QUIVER FLAG VARIETIES AND MIRROR SYMMETRY

A THESIS PRESENTED FOR THE DEGREE OF
Doctor of Philosophy of Imperial College London
AND THE
Diploma of Imperial College
BY

Elana Kalashnikov

Department of Mathematics
Imperial College
180 Queen's Gate, London SW7 2BZ

April 2019

I certify that this thesis, and the research to which it refers, are the product of my own work, and that any ideas or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referencing practices of the discipline.

Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International Licence (CC BY-NC-ND).

Under this licence, you may copy and redistribute the material in any medium or format on the condition that; you credit the author, do not use it for commercial purposes and do not distribute modified versions of the work.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text.

Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law.

Quiver flag varieties and mirror symmetry

Abstract

Quiver flag zero loci are subvarieties of quiver flag varieties cut out by sections of representation theoretic vector bundles. Grassmannians are an example of quiver flag varieties. The Abelian/non-Abelian correspondence is a conjecture relating the Gromov-Witten invariants of a non-Abelian GIT quotient to the same invariants of an Abelian GIT quotient. In the first chapter, we show how the conjecture in the case of Grassmannians arises from Givental's loop space mirror heuristics. We then prove the Abelian/non-Abelian Correspondence for quiver flag zero loci: this allows us to compute their genus zero Gromov-Witten invariants. We determine the ample cone of a quiver flag variety. In joint work with Tom Coates and Alexander Kasprzyk, we use these results to find all four-dimensional Fano manifolds that occur as quiver flag zero loci in ambient spaces of dimension up to 8, and compute their quantum periods. In this way we find at least 141 new four-dimensional Fano manifolds. In the last chapter, we describe a conjectural method for finding mirrors to these fourfolds, and implement this in several examples.

Acknowledgments

I would like to thank my supervisor, Tom Coates, for all of his support throughout my PhD - I couldn't have asked for a better supervisor either mathematically or through the process of navigating new parenthood and research. I'd also like to thank Ali Craw, Thomas Prince, Al Kasprzyk, and Alessio Corti for helpful conversations. Although our work together doesn't appear in this thesis, Alessandro Chiodo has been a wonderful collaborator over the last few years. I'd like to thank my husband, Antony, for all of his encouragement and willingness to tackle parenthood fully equitably.

I'd also like to acknowledge the support of the London School of Number Theory and Geometry and NSERC.

List of Figures

1 Degrees and Euler numbers for four-dimensional Fano quiver flag zero loci and toric complete intersections.4

List of Tables

3.1 The number of Fano quiver flag varieties by dimension d and Picard rank ρ 50
A. 1 Representatives for certain Period IDs in codimension at most four 83
A. 2 Certain 4-dimensional Fano manifolds with Fano index 1 that arise as quiver flag zero loci 85
A. 3 Some regularized period sequences obtained from 4-dimensional Fano manifolds that arise as quiver flag zero loci. 178

Contents

0 Introduction 1
1 Mirror heuristics 5
1.1 Quantum cohomology and the quantum differential equations 5
1.2 The algebraic loop space for GIT quotients 8
1.3 Mirror heuristics for Grassmannians 10
1.4 Zeta function regularization 17
2 Four dimensional Fano quiver flag Zero loci 19
2.1 Quiver flag varieties 19
2.1.1 Quiver flag varieties as GIT quotients. 20
2.1.2 Quiver flag varieties as ambient spaces: Quiver flag zero loci 21
2.1.3 Quiver flag varieties as moduli spaces. 21
2.1.4 Quiver flag varieties as towers of Grassmannian bundles. 22
2.1.5 The Euler sequence 23
2.2 Quiver flag varieties as subvarieties 23
2.3 Equivalences of quiver flag zero loci 26
2.3.1 Dualising 26
2.3.2 Removing arrows 27
2.3.3 Grafting 28
2.4 The ample cone 30
2.4.1 The multi-graded Plücker embedding 30
2.4.2 Abelianization 32
2.4.3 The toric case 36
2.4.4 The ample cone of a quiver flag variety 37
2.4.5 Nef line bundles are globally generated 39
2.5 The Abelian/non-Abelian Correspondence 41
2.5.1 A brief review of Gromov-Witten theory 42
2.5.2 The I-Function 44
2.5.3 Proof of Theorem 2.5.4 46
3 The search for Fano fourfolds 49
3.1 Classifying quiver flag varieties 49
3.2 The class of vector bundles that we consider 51
3.3 Classifying quiver flag bundles 52
3.4 Classifying quiver flag zero loci 53
3.5 Cohomological computations for quiver flag zero loci 54
4 Future directions: Laurent polynomial mirrors for Fano quiver FLAG ZERO LOCI 56
4.1 Mirror symmetry for Fano varieties 56
4.2 SAGBI basis degenerations of quiver flag varieties 59
4.2.1 A degeneration of a flag variety 59
4.2.2 Coordinates on quiver flag varieties 60
4.2.3 Toric degenerations of Y-shaped quivers 62
4.3 Ladder diagrams for certain degenerations 63
4.4 Mirrors of quiver flag zero loci 68
4.5 Degenerations beyond Y-shaped quivers 73
4.5.1 A degeneration of a quiver flag variety with a double arrow 73
4.5.2 A Cox ring degeneration 75
Bibliography 81
Appendix A Regularized quantum periods for quiver flag zero LOCI 82
A.0.3 The table of representatives 82
A.0.4 The table of period sequences 83

