

(this order, rather than the opposite one, is chosen as it has the property that Ti ≤ Tj
implies i ≤ j).

Lemma 2.4.17. For all j, the set {Ti ≤ Tj} is a chain.

Proof. Observe that if i ∈ Tj ∩ Tk for j < k, then Tk ⊂ Tj: if all paths from 0 to i1

pass through both j1 and k1, then all paths from 0 to k1 must pass through j1. So

k ∈ Tj and hence Tk ⊂ Tj. Therefore, if Tj ≤ Ti and Tk ≤ Ti for j < k, then i ∈ Tj ∩ Tk,
and so Tj ≤ Tk. Hence {Tk ∣ Tk ≤ Tj} is totally-ordered for all j.

Proposition 2.4.18. Let L be a nef line bundle on M(Q, r). Then L is globally

generated.

Proof. Let M ∶= {Ti ∣ Ti is minimal}. By the lemma, {1, . . . , ρ} = ⊔Ti∈M Ti. Suppose

L is given by the character (a1, . . . , aρ). Write L as L = ⊗Ti∈MLTi , where each LTi
comes from a character (b1, . . . , bρ) ∈ χ(G) satisfying bj = 0 if j /∈ Ti.

L is nef if and only if all the LTi , Ti ∈ M are nef. To see this, note that for each j

the inequality

∑
k∈Tj

rkak ≥ 0

involves terms from a minimal Ti if and only if j ∈ Ti, in which case it involves only

terms from Ti. It therefore suffices to show the statement of the proposition for

each Lj. Therefore suppose that {j ∣ aj ≠ 0} ⊂ Ti for Ti minimal. If ri > 1, then

Ti = {i}, so L = det(Wi)⊗ai which is globally generated. So we further assume that

ri = 1. For k ∈ Ti, k > i, define h′(k) such that Th′(k) is the maximal element such

that Ti ≤ Th′(k) < Tk. This is well-defined because the set {Tj ∣ Tj < Tk} is a chain.

A section of L is a G-equivariant section of the trivial line bundle on Rep(Q, r),
where the action of G on the line bundle is given by the character ∏χaii . A point
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of Rep(Q, r) is given by (φa)a∈Q1 , φa ∶ Crs(a) → Crt(a) , where G acts by change of

basis. A choice of path i → j on the quiver gives an equivariant map Rep(Q, r) →
Hom(Cri ,Crj) where G acts on the image by g ⋅ φ = gjφg−1i . If ri = rj = 1, such maps

can be composed.

For j ∈ Ti, define fj as follows:

• If j = i, let fi be any homogeneous polynomial of degree di = ∑k∈Ti rkak ≥ 0 in

the maps given by paths 0 → i. Therefore fi is a section of the line bundle

given by the character χdii .

• If j > i, rj = 1, let fj be any homogeneous polynomial of degree dj = ∑k∈Tj rkak ≥
0 in the maps given by paths h′(j)→ j. Note that rh′(j) = 1 as by construction

j, h′(j) ∈ Th′(j). So fj defines a section of the line bundle given by character

χ
−dj
h(j)

χ
dj
j .

• If j > i, rj > 1, let fj be a homogeneous polynomial of degree ak ≥ 0 in the

minors of the matrix whose columns are given by the paths h′(j) → j. That

is, fj is a section of the line bundle given by character χ
−rjaj
h′(j)

χ
aj
j .

For any x ∈ Rep(Q, r) which is semi-stable, and for any j ∈ Ti, there exists an

fj as above with fj(x) ≠ 0, because j ∈ Th′(j). Fixing x, choose such fj. Define

σ ∶= ∏j∈Ti fj ∶ Rep(Q, r) → C. Then σ defines a section of the line bundle given by

character

∏
j∈Ti

χ
bj
j = χdii ⋅ ∏

j∈Ti,j≠i,rj=1

χ
−dj
h′(j)

χ
dj
j ⋅ ∏

j∈Ti,j≠i,rj>1

χ
−rjaj
h′(j)

χ
aj
j .

We need to check that bl = al for all l. This is obvious for l ∈ Ti with rl > 1. For

rl = 1,

bl = ∑
j∈Tl

rjaj − ∑
k∈Tl−{l},h′(k)=l

∑
j∈Tk

rjaj.

This simplifies to al because Tl −{l} = ⊔j∈Tl,h′(j)=lTj. Therefore σ gives a well-defined

non-vanishing section of L, so L is globally generated.

2.5 The Abelian/non-Abelian Correspondence

The main theoretical result of this thesis, Theorem 2.5.4 below, proves the Abelian/non-

Abelian Correspondence with bundles [10, Conjecture 6.1.1] for quiver flag zero loci.

This determines all genus-zero Gromov–Witten invariants, and hence the quantum

cohomology, of quiver flag varieties, as well as all genus-zero Gromov–Witten invari-

ants of quiver flag zero loci involving cohomology classes that come from the ambient
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space. In particular, it determines the quantum period (see Definition 2.5.1) of a

quiver flag varieties or quiver flag zero locus X with c1(TX) ≥ 0 .

2.5.1 A brief review of Gromov–Witten theory

We give a very brief review of Gromov–Witten theory, mainly to fix notation, See

[13, 10] for more details and references. Let Y be a smooth projective variety. Given

n ∈ Z≥0 and β ∈H2(Y ), let M0,n(Y,β) be the moduli space of genus zero stable maps

to Y of class β, and with n marked points [36]. While this space may be highly

singular and have components of different dimensions, it has a virtual fundamental

class [M0,n(Y,β)]virt of the expected dimension [8, 38]. There are natural evaluation

maps evi ∶M0,n(Y,β)→ Y taking the class of a stable map f ∶ C → Y to f(xi), where

xi ∈ C is the ith marked point. There is also a line bundle Li → M0,n(Y,β) whose

fiber at f ∶ C → Y is the cotangent space to C at xi. The first Chern class of this

line bundle is denoted ψi. Define:

⟨τa1(α1), . . . , τan(αn)⟩n,β = ∫
[M0,n(Y,β)]virt

n

∏
i=1

ev∗i (αi)ψaii (2.6)

where the integral on the right-hand side denotes cap product with the virtual

fundamental class. If ai = 0 for all i, this is called a (genus zero) Gromov–Witten

invariant and the τ notation is omitted; otherwise it is called a descendant invariant.

It is deformation invariant.

We consider a generating function for descendant invariants called the J-function.

Write qβ for the element of Q[H2(Y )] representing β ∈H2(Y ). Write N(Y ) for the

Novikov ring of Y :

N(Y ) =
⎧⎪⎪⎨⎪⎪⎩

∑
β∈NE1(Y )

cβq
β

RRRRRRRRRRR

cβ ∈ C, for each d ≥ 0 there are only finitely

many β such that ω ⋅ β ≤ d and cβ ≠ 0

⎫⎪⎪⎬⎪⎪⎭
.

Here ω is the Kähler class on Y . The J-function assigns an element of H∗(Y ) ⊗
N(Y )[[z−1]] to every element of H∗(Y ), as follows. Let φ1, . . . , φN be a homoge-

neous basis of H∗(Y ), and let φ1, . . . , φN be the Poincaré dual basis. Then the

J-function is given by

JX(τ, z) ∶= 1 + τz−1 + z−1∑
i

⟨⟨φi/(z − ψ)⟩⟩φi. (2.7)
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Here 1 is the unit class in H0(Y ), τ ∈H∗(Y ), and

⟨⟨φi/(z − ψ)⟩⟩ = ∑
β∈NE1(Y )

qβ
∞

∑
n=0

∞

∑
a=0

1

n!za+1
⟨τa(φi), τ, . . . , τ⟩n+1,β. (2.8)

The small J-function is the restriction of the J-function to H0(Y )⊕H2(Y ); closed

forms for the small J-function of toric complete intersections and toric varieties are

known [25].

Definition 2.5.1. The quantum period GY (t) is the component of J(0) along 1 ∈
H●(Y ) after the substitutions z ↦ 1, qβ ↦ t⟨−KY ,β⟩. This is a power series in t.

The quantum period satisfies an important differential equation called the quantum

differential equation.

A vector bundle E → Y is defined to be convex if for every genus 0 stable map

f ∶ C → Y , H1(C,f∗E) = 0. Globally generated vector bundles are convex. Let

X ⊂ Y be the zero locus of a generic section of a convex vector bundle E → Y and

let e denote the total Chern class, which evaluates on a vector bundle F of rank r

as

e(F ) = λr + λr−1c1(F ) +⋯ + λcr−1(F ) + cr(F ). (2.9)

The notation here indicates that one can consider e(F ) as the C∗-equivariant Euler

class of F , with respect to the canonical action of C∗ on F which is trivial on the

base of F and scales all fibers. In this interpretation, λ ∈ H●
C∗(pt) is the equiv-

ariant parameter. The twisted J-function Je,E is defined exactly as the J-function

(2.7), but replacing the virtual fundamental class which occurs there (via equa-

tions (2.8) and (2.6)) by [M0,n(Y,β)]virt ∩ e(E0,n,β), where E0,n,β is π∗(ev∗n+1(E)),
π ∶M0,n+1(Y,β) →M0,n(Y,β) is the universal curve, and evn+1 ∶M0,n+1(Y,β) → Y is

the evaluation map. E0,n,β is a vector bundle over M0,n(Y,β), because E is convex.

Functoriality for the virtual fundamental class [34] implies that

j∗Je,E(τ, z)∣λ=0 = JX(j∗τ, z)

where j ∶ X → Y is the embedding [11, Theorem 1.1]. Thus one can compute the

quantum period of X from the twisted J-function. We will use this to compute the

quantum period of Fano fourfolds which are quiver flag zero loci.

The Abelian/non-Abelian correspondence is a conjecture [10] relating the J-functions

(and more broadly, the quantum cohomology Frobenius manifolds) of GIT quotients

V //G and V //T , where T ⊂ G is the maximal torus. It also extends to considering

zero loci of representation theoretic bundles, by relating the associated twisted J-

functions. As the Abelianization V //T of a quiver flag variety V //G is a toric quiver
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flag variety, the Abelian/non-Abelian correspondence conjectures a closed form for

the J-functions of Fano quiver flag zero loci. Ciocan-Fontanine–Kim–Sabbah proved

the Abelian/non-Abelian correspondence (with bundles) when V //G is a flag mani-

fold [10]. We will build on this to prove the conjectures when V //G is a quiver flag

variety.

2.5.2 The I-Function

We give the J-function in the way usual in the literature: first, by defining a

cohomology-valued hypergeometric function called the I-function (which should be

understood as a mirror object, but we omit this perspective here), then relat-

ing the J-function to the I-function. We follow the construction given by [10]

in our special case. Let X be a quiver flag zero locus given by (Q,EG) (where

we assume EG is globally generate), and write MQ = M(Q, r) for the ambient

quiver flag variety. Let (Qab,ET ) be the associated Abelianized quiver and bun-

dle, MQab = M(Qab, (1, . . . ,1)). Assume, moreover, that ET splits into nef line

bundles; this implies that ET is convex. To define the I-function, we need to relate

the Novikov rings of MQ and MQab . Let PicQ (respectively PicQab) denote the

Picard group of MQ (respectively of MQab), and similarly for the cones of effective

curves and effective divisors. The isomorphism PicQ → (PicQab)W gives a pro-

jection p ∶ NE1(MQab) → NE1(MQ). In the bases dual to det(W1), . . . ,det(Wρ) of

PicMQ and Wij,1 ≤ i ≤ ρ,1 ≤ j ≤ ri of PicMQab , this is

p∶ (d1,1, . . . , d1,r1 , d2,1, . . . , dρ,rρ)↦ (
r1

∑
i=1

d1i, . . . ,
rρ

∑
i=1

dρi).

For β = (d1, . . . , dρ), define

ε(β) =
ρ

∑
i=1

di(ri − 1).

Then, following [10, equation 3.2.1], the induced map of Novikov rings N(MQab)→
N(MQ) sends

qβ̃ ↦ (−1)ε(β)qβ

where β = p(β̃). We write β̃ → β if and only if β̃ ∈ NE1(MQab) and p(β̃) = β.

For a representation theoretic bundle EG of rank r on MQ, let D1, . . . ,Dr ∈ Pic(Qab)
be the divisors on MQab giving the split bundle ET . Given d̃ ∈ NE1(MQab) define

IEG(d̃) =
∏r
i=1∏m≤0(Di +mz)

∏r
i=1∏m≤⟨d̃,Di⟩

(Di +mz)
.
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Notice that all but finitely many factors cancel here. If E is K-theoretically a

representation theoretic bundle, in the sense that there exists AG,BG such that

0→ AG → BG → E → 0

is an exact sequence, we define

IE(d̃) =
IBG(d̃)

IAG(d̃)

. (2.10)

Example 2.5.2. The Euler sequence from Proposition 2.1.3 shows that for the tan-

gent bundle TMQ

ITMQ(d̃) =
∏a∈Qab1

∏m≤0(Da +mz)
∏a∈Qab1

∏m≤⟨d̃,Da⟩
(Da +mz)

∏ρ
i=1∏j≠k∏m≤⟨d̃,Dij−Dik⟩

(Dij −Dik +mz)
∏ρ
i=1∏j≠k∏m≤0(Dij −Dik +mz)

.

Here Dij is the divisor corresponding to the tautological bundle Wij for vertex ij,

and Da ∶= −Ds(a) +Dt(a) is the divisor on MQab corresponding to the arrow a ∈ Qab
1 .

Example 2.5.3. If X is a quiver flag zero locus in MQ defined by the bundle EG,

then the adjunction formula (see equation (2.2)) implies that

ITX(d̃) = ITMQ(d̃)/IEG(d̃).

Define the I-function of X ⊂MQ to be

IX,MQ
(z) = ∑

d∈NE1(MQ)

∑
d̃→d

(−1)ε(d)qdITX(d̃).

∗

Note that ITX(d̃) is homogenous of degree (i(KX), d̃), so defining the grading of qd

to be (−KX , d), IX,MQ
(z) is homogeneous of degree 0. If X is Fano, we can write

ITX(d̃) as

z(ωX ,d̃)(b0 + b1z−1 + b2z−2 +⋯), bi ∈H2i(X). (2.11)

Since IX,MQ
is invariant under the action of the Weyl group on the Dij, by viewing

these as Chern roots of the tautological bundles Wi we can express it as a function

in the Chern classes of the Wi. We can therefore regard the I-function as an element

∗Note that usually the I-function is written as a function in (τ, z), just like the J-function. This
is what you obtain if you set τ = 0 (the only case we need).
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of H●(MQ,C)⊗N(MQ)⊗C[[z−1]]. If X is Fano,

IX,MQ
(z) = 1 + z−1C +O(z−2) (2.12)

where O(z−2) denotes terms of the form αzk with k ≤ −2 and C ∈ H0(MQ,C) ⊗
N(MQ); furthermore (by (2.11)) C vanishes if the Fano index of X is greater than

1.

Theorem 2.5.4. Let X be a Fano quiver flag zero locus given by (Q,EG), and let

j∶X →MQ be the embedding of X into the ambient quiver flag variety. Then

JX(0, z) = e−c/zj∗IX,MQ
(z)

where c = j∗C.

Remark 2.5.5. Via the Divisor Equation and the String Equation [46, §1.2], The-

orem 2.5.4 determines JX(τ, z) for τ ∈H0(X)⊕H2(X).

2.5.3 Proof of Theorem 2.5.4

Givental has defined [27, 15] a Lagrangian cone LX in the symplectic vector space

HX ∶= H∗(X,C) ⊗ N(X) ⊗ C((z−1)) that encodes all genus-zero Gromov–Witten

invariants of X. Note that JX(τ, z) ∈HX for all τ . The J-function has the property

that (−z)JX(τ,−z) is the unique element of LX of the form

−z + τ +O(z−1)

(see [15, §9]) and this, together with the expression (2.12) for the I-function and the

String Equation

JX(τ + c, z) = ec/zJX(τ, z)

shows that Theorem 2.5.4 follows immediately from Theorem 2.5.6 below. Theo-

rem 2.5.6 is stronger: it does not require the hypothesis that the quiver flag zero

locus X be Fano.

Theorem 2.5.6. Let X be a quiver flag zero locus given by (Q,EG), and let j∶X →
MQ be the embedding of X into the ambient quiver flag variety. Then (−z)j∗IX,MQ

(−z) ∈
LX .

Proof. Let Y =∏ρ
i=1 Gr(H0(Wi), ri). Denote by Y ab =∏ρ

i=1 P(H0(Wi))×ri the Abelian-

ization of Y . In §2.2 we constructed a vector bundle V on Y such that MQ is cut
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out of Y by a regular section of V :

V =
ρ

⊕
i=2

Qi ⊗H0(Wi)∗/F ∗
i

where Fi =⊕t(a)=iQs(a). V is globally generated and hence convex. It is not repre-

sentation theoretic, but it is K-theoretically: the sequence

0→ F ∗
i ⊗Qi →H0(Wi)∗ ⊗Qi →H0(Wi)∗ ⊗Qi/F ∗

i → 0

is exact. Let i∶MQ → Y denote the inclusion.

Both Y and MQ are GIT quotients by the same group; we can therefore canonically

identify a representation theoretic vector bundle E′
G on Y such that E′

G∣MQ
is EG.

Our quiver flag zero locus X is cut out of Y by a regular section of V ′ = V ⊕ E′
G.

Note that

ITMQ(d̃)/IV (d̃) = ITY (d̃)/IV ′(d̃).

The I-function IX,MQ
defined by considering X as a quiver flag zero locus in MQ

with the bundle EG then coincides with the pullback i∗IX,Y of the I-function defined

by considering X as a quiver flag zero locus in Y with the bundle V ′. It therefore

suffices to prove that

(−z)(i ○ j)∗IX,Y (−z) ∈ LX .

We consider a C∗-equivariant counterpart of the I-function, defined as follows. λ is

the equivariant parameter given by the action on the bundle which is trivial on the

base, as in (2.9). For a representation theoretic bundle WG on Y , let D1, . . . ,Dr be

the divisors on Y ab giving the split bundle WT , and for d̃ ∈ NE1(Y ab) set

IC
∗

WG
(d̃) = ∏r

i=1∏m≤0(λ +Di +mz)
∏r
i=1∏m≤⟨d̃,Di⟩

(λ +Di +mz)
.

We extend this definition to bundles on Y – such as V ′ – that are only K-theoretically

representation theoretic in the same way as (2.10). Let s̃i ∶= dimH0(Wi). Recalling

that

ITY (d̃) =
∏ρ
i=1∏j≠k∏m≤⟨d̃,Dij−Dik⟩

(Dij −Dik +mz)
∏ρ
i=1∏j≠k∏m≤0(Dij −Dik +mz)

∏ρ
i=1∏

ri
j=1∏m≤0(Dij +mz)s̃i

∏ρ
i=1∏

ri
j=1∏m≤⟨d̃,Dij⟩

(Dij +mz)s̃i
,

we define

IC
∗

X,Y (z) = ∑
d∈NE1(Y )

∑
d̃→d

(−1)ε(d)qdITY (d̃) /IC
∗

V ′ (d̃).
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The I-function IX,Y can be obtained by setting λ = 0 in IC
∗

X,Y . In view of [11,

Theorem 1.1], it therefore suffices to prove that

(−z)IC∗X,Y (−z) ∈ Le,V ′

where Le,V ′ is the Givental cone for the Gromov–Witten theory of Y twisted by the

total Chern class e and the bundle V ′.

If V ′ were a representation theoretic bundle, this would follow immediately from

the work of Ciocan-Fontanine–Kim–Sabbah: see the proof of Theorem 6.1.2 in [10].

In fact V ′ is only K-theoretically representation theoretic, but their argument can

be adjusted almost without change to this situation. Suppose that AG and BG are

representation theoretic vector bundles, and that

0→ AG → BG → V → 0

is exact. Then we can also consider an exact sequence

0→ AT → BT → F → 0

on the Abelianization, and define VT ∶= F. Using the notation of the proof of [10,

Theorem 6.1.2], the point is that

△(V )△ (AG) =△(BG)

Here, △(V ) is the twisting operator that appears in the Quantum Lefschetz theo-

rem [15]. We can then follow the same argument for

△(BG)/△ (AG)

After Abelianizing, we obtain △(BT )/△ (AT ) =△(F ), and conclude that

(−z)IC∗X,Y (−z) ∈ Le,V ′

as claimed. This completes the proof.
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3
The search for Fano fourfolds

In this chapter, we describe the computer search for four dimensional Fano quiver

flag zero loci with codimension at most four. Code to perform this and similar

analyses, using the computational algebra system Magma [9], is available at the

repository [1]. A database of Fano quiver flag varieties, which was produced as part

of the calculation, is available at the repository [2]. This work is joint with T. Coates

and A. Kasprzyk, and also appears in the appendices of the paper [33]. The tables

with the results of our computations can be found in Appendix A.

3.1 Classifying quiver flag varieties

The first step is to find all Fano quiver flag varieties of dimension at most 8. A non-

negative integer matrix A = [ai,j]0≤i,j≤ρ and a dimension vector r ∈ Zρ+1>0 determine

a vertex-labelled directed multi-graph: the ρ + 1 vertices are labelled by the ri, and

the adjacency matrix for the graph is A. Here, by adjacency matrix of a directed

multi-graph, we mean the ρ + 1 × ρ + 1 square matrix A = [aij] such that aij is the

number of (directed) edges from i to j. Such a graph, if it is acyclic with a unique

source, and the label of the source is 1, also determines a quiver flag variety. Two

(A, r) pairs can determine the same graph and hence the same quiver flag varieties.

Definition 3.1.1. A pair (A, r) determining a quiver flag variety is in normal form

if r is increasing and, under all permutations of the ρ+1 indices that preserve r, the

columns of A are lex minimal.

Two pairs in normal form determine the same quiver flag variety (and hence the
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same graph) if and only if they are equal.

Recall that quiver flag varieties are towers of Grassmannians (see §2.1.4), and that

the ith step in the tower is given by the relative Grassmannian Gr(Fi, ri), where Fi
is a vector bundle of rank si. Using this construction it is easy to see that if si = ri
then this quiver flag variety is equivalent to the quiver flag variety Q̃ with vertex i

removed, and one arrow k → j for every path of the form k → i → j. Therefore we

can assume that si > ri, and hence that every vertex contributes strictly positively

to the dimension of the quiver flag variety. With this constraint, there are only

finitely many quiver flag varieties with dimension at most 8, and each such has at

most 9 vertices.

The algorithm to build all quiver flag varieties with dimension at most 8 is as follows.

Start with the set S of all Grassmannians of dimension at most 8. Given an element

of S of dimension less than 8, add one extra labelled vertex and extra arrows into

this vertex, in all possible ways such that the dimension of the resulting quiver flag

variety is at most 8. Put these in normal form and include them in S. Repeat until

there are no remaining elements of S of dimension less than 8.

In this way we obtain all quiver flag varieties of dimension at most 8. We then

compute the ample cone and anti-canonical bundle for each, and discard any which

are not Fano. We find 223044 Fano quiver flag varieties of dimension at most 8;

223017 of dimension 4 ≤ d ≤ 8. Of these 50617 (respectively 50612) are non-toric

quiver flag varieties. Note that in many cases we find the same variety multiple times:

for example, in the table below, there are two quiver flag varieties of dimension 2

and Picard rank 1 given by P2 = Gr(3,1) and P2 = Gr(3,2).

ρ

d 1 2 3 4 5 6 7 8

1 1
2 2 3
3 2 8 11
4 3 17 44 48
5 2 27 118 262 231
6 4 41 264 903 1647 1202
7 2 54 498 2484 7005 10618 6541
8 4 74 872 5852 23268 54478 69574 36880

Table 3.1: The number of Fano quiver flag varieties by dimension d and Picard rank ρ

Remark 3.1.2. In our codebase we define new Magma intrinsics:
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QuiverFlagVariety(A,r),

which creates a quiver flag variety from an adjacency matrix A and dimension vector

r, and

QuiverFlagVarietyFano(id),

which creates a Fano quiver flag variety, in normal form, from its ID [1, 2]. We

assign IDs to Fano quiver flag varieties of dimension at most 8, in the range

{1 . . .223044}, by placing them in normal form and then ordering them first by

dimension, then by Picard rank, then lexicographically by dimension vector, then

lexicographically by the columns of the adjacency matrix. We also define Magma in-

trinsics NefCone(Q), MoriCone(Q), PicardLattice(Q), and CanonicalClass(Q)

that compute the nef cone, Mori cone, Picard lattice and canonical class of a quiver

flag variety Q, and an intrinsic PeriodSequence(Q,l) that computes the first l + 1

terms of the Taylor expansion of the regularised quantum period of Q. See §3.5 for

more details.

3.2 The class of vector bundles that we consider

We consider all bundles E on a given quiver flag variety that:

• are direct sums of bundles of the form

L⊗ Sα1(W1)⊗⋯⊗ Sαρ(Wρ) (3.1)

where each Sαi is a non-negative Schur power and L is a nef line bundle; and

• have rank c, where c is four less than the dimension of the ambient quiver flag

variety.

Remark 2.2.2 shows that non-negative Schur powers Sα(Wi) are globally generated,

and Proposition 2.4.18 shows that nef line bundles are globally generated. Since

the tensor product of globally generated vector bundles is globally generated, the

first condition ensures that E is globally generated. In particular, therefore, the

zero locus X of a generic section of E is smooth. The second condition ensures that

the zero locus X, if non-empty, is a fourfold. Global generation also implies that

the bundle E is convex, which allows us to compute the quantum period of X as

described in §2.5.1.
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Consider a summand as in (3.1). We can represent the partition αi as a length ri

decreasing sequence of non-negative integers, and write L = ⊗ρ
j=1(detWj)aj where

aj may be negative. Therefore each such summand is determined by a length ρ

sequence of generalised partitions : the partition (with possibly negative entries)

corresponding to index i is αi + (ai, . . . , ai).

Remark 3.2.1. In our codebase we define a new Magma intrinsic

QuiverFlagBundle(Q,[A1,...,Ak])

which creates a bundle of the above form, on the quiver flag variety Q, from a

sequence of generalised partitions (A1, . . . ,Ak).

We also define an intrinsic FirstChernClass(E) that computes the first Chern

class of such a bundle E; intrinsics Degree(E) and EulerNumber(E) that compute

the degree and Euler number∗ of the zero locus X of a generic section of E.

Finally, we define intrinsics HilbertCoefficients(E,l) and PeriodSequence(E,l)

that compute the first l + 1 terms of, respectively, the Hilbert series of X and the

Taylor expansion of the regularised quantum period of X. See §3.5.

3.3 Classifying quiver flag bundles

In this step, we describe the algorithm for determining all bundles on a given quiver

flag variety that determine a smooth four-dimensional Fano quiver flag zero locus. A

vector bundle as above is determined by a tuple (A, r, P ), where A is an adjacency

matrix, r is a dimension vector, and P = (P1, . . . , Pk) is a sequence where each Pi is

a length-ρ sequence of generalised partitions such that the jth partition in each Pi

is of length rj. Note that we regard the summands (3.1) in our vector bundles as

unordered; also, as discussed above, different pairs (A, r) can determine the same

quiver flag variety. We therefore say that a tuple (A, r, P ) is in normal form if

the pair (A, r) is in normal form, P is in lex order, and under all permutations of

the vertices preserving these conditions, the sequence P is lex minimal; we work

throughout with tuples in normal form.

Given a Fano quiver flag variety M(Q, r) of dimension 4+c, c ≤ 4, with anti-canonical

class −KQ and nef cone Nef(Q), we search for all bundles E such that

• E is a direct sum of bundles of the form (3.1);

∗This is the Euler characteristic of X as a topological space.
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• rank(E) = c;

• −KQ − c1(E) ∈ Amp(Q).

The last condition ensures that the associated quiver flag zero locus X, if non-empty,

is Fano. We proceed as follows. We first find all possible summands that can occur;

that is, all irreducible vector bundles E of the form (3.1) such that rank(E) ≤ c
and −KQ − c1(E) ∈ Amp(Q). Let Irr(Q) be the set of all such bundles. Write

Irr(Q) = Irr(Q)1 ⊔ Irr(Q)2, where Irr(Q)1 contains vector bundles of rank strictly

larger than 1, and Irr(Q)2 contains only line bundles. We then search for two

vector bundles E1, E2 such that Ei is a direct sum of bundles from Irr(Q)i and that

E = E1 ⊕E2 satisfies the conditions above.

For each x ∈ Nef(Q) such that −KQ − x is ample, we find all possible ways to write

x as

x =
l

∑
i=1

ai (3.2)

where the ai are (possibly repeated) elements of a Hilbert basis for Nef(Q). There

are only finitely many decompositions (3.2); finding them efficiently is a knapsack-

type problem that has already been solved [16]. For each c̃ ≤ c and each partition of

the ai into at most c/2 groups S1, . . . , Ss, we find all possible choices of F1, . . . , Fs ∈
Irr1 such that

c1(Fi) = ∑
j∈Si

aj rank(F1) +⋯ + rank(Fs) = c̃.

Set E1 = F1 ⊕⋯⊕Fs. Then for each y ∈ Nef(Q) such that −KQ − x − y is ample, we

again find all ways of writing

y =
m

∑
j=1

bj

as a sum of Hilbert basis elements. Each partition of the bj into c − c̃ groups gives

a choice of nef line bundles L1, . . . , Lc−c̃ ∈ Irr2(Q), and we set E2 = ⊕Lj.

Remark 3.3.1. Treating the higher rank summands Irr2 and line bundles Irr1 sep-

arately here is not logically necessary, but it makes a huge practical difference to the

speed of the search.

3.4 Classifying quiver flag zero loci

For each of the Fano quiver flag varieties Q of dimension between 4 and 8, found

in §3.1, we use the algorithm described in §3.3 to find all bundles on Q of the form
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described in §3.2. This produces 10788446 bundles. Each such bundle E determines

a quiver flag zero locus X that is either empty or a smooth Fano fourfold. We discard

any varieties that are empty or disconnected (first doing a cheap check by Remark

3.4.1 and then computing the degree), and for the remainder compute the first

fifteen terms of the Taylor expansion of the regularised quantum period of X, using

Theorem 2.5.4. For many of the quiver flag zero loci that we find, this computation

is extremely expensive (the main factor is the Picard rank of the abelianised quiver,

as this determines the size of the cohomology ring of the abelianised quiver flag

variety where the computations are done; Gröbner basis calculations that allow the

computation of products in this ring become more expensive as the size of the ring

grows). In practice, therefore, it is essential to use the equivalences described in §2.3

to replace such quiver flag zero loci by equivalent and more tractable models. The

number of equivalence classes is far smaller than the number of quiver flag zero loci

that we found, and so this replaces roughly 10 million calculations, many of which

are hard, by around half a million calculations, almost all of which are easy. In

this way we find 749 period sequences. We record these period sequences, together

with the construction, Euler number, and degree for a representative quiver flag

zero locus, in Appendix A below. 141 of the period sequences that we find are new.

Thus we find at least 141 new four-dimensional Fano manifolds†.

Remark 3.4.1. A computationally cheap sufficient condition for a quiver flag zero

locus to be empty arises as follows. If W is the tautological quotient bundle on

Gr(n, r), where 2r − 1 > n, then a generic global section of ∧2W or Sym2W has an

empty zero locus. Thus if i is a vertex in a quiver Q such that all arrows into i are

from the source, and 2ri − 1 > n0i = si, then there are no global sections of ∧2Wi or

Sym2Wi with non-empty zero locus: to see this, apply Proposition 2.2.1 to Q.

3.5 Cohomological computations for quiver flag zero loci

In this section we describe how we compute the degree, Euler characteristic, Hilbert

coefficients, and Taylor expansion of the regularised quantum period for quiver flag

varieties and quiver flag zero loci. This relies on Martin’s integration formula [39]

and Theorem 2.5.4.

Let V be a smooth projective variety with an action of G on V , let T be a maximal

torus in G, and consider the GIT quotients V //G and V //T determined by a character

of G. Let π ∶ V ss(G)/T → V //G be the projection and i ∶ V ss(G)/T → V ss(T )/T =
†To be precise: we find at least 141 four-dimensional Fano manifolds for which the regularised

quantum period was not previously known. The regularised quantum period of a Fano manifold
X is expected to completely determine X. See [16, 14] for known quantum periods.
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V //T be the inclusion. Let W be the Weyl group, and e =∏λ∈Roots(G) c1(Lλ), where

Lλ is the line bundle on V //T associated to the character λ.

Theorem 3.5.1 (Martin’s Integration Formula, [39]). For any a ∈H∗(V //G,C) and

any ã ∈H∗(V //T,C) satisfying π∗(a) = i∗(ã)

∫
V //G

a = 1

∣W ∣ ∫V //T
ã ∪ e.

If a ∈ H∗(V //G,C) and ã ∈ H∗(V //T,C) satisfy π∗(a) = i∗(ã) then we say that ã is

a lift of a.

In our case the Abelianization V //T is a smooth toric variety, and the cohomology

rings of such varieties, being Stanley–Reisner rings, are easy to work with compu-

tationally [9, 48]. For example, we can use this to compute the number of com-

ponents h0(X,OX) of a Fano quiver flag zero locus X. By Kodaira vanishing,

h0(X,OX) = χ(X), and applying the Hirzebruch–Riemann–Roch theorem gives

χ(OX) = ∫
X
ch(OX) ∪ Td(TX) = ∫

X
Td(TX). (3.3)

We need to find a lift of the Todd class of TX . Writing TX as a K-theoretic quotient of

representation theoretic bundles via the Euler sequence, as in the proof of Theorem

2.5.4, gives the lift that we seek; we then use Martin’s formula to reduce the integral

(3.3) to an integral in the cohomology ring of the Abelianization. The same approach

allows us to compute the first two terms χ(X,−KX), χ(X,−2KX) of the Hilbert

series of X as well as the degree and Euler characteristic of X. To compute the first

few Taylor coefficients of the quantum period of X, we combine this approach with

the explicit formula in Theorem 2.5.4.
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4
Future directions: Laurent polynomial

mirrors for Fano quiver flag zero loci

In the final chapter of this thesis, we discuss mirrors for the quiver flag zero loci found

in Appendix A. This is work in progress. First, we briefly describe the conjectures

relating Fano varieties and Laurent polynomials, and explain how toric degenerations

are expected to play a role. Secondly, using new coordinates on quiver flag varieties,

we provide a recipe for finding toric degenerations of quiver flag varieties modelled

on the Gonciulea–Lakshmibai toric degeneration [28]of a flag variety. In the third

section, we introduce ladder diagrams, a combinatorial picture used to describe the

toric degeneration of [28], and generalise them to Y shaped quiver flag varieties.

We give a new interpretation of ladder diagrams as quivers. Finally, even beyond

the complete intersection case, we use these constructions to find mirrors of some of

the new Fano fourfolds which are subvarieties of Y shaped quiver flag varieties. We

also present two degenerations of quiver flag varieties beyond this context. Many of

the proofs of this section are still work in progress, and so the main focus is on the

examples.

4.1 Mirror symmetry for Fano varieties

Conjecturally (see, for example [3] and [24]), n dimensional Fano varieties up to

deformation should correspond to certain Laurent polynomials in n variables up to

a type of equivalence called mutation.
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Definition 4.1.1. Let f be a Laurent polynomial in C[x±1 , . . . , x±n]. The classical

period of f , denoted πt(f) is

1

(2πi)n ∫(S1)n

1

1 − tf
dx1
x1

∧⋯ ∧ dxn
xn

.

Repeated applications of the residue theorem allows one to re-write πf(t) as∑∞
i=0 ait

i,

where ai is the constant term in the expansion of f i.

Let X be a smooth Fano variety. A Laurent polynomial f ∈ C[x±1 , . . . , x±n] is mirror

to X if the quantum period X is equal to πf(t), the classical period of f .

The class of Laurent polynomials mirror to Fano varieties is conjectured to be rigid

maximally mutable Laurent polynomials. To define this class, we first need to define

the notion of a mutation. We follow [3]. Mutations are compositions of two types

of operations - GL(n,Z) equivalences and certain birational transformations - on a

Laurent polynomial f . For the first, let A = [aij] ∈ GL(n;Z). A defines a GL(n,Z)
equivalence φ ∶ (C∗)n → (C∗)n via

(x1, . . . , xn)↦ (
n

∏
i=1

xa1ii , . . . ,
n

∏
i=1

xanii ).

This defines a new Laurent polynomial φ∗(f). For the second type of map, write

f =∑
i

Ci(x1, . . . , xn−1)xin

and suppose that Ci is divisible by h−i for a fixed Laurent polynomial h(x1, . . . , xn−1).
This defines a birational transformation φ ∶ (C∗)n ⇢ (C∗)n via

(x1, . . . , xn)↦ (x1, . . . , xn−1, hxn).

We obtain a new Laurent polynomial g by pullback where

g =∑
i

hiCi(x1, . . . , xn−1)xin.

A one-step mutation is defined to be the composition of a GL(n,Z) equivalence, a bi-

rational transformation of this type, and another GL(n,Z) equivalence. A mutation

is a composition of one-step mutations.

A polytope P ′ is defined to be a mutation of a polytope P if there exists f, f ′ such

that P ′ is the Newton polytope of f ′, P is the Newton polytope of f , and f ′ is a

mutation of f . A mutation of P is said to be compatible with a Laurent polynomial
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f if the mutation of P is induced from a mutation of f .

Definition 4.1.2. Let f be a Laurent polynomial with Newton polytope P . f is rigid

maximally mutable if there is a set of mutations S on P such that f is compatible

with all mutations in S and up to scaling, f is the only Laurent polynomial compatible

with all mutations in S.

A limited amount is known about rigid maximally mutable Laurent polynomials. In

dimension 4, a polytope may support two different such polynomials.

For Fano toric complete intersections in Fano toric varieties subject to some extra,

technical conditions (the ability to find a nef partition), there is a well understood

method of producing a Laurent polynomial mirror, called the Przyjalkowski method.

The paper [17] explains this in detail. However, it isn’t known whether this always

produces a rigid maximally mutable Laurent polynomial (but there are no known

counterexamples). One can formally follow the same method when the toric variety

and the toric complete intersection are singular: below, we show examples when

this method does not produce a rigid maximally mutable Laurent polynomial. The

correct mirror, in this case, is the rigid maximally mutable Laurent polynomial with

the same Newton polytope. There is code written by Kasprzyk to find maximally

mutable Laurent polynomials.

To understand mirrors for Fano varieties which are not toric complete intersections,

toric degenerations are one of the main tools used.

Definition 4.1.3. Let X be a smooth variety. A flat family π ∶ X→ U ⊂ C is a toric

degeneration of X if the generic fiber is X and the special fiber X0 of π is a toric

variety. We also require that the family is Q-Gorenstein.

A toric degeneration is called a small toric degeneration if in addition, X is irre-

ducible, X0 has at worst Gorenstein terminal singularities, and for any t, the map

Pic(X/U)→ Pic(Xt)

is an isomorphism.

Batyrev conjectured (see [6]) that if X is a smooth Fano variety with small toric

degeneration to some X0, then the formal mirror to X0 (produced as described

above) should be a mirror to X. Given a toric complete intersection X such that the

Przyjalkowski method produces a mirror f , [29] and [17] produce a toric degeneration

of X to the toric variety with fan the spanning fan of the Newton polytope of f .

Below, we will describe a certain toric degeneration of flag varieties, which was first

constructed by [28]. This is a small toric degeneration. If X is a Fano complete
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intersection in a flag variety, the degeneration of the ambient space degenerates X

to complete intersection in the degenerate toric variety. Applying the Przyjalkowski

method to this toric complete intersection, one can find a Laurent polynomial mirror

for X. We will discuss a generalisation of this degeneration for certain quiver flag

varieties, and use it to produce conjectural mirrors to their quiver flag zero loci,

going beyond the complete intersection case.

4.2 SAGBI basis degenerations of quiver flag varieties

4.2.1 A degeneration of a flag variety

In this section, we follow Miller and Sturmfels in [40] to present the toric degener-

ation of the flag variety from [28]. Consider the flag variety Fl(n; r1, . . . , rρ). Let

ki ∶= n − ri. The Cox ring of the flag variety is generated by the top aligned minors

of size k1, . . . , kρ of the matrix

⎡⎢⎢⎢⎢⎢⎢⎣

x11 ⋯ x1n

⋮ ⋮
xkρ1 ⋯ xkρn

⎤⎥⎥⎥⎥⎥⎥⎦

.

One can also think of these minors as sections of the determinants of the duals of

tautological sub-bundles on Fl(n; r1, . . . , rρ), and so they define the Plücker map

Fl(n; r1, . . . , rρ)→∏ρ
i=1 P

(
n
ki
)−1
. The variables can be thought of as coordinates on V ,

where V is the vector space such that V //G = Fl(n; r1, . . . , rρ).

Consider the subalgebra A ⊂ C[xij ∶ 1 ≤ i ≤ r1,1 ≤ j ≤ n] generated by these minors.

In [40], they show that the basis given by the minors is a SAGBI basis for A under

the monomial order given by the lex ordering on the xij. That is, for any f in

the algebra, the initial term of f is a monomial in the initial terms of the basis.

A SAGBI basis defines a flat degeneration of the flag variety in ∏ρ
i=1 P

(
n
ki
)−1

to the

toric subvariety defined by the monomials which are the initial terms of the basis

elements.

Example 4.2.1. Consider the flag variety Gr(4,2). Then the matrix above is

⎡⎢⎢⎢⎢⎣

x11 x12 x13 x14

x21 x22 x23 x24

⎤⎥⎥⎥⎥⎦
.

The algebra is generated by the six 2 × 2 minors of this matrix. Their initial terms

are

x11x22, x11x23, x11x24, x12x23, x12x24, x13x24.
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The toric degeneration of Gr(4,2) is the closure of the map (C∗)8 → P5 defined by

these monomials.

4.2.2 Coordinates on quiver flag varieties

The first step towards generalising this construction to quiver flag varieties is to

choose appropriate coordinates (or equivalently, appropriate line bundles). One

option would be to consider the Cox ring of the quiver flag variety. In section

4.5.2, we do this in a particular example. However, generators of the Cox ring of a

quiver flag variety are not known in general, so in practice this isn’t helpful. As an

alternative, we propose specific line bundles coming from the subvariety construction

of quiver flag varieties 2.2.1.

Let M(Q, r) be quiver flag variety. Use 2.2.1 to write M(Q, r) as a subvariety of

Y ∶=
ρ

∏
i=1

Gr(s̃i, ri), s̃i = dimH0(Wi).

The line bundles required are det(S∗i )∣M(Q,r)i = 1, . . . , ρ; det(S∗i )∣M(Q,r) has a basis

of sections given by the maximal minors of a s̃i−ri× s̃i matrix. Before writing down

the general construction, we do an example

Example 4.2.2. Consider the quiver flag variety MQ given by

This quiver flag variety can be seen as a subvariety of Y = Gr(4,2) × Gr(5,1) ×
Gr(8,1). A point of this space given by a triple (V1 ⊂ C4, V2 ⊂ C8, V3 ⊂ C5), of

dimension 2,7, and 4 respectively, is in the subvariety M(Q, r) if {0}⊕V1 ⊂ V3, V1⊕
V1 ⊂ V2. A basis of sections of the det(S∗i )∣MQ

are given by the minors of the

3 matrices below. The entries of these matrices should be seen as coordinates on

V = Mat(2 × 4) × Mat(7 × 8) × Mat(4 × 5) (so that Y is a GIT quotient of V ); the

form of the matrices comes from the conditions on the Vi cutting out MQ. The first

set of minors are the size 2 minors of

⎡⎢⎢⎢⎢⎣

x11 x12 x13 x14

x21 x22 x23 x24

⎤⎥⎥⎥⎥⎦
.
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The second set of minors are the 7 × 7 minors of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 z13 z14 z15 z16 z17 z18

z21 z22 z23 z24 z25 z26 z27 z28

z31 z32 z33 z34 z35 z36 z37 z38

x11 x12 x13 x14 0 0 0 0

x21 x22 x23 x24 0 0 0 0

0 0 0 0 x11 x12 x13 x14

0 0 0 0 x21 x22 x23 x24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the third set of minors are the 4 × 4 minors of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 y13 y14 y15

y21 y22 y23 y24 y25

0 x11 x12 x13 x14

0 x21 x22 x23 x24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The general construction proceeds exactly as in the example. That is, a point in Y

can be given as ρ vector subspaces (Vi ⊂ Cs̃i)ρi=1; this point lies in M(Q, r) iff

⊕
a∈Q1,s(a)≠0,t(a)=i

Vs(a) ⊕Cn0i ⊂ Vi.

This is by Proposition 2.2.1. Recall that n0i is the number of arrows from 0 to i.

Y is the GIT quotient of ∏ρ
i=1 Mat((s̃i − ri) × s̃i) by ∏ρ

i=1 GL(s̃i − ri) with stability

condition in the positive orthant. From the above, we can see that M(Q, r) is

the GIT quotient of the V ′ ⊂ V intersected with the stable locus. We write down

coordinates on V ′ (via the entries of the (Mi) ∈ V ′) using Proposition 2.2.1.

For each i, by definition, Mi is (s̃i−ri)× s̃i matrix. Each a ∈ Q1, t(a) = i corresponds

to rs(a) columns; this gives a partition of the columns of Mi. We can also partition

the rows where there is a subset for each a ∈ Q1, t(a) = i, s(a) ≠ 0 of size s̃s(a) − rs(a),
and one remaining subset of size si − ri as

s̃i − ∑
a∈Q1,t(a)=i,s(a)≠0

(s̃s(a) − rs(a)) − ri = si − ri.

One can see this by considering the conditions which define M(Q, r) in Y .

Then for this matrix to describe an element of V ′, the submatrix of Mi corresponding

to the rows given for a ∈ Q1, t(a) = i, s(a) ≠ 0 is 0 except for the sub-submatrix of

corresponding to the columns determined by a: this sub-submatrix is Ms(a).
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In this way we get coordinates on Y ′, and we see that the sections of det(S∗i )∣M(Q,r)

are spanned by the minors of Mi. They define an embedding M(Q, r)→∏ρ
i=1 P

(
s̃i
ri
)−1

.

If for some monomial order they are a SAGBI basis, we would obtain a toric degen-

eration of M(Q, r).

4.2.3 Toric degenerations of Y-shaped quivers

There is a class of quiver for which I conjecture that the minors defined in the

previous section form a SAGBI basis (the details of the proof are still work in

progress). We call these Y shaped quivers, and they are characterised as follows. If

{0, . . . , ρ} is a labelling of the vertices such that nij = 0 if i ≥ j, then vertex 1 can

have at most 2 arrows out of it, and all other non-source vertices can have at most

one arrow out. For any vertex i, there is at most one arrow a with t(a) = i and

s(a) ≠ 0. We can assume that for all j > 1, there is a path 1 → j, as otherwise the

associated quiver flag variety is a product of two Y-shaped quiver flag varieties. The

quiver in Example 4.2.2 is not a Y-shaped quiver because of the double arrow.

Example 4.2.3. The following is an example of a Y-shaped quiver:

By definition, there are at most 2 arrows out of vertex 1 in a Y-shaped quiver. If

there are two, call them a1 and a2, and define a partition S1 ⊔ S2 = {1, . . . , ρ} by

i ∈ S2 if i = 1 or the path from 1 → i contains a2. Essentially, we just subdivide the

two branches of the quiver.

Let Q be a Y-shaped quiver. Let (Ai)ρi=1 be the ρ matrices with coordinate entries

defined by the previous subsection for a Y-shaped quiver Q. For each i, there are

(si − ri)(s̃i) new variables appearing in Ai as the entries of si − ri rows. We use the

partition S1 ⊔S2 to define an order on these coordinates: variables introduced in Ai

take priority over variables introduced in Aj if i ∈ S2 and j ∈ S1.

More formally, denote the variables x
(i)
j,k,1 ≤ j ≤ si − ri,1 ≤ k ≤ s̃i. We now define an

order on the x
(i)
jk for all i. For a given i, we define

x
(i)
11 > x(i)

12 > ⋯ > x(i)

(si−ri)s̃i
.

62



Secondly, if i1 ∈ S1, i2 ∈ S2 then x
(i1)
jk < x(i2)

lm . If i1, i2 ∈ S2, and i2 > i1, then x
(i1)
jk < x(i2)

jk .

If i1, i2 ∈ S1, and i2 > i1, then x
(i1)
jk > x(i2)

jk .

Conjecture 4.2.4. The ki×ki minors of the Ai for all i form a SAGBI basis under

the above defined order.

To prove this, it should be possible to simply follow [40], which proves the statement

for flag varieties (which are an example of a Y shaped quiver).

4.3 Ladder diagrams for certain degenerations

In [7], the authors Batyrev, Ciocan-Fontanine, Kim, and van Straten use ladder

diagrams to give a concrete description of the toric variety to which the flag variety

degenerates. In this section, we give a new description of the degenerate toric variety

by considering the ladder diagram as a quiver. We then generalise this construction

to the degenerations of the Y-shaped quiver described in the previous section. We

then explain the importance of this description in finding mirrors to quiver flag zero

loci.

For a general definition of a ladder diagram of a flag variety, see Definition 2.1.1 in

[7]. It can also be described as follows: the ladder diagram of Gr(n, r) is an n− r× r
grid of unit squares such that the bottom left corner is at (0,0). Let O denote this

vertex. For example, the ladder diagram of Gr(5,2) is

where O is marked. The ladder diagram of Fl(n, r1, . . . , rρ) is the union of the ladder

diagrams of Gr(n, ri) for all i: for example, the ladder diagram of Fl(5,3,2,1) is

.

The authors in [7] associate to the ladder diagram another graph, and then describe

the polytope of the degeneration of the flag variety given above by paths in this

graph. Instead, we associate to the ladder diagram a quiver.

The first step is to add more vertices to the ladder diagram. For Gr(n, r), add

vertices at (i, j) for 1 ≤ j < r,1 ≤ i < n − r and at (n − r, r). So for Gr(5,2), the new
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diagram is

For a flag variety, the new diagram is again the union of the diagrams for each

Gr(n, ri), with an extra vertex at (ni−1 − ri−1, ri) for each i > 1. So the ladder

diagram for Fl(5,3,2,1) is

.

To make this a quiver, we consider paths between vertices where one is allowed to

travel up and to the right only. We call such a path primitive if it doesn’t pass

through any vertices other than its source and target. We define the ladder quiver

to be the quiver where the vertices are the vertices in the ladder diagram, and

the number of arrows between two vertices is the number of primitive paths in the

ladder diagram between them. This quiver is denoted Q = L(n, r1, . . . , rρ). This

defines a quiver flag variety M(Q,1) which is a GIT quotient V //θT. We define the

toric variety X(n, r1, . . . , rρ) to be the GIT quotient V //κT where κ is the canonical

stability condition.

For example, the quiver with dimension vector associated to Gr(5,2) is

Theorem 4.3.1. The degenerate toric variety described by [28] and in the previous

section is X(n, r1, . . . , rρ).

Proof. Sketch. In [7] they describe the rays of the fan of the Fano toric variety of

[28]. It suffices to check that the cokernel of the ray map is precisely given by the

transpose of the weight matrix of the toric variety described above, as the higher

dimensional cones are determined by the fact that the toric variety is Fano.

We now define ladder quivers for Y-shaped quivers. First, suppose Q is a Y-shaped

quiver such that there is only one arrow out of vertex 1. An example of such a

quiver is
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Build the ladder diagram almost exactly as for the flag case: it is the union of the

ladder diagrams of Gr(s̃i, ri) for i = 1, . . . , ρ; however, we truncate this diagram by

insisting that the maximum height of the diagram between x = 0 and s̃i − ri is at

most ri. We add vertices as in the flag case: at interior points and at the intersection

points (s̃i−1 − ri−1, ri) for each i > 1. The ladder diagram of the above example is

then:

.

One notices that the corresponding toric variety has the correct dimension.

We can now describe the proposed ladder diagram of a general Y shaped quiver

Q. Assume that there are exactly two arrows out of vertex 1. Recall that we have

partitioned the non-source vertices {1, . . . , ρ} = S1 ⊔ S2 according to which of the

two branches of the quiver the vertex is on, and we assume 1 ∈ S2. Consider the

subquiver of Q with vertices S1 ∪ {0,1}: this is a Y-shaped quiver for which we

know how to build a ladder diagram. Take this ladder diagram, and reflect it across

the line y = −x, and then translate it so that what was the origin is at (s̃i − ri, ri).
The ladder diagram of Q is the union of this ladder diagram with the ladder diagram

of the second subquiver with vertices S2 ∪ {0}.

Example 4.3.2. We draw the ladder diagram for

Set S1 ∶= {2}, S2 ∶= {1,3,4}. The reflected diagram of the quiver with vertices {0,1,2}
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and the ladder diagram of the quiver with vertices {0,1,3,4} are pictured below:

.

The ladder diagram for the entire quiver is

.

As in the flag case, we can define a toric variety using the ladder diagram of a Y-

shaped quiver, by interpreting the ladder diagram as a quiver (now without a unique

source). I conjecture that this ladder diagram is indeed the toric degeneration of the

quiver flag variety from the previous section. I have checked this in many examples.

The details of the proof are still a work in progress, but, roughly, this should involve

using certain globally generated line bundles (one for each i ∈ Q0) to embed the

associated toric variety of the ladder quiver into ∏ρ
i=1 P

(
s̃i
ki
)−1

, and then check that

the image is precisely that of the SAGBI basis degeneration.

There is a natural identification between the sections of the Li and initial terms

of the monomials of the ith matrix from 4.2.2. We illustrate this for the quiver

flag variety in Example 4.3.2. The matrices which give the minors “defining” the

embedding of the quiver flag variety in ∏ρ
i=1 P

(
s̃i
ki
)−1

are

A1 =
⎡⎢⎢⎢⎢⎣

x
(1)
11 x

(1)
12 x

(1)
13 x

(1)
14 x

(1)
15

x
(1)
21 x

(1)
22 x

(1)
23 x

(1)
24 x

(1)
25

⎤⎥⎥⎥⎥⎦
, A2 =

⎡⎢⎢⎢⎢⎢⎢⎣

x
(1)
11 x

(1)
12 x

(1)
13 x

(1)
14 x

(1)
15

x
(1)
21 x

(1)
22 x

(1)
23 x

(1)
24 x

(1)
25

x
(2)
11 x

(2)
12 x

(2)
13 x

(2)
14 x

(2)
15

⎤⎥⎥⎥⎥⎥⎥⎦

,

A3 =

⎡⎢⎢⎢⎢⎢⎢⎣

x
(3)
11 x

(3)
12 x

(3)
13 x

(3)
14 x

(3)
15 x

(3)
16 x

(3)
17

0 0 x
(1)
11 x

(1)
12 x

(1)
13 x

(1)
14 x

(1)
15

0 0 x
(1)
21 x

(1)
22 x

(1)
23 x

(1)
24 x

(1)
25

⎤⎥⎥⎥⎥⎥⎥⎦

,

66



A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(4)
11 x

(4)
12 x

(4)
13 x

(4)
14 x

(4)
15 x

(4)
16 x

(4)
17 x

(4)
18

x
(4)
21 x

(4)
22 x

(4)
23 x

(4)
24 x

(4)
25 x

(4)
26 x

(4)
27 x

(4)
28

x
(4)
31 x

(4)
32 x

(4)
33 x

(4)
34 x

(4)
35 x

(4)
36 x

(4)
37 x

(4)
38

x
(4)
41 x

(4)
42 x

(4)
43 x

(4)
44 x

(4)
45 x

(4)
46 x

(4)
47 x

(4)
48

0 x
(3)
11 x

(3)
12 x

(3)
13 x

(3)
14 x

(3)
15 x

(3)
16 x

(3)
17

0 0 0 x
(1)
11 x

(1)
12 x

(1)
13 x

(1)
14 x

(1)
15

0 0 0 x
(1)
21 x

(1)
22 x

(1)
23 x

(1)
24 x

(1)
25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The identification is given by labelling the ladder diagram of the quiver as follows:

x
(1)
11

x
(1)
12

x
(1)
13

x
(1)
14

x
(1)
22

x
(1)
23

x
(1)
24

x
(1)
25

x
(2)
33

x
(2)
34

x
(2)
35

x
(3)
11

x
(3)
12

x
(3)
13

x
(3)
14

x
(3)
15

x
(4)
11

x
(4)
12

x
(4)
22

x
(4)
23

x
(4)
33

x
(4)
34

x
(4)
44

x
(4)
45 .

For example, sections of L3 correspond to paths from (0,0) (the blue vertex) to

(3,4). For each such path, we identify it with the monomial which is the product

of all the variables in the path. So, for example, the path marked in red below

corresponds to x
(3)
13 x

(1)
12 x

(1)
23 , which is the initial term of the minor of A3 given by the

choice of columns 3,4,5.

.

To prove that this ladder diagram is the degeneration given by 4.2.4 would require

that this identification provides an isomorphism of between the cones defined by

the monomials corresponding to the sections of Li and the monomials of the initial

terms of the minors of Ai.
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4.4 Mirrors of quiver flag zero loci

The usefulness of ladder diagrams becomes clear when we start trying to find mirrors

of quiver flag zero loci. Let L(Q) be a ladder diagram for some Y-shaped quiver Q,

and let X be the associated toric variety (to which, at least conjecturally, M(Q, r)
degenerates). The paths in L(Q) between vertices are associated with Weil divisors

in X, by first associating them to a monomial in the Cox ring of X. One might

hope that a quiver flag zero locus in Q degenerates to a toric complete intersection

in X to which we can apply the Przyjalkowski method.

We explain how to associate to a quiver flag zero locus in a Y-shaped quiver the

weights and divisor data necessary for the Przyjalkowski method (not necessarily

admitting a nef partition). For complete intersections in flag varieties, this was first

noted in [7]. Given a flag variety Fl(n, r1, . . . , rρ) and Z a complete intersection

quiver flag zero locus, Z degenerates to a complete intersection in X(n, r1, . . . , rρ).
The line bundle det(Qi) on the flag variety corresponds to the rank one reflexive

sheaf arising from the Weil divisor corresponding to the paths from (0,0) to (ni −
ri, ri) on the ladder diagram. In [7], they prove that this path gives in fact a Cartier

divisor, and we call the associated line bundle Li. To deal with general zero loci, the

ideal situation would be to find ri line bundles (or at least rank one reflexive sheaves)

on X(n, r1, . . . , rρ) whose direct sum corresponds to Qi. If they exist, their tensor

product would equal Li. There are multiple choices of ri such rank one reflexive

sheaves on X(n, r1, . . . , rρ) whose tensor product corresponds to Li. For example,

consider the three paths in the ladder quiver of Gr(6,3):

In general, though, these are not Cartier divisors. In many examples, this works to

find mirrors of quiver flag zero loci, by using these r Weil divisors to choose Weil

divisors corresponding to Schur powers of Q. We illustrate the full method below

in an example of a quiver flag zero locus for which a Laurent polynomial mirror

previously wasn’t known.

Example 4.4.1. Consider the quiver flag zero loci on Gr(8,6) with bundles

∧5Q⊕ det(Q)⊕ det(Q).

The summand ∧5Q is a rank 6 bundle. Suppose L1, . . . , L6 are the 6 rank one reflexive
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sheaves on X(8,6) corresponding to Q (there’s only one choice here). By considering

∧5(L1 ⊕⋯⊕L6), it is clear that the six rank one reflexive sheaves corresponding to

∧5Q on X(8,6) are given by the following six paths on the ladder diagram

The ladder diagram determines a weight matrix for X(8,6):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 1 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 1 −1 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 1 −1 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The weights for the rank one reflexive sheaves are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 1

0 0 0 1 0 0 0 −1

1 1 1 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The ladder diagrams give a way of picking a nef partition for these bundles. One can

formally follow the Przyjalkowski method (see [17]) to produce a Laurent polynomial.

This Laurent polynomial is not rigid maximally mutable, but it is also does not have

the correct period sequence. There is a unique rigid maximally mutable Laurent

polynomial on the Newton polytope of this polynomial. It has the correct classical
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period, up to 10 terms. The Laurent polynomial is

xyzw + xyz + xyw + 2xy + xy/w + xzw + xz
+ xw + 2x + x/w + x/z + x/(zw) + yzw + yz + yw
+ 2y + y/w + zw + z +w + 2/w + 2/z + 2/(zw) + 1/y
+ 1/(yw) + 1/(yz) + 1/(yzw) + 1/x + 1/(xw) + 1/(xz) + 1/(xzw) + 1/(xy)
+ 1/(xyw) + 1/(xyz) + 1/(xyzw).

We can generalise the above discussion to the ladder diagrams of Y-shaped quivers,

because they are built out of the ladder diagrams of Grassmannian factors.

Example 4.4.2. Consider the quiver flag zero locus given by the quiver

with bundles W1 ⊗W2. This Fano variety has PID 115 (see the tables in Appendix

A). The paths on the ladder diagram which give the divisors suggested by the above

method is

.

Again, to find a mirror with the correct period sequence, one must find a rigid

maximally mutable Laurent polynomial supported on the resulting Newton polytope.

This is

x + yw + y + z +w + 1/x + 1/(xw) + 1/(xz) + z/(xyw) + 1/(xy) + 1/(xyw) + 1/(xyz)

Example 4.4.3. Consider the quiver flag zero locus given by the quiver flag variety

and bundle W1 ⊕W2. It corresponds to PID 20. The toric degeneration is given by

the following ladder diagram:

.
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The mirror produced is

x + y + z +w + z/y + 1/(yw) +w/x + 1/(xz).

Example 4.4.4. Consider the quiver flag zero locus with PID 232 given by the

quiver flag variety

and the quiver flag bundles det(W1)⊕W1⊗W3. The ladder diagram and paths given

by the prescribed method are

The mirror is

x + y + z +w +w/y + 1/y + 1/x + 1/(xw)
+1/(xz) + 1/(xzw) + 2/(xy) + 1/(xyw) + 1/(xyz) + 1/(xyzw) + 1/(x2zw)

+1/(x2yw) + 2/(x2yzw) + 1/(x2yzw2) + 1/(x3yzw2).

In total, of the approximately forty quiver flag zero loci I have attempted to find

mirrors for (from the tables in Appendix A), I have been successful in about thirty.

There are two sources of failures. The first source is when there is no nef partition

supporting the choice of divisors. The next example is an example of this; in this

case (but not usually), one is able to find a degeneration of the complete intersection

to a toric variety; we find the Laurent polynomial associated to this toric variety

and after taking the rigid maximally mutable Laurent polynomial on its polytope,

find a mirror.

Example 4.4.5 (PID 104). Consider the quiver flag variety obtained from the quiver

flag variety with PID 104 in the tables by grafting:
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.

The quiver flag zero locus is given by bundles W1 ⊗W4 ⊕W2 ⊗W4. The toric de-

generation is given by the product of the 3 toric varieties given by the three ladder

diagrams below:

.

Notice that there is no nef partition which will give these bundles, because there

is no choice of basis of divisors in the first ladder diagram such that all chosen

divisors are in the positive span. We instead construct a toric degeneration, using

similar ideas to that of [29]. Suppose the fan of the toric variety is in the lattice

NR. I find v1, . . . , v4 ∈ (N∨)R such that they define binomial sections of the four

rank one reflexive sheaves; the associated toric subvariety has the following Laurent

polynomial mirror, with matching period sequence.

x+ y + z +w + y/(xw)+ 1/x+ 1/(xw)+w/(xz)+ 1/(xz)+ 1/(xy)+w/(xyz)+ 1/(xyz)

In other examples, I am unable to find a mirror because the degeneration has too low

Picard rank. Consider the quiver flag variety which appeared in one of the factors

in the previous example:

with toric degeneration given by the ladder diagram

.

Notice that from the quiver flag variety, we would expect to have a class group of
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rank at least 3 (generated by two Weil divisors coming from W2 and one Cartier

divisor from W1), but the toric degeneration (which is in this case smooth: it is

PP2(O ⊕O(1) ⊕O(1))) has rank only 2. In the previous example, we are still able

to find a mirror, because the bundles only involve W2. However, in the case of PID

15, where the quiver flag variety is

and the bundles are W1 ⊗W2, this method fails to produce a mirror. The ladder

diagram is

.

Writing the degeneration of W2 to L1 ⊕ L2 and that of W1 and L3 we see that L1

and L2 are the same sheaf.

4.5 Degenerations beyond Y-shaped quivers

To find mirrors of quiver flag zero loci more generally, we need to find good degen-

erations of quiver flag varieties beyond Y shaped quivers. In the last section of this

chapter and thesis, we give two examples of such degenerations. The first example is

a SAGBI basis degeneration of the sections of the det(S∗i ) (see 4.2.2) which cannot

be represented as a ladder diagram: instead it is represented by what one might call

a bound ladder diagram. Bound quivers were used in [20] to produce certain subva-

rieties of toric quiver flag varieties. For the second example, no monomial order on

the sections of the det(S∗i ) that I could find produced a good degeneration of the

quiver flag variety. However, I produce a degeneration using the entire Cox ring.

4.5.1 A degeneration of a quiver flag variety with a double arrow

Consider the quiver flag variety MQ

.
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The coordinates on MQ given by §4.2.2 are the maximal minors of the matrices

⎡⎢⎢⎢⎢⎣

x11 x12 x13 x14

x21 x22 x23 x24

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14 0 0 0 0

x21 x22 x23 x24 0 0 0 0

0 0 0 0 x11 x12 x13 x14

0 0 0 0 x21 x22 x23 x24

z11 z12 z13 z14 z15 z16 z17 z18

z21 z22 z23 z24 z25 z26 z27 z28

z31 z32 z33 z34 z35 z36 z37 z38

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These minors define MQ as a subvariety of P5 × P6. Define a monomial ordering

induced by

z1i1 > x1i2 > z2i3 > x2i4 > z3i5

and the lex ordering within the rows. This defines a toric degeneration of MQ; the

associated Laurent polynomial has correct period sequence. One can also describe

the degeneration as a subvariety of the ladder diagram

Notice that the ladder diagram is the ladder diagram for the quiver flag variety

.

MQ is a subvariety of this quiver flag variety cut out by a section of S∗1 ⊗W2.

To describe the subvariety of the ladder diagram, recall that each arrow in the

corresponding ladder quiver determines a variable in the Cox ring of the toric variety.

We label the vertices in the ladder diagram by their Cartesian coordinates, so that

the source is at (0,0). We draw the relevant arrows on the diagram below, and label
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them in the text for further clarity.

x1 x2 x3

y1 y2

y3 y4

y5

Label three of the paths from (0,0) to (7,1) with variables x1, x2, x3 (these arrows

are marked in yellow on the above diagram). Label the arrow from from (0,1) to

(2,2) as y1 (in red), the arrow from (1,1) to (2,2) as y2 (in green), the arrow from

(0,1) to (1,1) as y3 (in blue), the arrow from (1,1) to (2,1) as y4 (in orange), and

the arrow from (2,1) to (2,2) as y5 (in violet). Then the ideal determining the toric

variety is given by the binomial relations

(x1y2y3 − y1x2, x1y3y4y5 − y1x3, x2y3y4y5 − x3y2y3).

In other words, this identifies the right most two boxes with the uppermost two

boxes.

The quiver flag zero locus X given by MQ and the bundle W⊕3
2 has period sequence

PID 29. Pulling back the divisors indicated by choosing three distinct paths from

(0,0) to (7,1) in the ladder diagram result in the following candidate Laurent poly-

nomial mirror with matching period sequence (up to ten terms) to X:

x + y + z +w +w/z + 1/(yz) + z/(xw) + 1/(xw) + 1/(xy) + 1/(xyz).

4.5.2 A Cox ring degeneration

Consider the quiver flag variety MQ given by the quiver

.

None of the monomial orders I tried on the coordinates given by §4.2.2 produced a

degeneration with a correct period sequence. Instead, one can use the entire Cox

ring (or rather, what I conjecture to be the entire Cox ring). From Proposition 2.4.8,
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we can see that the effective cone in R4 of MQ is contained in the cone generated by

ei ∶ i ∈ {1, . . . ,4}, [−1,1,1,0], [−1,1,1,0], [−1,1,0,1],
[−1,2,0,0], [−1,0,2,0], [−1,0,0,2],

as this is the Weyl invariant part of the effective cone of the abelianisation of MQ.

In fact, the last three bundles have no global sections (one can also check directly

using the GIT characterisations that they are not in the effective cone). All the

others do have sections. Write coordinates on Rep(Q, r) as

⎡⎢⎢⎢⎢⎣

x11 x12 x13 x14

x21 x22 x23 x24

⎤⎥⎥⎥⎥⎦
, [a1 a2] , [b1 b2] , [c1 c2] . (4.1)

For example, the global sections of det(W1)∗ ⊗W2 ⊗W3 (corresponding to weight

[−1,1,1,0]) are generated by

det(
⎡⎢⎢⎢⎢⎣

a1 a2

b1 b2

⎤⎥⎥⎥⎥⎦
)

The global sections of W2 are given by the 1 × 1 minors of

[a1x11 + a2x21 a1x12 + a2x22 a1x13 + a2x23 a1x14 + a2x24] .

I conjecture that the sections of all of these line bundles generate the Cox ring. If

this is the case, by [30, Proposition 2.11], these sections define a map from MQ to

the toric variety Y given with weights

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and stability condition in the positive orthant. These weights are given by the six

sections of det(W1), the single section of each of det(W1)∗⊗W2⊗W3, det(W1)∗⊗W2⊗
W4, and det(W1)∗⊗W3⊗W4, and of the four sections each of W2,W3,W4. Choosing

a monomial order of the variables given by their appearance in (4.1) produces a

degeneration of MQ in Y to the image of the monomials

x11x22, x11x23, x11x24, x12x23, x12x24, x13x24,

a1b2, a1c2, b1c2, a1x1i, b1x1i, c1x1i, i ∈ {1, . . . ,4}.

76



Using Mathematica one can find the binomial ideal defining the subvariety of the

degeneration. This subvariety is the Fano toric variety X with weights

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 1 1 1 0 1 1 0 1 0 1

0 0 0 1 2 1 0 2 2 0 1 1 0

0 0 1 0 0 1 0 0 0 1 1 0 1

0 1 0 0 1 1 0 1 0 1 1 0 1

1 0 0 0 0 1 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using these weights, one can follow the Przyjalkowski method to find a Laurent

polynomial. This Laurent polynomial is not rigid maximally mutable. However, its

Newton polytope supports a unique rigid maximally mutable Laurent polynomial: it

has the same period sequence as MQ, up to 10 terms. This is the only example I know

where the Przyjalkowski method for a toric variety (not a complete intersection) fails

to produce a maximally mutable Laurent polynomial.

The rank one reflexive sheaves corresponding to the weights

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pullback to W2, W3 and W4 on MQ by construction. However, on X, W2 and W3

pullback to the same rank one reflexive sheaves. This is similar to the situation for

PID 15 described above. As a result, this toric degeneration cannot be used to find

a mirror for the quiver flag zero locus W2 ⊕W3 ⊕W4 (PID 26), but only that of the

quiver flag zero locus given by W4.
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[26] A. B. Givental. Homological geometry I. Projective hypersurfaces. Selecta

Mathematica, 1(2):325–345, Sep 1995.

79

http://member.ipmu.jp/sergey.galkin/papers/ipmu-10-0100.pdf


[27] A. B. Givental. Symplectic geometry of Frobenius structures. In Frobenius

manifolds, Aspects Math., E36, pages 91–112. Friedr. Vieweg, Wiesbaden, 2004.

[28] N. Gonciulea and V. Lakshmibai. Degenerations of flag and Schubert varieties

to toric varieties. Transformation Groups, 1(3):215–248, 1996.

[29] A. Harder and C. F. Doran. Toric Degenerations and the Laurent polyno-

mials related to Givental’s Landau-Ginzburg models. ArXiv e-prints, 2015,

1502.02079.

[30] Y. Hu and S. Keel. Mori dream spaces and GIT. Michigan Math. J., 48(1):331–

348, 2000.

[31] H. Iritani. Quantum D-modules and equivariant Floer theory for free loop

spaces. Mathematische Zeitschrift, 252(3):577–622, Mar 2006.

[32] V. A. Iskovskih. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat., 41(3):516–

562, 717, 1977.

[33] E. Kalashnikov. Four dimensional Fano quiver flag zero loci (with an appendix

by T. Coates, E. Kalashnikov, and A. Kasprzyk). Proceedings of the Royal

Society A. To appear.

[34] B. Kim, A. Kresch, and T. Pantev. Functoriality in intersection theory and

a conjecture of Cox, Katz, and Lee. J. Pure Appl. Algebra, 179(1-2):127–136,

2003.

[35] A. D. King. Moduli of representations of finite-dimensional algebras. Quart. J.

Math. Oxford Ser. (2), 45(180):515–530, 1994.

[36] M. Kontsevich. Enumeration of rational curves via torus actions. In The moduli

space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 335–
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A
Regularized quantum periods for quiver

flag zero loci

A.0.3 The table of representatives

As described in Chapter 3, we divided the 4-dimensional quiver flag zero loci X that

we found into 749 buckets, according to the first 15 terms of the Taylor expansion

of the regularised quantum period of X. We refer to these Taylor coefficients as the

period sequence. Table 1 below gives, for each of the 749 period sequence buckets,

a representative quiver flag zero locus X as well as the degree and Euler number of

X. (In some cases we do not know that all the quiver flag zero loci in a bucket are

isomorphic, but we checked that they all have the same degree, Euler number, and

Hilbert series.) The quiver flag zero locus X is represented by the adjacency matrix

and dimension vector of its ambient quiver flag variety Y =M(Q, r), together with

the sequence of generalised partitions that determine a vector bundle E → Y such

that X is the zero locus of a generic section of E. The generalised partitions are

written as Young diagrams, with:

• ∅ representing the empty Young diagram;

• a filled Young diagram, such as , representing the dual to the vector bundle

represented by the unfilled Young diagram .

Filled Young diagrams that occur always represent line bundles.
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The entries in Table 1 give representatives of each period sequence bucket that

are chosen so as to make the computation of geometric data (the period sequence

etc.) straightforward∗. Even though the Table is constructed by considering all

four-dimensional Fano manifolds that occur as quiver flag zero loci in codimension

up to four, in all four cases there is no tractable representative as a quiver flag

zero locus of low codimension. In these cases the Table contains a representative

as a quiver flag zero locus in higher codimension; the reader who prefers models in

lower-dimensional ambient spaces should consult Table A.1.

Period ID Adjacency matrix Dimension vector Generalized partitions

73
0 1 1 3 3
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

1 2 2 2 2 (∅, , ,∅)

144
0 3 1 2 3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

1 1 2 2 2 (∅, , ,∅)

439
0 1 5
0 0 0
0 1 0

1 4 4 ( ,∅) ,( ,∅) ,( ,∅) ,( ,∅)

552
0 0 5
0 0 0
0 1 0

1 2 4 ( , ) , ( ,∅) , ( ,∅)

Table A.1: Representatives for certain Period IDs in codimension at most four

A.0.4 The table of period sequences

Table 2 records the first 8 terms of the period sequence, α0, α1, . . . , α7, for each of

the 749 period sequence buckets. It also records, where they exist, the names of

known four-dimensional Fano manifolds which have the same first fifteen terms of

the period sequence. Notation is as follows:

• Pn denotes n-dimensional complex projective space;

• Qn denotes a quadric hypersurface in Pn+1;

• FI4k is the kth four-dimensional Fano manifold of index 3, as in [14, §5];

• V 4
k is the kth four-dimensional Fano manifold of index 2 and Picard rank 1,

as in [14, §6.1];

∗They are chosen to minimize the quantity ∑ρi=0 r2i , which is a rough proxy for the complexity
of the Chow ring of the Abelianization.
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• MW4
k is the kth four-dimensional Fano manifold of index 2 and Picard rank

at least 2, as in [14, §6.2];

• BØS4
k is the kth four-dimensional toric Fano manifold, as in [14, §7];

• Strk are the Strangeway fourfolds described in [14, §8];

• CKPk is the kth four-dimensional toric complete intersection, as in [16];

• S2
k denotes the del Pezzo surface of degree k;

• V 3
k denotes the three-dimensional Fano manifold of Picard rank 1, Fano in-

dex 1, and degree k;

• B3
k denotes the three-dimensional Fano manifold of Picard rank 1, Fano in-

dex 2, and degree 8k;

• MM3
ρ–k denotes the kth entry in the Mori–Mukai list of three-dimensional Fano

manifolds of Picard rank ρ [41, 42, 43, 44, 45]. We use the ordering as in [13],

which agrees with the original papers of Mori–Mukai except when ρ = 4.

Remark A.0.1. It appears from Table 2 as if the period sequences with IDs 72 and

73 might coincide. This is not the case. The coefficients α8, α9, and α10 in these

cases are:

Period ID α8 α9 α10

72 32830 212520 1190952

73 32830 227640 1190952

Remark A.0.2. 590 of the period sequences that we find coincide with period se-

quences for toric complete intersections, at least for the first 15 terms. 579 of these

are realised by quiver flag zero loci that are also toric complete intersections. For

the remaining 11 cases – period sequences with IDs 17, 48, 73, 144, 145, 158, 191,

204, 256, 280, and 282 – there is no model as a toric complete intersection that is

also a quiver flag zero locus in codimension at most four. In four of these cases –

with IDs 17, 48, 144, and 256 – the toric complete intersection period sequence is

realised by a smooth four-dimensional toric variety.

84



Table A.2: Certain 4-dimensional Fano manifolds with Fano index 1 that arise as quiver flag zero loci

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

1 0 5

0 0
1 1 625 5

2
0 0 5

0 0 0

0 3 0

1 1 1 ( , ),( ,∅) 512 8

3 0 6

0 0
1 1 ( ) 512 6

4
0 1 5

0 0 0

0 1 0

1 1 1 ( , ) 431 9

5
0 2 3

0 0 0

0 1 0

1 1 1 513 9

6
0 1 3

0 0 0

0 2 0

1 1 1 513 9

7
0 1 2 2

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 459 12

8
0 0 2 3

0 0 0 0

0 1 0 0

0 1 1 0

1 1 1 1 ( ,∅,∅) 417 13

9
0 2 4

0 0 0

0 1 0

1 1 1 (∅, ) 486 12

10
0 3 3

0 0 1

0 0 0

1 1 1 ( , ) 432 9

Continued on next page.
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Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

11
0 1 2 2

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 405 12

12
0 1 3 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 ( , ,∅) 384 13

13
0 0 5

0 0 0

0 3 0

1 1 1 ( ,∅),( ,∅) 351 9

14
0 0 3

0 0 0

0 5 0

1 1 1 ( , ),( , ) 486 9

15
0 5 2

0 0 1

0 0 0

1 1 2 ( , ) 433 9

16
0 0 3 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 ( ,∅,∅) 401 13

17
0 3 5 2

0 0 0 1

0 0 0 0

0 0 0 0

1 1 1 2 (∅, ,∅),(∅, ,∅),(∅, , ) 406 13

18

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅,∅,∅) 322 18

19
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),( ,∅) 378 10

Continued on next page.

86



Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

20
0 0 0 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 2 (∅, ,∅),( ,∅,∅) 358 13

21
0 0 5 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 2 (∅, , ),( ,∅,∅) 347 13

22
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 330 14

23
0 0 5

0 0 0

0 3 0

1 1 1 ( , ),( , ) 297 13

24 0 5

0 0
1 2 ( ),( ) 405 6

25
0 1 4

0 0 0

0 1 0

1 2 2 ( ,∅),( ,∅) 325 10

26

0 0 0 0 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

1 1 1 1 2 (∅,∅, ,∅),(∅, ,∅,∅),( ,∅,∅,∅) 290 18

27 0 7

0 0
1 1 ( ),( ) 324 12

28
0 1 6

0 0 0

0 1 0

1 1 1 (∅, ),( , ) 292 14

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

29
0 5 4

0 0 0

0 0 0

1 1 2 ( , ),( , ) 273 9

30
0 1 1 5

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, , ),( ,∅, ) 261 17

31
0 2 5

0 0 0

0 1 0

1 1 1 ( , ),( , ) 244 16

32
0 5 5

0 0 0

0 0 0

1 1 4 ( , ) 225 5

33 0 6

0 0
1 1 ( ) 243 27

34
0 1 5

0 0 0

0 1 0

1 1 1 ( , ) 211 29

35
0 1 4

0 0 0

0 1 0

1 1 1 544 8

36
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 512 8

37
0 1 2 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 464 12

38
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅, ),( , , ) 431 11

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

39
0 1 5

0 0 0

0 1 0

1 1 1 (∅, ) 480 8

40
0 2 4

0 0 0

0 1 0

1 1 1 ( , ) 416 10

41
0 1 1 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 ( ,∅, ) 400 12

42
0 1 1 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ) 383 13

43
0 2 4

0 0 0

0 1 0

1 1 1 ( ,∅) 350 12

44
0 1 1 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 480 12

45
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( ,∅) 432 9

46
0 0 1 3

0 0 1 0

0 0 0 0

0 4 0 0

1 1 1 1 ( ,∅, ),( ,∅, ) 496 12

47
0 0 1 3

0 0 0 0

0 1 0 0

0 1 1 0

1 1 1 1 432 12

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

48
0 3 5 0

0 0 0 1

0 0 0 2

0 0 0 0

1 1 1 2 (∅,∅, ),(∅,∅, ) 433 13

49
0 2 2 2

0 0 0 0

0 0 0 1

0 0 0 0

1 1 1 1 432 12

50

0 1 1 1 2

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

1 1 1 1 1 432 16

51
0 0 2 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 400 12

52

0 0 1 1 3

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 1 1 0 0

1 1 1 1 1 ( ,∅,∅,∅) 384 16

53
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),( , , ) 378 12

54
0 1 1 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅,∅, ) 464 16

55
0 1 3 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 (∅, , ) 416 12

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

56
0 1 2 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ) 384 13

57

0 0 0 4 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, , , ),( ,∅, , ) 384 16

58

0 1 1 1 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

1 1 1 1 1 (∅, ,∅, ) 357 17

59
0 1 2 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 ( , ,∅) 336 14

60

0 0 0 4 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 357 16

61
0 0 3 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅, , ),( ,∅,∅) 336 13

62
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( ,∅) 324 12

63
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅,∅),( ,∅,∅) 336 12

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

64
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅,∅),( , , ) 303 13

65
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 270 9

66
0 0 1 3

0 0 1 0

0 0 0 0

0 4 0 0

1 1 1 1 ( ,∅, ),( ,∅,∅) 480 12

67
0 1 3 2

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 1 432 12

68
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( , ) 432 8

69
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),(∅, ,∅) 368 13

70
0 1 4

0 0 0

0 2 0

1 1 1 ( , ) 352 12

71

0 0 0 1 2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 2 1 0 0

1 1 1 1 1 448 16

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

72

0 0 0 1 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 3 1 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅,∅, ) 389 16

73

0 3 3 0 4

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

1 1 1 2 2 (∅,∅, ,∅),(∅,∅, ,∅),( ,∅,∅, ) 369 17

74
0 0 0 2

0 0 2 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),(∅, ,∅) 352 13

75
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, , ),( ,∅, ) 368 12

76
0 1 2 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 2 2 (∅, , ) 337 13

77

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 2 1 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 347 16

78

0 0 0 3 2

0 0 4 0 0

0 0 0 0 0

0 0 0 0 1

0 1 0 0 0

1 1 1 1 2 ( , ,∅,∅),( , ,∅, ),( ,∅,∅,∅) 331 17

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

79
0 0 1 4

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, , ),( ,∅, ) 335 15

80
0 0 3 3

0 0 0 0

0 1 0 0

0 2 0 0

1 1 1 1 ( ,∅,∅),( ,∅,∅) 305 13

81
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 368 12

82
0 0 3 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅, , ) 352 12

83
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 336 14

84

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, , , ),( ,∅,∅,∅) 352 16

85
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),( , , ) 346 12

86

0 0 0 2 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 2 1 1 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 310 17

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

87
0 0 2 4

0 0 0 0

0 1 0 0

0 1 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 299 15

88

0 0 1 3 3

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 1 1 0 0

1 1 1 1 1 (∅, , ,∅),( ,∅,∅,∅) 289 18

89
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 304 13

90

0 0 1 1 4

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 1 0 0

1 1 1 1 1 (∅,∅, , ),( ,∅,∅,∅) 309 18

91
0 0 3 2

0 0 0 0

0 1 0 1

0 2 0 0

1 1 1 1 ( ,∅,∅),( ,∅,∅) 273 15

92

0 0 1 1 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅, , ),( , ,∅, ) 299 17

93
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( , , ) 282 14

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

94
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅, ),( ,∅, ) 288 8

95
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 282 18

96
0 0 1 4

0 0 0 0

0 1 0 0

0 1 1 0

1 1 1 1 ( ,∅, ) 266 16

97
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅, ),( , ,∅) 249 17

98
0 1 4

0 0 0

0 2 0

1 1 1 ( ,∅) 216 16

99
0 0 1 4

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅,∅, ),( ,∅, ) 480 16

100
0 0 2 3

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, , ),( ,∅, ) 384 13

101
0 1 4

0 0 0

0 1 0

1 2 2 (∅, ),( ,∅) 352 9

102
0 0 5

0 0 0

0 1 0

1 1 2 (∅, ),(∅, ),( ,∅) 320 10

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

103

0 0 1 1 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 3 0 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅,∅, ) 362 17

104

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 3 3 0 1

0 0 0 0 0

1 1 1 1 2 (∅, , , ),( ,∅, , ) 305 18

105
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),( , , ) 352 16

106
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅, , ),( ,∅,∅) 304 14

107

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 1 0

1 1 1 1 1 (∅, , , ),( ,∅, , ) 304 17

108

0 0 1 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 1 0 0

1 1 1 1 1 (∅, , ,∅),( ,∅,∅,∅) 283 18

109
0 0 5

0 0 0

0 1 0

1 1 2 (∅, ),(∅, ),(∅, ) 272 8

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

110
0 0 0 2

0 0 1 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, , ),( , , ) 256 17

111
0 1 6

0 0 0

0 1 0

1 1 1 (∅, ),(∅, ) 320 0

112
0 2 5

0 0 0

0 1 0

1 1 1 (∅, ),( , ) 304 12

113
0 3 4

0 0 0

0 1 0

1 1 1 ( , ),( , ) 272 15

114
0 1 1 5

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),(∅, , ) 282 16

115
0 1 4

0 0 0

0 1 0

1 1 2 ( , ) 272 10

116
0 0 1 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 2 2 (∅, ,∅),(∅, ,∅),( ,∅,∅) 257 15

117
0 1 4 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 (∅, , ),( , ,∅) 256 18

118
0 0 0 3

0 0 1 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),(∅, ,∅) 256 15

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

119
0 2 5

0 0 0

0 1 0

1 1 1 (∅, ),( ,∅) 260 16

120
0 1 2 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ),(∅, , ) 229 19

121
0 1 2 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, ,∅),( ,∅, ) 230 20

122
0 1 2 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, , ),( , ,∅) 213 19

123
0 3 4

0 0 0

0 1 0

1 1 1 ( , ),( ,∅) 196 16

124
0 5 4

0 0 0

0 0 0

1 1 2 ( ,∅),( , ),( , ) 240 13

125
0 0 0 4

0 0 0 0

0 0 0 0

0 1 2 0

1 1 1 2 (∅, ,∅),(∅, ,∅),(∅, ,∅),( ,∅,∅) 211 15

126
0 1 4

0 0 0

0 1 0

1 1 2 (∅, ),( , ) 224 13

127
0 1 5

0 0 0

0 1 0

1 1 1 (∅, ) 240 -12

Continued on next page.
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Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

128
0 2 4

0 0 0

0 1 0

1 1 1 ( , ) 224 20

129
0 1 1 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ) 202 24

130
0 1 1 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 ( , , ) 180 32

131
0 2 4

0 0 0

0 1 0

1 1 1 ( , ) 163 31

132
0 0 4

0 0 0

0 6 0

1 1 1 ( , ),( ,∅),( ,∅),( ,∅) 192 18

133
0 1 1 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 464 12

134
0 1 2 3

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 1 448 12

135

0 0 0 0 2

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 3 1 2 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 384 16

136
0 5 4

0 0 0

0 0 0

1 1 2 (∅, ),( ,∅),( , ) 384 8
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137
0 3 3

0 0 1

0 0 0

1 1 1 (∅, ) 352 10

138
0 1 2 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, ,∅) 320 16

139
0 0 4

0 0 0

0 4 0

1 1 1 ( ,∅),( ,∅) 320 12

140
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( , ) 432 12

141
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( ,∅,∅) 400 12

142
0 3 3

0 0 1

0 0 0

1 1 2 (∅, ),(∅, ) 352 10

143

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅,∅, ),( , ,∅, ) 400 16

144

0 3 3 2 4

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 1 1 2 2 (∅,∅, , ),( ,∅,∅, ) 369 17
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145
0 1 0 4

0 0 1 0

0 0 0 0

0 1 1 0

1 1 2 2 (∅, ,∅),(∅, ,∅) 353 14

146

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅,∅, ),( ,∅, , ) 368 16

147

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 3 2 1 0

1 1 1 1 1 (∅, ,∅, ),(∅, ,∅,∅) 367 15

148

0 0 3 1 1

0 0 0 0 0

0 0 0 1 1

0 1 0 0 0

0 1 0 0 0

1 1 1 1 1 ( ,∅,∅,∅) 351 15

149
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 352 13

150

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅,∅,∅) 352 16

151

0 0 0 3 1

0 0 1 0 0

0 0 0 0 0

0 0 1 0 1

0 3 0 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅,∅, ) 331 17
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152
0 0 3 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 326 16

153
0 1 3 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 ( ,∅, ) 319 13

154
0 0 0 4

0 0 4 0

0 0 0 0

0 1 0 0

1 1 1 2 ( , , ),(∅,∅, ),( ,∅,∅) 320 12

155

0 0 0 0 0 2

0 0 0 0 0 0

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2 3 1 2 0

1 1 1 1 1 1 (∅,∅,∅, , ),(∅,∅,∅, ,∅),( ,∅, ,∅, ) 310 21

156

0 1 1 1 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 1 0 0

1 1 1 1 1 ( ,∅, ,∅) 303 17

157
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 304 16

158
0 1 5

0 0 0

0 1 0

1 2 2 ( , ) 274 16

159
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 288 15
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160
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( ,∅, ) 256 12

161
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( ,∅, ) 416 16

162

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 384 16

163
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( , , ) 378 15

164
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅,∅, ),( , , ) 368 12

165
0 0 0 3

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 336 12

166
0 0 1 3

0 0 1 0

0 0 0 0

0 4 0 0

1 1 1 1 ( ,∅, ),( , , ) 335 13

167
0 2 3

0 0 0

0 2 0

1 1 1 ( ,∅) 272 16
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168

0 0 0 4 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 2

0 2 2 0 0

1 1 1 1 1 (∅,∅,∅, ),( ,∅, , ) 352 16

169

0 0 0 1 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 335 16

170

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 3 1 1 0

1 1 1 1 1 (∅,∅,∅, ),( , ,∅, ) 336 16

171

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),( , ,∅, ) 320 17

172

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),( ,∅,∅,∅) 314 16

173
0 3 1 2

0 0 0 1

0 0 0 0

0 0 1 0

1 1 2 2 (∅, ,∅),(∅, ,∅) 298 13

174

0 0 0 1 2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 3 2 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 309 19

Continued on next page.

105



Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

175
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),( , , ) 288 15

176
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅,∅, ),( , , ) 304 14

177

0 0 1 1 1 2

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0

0 2 1 0 0 0

1 1 1 1 1 1 ( ,∅, ,∅, ) 325 20

178
0 0 4 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, ,∅),(∅, ,∅),( , ,∅) 304 12

179

0 0 3 1 3

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 1 0 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅,∅,∅) 304 16

180

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 304 17

181
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅,∅, ),(∅, , ) 304 16
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182
0 0 5 2

0 0 0 0

0 3 0 1

0 0 0 0

1 1 1 2 (∅, , ),( , , ) 273 15

183

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅,∅,∅) 293 16

184
0 0 3 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 ( ,∅, ) 272 13

185

0 0 0 1 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 3 1 1 0

1 1 1 1 1 ( ,∅,∅, ),( , ,∅, ) 277 17

186
0 0 3 3

0 0 0 0

0 1 0 1

0 1 0 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 252 16

187

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 3 1 1 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅,∅,∅) 277 17

188
0 0 4 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, ,∅),(∅, ,∅),(∅, , ) 272 12
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189

0 0 0 1 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 3 1 1 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 262 19

190
0 0 3 3

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 2 (∅,∅, ),(∅,∅, ),( ,∅,∅) 256 14

191
0 3 3 1

0 0 0 1

0 0 0 1

0 0 0 0

1 1 1 2 (∅,∅, ),(∅,∅, ) 241 17

192

0 0 0 0 3

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 3 1 1 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅) 256 18

193
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, ,∅),( ,∅,∅),( , , ) 256 14

194

0 0 1 2 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅, ,∅),( , ,∅, ) 252 22

195
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),(∅, ) 288 10

196
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),(∅, ,∅) 304 12
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197
0 1 3 1

0 0 0 0

0 0 0 2

0 1 0 0

1 1 1 1 ( ,∅, ) 255 19

198

0 0 1 1 4

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 1 0 0

1 1 1 1 1 (∅,∅,∅, ),( ,∅, , ) 330 20

199

0 0 1 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 1 0 0

1 1 1 1 1 (∅,∅, , ),( , ,∅, ) 288 17

200

0 0 2 2 1 1

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

0 1 0 0 0 0

1 1 1 1 1 1 ( ,∅,∅,∅,∅) 299 20

201

0 0 0 0 4

0 0 0 0 0

0 0 0 3 0

0 0 0 0 0

0 1 1 0 0

1 1 1 1 2 (∅, , , ),(∅, ,∅,∅),( ,∅,∅,∅) 278 16

202
0 0 4 1

0 0 0 0

0 0 0 1

0 1 0 0

1 1 2 2 (∅,∅, ),(∅, ,∅),( ,∅,∅) 267 13

203

0 0 0 1 2

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 3 2 0 0

1 1 1 1 1 (∅, ,∅, ),(∅, , , ) 271 19
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204

0 0 2 3 2

0 0 0 0 0

0 0 0 0 0

0 3 0 0 1

0 0 0 0 0

1 1 1 1 2 (∅, ,∅, ),( ,∅, , ) 257 19

205

0 0 1 2 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 3

0 0 1 0 0 0

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅, ,∅, ),(∅,∅, , , ),( , ,∅,∅, ) 283 21

206

0 0 1 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 1 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 277 18

207

0 0 2 2 3

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 1 0 0 0

1 1 1 1 1 (∅,∅, , ),( ,∅,∅,∅) 262 18

208

0 0 0 0 3

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 3 3 1 0

1 1 1 1 1 (∅,∅, , ),(∅,∅, , ),(∅, ,∅,∅),( ,∅,∅,∅) 257 17

209

0 0 2 1 3

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 2 0 0 0

1 1 1 1 1 ( ,∅,∅,∅),( ,∅,∅,∅) 257 17
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210

0 0 1 2 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 1 0 0

1 1 1 1 1 (∅,∅, , ),( ,∅, , ) 256 18

211
0 0 0 5

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 2 (∅,∅, ),(∅,∅, ),(∅, ,∅),( ,∅,∅) 241 15

212
0 1 3 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 2 ( ,∅, ) 235 15

213
0 0 0 4

0 0 1 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 256 18

214
0 0 0 4

0 0 1 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, ,∅),(∅, ,∅) 240 16

215

0 0 1 2 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅, , ,∅),( ,∅, , ) 235 19

216
0 0 2 3

0 0 0 0

0 1 0 0

0 1 1 0

1 1 1 1 ( , ,∅) 219 19

217
0 0 3 4

0 0 0 0

0 1 0 0

0 2 0 0

1 1 1 1 (∅, , ),( ,∅,∅),( ,∅,∅) 225 16
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218

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 3 2 1 0

1 1 1 1 1 (∅, ,∅, ),( , ,∅, ) 229 21

219
0 0 5

0 0 0

0 1 0

1 1 3 (∅, ),(∅, ),(∅, ),( ,∅) 224 9

220
0 0 3 3

0 0 0 0

0 2 0 0

0 2 0 0

1 1 1 1 ( ,∅,∅),( ,∅,∅),( ,∅,∅) 195 18

221
0 3 4

0 0 0

0 1 0

1 1 1 (∅, ),( ,∅) 288 16

222
0 3 4

0 0 1

0 0 0

1 1 1 (∅, ),( , ) 240 16

223
0 0 0 2

0 0 1 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, ,∅),(∅, , ) 256 16

224
0 3 1 4

0 0 0 0

0 0 0 0

0 0 1 0

1 1 2 2 (∅, ,∅),(∅, ,∅),( ,∅, ) 251 14

225
0 1 3 3

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 (∅,∅, ),( , ,∅) 230 18
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226
0 3 5 2

0 0 0 1

0 0 0 0

0 0 0 0

1 1 1 2 (∅, , ),(∅, , ) 225 18

227

0 0 0 0 4

0 0 0 0 0

0 0 0 3 0

0 0 0 0 0

0 1 1 0 0

1 1 1 1 2 (∅, , ,∅),(∅, , , ),(∅, ,∅,∅),( ,∅,∅,∅) 236 19

228
0 0 4 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅, , ),(∅, , ),( ,∅,∅) 220 18

229

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 4 2 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅),(∅, ,∅,∅),( ,∅, , ) 241 18

230
0 5 4

0 0 0

0 0 0

1 1 2 (∅, ),( , ),( ,∅) 240 8

231
0 3 5 2

0 0 0 0

0 0 0 1

0 0 0 0

1 1 1 2 (∅, , ),( ,∅,∅),( ,∅, ) 225 17

232
0 0 2 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, , ) 230 14

233

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 2 1 2 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅) 235 19
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234

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 2 1 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, ,∅) 215 21

235
0 1 3 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 2 2 (∅, , ),( , ,∅) 199 16

236
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),( , , ) 208 18

237
0 2 2 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 200 24

238
0 5 4

0 0 0

0 0 0

1 1 2 (∅, ),( ,∅),( , ) 192 0

239
0 1 4 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 (∅, ,∅),( ,∅, ) 266 20

240
0 1 3 3

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 (∅, , ),( ,∅, ) 224 19

241

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 2 1 3 0

1 1 1 1 1 (∅,∅, ,∅),(∅, , , ) 235 20
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242
0 1 5 4

0 0 0 0

0 1 0 0

0 0 0 0

1 1 1 3 (∅, , ),( ,∅, ) 224 16

243
0 2 2 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ),( , ,∅) 203 20

244
0 0 1 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, , ) 203 17

245
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( ,∅,∅) 208 16

246
0 3 3

0 0 1

0 0 0

1 1 1 ( , ) 192 30

247
0 0 3

0 0 0

0 7 0

1 1 1 ( , ),( ,∅),( ,∅),( , ) 208 16

248
0 0 0 5

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, , ),( ,∅,∅) 208 20

249
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),( , ),( ,∅),( ,∅) 176 16

250
0 0 1 5

0 0 0 0

0 0 0 0

0 4 1 0

1 1 1 1 (∅, , ),( ,∅, ),( ,∅,∅),( ,∅,∅) 193 19
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251
0 1 3 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 ( , , ) 176 33

252
0 0 0 4

0 0 1 0

0 0 0 0

0 4 2 0

1 1 1 1 (∅, , ),(∅, ,∅),( ,∅,∅),( ,∅,∅) 177 21

253
0 5 3

0 0 1

0 0 0

1 1 2 (∅, ),(∅, ),( , ) 177 17

254
0 0 5

0 0 0

0 3 0

1 1 1 ( ,∅),( , ) 160 30

255
0 0 4

0 0 0

0 4 0

1 1 1 ( ,∅),( , ) 144 23

256

0 3 3 3 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

1 1 1 1 2 (∅,∅,∅, ),(∅,∅,∅, ) 385 17

257
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),(∅, ,∅) 384 12

258
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( ,∅) 320 10

259
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 256 16
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260
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( , , ) 384 16

261

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅,∅, , ),( ,∅,∅,∅) 336 16

262

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 320 16

263
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( , , ) 304 18

264
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 288 13

265
0 3 0 4

0 0 1 0

0 0 0 0

0 0 1 0

1 1 2 2 (∅,∅, ),(∅, ,∅),(∅, ,∅) 273 14

266
0 0 1 4

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, , ),( ,∅,∅) 250 19
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267

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, , , ),( ,∅,∅,∅) 336 20

268
0 0 0 5

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 320 12

269

0 0 1 2 3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 3

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅,∅, , ),(∅,∅, , ,∅),( , ,∅,∅, ) 320 20

270

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 2 1 0 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 304 16

271

0 0 0 1 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅, , , ),( ,∅,∅,∅) 293 18

272

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 288 16

273

0 0 0 1 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 282 18
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274
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 288 16

275
0 0 0 5

0 0 1 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 272 14

276
0 1 2 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, ,∅) 286 16

277

0 0 1 2 3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 3

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅,∅,∅, ),(∅,∅, , , ),( , ,∅,∅, ) 278 21

278

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅,∅, ,∅),(∅, , , ) 272 17

279
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, ,∅),( , , ) 256 14
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280
0 2 4

0 0 0

0 1 0

1 2 2 (∅, ),( ,∅) 228 20

281

0 0 0 1 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 3 1 1 0

1 1 1 1 1 (∅, , , ),( ,∅,∅,∅) 256 18

282
0 0 4 2

0 0 0 0

0 4 0 1

0 0 0 0

1 1 1 2 (∅, , ),( , ,∅),( , , ) 225 19

283
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( , , ) 224 19

284
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 324 18

285

0 0 0 0 2 2

0 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 2 0 1 0 0

1 1 1 1 1 1 (∅, ,∅,∅,∅) 293 21

286

0 0 0 4 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅,∅, , ),(∅, , , ) 288 16
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287

0 0 0 3 3

0 0 1 0 0

0 0 0 0 0

0 0 1 0 0

0 2 0 0 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 267 17

288
0 3 5

0 0 0

0 0 0

1 1 2 (∅, ),(∅, ),( ,∅),( , ) 240 13

289

0 0 2 1 4

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 1 0 0 0

1 1 1 1 1 (∅,∅,∅, ),( ,∅,∅,∅) 278 20

290

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅) 272 16

291

0 0 1 2 3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 3

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅, , ,∅),(∅, ,∅, , ),( ,∅,∅, ,∅) 272 21

292

0 0 0 1 2

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 4 0 0

1 1 1 1 1 (∅, , , ),( , ,∅, ) 261 20

293
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 260 16
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294
0 3 1 4

0 0 0 0

0 0 0 0

0 0 1 0

1 1 2 2 (∅,∅, ),(∅, ,∅),( , ,∅) 241 14

295
0 0 3 2

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 2 ( ,∅,∅),( ,∅,∅),( ,∅,∅) 244 13

296

0 0 0 1 4

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 246 18

297

0 0 0 0 4

0 0 0 0 0

0 0 0 2 0

0 0 0 0 0

0 1 1 0 0

1 1 1 1 2 (∅,∅,∅, ),(∅, ,∅,∅),( , , ,∅) 246 17

298

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅, , ,∅),( ,∅, , ) 240 19

299
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, ,∅),(∅, ,∅) 239 13
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300

0 0 0 0 4

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅,∅,∅, ),(∅,∅, , ),(∅, ,∅,∅),( ,∅, , ) 236 22

301
0 0 4 3

0 0 0 0

0 1 0 0

0 2 0 0

1 1 1 1 (∅, ,∅),( ,∅,∅),( ,∅,∅) 226 18

302

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 3 3 2 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅),( ,∅,∅,∅),( ,∅, , ) 230 18

303
0 0 3 0

0 0 0 1

0 3 0 3

0 0 0 0

1 1 1 2 (∅, , ),(∅, , ),(∅,∅, ) 209 16

304
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( ,∅, ) 256 8

305

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 2 1 3 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 246 18

306

0 0 0 1 3

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 245 19
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307
0 0 2 3

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, ,∅),( ,∅, ) 238 22

308
0 0 3 5

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),(∅, , ),( ,∅,∅) 220 16

309

0 0 0 1 2 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 2 0 1 0 0

1 1 1 1 1 1 ( , ,∅,∅, ) 251 21

310

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 2 1 0 0

1 1 1 1 1 (∅,∅, , ),( , ,∅, ) 230 18

311

0 0 1 2 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 1 0 0

1 1 1 1 1 (∅,∅, ,∅),( ,∅,∅,∅) 250 22

312
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),( , ),( ,∅),( , ) 224 16

313
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),(∅, , ) 240 12
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314

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 2 1 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 230 18

315
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 218 14

316
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( , , ) 208 20

317

0 0 0 1 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 1 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 214 20

318

0 0 0 3 2

0 0 2 0 0

0 0 0 0 0

0 0 0 0 1

0 1 0 0 0

1 1 1 2 2 ( , ,∅,∅),(∅,∅,∅, ),(∅,∅,∅, ),( ,∅,∅,∅) 209 15

319

0 0 0 0 2

0 0 0 0 0

0 0 0 2 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),( ,∅, , ) 209 20
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320
0 3 5 2

0 0 0 1

0 0 0 0

0 0 0 0

1 1 1 2 (∅, ,∅),(∅, , ),(∅, , ) 193 20

321
0 0 3 2

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 2 ( ,∅, ) 202 18

322
0 4 4 3

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 2 (∅, ,∅),( ,∅,∅),( , , ) 198 9

323

0 0 0 0 2

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 3 1 2 0

1 1 1 1 1 (∅,∅, , ),(∅, , , ) 202 22

324
0 0 3 3

0 0 0 0

0 1 0 0

0 2 0 0

1 1 1 1 ( ,∅,∅),( , ,∅) 178 20

325
0 1 1 3

0 0 1 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, ,∅) 186 20

326
0 2 0 0

0 0 1 4

0 0 0 0

0 0 1 0

1 1 2 2 ( , ,∅),( , ,∅),( ,∅, ) 209 17

327
0 0 1 4

0 0 0 0

0 3 0 0

0 0 1 0

1 1 1 2 (∅, , ),( , , ) 204 15
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328

0 0 0 0 2

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 2 4 0 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 214 20

329

0 0 0 0 3

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅) 209 19

330
0 0 0 4

0 0 1 0

0 0 0 0

0 4 2 0

1 1 1 1 (∅,∅, ),(∅, , ),( ,∅,∅),( , , ) 204 20

331
0 0 3 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅, , ),( ,∅, ) 188 19

332

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 194 19

333

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),( , ,∅, ) 188 22

334
0 1 2 4

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 244 24
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335
0 2 2 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, ,∅),( ,∅, ) 208 22

336
0 0 1 5

0 0 0 0

0 0 0 0

0 4 1 0

1 1 1 1 (∅,∅, ),( ,∅, ),( ,∅,∅),( , , ) 198 18

337
0 0 3 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅, , ),( ,∅,∅) 173 23

338

0 0 0 4 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 199 15

339

0 0 0 3 1

0 0 2 0 0

0 0 0 0 0

0 0 0 0 1

0 2 0 0 0

1 1 1 2 2 ( , ,∅,∅),( ,∅,∅,∅),( ,∅,∅,∅),( ,∅,∅,∅) 199 13

340

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 2 2 2 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅, ) 214 24

341
0 0 0 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 2 (∅, ,∅),( ,∅, ) 178 19
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342
0 0 0 4

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 2 (∅,∅, ),( , ,∅) 188 16

343
0 0 3 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, , ),( ,∅,∅),( ,∅,∅) 183 17

344
0 1 0 3

0 0 4 0

0 0 0 0

0 1 0 0

1 1 2 2 ( , , ),(∅, ,∅) 178 17

345
0 0 1 4

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, , ),( , , ) 177 21

346
0 5 0 3

0 0 3 0

0 0 0 0

0 0 0 0

1 1 2 2 (∅, , ) 150 18

347
0 1 3 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ),(∅, ,∅) 176 20

348
0 2 2 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 ( , ,∅),( , ,∅) 166 22

349
0 1 3 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 (∅, ,∅),( , ,∅) 166 20
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350
0 4 2

0 0 1

0 0 0

1 2 3 (∅, ),(∅, ),(∅, ) 177 18

351

0 0 0 4 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, , , ),( ,∅, ,∅) 187 24

352
0 0 0 3

0 0 1 0

0 0 0 0

0 4 3 0

1 1 1 1 (∅, , ),(∅, ,∅),( ,∅,∅),( , , ) 172 20

353
0 0 0 3

0 0 1 0

0 0 0 0

0 4 3 0

1 1 1 1 (∅, , ),(∅, , ),( ,∅,∅),( ,∅,∅) 178 22

354
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( , ) 176 16

355
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 160 32

356
0 1 2 3

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, , ) 149 34

357
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, , ),( ,∅, ) 162 19
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358
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅, ),( , , ) 151 25

359
0 0 1 4

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 160 24

360
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅,∅),( , ,∅) 145 33

361
0 4 3

0 0 1

0 0 0

1 1 2 (∅, ),(∅, ),( , ) 129 31

362
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( ,∅) 112 52

363
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( , ) 384 16

364
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),( , ),( ,∅) 320 8

365 0 6

0 0
1 2 ( ),( ),( ),( ) 224 12

366
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( , , ) 336 20
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367

0 0 0 1 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅, ) 304 16

368
0 0 1 4

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅,∅, ),( , , ) 282 20

369

0 0 0 4 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅) 304 20

370

0 0 0 1 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 3 1 1 0

1 1 1 1 1 (∅,∅, , ),( , ,∅, ) 294 25

371

0 0 1 2 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 4

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅,∅, , ),(∅,∅, , , ),(∅, ,∅, , ) 288 20

372
0 3 1 4

0 0 0 0

0 0 0 0

0 0 1 0

1 1 2 2 (∅,∅, ),(∅, ,∅),(∅, ,∅),( ,∅,∅) 272 12

373
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( ,∅,∅) 256 16
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374
0 7 2

0 0 1

0 0 0

1 1 2 ( , ),( , ) 193 21

375
0 0 2 3

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, , ),( , , ) 208 20

376
0 0 1 3

0 0 1 0

0 0 0 0

0 4 0 0

1 1 1 1 ( ,∅, ),( , ,∅) 186 33

377

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅,∅),(∅, ,∅,∅) 288 24

378

0 0 0 1 2

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 4 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 282 22

379

0 0 0 2 2 0

0 0 0 0 0 0

0 0 0 0 0 2

0 0 1 0 0 0

0 0 1 0 0 0

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅,∅,∅, ) 272 20
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380

0 0 0 1 4

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅,∅, ),(∅, , , ) 256 22

381

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 256 16

382

0 0 0 2 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 4 0 0 0

0 2 0 0 1 0

1 1 1 1 1 1 (∅, ,∅, ,∅),(∅, ,∅, , ),(∅, ,∅,∅, ) 246 21

383
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),( , , ) 240 16

384
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, ,∅),( ,∅,∅),( ,∅,∅) 224 13

385
0 1 5

0 0 0

0 1 0

1 2 2 (∅, ),(∅, ),( ,∅),( ,∅) 193 15

386
0 0 4 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),(∅, ,∅),( ,∅,∅) 252 20
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387

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅,∅,∅, ),(∅, , , ) 256 20

388
0 0 0 5

0 0 2 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅,∅, ),(∅,∅, ),( ,∅,∅) 240 12

389
0 2 5

0 0 1

0 0 0

1 1 1 (∅, ),(∅, ) 192 20

390

0 0 0 0 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 3 4 0

1 1 1 1 1 (∅,∅, , ),(∅,∅, ,∅),(∅, ,∅,∅),(∅, , , ) 240 16

391

0 0 1 2 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 4

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅, , , ),(∅, ,∅, , ),( ,∅,∅, ,∅) 230 22

392

0 0 0 2 2

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅, , , ),( ,∅, , ) 219 20

393

0 0 0 2 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅) 220 22

Continued on next page.

135



Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

394

0 0 0 2 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅, , ),(∅, , , ) 214 19

395
0 0 0 3

0 0 1 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),(∅, , ) 208 14

396

0 0 0 0 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 3 3 3 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ),( ,∅,∅,∅),( ,∅, , ) 204 18

397
0 0 0 3

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 ( ,∅,∅),( , , ) 192 18

398
0 3 4

0 0 1

0 0 0

1 1 2 (∅, ),(∅, ) 164 20

399

0 0 0 0 2

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 2 4 0 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅, ) 230 22
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400

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅,∅, ),( , , , ) 224 12

401

0 0 0 0 4

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 2 1 1 0

1 1 1 1 1 (∅,∅,∅, ),(∅, ,∅,∅) 224 22

402
0 0 3 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),( , ,∅) 204 20

403

0 0 0 0 4

0 0 0 3 0

0 0 0 0 0

0 0 2 0 0

0 1 0 0 0

1 1 1 1 2 ( ,∅, ,∅),(∅,∅,∅, ),(∅,∅, ,∅),(∅, , , ) 204 18

404
0 2 0 0

0 0 1 4

0 0 0 0

0 0 1 0

1 1 2 2 ( ,∅, ),( , ,∅),( , ,∅) 193 17

405
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( , , ) 192 22

406
0 3 0 0

0 0 2 3

0 0 0 0

0 0 1 0

1 1 2 2 ( , ,∅),( , ,∅),(∅, ,∅) 183 16

407
0 6 2

0 0 1

0 0 0

1 1 2 ( , ),( , ) 161 31
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408

0 0 1 2 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 3

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅,∅, , ),(∅, ,∅, , ),( , ,∅,∅, ) 209 23

409
0 1 2 4

0 0 0 0

0 0 0 1

0 1 0 0

1 1 1 1 (∅,∅, ),( ,∅, ) 182 22

410

0 0 0 1 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, ,∅) 197 24

411

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 2 2 1 0

1 1 1 1 1 (∅, ,∅,∅),(∅, ,∅,∅) 203 19

412

0 0 0 0 2

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),(∅, , , ) 188 21

413
0 0 3 0

0 0 0 0

0 1 0 4

0 1 0 0

1 1 1 2 (∅, , ),(∅,∅, ),( , ,∅) 188 14

414

0 0 0 0 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 3 3 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅,∅),(∅, , , ),( ,∅,∅,∅) 188 20
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415
0 0 0 4

0 0 1 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, , ),( ,∅,∅) 184 24

416

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, , , ),( ,∅,∅,∅) 182 24

417

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅,∅),( ,∅, , ) 182 22

418
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( ,∅,∅) 176 20

419
0 1 3 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 ( ,∅, ),( , ,∅) 162 21

420
0 0 0 3

0 0 2 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, ,∅),(∅, ,∅) 161 22

421
0 0 0 5

0 0 2 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅,∅, ),(∅,∅, ),(∅, ,∅) 183 15

422
0 0 4 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅, ,∅),(∅, , ),( ,∅, ) 172 18
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423
0 0 0 5

0 0 2 0

0 0 0 0

0 1 0 0

1 1 1 2 ( , , ),(∅,∅, ),(∅,∅, ),( ,∅,∅) 167 19

424
0 0 3 3

0 0 0 0

0 3 0 1

0 0 0 0

1 1 1 2 (∅,∅, ),(∅,∅, ),( , ,∅),( , , ) 161 20

425
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),( , ) 160 30

426
0 0 5

0 0 0

0 1 0

1 2 3 ( ,∅),( , ) 147 19

427
0 0 0 3

0 0 2 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),(∅, , ) 192 4

428
0 0 0 4

0 0 2 0

0 0 0 0

0 2 0 0

1 1 1 2 ( , , ),( ,∅,∅),( ,∅,∅),( ,∅,∅) 163 17

429

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, , ,∅),( ,∅,∅,∅) 167 24

430
0 0 0 4

0 0 4 0

0 0 0 0

0 1 0 0

1 1 1 2 ( , ,∅),( , , ),(∅,∅, ),(∅, ,∅) 162 18
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431
0 3 3

0 0 1

0 0 0

1 2 2 (∅, ),(∅, ) 148 20

432
0 0 0 5

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),( ,∅,∅) 156 20

433
0 0 3 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 ( , , ) 141 33

434
0 2 2 3

0 0 0 1

0 0 0 0

0 0 1 0

1 1 1 1 (∅, , ),(∅, , ) 161 24

435
0 0 0 4

0 0 1 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, ,∅),( ,∅,∅) 151 22

436
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( ,∅, ) 151 25

437
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( ,∅, ) 148 22

438
0 0 5 0

0 0 0 0

0 3 0 3

0 0 0 0

1 1 1 2 (∅,∅, ),( , , ) 131 25
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439
0 5 6

0 0 0

0 0 0

1 1 4 (∅, ),(∅, ),(∅, ),(∅, ),( , ) 141 19

440
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, ,∅),( ,∅, ) 130 26

441
0 1 5

0 0 0

0 2 0

1 1 1 ( , ),( , ) 129 41

442
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),(∅, ) 256 0

443 0 5

0 0
1 2 ( ) 192 16

444
0 0 0 4

0 0 1 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),(∅, , ) 288 24

445
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),(∅, , ) 240 8

446
0 0 1 5

0 0 1 0

0 0 0 0

0 2 0 0

1 1 1 1 (∅,∅, ),(∅, , ) 218 20

447

0 0 0 1 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 1 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅, ) 252 30
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448

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 4 1 0

1 1 1 1 1 (∅, , , ),(∅, ,∅, ) 240 20

449
0 0 1 6

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),(∅,∅, ),( ,∅, ),( , , ) 188 8

450
0 0 0 4

0 0 2 0

0 0 0 0

0 2 0 0

1 1 1 2 (∅,∅, ),( ,∅,∅),( ,∅,∅),( ,∅,∅) 224 12

451
0 0 2 3

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 180 36

452

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅, , , ),(∅, , , ) 224 16

453
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),(∅, , ) 208 4

454

0 0 0 0 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 3 3 0

1 1 1 1 1 (∅,∅,∅, ),(∅,∅, ,∅),(∅, , , ),( , ,∅, ) 204 22
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455
0 0 2 4

0 0 1 0

0 0 0 0

0 2 0 0

1 1 1 1 (∅, , ),(∅, , ) 176 24

456
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),( ,∅, ) 270 21

457
0 0 0 4

0 0 1 0

0 0 0 0

0 4 2 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),( ,∅, ) 208 24

458
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),(∅, , ) 206 13

459

0 0 0 2 2

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 0 0

1 1 1 1 1 (∅,∅, ,∅),( , ,∅, ) 202 28

460
0 3 0 0

0 0 2 3

0 0 0 0

0 0 1 0

1 1 2 2 ( , ,∅),( , ,∅),( , ,∅),( ,∅,∅) 208 12

461

0 0 1 2 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 4

0 2 0 0 0 0

1 1 1 1 1 1 (∅,∅,∅, , ),(∅,∅, , , ),( , ,∅, ,∅) 198 24
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462

0 0 0 0 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 3 3 0

1 1 1 1 1 (∅,∅, ,∅),(∅,∅, ,∅),(∅, ,∅,∅),( , ,∅, ) 188 19

463
0 0 2 5

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),( ,∅, ) 172 20

464
0 0 5

0 0 0

0 1 0

1 2 3 (∅, ),(∅, ),( ,∅),( ,∅) 162 14

465

0 0 0 2 2

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 4 1 0 0

1 1 1 1 1 ( , ,∅, ),( ,∅,∅, ) 188 24

466
0 0 0 2

0 0 1 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, , ),(∅, , ) 185 17

467
0 0 0 4

0 0 1 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),( , , ) 172 22

468
0 0 0 3

0 0 1 0

0 0 0 0

0 4 3 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, ,∅),( ,∅, ) 182 22

469
0 2 2 3

0 0 0 1

0 0 0 0

0 0 1 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 172 24
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470

0 0 0 0 2

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅) 182 20

471

0 0 0 2 2

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, ,∅,∅),(∅, ,∅,∅) 172 22

472
0 0 0 4

0 0 2 0

0 0 0 0

0 2 0 0

1 1 1 2 (∅,∅, ),(∅, ,∅),( ,∅,∅),( ,∅,∅) 162 18

473
0 1 4

0 0 0

0 1 0

1 2 2 ( , ) 146 20

474
0 3 5

0 0 0

0 0 0

1 2 2 (∅, ),(∅, ),( , ) 165 6

475

0 0 0 0 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 3 4 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅,∅),(∅, , , ),( ,∅, , ) 162 22

476
0 1 3 3

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅, , ),( ,∅,∅) 156 20

477

0 0 1 2 2

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 3 1 0 0

1 1 1 1 1 ( , ,∅, ),( , ,∅, ) 167 22
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478
0 2 0 0

0 0 1 4

0 0 0 0

0 0 1 0

1 1 2 3 ( ,∅, ),( , ,∅),( , ,∅),( , ,∅) 162 16

479
0 1 2 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 ( ,∅, ),( ,∅, ) 146 24

480
0 0 0 3

0 0 1 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, ,∅),( , , ) 146 22

481
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),( , ,∅) 150 32

482

0 0 0 2 3

0 0 0 0 0

0 0 0 0 0

0 3 3 0 0

0 0 0 0 0

1 1 1 1 2 (∅,∅, , ),( , , , ) 162 15

483
0 2 4

0 0 0

0 1 0

1 2 2 (∅, ),( ,∅),( ,∅),( ,∅) 146 16

484
0 0 0 3

0 0 1 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, , ),( ,∅,∅) 146 20

485
0 0 1 3

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, ,∅),( ,∅, ) 144 34
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486
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( , , ) 140 36

487
0 1 2 3

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1 ( , ,∅) 133 35

488
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, ,∅),( ,∅, ) 142 20

489
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, ,∅),(∅, ,∅),( ,∅,∅),( , , ) 136 22

490
0 0 2 3

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, ,∅),( , , ) 130 26

491
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( , ,∅) 130 34

492
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, ,∅),( , , ) 125 34

493
0 2 2 3

0 0 1 0

0 0 0 1

0 0 0 0

1 1 1 1 (∅,∅, ),(∅, , ) 140 24
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494
0 1 5

0 0 0

0 2 0

1 1 1 (∅, ),( ,∅) 128 40

495
0 2 4

0 0 0

0 2 0

1 1 1 ( , ),( ,∅) 98 52

496 0 5

0 0
1 2 ( ),( ) 160 28

497

0 0 0 2 2

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅,∅,∅, ),(∅, ,∅, ) 216 36

498
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 224 16

499

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 240 28

500

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 1 0

1 1 1 1 1 (∅,∅, ,∅),( ,∅, , ) 208 16

501
0 0 0 3

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 ( ,∅,∅),( , , ) 192 12
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502
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),( ,∅) 144 36

503
0 0 4 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, ,∅),(∅, ,∅),( ,∅, ) 192 8

504
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),( ,∅, ) 176 9

505

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅,∅, , ),(∅, , ,∅) 192 12

506

0 0 0 2 3

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 2 1 0 0

1 1 1 1 1 (∅,∅,∅, ),(∅, ,∅,∅) 172 20

507
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅,∅, ),(∅, , ),( ,∅,∅),( , , ) 168 24

508
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),( , ),( , ) 160 13

509
0 1 4

0 0 0

0 1 0

1 2 2 ( ,∅),( , ) 130 31
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510

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, , ),( , ,∅, ) 176 20

511
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅,∅, ),(∅, , ) 176 4

512
0 0 2 0

0 0 0 0

0 2 0 4

0 1 0 0

1 1 1 2 (∅, , ),(∅, , ),( , ,∅),( , ,∅) 152 16

513
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅,∅, ),(∅, ,∅),( , , ),( , , ) 152 22

514

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 156 24

515
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),( , ,∅) 144 24

516

0 0 2 0 0

0 0 0 0 0

0 2 0 2 3

0 0 0 0 0

0 0 0 1 0

1 1 1 2 2 (∅, , ,∅),(∅, , ,∅),(∅, , ,∅),( , ,∅,∅) 141 20

517
0 1 5

0 0 0

0 1 0

1 1 2 (∅, ),(∅, ),( , ) 131 18

Continued on next page.

151



Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

518
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 134 38

519
0 0 2 0

0 0 0 0

0 2 0 4

0 1 0 0

1 1 1 2 (∅, , ),( , , ),( , ,∅),( ,∅,∅) 141 21

520

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅, , , ),(∅, , , ) 146 25

521
0 0 4 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅, ,∅),(∅, ,∅),(∅, , ),( ,∅, ) 136 22

522
0 0 0 5

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅,∅, ),(∅, ,∅),( ,∅,∅),( , , ) 136 20

523
0 0 0 5

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, ,∅),(∅, ,∅),( ,∅,∅),( ,∅,∅) 131 22

524
0 0 4 4

0 0 0 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, ,∅),(∅, ,∅),( , ,∅) 136 8

525
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 124 27
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526
0 4 4 3

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 2 (∅, ,∅),( ,∅, ),( , , ) 116 25

527
0 3 4

0 0 1

0 0 0

1 1 2 (∅, ),(∅, ),(∅, ),(∅, ) 114 23

528
0 0 5

0 0 0

0 3 0

1 1 1 ( , ),( , ) 112 68

529
0 0 5

0 0 0

0 1 0

1 1 2 (∅, ),( ,∅) 110 23

530
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( , ) 192 -12

531
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( , , ) 240 28

532

0 0 0 0 3

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅, , , ),( ,∅,∅, ) 210 35

533
0 0 2 4

0 0 1 0

0 0 0 0

0 2 0 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 180 40

534
0 0 1 5

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),( , , ) 141 -3
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535
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅, , ),( ,∅, ) 176 -4

536
0 0 1 4

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, , ),( ,∅, ) 154 30

537
0 0 0 4

0 0 0 0

0 0 0 0

0 2 5 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),(∅, , ) 192 16

538

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅,∅, , ),( ,∅, , ) 192 16

539

0 0 0 0 3

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 1 0

1 1 1 1 1 (∅,∅, ,∅),(∅, ,∅, ) 162 19

540
0 1 2 4

0 0 0 0

0 1 0 0

0 1 0 0

1 1 1 1 (∅,∅, ),( ,∅,∅) 156 24

541

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 4 1 0

1 1 1 1 1 (∅, , , ),(∅, ,∅, ) 156 28
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542

0 0 2 2 2

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

0 2 0 0 0

1 1 1 1 1 (∅,∅,∅, ),( ,∅,∅,∅) 146 24

543
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( , , ) 125 29

544
0 0 3 3

0 0 1 0

0 0 0 0

0 2 0 0

1 1 1 1 (∅, , ),(∅, ,∅) 134 34

545
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( , , ) 160 24

546

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 2 2 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 155 24

547
0 3 4

0 0 0

0 1 0

1 1 2 ( , ),( , ) 116 21

548

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅,∅, ,∅),(∅, , , ) 146 23

549
0 1 5

0 0 0

0 1 0

1 1 2 (∅, ),(∅, ),(∅, ),( ,∅) 126 16
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550
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( , , ) 130 23

551

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅, , ,∅),( ,∅, ,∅) 126 27

552
0 5 5

0 0 0

0 0 0

1 1 2 (∅, ),(∅, ),( , ),( , ) 116 19

553
0 2 2 3

0 0 1 0

0 0 0 0

0 0 1 0

1 1 1 1 (∅, , ),(∅, ,∅) 120 26

554
0 4 4

0 0 0

0 0 0

1 1 2 ( , ) 90 18

555
0 0 0 4

0 0 2 0

0 0 0 0

0 1 0 0

1 1 1 2 (∅,∅, ),(∅, , ) 120 32

556
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( ,∅,∅) 119 34

557
0 0 0 2

0 0 2 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),(∅, , ) 113 45
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558
0 1 4

0 0 0

0 1 0

1 2 2 (∅, ),( ,∅) 114 32

559
0 0 5

0 0 0

0 1 0

1 1 2 (∅, ),(∅, ),( , ) 110 30

560
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, ,∅),( ,∅,∅),( , , ) 110 34

561
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅,∅, ),( , ,∅) 110 34

562
0 3 3

0 0 1

0 0 0

1 1 2 (∅, ) 99 33

563
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅, , ),( ,∅,∅) 113 40

564
0 0 1 4

0 0 0 0

0 0 0 0

0 3 1 0

1 1 1 1 ( ,∅, ),( , , ) 103 63

565
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅, , ),( , ,∅) 98 55

566
0 0 5

0 0 0

0 1 0

1 1 2 (∅, ),(∅, ),( ,∅) 94 36
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567
0 1 4

0 0 0

0 2 0

1 1 1 ( , ) 81 101

568 0 8

0 0
1 1 ( ),( ),( ) 128 48

569
0 1 7

0 0 0

0 1 0

1 1 1 (∅, ),(∅, ),( , ) 124 36

570

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅,∅, , ),(∅, ,∅, ) 180 42

571
0 2 6

0 0 0

0 1 0

1 1 1 (∅, ),( , ),( , ) 114 42

572

0 0 0 4 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 2

0 2 2 0 0

1 1 1 1 1 (∅, , , ),( ,∅, , ) 176 12

573
0 0 0 4

0 0 0 0

0 0 0 0

0 2 5 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, ,∅),(∅, ,∅) 160 0

574

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 4 1 0

1 1 1 1 1 (∅, , , ),(∅, ,∅, ) 146 16
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575
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),(∅, ,∅) 160 4

576
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅,∅, ),(∅, ,∅),(∅, , ),( ,∅,∅) 136 24

577

0 0 0 0 2

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 2 3 2 0

1 1 1 1 1 (∅, ,∅,∅),(∅, , , ) 140 26

578
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),( , , ) 132 22

579
0 0 4

0 0 0

0 2 0

1 1 2 ( ,∅),( ,∅),( , ) 101 31

580
0 0 0 3

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅,∅, ),( , , ) 144 -8

581
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅,∅, ),(∅, , ),( , , ),( , , ) 120 36

582
0 0 5

0 0 0

0 1 0

1 1 3 (∅, ),(∅, ),(∅, ),( ,∅) 116 16
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583
0 4 4

0 0 0

0 0 0

1 2 2 ( , ),( , ) 106 21

584
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, ,∅),(∅, ,∅),(∅, ,∅),( ,∅,∅) 115 27

585
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, , ),( ,∅,∅),( ,∅,∅) 116 22

586
0 3 5

0 0 0

0 1 0

1 1 1 ( , ),( , ),( , ) 99 51

587
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅,∅, ),(∅, ,∅),(∅, ,∅),( , , ) 120 24

588
0 0 0 4

0 0 0 0

0 0 0 0

0 3 4 0

1 1 1 1 (∅, , ),(∅, , ),( ,∅,∅),( , , ) 110 26

589
0 3 5

0 0 0

0 0 0

1 2 2 ( , ),( , ) 85 28

590
0 2 6

0 0 0

0 1 0

1 1 1 (∅, ),(∅, ),( ,∅) 120 24

591
0 0 2 0

0 0 0 0

0 2 0 5

0 0 0 0

1 1 1 2 (∅, , ),(∅, , ),(∅, , ),(∅, , ) 160 8
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592
0 0 2 4

0 0 0 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),( , , ) 134 36

593
0 1 2 0

0 0 0 0

0 1 0 5

0 0 0 0

1 1 1 2 (∅, , ),(∅, , ),(∅, , ),( , , ) 130 20

594

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 1 0

1 1 1 1 1 (∅, , , ),( ,∅, , ) 125 28

595
0 0 2 3

0 0 1 0

0 0 0 0

0 3 0 0

1 1 1 1 (∅, , ),( ,∅, ) 112 56

596
0 3 5

0 0 0

0 1 0

1 1 1 (∅, ),( , ),( ,∅) 104 40

597
0 2 4

0 0 0

0 1 0

1 1 2 ( , ),( , ) 100 32

598
0 0 0 6

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),(∅, ,∅),(∅, ,∅),( ,∅,∅) 110 26

599
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅, , ),( ,∅, ) 104 37
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600
0 3 4

0 0 0

0 1 0

1 1 2 (∅, ),( , ),( ,∅) 100 24

601
0 0 0 4

0 0 0 0

0 0 0 0

0 2 5 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, ,∅),( , , ) 100 36

602
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅, , ),( ,∅,∅) 99 40

603
0 3 3

0 0 1

0 0 0

1 2 2 (∅, ),(∅, ),(∅, ),(∅, ) 100 22

604
0 0 5

0 0 0

0 1 0

1 1 3 (∅, ),(∅, ),( ,∅),( , ) 95 31

605
0 0 0 3

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 ( , , ),( , , ) 90 45

606
0 4 4

0 0 1

0 0 0

1 1 1 (∅, ),( , ),( , ) 84 52

607

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅, ,∅, ),( ,∅, , ) 150 49

608
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),(∅, ) 216 24
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609
0 3 4

0 0 1

0 0 0

1 1 1 (∅, ),(∅, ) 132 12

610
0 0 0 4

0 0 0 0

0 0 0 0

0 2 5 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, , ),( , , ) 120 40

611
0 0 0 4

0 0 0 0

0 0 0 0

0 2 5 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, , ),( ,∅, ) 116 20

612
0 6 3

0 0 0

0 0 0

1 1 2 ( ,∅),( , ) 113 -11

613
0 0 0 3

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, , ),( , , ) 102 21

614
0 1 5

0 0 0

0 1 0

1 1 4 ( , ) 86 34

615
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅,∅, ),(∅, , ),(∅, ,∅),( , , ) 100 34

616
0 5 4

0 0 0

0 0 0

1 1 2 (∅, ),( , ),( ,∅) 96 8

617
0 3 5

0 0 0

0 0 0

1 1 2 (∅, ),( , ) 90 25
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618
0 0 0 5

0 0 1 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),(∅,∅, ) 192 32

619
0 0 3

0 0 0

0 7 0

1 1 1 ( , ),( ,∅),( , ),( , ) 128 4

620
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),(∅, , ) 144 4

621
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( , ) 112 24

622

0 0 0 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 2 0 0

1 1 1 1 1 (∅, , ,∅),( ,∅,∅,∅) 114 31

623
0 0 2 0

0 0 0 0

0 2 0 5

0 0 0 0

1 1 1 2 (∅, , ),(∅, , ),(∅, , ),( , , ) 105 25

624
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),(∅, ,∅),(∅, ,∅),( ,∅, ) 95 29

625
0 5 4

0 0 0

0 0 0

1 1 2 ( , ),( , ),( , ) 85 42

626
0 2 4

0 0 0

0 1 0

1 1 2 (∅, ),( , ),( ,∅) 90 32
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627
0 0 0 2

0 0 1 0

0 0 0 0

0 3 3 0

1 1 1 1 (∅, , ),( , , ) 83 72

628
0 3 4

0 0 0

0 1 0

1 1 3 ( , ),( ,∅) 80 36

629
0 3 5

0 0 0

0 0 0

1 2 2 (∅, ),( , ),( , ) 80 35

630 0 7

0 0
1 1 ( ),( ) 96 90

631
0 1 6

0 0 0

0 1 0

1 1 1 (∅, ),( , ) 93 51

632
0 1 6

0 0 0

0 1 0

1 1 1 (∅, ),( , ) 92 78

633
0 0 4

0 0 0

0 6 0

1 1 1 (∅, ),( , ),( , ),( , ) 192 32

634
0 0 0 5

0 0 1 0

0 0 0 0

0 3 2 0

1 1 1 1 (∅,∅, ),(∅,∅, ),(∅, , ),( , , ) 168 40

635
0 2 5

0 0 0

0 1 0

1 1 1 ( , ),( , ) 83 77

636
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),(∅, , ) 128 -8
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637
0 0 2 0

0 0 0 0

0 2 0 5

0 0 0 0

1 1 1 2 (∅, , ),(∅, , ),(∅, , ),( , , ) 100 32

638
0 0 0 4

0 0 1 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),(∅, , ) 104 40

639
0 0 0 3

0 0 1 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),(∅, , ) 100 26

640
0 0 0 4

0 0 1 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, ,∅),(∅, , ) 94 32

641
0 0 0 3

0 0 0 0

0 0 0 0

0 3 3 0

1 1 1 1 ( , , ),( , ,∅) 84 54

642
0 3 3

0 0 1

0 0 0

1 1 2 (∅, ),(∅, ) 82 54

643
0 2 5

0 0 0

0 1 0

1 1 1 (∅, ),( ,∅) 90 12

644
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅,∅, ),(∅,∅, ),(∅, , ),( , , ) 144 48

645
0 2 5

0 0 0

0 1 0

1 1 1 (∅, ),( , ) 82 84
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646
0 0 0 3

0 0 1 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),(∅, , ) 89 40

647
0 3 4

0 0 0

0 1 0

1 1 1 ( , ),( ,∅) 74 68

648
0 3 4

0 0 0

0 1 0

1 1 1 ( , ),( , ) 68 93

649
0 1 4 2

0 0 1 0

0 0 0 0

0 1 0 0

1 1 1 1 (∅, ,∅),(∅, ,∅) 108 20

650
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( ,∅, ) 86 21

651
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),( ,∅),( ,∅),( , ) 80 40

652
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( , , ) 80 40

653
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),( , ),( , ) 75 42

654
0 3 3

0 0 2

0 0 0

1 1 1 (∅, ),(∅, ) 68 64
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655
0 0 0 5

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅,∅, ),(∅,∅, ),(∅, , ),( , , ) 120 56

656
0 0 0 2

0 0 1 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),(∅, , ) 128 0

657
0 0 0 3

0 0 0 0

0 0 0 0

0 2 6 0

1 1 1 1 (∅, ,∅),(∅, , ),(∅, , ),( ,∅,∅) 104 12

658
0 0 5

0 0 0

0 5 0

1 1 1 ( ,∅),( ,∅),( ,∅),( ,∅) 70 60

659
0 0 4

0 0 0

0 6 0

1 1 1 ( ,∅),( ,∅),( ,∅),( , ) 70 52

660
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( , , ) 84 58

661
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),( , ,∅) 74 64

662
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),(∅, ) 74 38

663
0 3 5

0 0 0

0 0 0

1 1 3 (∅, ),( ,∅) 112 -12

Continued on next page.

168



Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

664
0 1 4

0 0 0

0 1 0

1 1 2 (∅, ),( , ) 69 68

665
0 0 4

0 0 0

0 1 0

1 1 2 ( , ) 64 77

666
0 4 4

0 0 1

0 0 0

1 1 1 (∅, ),(∅, ),( ,∅) 88 40

667
0 2 2 3

0 0 0 1

0 0 0 1

0 0 0 0

1 1 1 1 (∅,∅, ),(∅,∅, ) 84 32

668
0 0 0 3

0 0 6 0

0 0 0 0

0 1 0 0

1 1 1 2 ( , , ),( , ,∅),( ,∅,∅) 89 -3

669
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),( , ),(∅, ) 70 49

670
0 3 5

0 0 1

0 0 0

1 1 1 (∅, ),(∅, ),( , ) 64 56

671
0 7 0

0 0 3

0 0 0

1 1 2 (∅, ),( , ) 55 59

672
0 0 0 5

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),( ,∅, ) 112 -8
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673
0 0 4

0 0 0

0 6 0

1 1 1 (∅, ),( ,∅),( , ),( , ) 80 24

674
0 0 0 5

0 0 1 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),(∅, , ) 88 32

675
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),(∅, ),( , ),( , ) 96 64

676
0 0 0 2

0 0 1 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),(∅, , ) 74 42

677
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),( , ),( ,∅),( , ) 60 68

678
0 0 3

0 0 0

0 7 0

1 1 1 ( ,∅),( ,∅),( , ),( , ) 60 48

679
0 3 0

0 0 4

0 0 0

1 1 2 ( , ) 56 61

680
0 3 4

0 0 1

0 0 0

1 1 1 (∅, ),( , ) 54 94

681
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),(∅, ,∅) 96 -24
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682
0 0 4

0 0 0

0 6 0

1 1 1 ( , ),( ,∅),( ,∅),( , ) 55 85

683 0 6

0 0
1 1 ( ) 64 188

684
0 1 5

0 0 0

0 1 0

1 1 1 ( , ) 61 149

685
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, ,∅),( ,∅,∅) 68 62

686
0 3 5

0 0 0

0 0 0

1 1 2 (∅, ),(∅, ),( ,∅) 96 -20

687
0 2 4

0 0 0

0 1 0

1 1 1 ( , ) 52 168

688
0 0 0 5

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, , ),( ,∅, ) 65 37

689
0 3 3

0 0 0

0 1 0

1 1 2 ( , ) 51 51

690
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( , ) 162 27

691
0 3 3

0 0 1

0 0 0

1 1 1 (∅, ) 99 27
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692
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),( , ),( , ),( , ) 64 72

693
0 0 3

0 0 0

0 7 0

1 1 1 ( , ),( , ),( , ),( , ) 56 40

694
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( , , ) 144 36

695
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( ,∅) 96 -9

696
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 80 35

697
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( , ) 144 36

698
0 0 0 4

0 0 1 0

0 0 0 0

0 3 1 0

1 1 1 1 (∅,∅, ),( , , ) 126 45

699
0 2 5

0 0 0

0 0 0

1 1 2 (∅, ),( , ) 60 40
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700
0 0 0 4

0 0 1 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),(∅, , ) 108 54

701
0 0 0 3

0 0 0 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, , ),( , , ) 54 105

702
0 0 3

0 0 0

0 7 0

1 1 1 ( , ),( ,∅),( , ),( , ) 50 86

703
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅,∅, ),( , , ) 90 63

704
0 0 3 3

0 0 0 0

0 0 0 1

0 2 0 0

1 1 1 1 (∅,∅, ),( , , ) 81 36

705
0 2 3

0 0 0

0 2 0

1 1 1 ( ,∅) 51 135

706
0 0 0 5

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 96 -12

707
0 0 0 5

0 0 1 0

0 0 0 0

0 2 1 0

1 1 1 1 (∅,∅, ),(∅, ,∅) 78 0

708
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 46 93

Continued on next page.

173



Continued from previous page.

Period ID Adjacency matrix Dimension vector Generalized partitions Degree Euler Number

709
0 0 5

0 0 0

0 5 0

1 1 1 (∅, ),(∅, ),( , ),( , ) 72 72

710
0 3 4

0 0 0

0 1 0

1 1 1 (∅, ),( ,∅) 66 84

711
0 0 0 2

0 0 1 0

0 0 0 0

0 2 4 0

1 1 1 1 (∅, ,∅),(∅, , ) 63 48

712
0 3 4

0 0 1

0 0 0

1 1 1 (∅, ),( , ) 48 99

713
0 0 4

0 0 0

0 6 0

1 1 1 (∅, ),( , ),( ,∅),( , ) 60 12

714
0 3 0

0 0 5

0 0 0

1 1 2 ( , ),( , ),( , ),( ,∅) 80 -32

715 0 6

0 0
1 4 ( ) 42 73

716
0 0 5

0 0 0

0 3 0

1 1 1 ( , ),( , ) 41 109

717
0 3 5

0 0 0

0 0 0

1 1 2 (∅, ),(∅, ),( ,∅),( , ) 50 52

718
0 0 3

0 0 0

0 7 0

1 1 1 ( , ),( ,∅),( ,∅),( , ) 45 63
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719
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),(∅, , ) 80 -28

720
0 0 0 4

0 0 0 0

0 0 0 0

0 2 3 0

1 1 1 1 (∅, , ),( , , ) 62 44

721
0 0 4

0 0 0

0 4 0

1 1 1 ( ,∅),( ,∅) 40 152

722
0 0 0 5

0 0 0 0

0 0 0 0

0 2 2 0

1 1 1 1 (∅, ,∅),( ,∅, ) 53 80

723
0 3 5

0 0 0

0 0 0

1 1 2 (∅, ),(∅, ),( ,∅),( , ) 45 94

724
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( ,∅) 40 144

725
0 3 3

0 0 1

0 0 0

1 1 1 ( , ) 38 191

726
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( , ) 42 27

727
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( , ) 54 81
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728
0 0 4

0 0 0

0 4 0

1 1 1 (∅, ),( , ) 44 116

729
0 0 5

0 0 0

0 3 0

1 1 1 ( ,∅),( , ) 35 155

730 0 6

0 0
1 2 ( ),( ),( ) 33 90

731
0 0 3

0 0 0

0 7 0

1 1 1 (∅, ),( , ),( , ),( , ) 64 -48

732
0 0 2

0 0 0

0 8 0

1 1 1 ( ,∅),( , ),( , ),( , ) 40 72

733
0 0 2

0 0 0

0 8 0

1 1 1 ( , ),( , ),( , ),( , ) 36 92

734 0 6

0 0
1 2 ( ),( ),( ),( ) 28 140

735
0 0 4

0 0 0

0 4 0

1 1 1 ( , ),( , ) 26 251

736
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),(∅, ) 48 -72

737
0 2 5

0 0 1

0 0 0

1 1 1 (∅, ),(∅, ) 30 114

738
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),( , ) 27 99
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739
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),( , ) 26 186

740 0 5

0 0
1 2 ( ),( ) 20 176

741 0 9

0 0
1 1 ( ),( ),( ),( ) 16 224

742 0 5

0 0
1 2 ( ),( ) 15 318

743
0 0 5

0 0 0

0 3 0

1 1 1 (∅, ),( , ) 32 -112

744
0 0 6

0 0 0

0 2 0

1 1 1 (∅, ),( ,∅) 20 212

745
0 0 5

0 0 0

0 3 0

1 1 1 ( , ),( , ) 17 293

746 0 8

0 0
1 1 ( ),( ),( ) 12 324

747 0 7

0 0
1 1 ( ),( ) 9 369

748 0 7

0 0
1 1 ( ),( ) 8 552

749 0 6

0 0
1 1 ( ) 5 825
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Table A.3: Some regularized period sequences obtained from 4-dimensional Fano manifolds that arise as
quiver flag zero loci.

Period ID Name α0 α1 α2 α3 α4 α5 α6 α7

1 BØS4
124, P4, CKP1 1 0 0 0 0 120 0 0

2 BØS4
115, CKP2 1 0 0 0 24 120 0 0

3 CKP3, Q4 1 0 0 0 48 0 0 0

4 CKP4 1 0 0 0 48 120 0 0

5 BØS4
118, CKP8 1 0 0 6 0 120 90 0

6 BØS4
47, CKP10 1 0 0 6 24 0 90 2520

7 BØS4
94, CKP11 1 0 0 6 24 120 90 1260

8 BØS4
37, CKP12 1 0 0 6 24 120 90 2520

9 CKP13, BØS4
74 1 0 0 6 48 0 90 2520

10 CKP14 1 0 0 6 48 0 90 3780

11 CKP15, BØS4
86 1 0 0 6 48 120 90 2520

12 CKP16 1 0 0 6 48 120 90 3780

13 CKP18 1 0 0 6 72 120 90 5040

14 P2 × P2, CKP20, FI46,

BØS4
123

1 0 0 12 0 0 900 0

15 1 0 0 12 0 120 540 0

16 BØS4
114, CKP21 1 0 0 12 0 120 900 0

17 CKP23, BØS4
46 1 0 0 12 24 0 900 3780
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Period ID Name α0 α1 α2 α3 α4 α5 α6 α7

18 CKP25, BØS4
32 1 0 0 12 24 240 900 5040

19 CKP26 1 0 0 12 48 0 540 7560

20 1 0 0 12 48 0 900 7560

21 1 0 0 12 48 120 540 7560

22 CKP29 1 0 0 12 72 120 540 10080

23 CKP30 1 0 0 12 96 120 540 15120

24 FI45 1 0 0 18 0 0 1710 0

25 1 0 0 18 48 0 1710 11340

26 1 0 0 18 48 120 2430 11340

27 CKP33, FI44 1 0 0 24 0 0 3240 0

28 CKP34 1 0 0 24 48 0 3240 15120

29 1 0 0 24 48 120 3600 15120

30 CKP35 1 0 0 24 96 120 3240 30240

31 CKP36 1 0 0 24 120 120 3240 40320

32 Str1 1 0 0 30 120 240 5850 50400

33 FI43, CKP37 1 0 0 36 0 0 8100 0

34 CKP39 1 0 0 36 144 120 8100 75600

35 CKP47, BØS4
121 1 0 2 0 6 120 20 2520
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36 P1 × P3, CKP51, BØS4
122,

MW4
14

1 0 2 0 30 0 740 0

37 BØS4
109, CKP54 1 0 2 0 30 120 380 2520

38 CKP55, BØS4
104 1 0 2 0 30 120 740 2520

39 CKP60, MW4
13 1 0 2 0 54 0 740 0

40 CKP61, MW4
12 1 0 2 0 54 0 1100 0

41 CKP64 1 0 2 0 54 120 740 2520

42 CKP65 1 0 2 0 54 120 1100 2520

43 CKP67 1 0 2 0 54 240 1460 5040

44 BØS4
111, CKP76 1 0 2 6 6 180 110 2940

45 CKP78 1 0 2 6 6 240 110 3780

46 BØS4
106, CKP79 1 0 2 6 30 60 470 2940

47 CKP80, BØS4
45 1 0 2 6 30 60 830 2940

48 CKP81, BØS4
41 1 0 2 6 30 120 470 3780

49 P1 × MM3
2–33, BØS4

110,

CKP83

1 0 2 6 30 120 830 2520

50 BØS4
82, CKP84 1 0 2 6 30 180 470 4200

51 CKP85, BØS4
113 1 0 2 6 30 180 470 5460

52 BØS4
92, CKP86 1 0 2 6 30 180 830 5460
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53 CKP89 1 0 2 6 30 240 830 5040

54 BØS4
52, CKP91 1 0 2 6 54 60 830 2940

55 CKP92 1 0 2 6 54 60 830 4200

56 CKP93 1 0 2 6 54 60 1190 4200

57 CKP96, BØS4
91 1 0 2 6 54 180 830 5460

58 CKP98 1 0 2 6 54 180 1190 6720

59 CKP99 1 0 2 6 54 180 1190 7980

60 BØS4
81, CKP100 1 0 2 6 54 240 1190 6300

61 CKP101 1 0 2 6 54 240 1190 7560

62 CKP102 1 0 2 6 54 360 1550 8820

63 CKP103 1 0 2 6 78 180 1190 7980

64 CKP104 1 0 2 6 78 360 1910 11340

65 CKP107 1 0 2 6 102 600 2990 17640

66 CKP109 1 0 2 12 6 120 920 840

67 BØS4
112, CKP110, P2 × S2

8 1 0 2 12 6 180 920 1680

68 CKP111, P1 ×Q3 1 0 2 12 6 240 560 2520

69 CKP113 1 0 2 12 6 300 920 4200

70 CKP114 1 0 2 12 6 360 560 5040

71 BØS4
60, CKP116 1 0 2 12 30 120 920 4620
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72 BØS4
88, CKP117 1 0 2 12 30 180 1280 5460

73 BØS4
35, CKP118 1 0 2 12 30 180 1280 5460

74 CKP119 1 0 2 12 30 180 1640 5460

75 P1 ×MM3
2–30, CKP120 1 0 2 12 30 240 1280 5040

76 1 0 2 12 30 300 920 9240

77 BØS4
93, CKP121 1 0 2 12 30 300 1280 7980

78 1 0 2 12 30 300 1640 7980

79 CKP122 1 0 2 12 30 360 1280 7560

80 CKP123 1 0 2 12 30 420 1280 11760

81 CKP124 1 0 2 12 54 120 1280 8400

82 CKP125 1 0 2 12 54 120 1640 8400

83 CKP126 1 0 2 12 54 180 1640 9240

84 BØS4
85, CKP127 1 0 2 12 54 240 1280 9660

85 CKP128 1 0 2 12 54 240 1280 10080

86 CKP130 1 0 2 12 54 300 2000 11760

87 CKP131 1 0 2 12 54 360 1640 12600

88 CKP132 1 0 2 12 54 420 2000 15540

89 CKP134 1 0 2 12 78 240 2000 14700

90 CKP135 1 0 2 12 78 300 2000 14280
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91 CKP136 1 0 2 12 78 300 2720 16800

92 CKP137 1 0 2 12 78 360 2000 15120

93 CKP138 1 0 2 12 78 480 2360 17640

94 CKP139 1 0 2 12 102 240 2000 18480

95 CKP141 1 0 2 12 102 480 2720 20160

96 CKP142 1 0 2 12 102 480 2720 22680

97 CKP144 1 0 2 12 126 720 3800 30240

98 CKP145 1 0 2 12 198 1200 6320 52920

99 BØS4
51, CKP146 1 0 2 18 6 180 1370 1260

100 CKP147 1 0 2 18 6 240 1730 2100

101 1 0 2 18 6 300 1730 2940

102 1 0 2 18 6 420 1730 5460

103 CKP148 1 0 2 18 30 240 2090 7140

104 1 0 2 18 30 360 2450 9660

105 CKP151, BØS4
73 1 0 2 18 54 180 2090 11340

106 CKP152 1 0 2 18 54 240 2810 13440

107 CKP153 1 0 2 18 78 300 2450 18900

108 CKP154 1 0 2 18 78 360 3170 21000

109 1 0 2 18 102 300 3170 26460
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110 CKP155 1 0 2 18 102 360 3890 28560

111 CKP158 1 0 2 24 6 240 3260 1680

112 CKP159 1 0 2 24 6 360 3260 3360

113 CKP160 1 0 2 24 6 540 3260 6720

114 CKP161 1 0 2 24 54 360 3980 18480

115 1 0 2 24 54 360 4340 18480

116 1 0 2 24 54 480 4700 21000

117 CKP162 1 0 2 24 54 540 4340 21840

118 CKP163 1 0 2 24 102 420 4700 35280

119 CKP164 1 0 2 24 102 480 4700 35280

120 CKP165 1 0 2 24 126 660 5780 49560

121 CKP166 1 0 2 24 150 720 6140 55440

122 CKP167 1 0 2 24 174 960 7220 70560

123 CKP168 1 0 2 24 246 1440 9740 105840

124 Str2 1 0 2 30 54 600 6590 26040

125 1 0 2 30 78 960 7670 46200

126 1 0 2 30 126 540 7670 56700

127 CKP169 1 0 2 36 6 360 8120 2520

128 CKP170 1 0 2 36 6 720 8120 8400
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129 CKP171 1 0 2 36 150 840 11000 86520

130 CKP172 1 0 2 36 294 1680 15320 178920

131 CKP174 1 0 2 36 438 2640 20360 287280

132 CKP175 1 0 2 42 150 900 14690 99540

133 BØS4
43, CKP181 1 0 4 0 36 120 400 5040

134 BØS4
117, CKP183, MW4

17,

P1 ×MM3
2–35

1 0 4 0 60 0 1480 0

135 CKP185, BØS4
36 1 0 4 0 60 120 1480 5040

136 MW4
11 1 0 4 0 84 0 2200 0

137 MW4
10, CKP186 1 0 4 0 84 0 2560 0

138 CKP187 1 0 4 0 84 240 2560 10080

139 CKP189, MW4
7 1 0 4 0 108 0 3280 0

140 BØS4
120, P1×P1×P2, P2×

P1 × P1, P1 × MM3
2–34,

CKP195

1 0 4 6 36 240 490 7560

141 CKP197 1 0 4 6 36 300 490 9240

142 1 0 4 6 36 360 490 12600

143 P1 × MM3
3–30, CKP200,

BØS4
89

1 0 4 6 60 180 1570 5460
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144 CKP201, BØS4
34 1 0 4 6 60 180 1570 6720

145 CKP203 1 0 4 6 60 240 1210 10080

146 P1 × MM3
3–26, CKP204,

BØS4
103

1 0 4 6 60 240 1570 8820

147 CKP205, BØS4
102 1 0 4 6 60 240 1570 9660

148 CKP206, BØS4
44 1 0 4 6 60 240 1930 9660

149 CKP207 1 0 4 6 60 300 1210 11760

150 CKP208 1 0 4 6 60 300 1570 10500

151 CKP209 1 0 4 6 60 360 1570 13860

152 CKP214 1 0 4 6 84 240 2650 10080

153 CKP215 1 0 4 6 84 240 2650 12180

154 1 0 4 6 84 300 2290 13020

155 BØS4
29, CKP217 1 0 4 6 84 360 2650 15120

156 CKP218 1 0 4 6 84 360 3010 17220

157 CKP219 1 0 4 6 84 420 2650 16800

158 CKP220 1 0 4 6 108 240 3370 13860

159 CKP222 1 0 4 6 108 300 3370 15540
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160 CKP224 1 0 4 6 132 660 4810 30660

161 P1 × MM3
3–31, CKP225,

BØS4
72

1 0 4 12 36 360 940 8400

162 S2
8 × S2

8 , BØS4
83, CKP226 1 0 4 12 36 360 1300 8400

163 CKP227, BØS4
101, P2 × S2

7 1 0 4 12 36 360 1300 9660

164 CKP228, P1 ×MM3
2–31 1 0 4 12 36 420 940 11760

165 CKP230 1 0 4 12 36 480 1300 13440

166 CKP231 1 0 4 12 36 480 1300 14700

167 CKP233 1 0 4 12 36 720 940 25200

168 P1 × MM3
3–25, CKP236,

BØS4
108

1 0 4 12 60 360 2020 10920

169 CKP239 1 0 4 12 60 360 2380 13440

170 CKP240, P1 ×MM3
3–23 1 0 4 12 60 420 2020 14280

171 CKP243 1 0 4 12 60 480 2020 17220

172 CKP244 1 0 4 12 60 480 2380 18480

173 1 0 4 12 60 480 2740 18480

174 CKP246 1 0 4 12 60 540 2020 19320

175 CKP247 1 0 4 12 60 600 2020 23520

176 CKP248 1 0 4 12 84 360 3100 15960
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177 BØS4
80, CKP251 1 0 4 12 84 420 2740 17640

178 1 0 4 12 84 420 2740 19320

179 CKP252 1 0 4 12 84 420 3100 18900

180 CKP255 1 0 4 12 84 480 2740 19740

181 P1 ×MM3
3–19, CKP256 1 0 4 12 84 480 3100 20160

182 1 0 4 12 84 480 3100 23520

183 CKP258 1 0 4 12 84 480 3460 22260

184 CKP259 1 0 4 12 84 600 3460 28560

185 CKP260 1 0 4 12 84 600 3820 27300

186 CKP262 1 0 4 12 84 720 3100 32760

187 CKP265 1 0 4 12 108 540 4180 27720

188 1 0 4 12 108 600 3820 28560

189 CKP266 1 0 4 12 108 600 4180 31080

190 1 0 4 12 108 600 4900 32340

191 CKP267 1 0 4 12 108 720 4180 38640

192 CKP268 1 0 4 12 108 720 4900 37380

193 CKP269 1 0 4 12 132 600 4900 33600

194 CKP270 1 0 4 12 132 720 5260 37800

195 1 0 4 18 36 720 2110 21000
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196 CKP277, P1 ×MM3
2–27 1 0 4 18 60 600 2830 19740

197 CKP279 1 0 4 18 60 840 3910 32340

198 CKP280, BØS4
53 1 0 4 18 84 480 3190 20580

199 CKP282 1 0 4 18 84 540 3910 25200

200 CKP283, BØS4
84 1 0 4 18 84 600 3550 25620

201 1 0 4 18 84 600 4270 26880

202 1 0 4 18 84 720 3910 32340

203 CKP284 1 0 4 18 84 720 4630 32340

204 CKP285 1 0 4 18 84 780 4270 34020

205 CKP286 1 0 4 18 108 600 4270 30660

206 CKP287 1 0 4 18 108 600 4630 31920

207 CKP288 1 0 4 18 108 660 4990 34020

208 CKP289 1 0 4 18 108 720 4990 38220

209 CKP290 1 0 4 18 108 780 4990 39060

210 CKP291 1 0 4 18 108 780 5350 40320

211 1 0 4 18 108 840 4990 44940

212 1 0 4 18 108 960 6070 49980

213 CKP292 1 0 4 18 132 780 5350 42840

214 CKP293 1 0 4 18 132 840 5710 48720
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215 CKP294 1 0 4 18 132 960 7150 55020

216 CKP295 1 0 4 18 132 960 7510 57540

217 CKP296 1 0 4 18 156 840 7150 56280

218 CKP297 1 0 4 18 156 1020 7870 63000

219 1 0 4 18 180 1020 7870 66780

220 CKP298 1 0 4 18 180 1080 9310 77700

221 CKP299 1 0 4 24 36 720 3640 16800

222 CKP300 1 0 4 24 36 1080 3640 33600

223 CKP301 1 0 4 24 84 720 5800 31920

224 1 0 4 24 84 840 5800 38220

225 CKP302 1 0 4 24 84 1080 5800 48720

226 1 0 4 24 84 1140 5800 51660

227 1 0 4 24 108 960 6880 49560

228 CKP303 1 0 4 24 108 1080 6520 58800

229 CKP304 1 0 4 24 132 840 6880 53340

230 1 0 4 24 132 840 7240 53760

231 1 0 4 24 132 840 7960 54600

232 1 0 4 24 132 1020 7600 60480

233 CKP305 1 0 4 24 156 960 7960 63420
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234 CKP306 1 0 4 24 156 1080 9040 72240

235 1 0 4 24 180 1440 11560 99120

236 CKP307 1 0 4 24 204 1260 10480 95760

237 CKP308 1 0 4 24 228 1440 12280 110880

238 1 0 4 24 276 1680 13720 137760

239 CKP309 1 0 4 30 84 840 6610 36540

240 CKP310 1 0 4 30 84 1200 8050 54600

241 CKP311 1 0 4 30 132 960 8770 61740

242 1 0 4 30 132 1140 9490 70560

243 CKP312 1 0 4 30 156 1320 11650 92400

244 1 0 4 30 204 1440 12730 113820

245 CKP313 1 0 4 30 228 1440 12370 116340

246 CKP314 1 0 4 36 36 1800 8500 58800

247 CKP315 1 0 4 36 84 1440 10660 64680

248 CKP316 1 0 4 36 156 1200 12820 90720

249 CKP318 1 0 4 36 324 2160 20740 223440

250 CKP319 1 0 4 42 156 1680 16510 119700

251 CKP320 1 0 4 42 180 2040 19390 155400

252 CKP321 1 0 4 42 252 2040 21190 196980
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253 1 0 4 48 180 1920 22000 156240

254 CKP322 1 0 4 60 204 2640 33340 231840

255 CKP323 1 0 4 60 564 4140 49900 648480

256 CKP324, BØS4
38 1 0 6 0 90 120 1860 7560

257 P1 × MM3
2–32, MW4

16,

CKP325

1 0 6 0 114 0 3300 0

258 CKP326, MW4
8 1 0 6 0 138 0 4740 0

259 MW4
5, CKP327 1 0 6 0 186 0 7980 0

260 P1×P1×S2
8 , CKP328, P1×

MM3
3–28, BØS4

107

1 0 6 6 90 300 1950 13020

261 CKP330, P1 ×MM3
3–24 1 0 6 6 114 300 3390 14280

262 CKP332 1 0 6 6 114 360 3390 18480

263 CKP334 1 0 6 6 138 300 4830 15540

264 CKP335 1 0 6 6 138 360 4830 21000

265 1 0 6 6 138 420 4830 24360

266 CKP336 1 0 6 6 186 360 8070 24780

267 BØS4
79, S

2
8 × S2

7 , CKP340 1 0 6 12 90 540 2760 21420

268 CKP341, P1 ×MM3
2–29 1 0 6 12 90 600 2400 26040
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269 P1 × MM3
4–10, BØS4

90,

CKP345

1 0 6 12 114 540 3840 23940

270 CKP346, P1 ×MM3
3–20 1 0 6 12 114 600 3840 28560

271 CKP347 1 0 6 12 114 660 3840 32760

272 CKP348 1 0 6 12 114 660 4200 32760

273 CKP349 1 0 6 12 114 720 4200 36960

274 P1 ×MM3
3–17, CKP351 1 0 6 12 138 600 5280 31080

275 CKP352 1 0 6 12 138 600 5280 33600

276 CKP354 1 0 6 12 138 600 5640 35280

277 CKP355 1 0 6 12 138 660 5280 35280

278 CKP356 1 0 6 12 138 660 5640 36540

279 CKP357 1 0 6 12 138 780 5640 45360

280 CKP359 1 0 6 12 162 600 7080 38640

281 CKP360 1 0 6 12 162 720 7080 44520

282 CKP361 1 0 6 12 186 720 8520 51240

283 CKP363 1 0 6 12 186 900 8880 63000

284 P2 × S2
6 , BØS4

99, CKP365 1 0 6 18 90 720 3570 28980

285 CKP367 1 0 6 18 114 780 5010 34860

286 CKP368, P1 ×MM3
3–18 1 0 6 18 114 840 4650 38220
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287 CKP369 1 0 6 18 114 960 5010 47040

288 1 0 6 18 114 1140 4650 61740

289 CKP372 1 0 6 18 138 780 6090 39900

290 CKP373, P1 ×MM3
3–16 1 0 6 18 138 900 6090 46620

291 CKP374 1 0 6 18 138 900 6090 47460

292 CKP376 1 0 6 18 138 960 5730 52080

293 CKP377 1 0 6 18 138 960 7170 56700

294 1 0 6 18 138 1020 6450 57960

295 1 0 6 18 138 1080 7890 66780

296 CKP378 1 0 6 18 162 960 7530 58380

297 1 0 6 18 162 960 7890 58380

298 CKP380 1 0 6 18 162 1080 8250 65940

299 CKP381 1 0 6 18 162 1080 8970 71820

300 CKP382 1 0 6 18 186 1080 8970 69720

301 CKP383 1 0 6 18 186 1140 8970 74340

302 CKP384 1 0 6 18 186 1140 9690 76440

303 1 0 6 18 210 1320 11850 96180

304 CKP388, P1 ×MM3
2–25 1 0 6 24 114 1200 5820 57120

305 CKP392 1 0 6 24 138 1080 7980 57960
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306 CKP393 1 0 6 24 138 1260 7980 67620

307 CKP394 1 0 6 24 138 1320 9060 78120

308 CKP395 1 0 6 24 138 1440 7980 82320

309 CKP397 1 0 6 24 162 1140 8700 67200

310 CKP399 1 0 6 24 162 1320 9780 80640

311 CKP400 1 0 6 24 186 1200 9780 76440

312 CKP401 1 0 6 24 186 1200 10860 82320

313 P1 ×MM3
2–24, CKP402 1 0 6 24 186 1260 10140 78120

314 CKP403 1 0 6 24 186 1320 10500 85680

315 CKP404 1 0 6 24 186 1560 12660 110880

316 CKP405 1 0 6 24 210 1440 11940 107520

317 CKP406 1 0 6 24 210 1500 12660 107940

318 1 0 6 24 210 1500 12660 110460

319 CKP407 1 0 6 24 210 1620 13020 115500

320 1 0 6 24 210 1800 13380 133980

321 1 0 6 24 210 1800 15180 138600

322 1 0 6 24 234 1800 16620 146160

323 CKP408 1 0 6 24 234 1920 16980 153720

324 CKP409 1 0 6 24 282 1920 19140 169260
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325 CKP410 1 0 6 24 282 2280 21300 199080

326 1 0 6 30 162 1680 11670 103320

327 1 0 6 30 186 1800 13470 122220

328 CKP411 1 0 6 30 210 1620 13470 116340

329 CKP412 1 0 6 30 210 1740 14550 126420

330 CKP413 1 0 6 30 234 1680 15270 133560

331 CKP414 1 0 6 30 234 1980 16710 159600

332 CKP415 1 0 6 30 282 1980 18150 168420

333 CKP416 1 0 6 30 282 2160 19950 186480

334 CKP417 1 0 6 36 186 1560 12480 97440

335 CKP418 1 0 6 36 186 1920 15360 131880

336 CKP419 1 0 6 36 186 2040 15720 138600

337 CKP420 1 0 6 36 186 2520 16080 180600

338 CKP421 1 0 6 36 210 1800 16440 136920

339 1 0 6 36 210 2100 16800 154980

340 CKP422 1 0 6 36 234 1800 16080 137760

341 1 0 6 36 234 2520 19680 201600

342 1 0 6 36 258 2280 20400 191520

343 1 0 6 36 258 2340 21120 196980
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344 1 0 6 36 282 2520 22920 224280

345 CKP423 1 0 6 36 306 2280 23280 221760

346 1 0 6 36 330 2640 27600 274680

347 CKP424 1 0 6 36 330 2880 27600 278040

348 CKP425 1 0 6 36 330 3240 30480 312480

349 CKP426 1 0 6 36 378 3480 34080 352800

350 1 0 6 42 162 2760 17610 178920

351 CKP427 1 0 6 42 306 2460 24090 229320

352 CKP428 1 0 6 42 306 2820 26970 270060

353 CKP429 1 0 6 48 282 2760 27420 253680

354 CKP430 1 0 6 48 282 2760 28500 257040

355 CKP432 1 0 6 48 426 3360 37860 406560

356 CKP433 1 0 6 48 522 4800 51180 595560

357 CKP435 1 0 6 54 378 3480 38670 392700

358 CKP436 1 0 6 60 354 4080 44520 441840

359 CKP437 1 0 6 60 474 3960 45600 503160

360 CKP438 1 0 6 66 474 4860 57930 637560

361 1 0 6 84 714 6840 96360 1211280

362 CKP439 1 0 6 120 1146 11280 192300 2817360
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363 MW4
18, BØS4

119, CKP440,

P1 × P1 × P1 × P1, P1 ×
MM3

3–27

1 0 8 0 168 0 5120 0

364 MW4
9, P1 ×B3

5 1 0 8 0 192 0 6920 0

365 V 4
14 1 0 8 0 288 0 15200 0

366 P1 × MM3
4–11, BØS4

97,

CKP442, P1 × P1 × S2
7

1 0 8 6 168 360 5210 19740

367 P1 ×MM3
3–21, CKP443 1 0 8 6 192 360 7010 21000

368 CKP444 1 0 8 6 216 360 8810 22260

369 P1 ×MM3
4–9, CKP445 1 0 8 12 168 720 5660 39480

370 CKP446, S2
7 × S2

7 , BØS4
75 1 0 8 12 168 720 6020 39480

371 CKP447, P1 ×MM3
4–8 1 0 8 12 192 720 7460 42000

372 P1 ×MM3
2–26 1 0 8 12 192 780 7460 47880

373 CKP448 1 0 8 12 216 840 9620 57960

374 1 0 8 12 216 1440 8540 126000

375 CKP449 1 0 8 12 288 1080 16100 92400

376 CKP450 1 0 8 12 360 1200 23300 117600

377 S2
8 × S2

6 , BØS4
78, CKP451 1 0 8 18 168 1020 6830 54600

378 CKP452 1 0 8 18 168 1080 6470 59220
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379 CKP454, P1 ×MM3
4–7 1 0 8 18 192 1080 8270 63000

380 CKP455 1 0 8 18 216 1080 10070 69300

381 CKP456, P1 ×MM3
3–15 1 0 8 18 216 1140 10070 72660

382 CKP457 1 0 8 18 216 1200 10430 79380

383 CKP458 1 0 8 18 216 1260 11150 87360

384 CKP459 1 0 8 18 240 1380 13310 105000

385 1 0 8 18 288 1560 16910 136500

386 CKP460 1 0 8 24 168 1440 8360 78960

387 P1 ×MM3
4–5, CKP461 1 0 8 24 216 1440 10880 89040

388 P1 ×MM3
2–22 1 0 8 24 216 1560 11240 100800

389 CKP462 1 0 8 24 216 2160 11240 168000

390 P1 ×MM3
3–13, CKP463 1 0 8 24 240 1560 13040 105840

391 CKP464 1 0 8 24 240 1560 13400 110460

392 CKP465 1 0 8 24 240 1740 13760 126420

393 CKP466 1 0 8 24 264 1680 15200 126840

394 CKP467 1 0 8 24 264 1740 15920 133980

395 CKP468 1 0 8 24 264 1920 17360 154560

396 CKP469 1 0 8 24 288 1920 18440 159600

397 CKP470 1 0 8 24 312 2160 22040 194880
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398 1 0 8 24 360 2160 25640 218400

399 CKP471 1 0 8 30 216 1800 13490 116340

400 P1 ×MM3
3–11, CKP472 1 0 8 30 264 1980 16370 142800

401 CKP473 1 0 8 30 264 1980 16730 147000

402 CKP474 1 0 8 30 264 2160 17090 165900

403 1 0 8 30 288 2100 19250 171360

404 1 0 8 30 288 2220 20330 185640

405 CKP475 1 0 8 30 312 2580 23930 229320

406 1 0 8 30 336 2520 25010 233940

407 1 0 8 36 216 3600 16100 294000

408 CKP476 1 0 8 36 264 2280 19340 173880

409 CKP477 1 0 8 36 264 2880 20420 232680

410 CKP478 1 0 8 36 288 2700 21500 216720

411 CKP479 1 0 8 36 312 2520 22940 210420

412 CKP480 1 0 8 36 312 2760 24380 239820

413 1 0 8 36 312 2760 25100 243600

414 CKP481 1 0 8 36 336 2760 26180 251160

415 CKP482 1 0 8 36 360 2760 27260 261240

416 CKP483 1 0 8 36 360 2940 28340 277200
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417 CKP484 1 0 8 36 360 3060 29780 295680

418 CKP485 1 0 8 36 360 3300 31220 320040

419 CKP486 1 0 8 36 408 3360 35180 358680

420 CKP487 1 0 8 36 432 3780 39500 413280

421 1 0 8 42 312 3000 27350 263340

422 1 0 8 42 360 3540 32750 346080

423 1 0 8 42 408 3480 36350 368340

424 1 0 8 42 456 4320 44270 479220

425 CKP488 1 0 8 48 264 4320 27440 366240

426 1 0 8 48 336 4680 35000 467040

427 CKP489, P1 ×MM3
2–18 1 0 8 48 360 3360 31040 295680

428 1 0 8 48 384 3960 37160 400680

429 CKP490 1 0 8 48 408 3960 38960 410760

430 1 0 8 48 432 4140 42560 454440

431 1 0 8 48 432 4320 44720 487200

432 CKP491 1 0 8 48 504 4800 51560 572040

433 CKP492 1 0 8 48 504 4920 53000 613200

434 CKP493 1 0 8 54 360 4200 39770 406980

435 CKP494 1 0 8 54 480 5160 53810 608580
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436 CKP495 1 0 8 60 360 5160 45260 514080

437 CKP496 1 0 8 60 552 5280 60740 685440

438 1 0 8 60 672 7200 83060 1032360

439 1 0 8 66 456 6000 61550 699300

440 CKP497 1 0 8 72 792 8460 104120 1339800

441 CKP498 1 0 8 84 408 8040 78740 887040

442 P1 ×B3
4 , CKP500, MW4

6 1 0 10 0 318 0 15220 0

443 V 4
12 1 0 10 0 438 0 28900 0

444 P1 × MM3
5–3, BØS4

98,

CKP501, P1 × P1 × S2
6

1 0 10 12 270 840 11080 55440

445 P1 ×MM3
2–23, CKP502 1 0 10 12 318 960 15760 74760

446 CKP503 1 0 10 12 366 960 20800 82320

447 CKP504, S2
7 × S2

6 , BØS4
76 1 0 10 18 270 1320 12610 91560

448 CKP505, P1 ×MM3
4–4 1 0 10 24 318 1800 17380 135240

449 CKP506 1 0 10 24 318 2400 18460 215040

450 P1 ×MM3
2–21 1 0 10 24 342 1920 19900 154560

451 CKP507 1 0 10 24 462 2640 35740 287280

452 P1 ×MM3
3–12, CKP508 1 0 10 30 342 2340 21070 186060

453 CKP509, P1 ×MM3
2–19 1 0 10 30 342 2520 21430 208740
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454 CKP510 1 0 10 30 366 2520 24670 221760

455 CKP511 1 0 10 30 462 2760 35110 290640

456 CKP512, P2 × S2
5 1 0 10 36 270 2160 15040 134400

457 CKP513 1 0 10 36 366 2760 25840 235200

458 CKP514 1 0 10 36 366 2880 28000 271740

459 CKP515 1 0 10 36 366 3000 26200 260400

460 P1 ×MM3
2–20 1 0 10 36 390 2940 27640 255360

461 CKP516 1 0 10 36 390 3000 28720 273000

462 CKP517 1 0 10 36 414 3180 31960 306600

463 CKP518 1 0 10 36 414 3480 33400 351960

464 1 0 10 36 486 3720 42400 420000

465 CKP520 1 0 10 42 414 3480 33850 334320

466 CKP521 1 0 10 42 414 3840 38530 407820

467 CKP522 1 0 10 42 462 4080 41770 436800

468 CKP523 1 0 10 48 414 4080 36460 387240

469 CKP524 1 0 10 48 414 4320 38260 425040

470 CKP525 1 0 10 48 462 4200 41140 425880

471 CKP526 1 0 10 48 486 4320 44740 465360

472 1 0 10 48 486 4680 47260 519960
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473 1 0 10 48 486 5400 49420 631680

474 1 0 10 48 510 5160 56260 632100

475 CKP527 1 0 10 48 534 4920 53020 578760

476 CKP528 1 0 10 48 558 5280 57700 646800

477 CKP529 1 0 10 54 486 4920 49150 534240

478 1 0 10 54 534 5100 54550 594300

479 CKP530 1 0 10 54 582 5580 63910 711060

480 CKP531 1 0 10 54 606 6180 68230 805140

481 CKP532 1 0 10 60 510 6120 59680 714000

482 1 0 10 60 582 5760 61480 683760

483 1 0 10 60 582 6360 68680 807240

484 CKP533 1 0 10 60 654 6840 77680 924840

485 CKP534 1 0 10 60 654 7080 77320 945840

486 CKP535 1 0 10 66 750 7920 93970 1156680

487 CKP536 1 0 10 66 846 10080 125290 1619940

488 CKP538 1 0 10 72 558 7200 74620 890400

489 CKP539 1 0 10 72 726 8280 97660 1212120

490 CKP540 1 0 10 72 846 9360 113860 1475880

491 CKP541 1 0 10 78 750 8700 107110 1328880
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492 CKP542 1 0 10 78 846 10140 124030 1643880

493 CKP543 1 0 10 84 750 8520 102880 1244040

494 CKP544 1 0 10 96 702 10560 124660 1538880

495 CKP545 1 0 10 168 1566 23040 402940 6002640

496 V 4
10 1 0 12 0 684 0 58800 0

497 S2
6 × S2

6 , CKP546, BØS4
77 1 0 12 24 396 2160 23160 186480

498 P1 ×MM3
4–3, CKP547 1 0 12 24 444 2160 26760 191520

499 S2
8 × S2

5 , CKP548 1 0 12 36 396 2820 24060 219240

500 P1 ×MM3
3–10, CKP549 1 0 12 36 492 3360 35220 319200

501 CKP550 1 0 12 36 492 3540 38460 371700

502 CKP551 1 0 12 36 540 5400 41700 705600

503 P1 ×MM3
2–17 1 0 12 42 540 4140 43230 423360

504 CKP552 1 0 12 42 540 4560 49710 528360

505 CKP553, P1 ×MM3
3–7 1 0 12 48 564 4680 48000 486360

506 CKP554 1 0 12 48 588 5040 54480 577920

507 CKP555 1 0 12 48 588 5040 55200 588000

508 1 0 12 48 636 5940 68880 780780

509 1 0 12 54 732 7680 84810 1136520

510 CKP556 1 0 12 60 636 6000 64020 698460
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511 CKP557, P1 ×MM3
2–16 1 0 12 60 636 6120 63300 693000

512 1 0 12 60 684 6840 76620 893760

513 CKP558 1 0 12 60 684 6840 77340 898800

514 CKP559 1 0 12 60 708 6840 77700 893760

515 CKP560 1 0 12 60 780 8400 101460 1254960

516 1 0 12 66 804 8400 100830 1237740

517 1 0 12 66 828 8880 108030 1369620

518 CKP561 1 0 12 72 708 9120 93000 1254960

519 1 0 12 72 756 8580 97320 1209180

520 CKP562 1 0 12 72 780 8340 97320 1178520

521 1 0 12 72 828 9000 108480 1354920

522 CKP563 1 0 12 72 876 9600 118200 1501920

523 CKP564 1 0 12 78 876 10440 125490 1649340

524 1 0 12 84 876 9960 122700 1540560

525 CKP565 1 0 12 90 1116 13860 184350 2553600

526 1 0 12 96 1140 14400 193080 2721600

527 1 0 12 96 1356 17640 245640 3609480

528 CKP566 1 0 12 108 756 16320 155100 2494800

529 1 0 12 120 1284 17700 253200 3671640
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530 P1 ×B3
3 , MW4

3, CKP567 1 0 14 0 690 0 50900 0

531 P1 ×P1 ×S2
5 , P1 ×MM3

6–1,

CKP568

1 0 14 30 546 2760 33350 246540

532 S2
7 × S2

5 , CKP569 1 0 14 36 546 3480 37040 330540

533 CKP570 1 0 14 36 690 3960 57200 468720

534 CKP571 1 0 14 36 690 5760 59000 821520

535 CKP572, P1 ×MM3
2–15 1 0 14 36 714 4320 59720 519120

536 CKP573 1 0 14 36 858 4560 83840 637560

537 CKP574, P1 ×MM3
4–1 1 0 14 48 690 5280 59540 594720

538 P1 ×MM3
3–8, CKP575 1 0 14 54 690 5700 61070 631260

539 CKP576 1 0 14 60 786 7140 82760 933240

540 CKP577 1 0 14 60 786 7320 84920 981120

541 CKP578 1 0 14 66 834 8160 95450 1126440

542 CKP579 1 0 14 72 882 9240 109940 1355760

543 CKP580 1 0 14 72 1002 10800 138020 1807680

544 CKP581 1 0 14 72 1026 10560 136220 1733760

545 CKP582 1 0 14 78 834 8880 98870 1177260

546 CKP583 1 0 14 78 906 9600 112190 1363320

547 1 0 14 78 1146 12780 174830 2377620
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548 CKP584 1 0 14 84 930 10320 122720 1529640

549 1 0 14 84 1074 12600 161600 2187360

550 CKP585 1 0 14 84 1074 12720 163040 2202060

551 CKP586 1 0 14 96 1170 14040 184820 2526720

552 1 0 14 96 1194 15360 201740 2897160

553 CKP587 1 0 14 96 1266 15240 207860 2918160

554 1 0 14 96 1434 18600 276620 4253760

555 1 0 14 102 1242 15720 211910 2994600

556 CKP588 1 0 14 102 1338 17280 237830 3452400

557 CKP589 1 0 14 102 1530 19800 284990 4270980

558 1 0 14 108 1218 17400 224600 3334800

559 1 0 14 108 1314 18240 245120 3690960

560 CKP590 1 0 14 120 1506 20640 296420 4484760

561 CKP591 1 0 14 120 1554 20520 298940 4515000

562 1 0 14 138 2106 30120 474530 7913220

563 CKP592 1 0 14 144 1506 21480 311900 4544400

564 CKP593 1 0 14 144 1506 24480 349700 5456640

565 CKP594 1 0 14 156 2226 33000 534200 9067800

566 1 0 14 180 2082 33480 560480 9276960
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567 CKP595 1 0 14 288 2994 58440 1220900 21414960

568 CKP596, V 4
8 1 0 16 0 1296 0 160000 0

569 CKP597 1 0 16 24 1296 4320 163240 840000

570 S2
6 × S2

5 , CKP598 1 0 16 42 720 4920 58390 567840

571 CKP599 1 0 16 60 1344 11520 192940 2347800

572 CKP600, P1 ×MM3
3–6 1 0 16 66 936 8280 97630 1086540

573 P1 ×MM3
2–12, CKP601 1 0 16 72 1056 9840 122920 1428000

574 CKP602 1 0 16 78 1080 11040 138490 1725780

575 CKP603, P1 ×MM3
2–13 1 0 16 84 1104 11400 137860 1685040

576 CKP604 1 0 16 84 1152 12600 162700 2132760

577 CKP605 1 0 16 90 1176 12900 164590 2139060

578 CKP606 1 0 16 90 1200 13440 175750 2332680

579 1 0 16 96 1632 19320 302200 4447800

580 P1 ×MM3
2–11, CKP607 1 0 16 108 1248 15600 188260 2538480

581 CKP608 1 0 16 108 1488 18600 261700 3797640

582 1 0 16 108 1488 18960 267460 3922800

583 1 0 16 108 1632 20640 309220 4640160

584 CKP609 1 0 16 114 1488 19440 268990 3973620

585 CKP610 1 0 16 114 1488 19740 275470 4077780
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586 CKP611 1 0 16 114 1512 23640 303190 5285700

587 CKP612 1 0 16 120 1488 19440 268360 3894240

588 CKP613 1 0 16 126 1752 23940 355570 5509980

589 1 0 16 204 3264 52680 952180 18086880

590 CKP614 1 0 18 48 1494 9120 206820 1864800

591 P1 ×MM3
2–14 1 0 18 90 1302 13260 168570 2089080

592 CKP615 1 0 18 102 1398 16200 212670 2919420

593 1 0 18 108 1542 18180 249480 3486420

594 CKP616 1 0 18 114 1542 19200 262890 3780420

595 CKP617 1 0 18 120 1878 23400 351180 5323080

596 CKP618 1 0 18 120 1878 25200 379980 6032880

597 1 0 18 120 2022 26160 421020 6607440

598 CKP619 1 0 18 132 1926 25800 388800 6041280

599 CKP620 1 0 18 138 2166 30240 478170 7777560

600 1 0 18 144 2118 30960 481860 7971600

601 CKP621 1 0 18 156 2190 32760 513720 8536080

602 CKP622 1 0 18 156 2310 33240 537120 8919960

603 1 0 18 156 2358 34920 564120 9502920

604 1 0 18 174 2454 38880 636030 11007780
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605 CKP623 1 0 18 192 2862 46440 802980 14515200

606 CKP624 1 0 18 228 2934 55320 969840 18061680

607 CKP625, S2
5 × S2

5 1 0 20 60 1140 9120 121700 1377600

608 CKP626, P2 × S2
4 1 0 20 102 1188 11760 123050 1391880

609 CKP627 1 0 20 120 1668 21120 303320 4519200

610 CKP628 1 0 20 120 1860 23280 342200 5115600

611 CKP629 1 0 20 126 1908 24480 361010 5470920

612 1 0 20 144 2148 31800 505280 8329440

613 CKP630 1 0 20 156 2340 34080 540740 8942640

614 Str3 1 0 20 156 2700 41040 697700 12503400

615 CKP631 1 0 20 168 2580 38400 629120 10709160

616 1 0 20 168 2580 39600 648920 11239200

617 1 0 20 198 3228 52260 925130 17075100

618 CKP633, S2
8 × S2

4 1 0 22 102 1434 13740 160510 1881180

619 CKP634 1 0 22 120 1914 23280 347980 5206320

620 P1 ×MM3
3–3, CKP635 1 0 22 132 2058 24360 345280 4867800

621 CKP636 1 0 22 144 2394 34200 557140 9241680

622 CKP637 1 0 22 162 2490 34260 531490 8504160

623 1 0 22 168 2634 38040 613660 10263120
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624 CKP638 1 0 22 186 3090 47880 824530 14728980

625 1 0 22 186 3354 52980 960970 17852100

626 1 0 22 192 3258 51720 914620 16742880

627 CKP639 1 0 22 246 4290 74280 1433830 28650720

628 1 0 22 264 4122 77880 1476220 29789760

629 1 0 22 264 4554 82200 1613740 33027120

630 CKP640, V 4
6 1 0 24 0 3240 0 672000 0

631 CKP641 1 0 24 36 3240 10800 680100 3528000

632 CKP642 1 0 24 72 3288 21600 720600 7101360

633 P1 ×MM3
7–1, P1 ×P1 ×S2

4 ,

CKP643

1 0 24 96 1704 14400 193920 2150400

634 S2
7 × S2

4 , CKP644 1 0 24 102 1704 15720 205530 2452380

635 CKP645 1 0 24 144 3480 46920 909600 16450560

636 CKP646, P1 ×MM3
2–9 1 0 24 174 2784 37680 578490 9059820

637 1 0 24 186 3144 47280 804390 14118720

638 CKP647 1 0 24 192 3048 45840 757680 13077120

639 CKP648 1 0 24 192 3192 48120 816000 14306040

640 CKP649 1 0 24 234 3648 60780 1060350 19603500

641 CKP650 1 0 24 264 4632 83040 1611960 32664240
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642 1 0 24 264 5352 101040 2040360 43219680

643 CKP651 1 0 26 72 3534 22320 787580 7514640

644 CKP652, S2
6 × S2

4 1 0 26 108 1998 19080 270440 3435600

645 CKP653 1 0 26 216 4302 72480 1371500 27676320

646 CKP654 1 0 26 246 4302 72120 1339550 25814460

647 CKP655 1 0 26 288 5166 102960 2038580 44530080

648 CKP656 1 0 26 396 6222 151080 3168440 74446680

649 CKP657 1 0 28 240 3996 62400 1067680 19007520

650 CKP658 1 0 28 258 4764 82200 1573390 31316460

651 CKP659 1 0 28 288 5484 100800 2038960 42887040

652 CKP660 1 0 28 306 5580 104100 2099350 44273880

653 1 0 28 342 6540 129540 2770570 61901700

654 CKP661 1 0 28 432 9660 210240 5004640 126134400

655 S2
5 × S2

4 , CKP662 1 0 30 126 2658 27720 439590 6247500

656 P1 ×MM3
2–10, CKP663 1 0 30 216 3858 54000 891660 14726880

657 CKP664 1 0 30 240 4338 66960 1182900 21408240

658 CKP665 1 0 30 300 6690 124920 2778600 61790400

659 CKP666 1 0 30 372 7314 153720 3385200 79195200
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660 CKP667 1 0 32 318 6144 113280 2304770 48799800

661 CKP668 1 0 32 384 7728 157800 3492320 80806320

662 1 0 32 384 8112 167520 3766640 88438560

663 P1 × V 3
14 1 0 34 312 5910 97920 1820140 34520640

664 1 0 34 390 8694 179520 4180750 100127580

665 1 0 34 498 10278 245040 5923330 153543600

666 CKP669 1 0 36 336 6708 119520 2419200 50507520

667 CKP670 1 0 36 360 7188 134400 2795400 60459840

668 1 0 36 396 7572 143160 2921580 62324640

669 1 0 36 456 9876 214680 5072760 125137740

670 CKP671 1 0 36 552 12852 304080 7828200 210966000

671 1 0 36 768 18996 500640 14713200 450203040

672 CKP672, P1 ×MM3
2–7 1 0 38 348 6954 117840 2268560 44336040

673 CKP673 1 0 38 384 8106 156480 3390500 76130880

674 CKP674 1 0 38 396 8010 150600 3136160 67735080

675 CKP675, S2
4 × S2

4 1 0 40 192 4776 59520 1120000 19138560

676 CKP676 1 0 44 516 11580 248880 5903540 145945800

677 CKP677 1 0 44 636 15804 393480 10666340 301939680

678 CKP678 1 0 44 696 17388 445680 12371480 359059680
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679 1 0 44 744 18396 492360 14028200 419215440

680 CKP679 1 0 44 888 23052 649200 19904120 635293680

681 P1 ×MM3
2–6, CKP680 1 0 46 528 11826 238560 5341780 122340960

682 CKP681 1 0 46 714 18618 496560 14203810 428469300

683 V 4
4 , CKP682 1 0 48 0 15120 0 7392000 0

684 CKP683 1 0 48 216 15408 151320 7959000 117482400

685 CKP684 1 0 48 660 15552 367320 9396300 251895000

686 P1 × V 3
12 1 0 50 600 13758 288480 6659420 157802400

687 CKP685 1 0 50 792 21078 635760 18069260 600739440

688 CKP686 1 0 52 696 17412 424440 11365000 317604000

689 1 0 52 1044 29124 874080 28285540 956113200

690 P2 × S2
3 , CKP687 1 0 54 498 9882 162000 2938770 54057780

691 CKP688 1 0 54 528 11178 207720 4427820 98491680

692 CKP689 1 0 54 744 19194 481680 13279500 381906000

693 CKP690 1 0 54 888 24378 677520 20447820 644873040

694 CKP692, S2
8 × S2

3 1 0 56 498 10536 171900 3240110 60897480

695 CKP693 1 0 56 528 11832 217920 4748600 106293600

696 CKP694 1 0 56 600 14424 317100 7961600 207233040
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697 P1×P1×S2
3 , CKP695, P1×

MM3
8–1

1 0 58 492 11214 178440 3502120 65938320

698 CKP696, S2
7 × S2

3 1 0 58 498 11214 181800 3561250 68151720

699 1 0 58 888 23694 632400 18393340 559525680

700 S2
6 × S2

3 , CKP697 1 0 60 504 11916 195120 3962040 78104880

701 CKP698 1 0 60 1068 30156 893280 28423860 948659040

702 CKP699 1 0 60 1212 35916 1134480 38512860 1368087000

703 CKP700, S2
5 × S2

3 1 0 64 522 13392 225720 4887190 102194400

704 CKP701 1 0 66 852 21510 504000 13009080 347891040

705 CKP702 1 0 66 1356 47574 1614240 58420920 2223985680

706 P1 ×MM3
2–5, CKP703 1 0 68 816 21012 465960 11662880 297392760

707 CKP704 1 0 68 852 22308 520680 13640900 368091360

708 CKP705 1 0 68 1320 43236 1421040 51100520 1914785040

709 S2
4 × S2

3 , CKP706 1 0 74 588 17550 319560 7862600 185440080

710 CKP707 1 0 78 1140 32706 877320 26208960 814453920

711 CKP708 1 0 78 1176 34002 937080 28577940 909170640

712 CKP709 1 0 78 1680 60066 2142720 82424580 3324124440

713 CKP710 1 0 80 1212 36240 1020360 31974020 1043489160

714 P1 × V 3
10 1 0 80 1320 38688 1078320 32604200 1016215200
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715 1 0 84 1932 69636 2622480 106446900 4526098920

716 CKP711 1 0 84 2148 77316 3051480 128188740 5649930720

717 1 0 90 1788 59886 2032920 74950920 2894154480

718 CKP712 1 0 90 2040 76014 2873160 117404820 5023514160

719 P1 ×MM3
2–4, CKP713 1 0 92 1518 47172 1357680 42774050 1385508600

720 CKP714 1 0 92 1626 51492 1574580 52448150 1816414320

721 CKP715 1 0 92 2112 83820 3281280 141863600 6368328960

722 CKP716 1 0 102 1950 67002 2266320 83881470 3245543280

723 1 0 102 2274 84330 3207480 132223890 5710371660

724 CKP717 1 0 102 2688 106410 4495680 203447460 9658434240

725 CKP718 1 0 102 3408 146250 6695280 334814340 17506424880

726 CKP719 1 0 104 2472 97944 3940320 171825080 7840793520

727 CKP720, S2
3 × S2

3 1 0 108 984 37260 848880 26609400 804368880

728 CKP721 1 0 128 2976 120960 4959840 221633120 10369947840

729 CKP722 1 0 138 4650 222918 11448480 632940330 36647730000

730 1 0 150 4866 241002 12623040 711272850 42024975300

731 CKP723, P1 × V 3
8 1 0 154 3840 159486 6504960 284808340 12889551360

732 CKP724 1 0 168 4752 219624 10383840 531501360 28511659680

733 CKP725 1 0 184 5688 286008 14876160 837897160 49505030400
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734 1 0 224 9312 580704 38555520 2752140320 206084027520

735 CKP726 1 0 272 13560 952176 73148160 5996559080 516454715280

736 CKP727, P1 × V 3
6 1 0 398 17616 1221810 85572960 6386359700 493612489440

737 CKP728 1 0 420 19992 1488708 114603120 9497959800 824518956240

738 CKP729 1 0 444 22404 1771596 146305440 13047797460 1221757064640

739 CKP730 1 0 468 24852 2065764 180367920 17014559940 1685867765400

740 1 0 540 37632 3836268 420664320 49565795760 6131551910400

741 CKP731 1 0 1040 105984 15564048 2472668160 422070022400 75673543680000

742 1 0 1386 166284 28575342 5322513240 1065056580360 223880895211680

743 P1 × V 3
4 , CKP732 1 0 1946 215808 35318526 5981882880 1074550170260 200205416839680

744 CKP733 1 0 1992 227472 38459880 6796332000 1282447706160 252711084477600

745 CKP734 1 0 2136 262896 48275736 9412519800 1975803279600 435882277192320

746 CKP735 1 0 2664 466368 115475112 31137505920 9021039724800 2746619333498880

747 CKP736 1 0 6804 2040912 852143652 389608626240 191430924575040 98894833331535360

748 CKP737 1 0 12816 5435904 3188239632 2051802731520 1419118168838400 1032164932439531520

749 CKP738 1 0 99000 130800000 233995275000 462392774925120 982577026659240000 2197113382189414080000
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