0

Introduction

Quiver flag varieties are a generalization of type A flag varieties that were introduced by Craw [18] based on work of King [35]. They are fine moduli spaces for stable representations of the associated quiver (see 2.1.3). Like flag varieties and toric complete intersections, quiver flag varieties can be constructed as GIT quotients of a vector space (see 2.1.1). Unlike toric varieties, the quotienting group for a quiver flag variety is in general non-Abelian; this increases the complexity of their structure considerably: specifically, it places them largely outside of the range of known mirror symmetry constructions.

The Abelian/non-Abelian Correspondence of Ciocan-Fontanine-Kim-Sabbah relates the Gromov-Witten theory of a non-Abelian GIT quotient to that of an Abelian GIT quotient. In Chapter 1, we show how this relation can be seen for the Grassmannian just from considering the loop space of Givental. This calculation isn't rigorous, but can be seen as motivation for the rest of the thesis. In Chapter 2, the main focus is to prove the Abelian/non-Abelian correspondence for quiver flag varieties.

The two perspectives on quiver flag varieties - as fine moduli spaces and as GIT quotients - give two different ways to consider them as ambient spaces. From the moduli space perspective, smooth projective varieties with collections of vector bundles together with appropriate maps between them come with natural maps into the quiver flag variety. From the GIT perspective, one is led to consider subvarieties which occur as zero loci of sections of representation theoretic vector bundles. If the ambient GIT quotient is a toric variety, these subvarieties are toric complete
intersections; if the ambient space is a quiver flag variety, we call these subvarieties quiver flag zero loci. While in this thesis we emphasize the GIT quotient perspective, the moduli space perspective should be kept in mind as further evidence of the fact that quiver flag varieties are natural ambient spaces. All smooth Fano varieties of dimension less than or equal to three can be constructed as either toric complete intersections or quiver flag zero loci. These constructions of the Fano threefolds were given in [13]: see Theorem A. 1 there as well as the explicit constructions in each case. While there is an example in dimension 66 of a Fano variety which is neither a toric complete intersection nor a quiver flag zero locus (see [13]), one might nevertheless hope that most four-dimensional smooth Fano variety are either toric complete intersections or quiver flag zero loci. The classification of four dimensional Fano varieties is open.

Chapter 2 studies quiver flag varieties with a view towards understanding them as ambient spaces of Fano fourfolds. Specifically, [16] classified smooth four dimensional Fano toric complete intersections with codimension at most four in the ambient space. This heavily computational search relied on understanding the geometry and quantum cohomology of toric varieties from their combinatorial structure. The guiding motivation of the chapter is to establish comparable results for quiver flag varieties to enable the same search to be carried out in this context. For example, we determine the ample cone of a quiver flag variety from the path space of the associated quiver: in this way, we are able to efficiently determine a sufficient condition for whether a quiver flag zero locus is Fano.

The main result of this thesis is the proof of the Abelian/non-Abelian Correspondence of Ciocan-Fontanine-Kim-Sabbah for Fano quiver flag zero loci. This allows us to compute their genus zero Gromov-Witten invariants*. From the perspective of the search for four dimensional Fano quiver flag zero loci, the importance of this result is that it allows us to compute the quantum period. The quantum period (a generating function built out of certain genus 0 Gromov-Witten invariants) is the invariant that we use to distinguish deformation families of Fano fourfolds: if two quiver flag zero loci have different period sequences, they are not deformation equivalent.

In Chapter 3, which reports on work which is joint with Tom Coates and Alexander Kasprzyk, we use the structure theory developed in Chapter 2 to find fourdimensional Fano manifolds that occur as quiver flag zero loci in ambient spaces of dimension up to 8 , and compute their quantum periods. 141 of these quantum periods were previously unknown. Thus we find at least 141 new four-dimensional

[^0]Fano manifolds. The quantum periods, and quiver flag zero loci that give rise to them, are recorded in Appendix A. Figure 1 overleaf shows the distribution of degree and Euler number for the four-dimensional quiver flag zero loci that we found, and for four-dimensional Fano toric complete intersections. Our primary motivation is as follows. There has been much recent interest in the possibility of classifying Fano manifolds using Mirror Symmetry. It is conjectured that, under Mirror Symmetry, n-dimensional Fano manifolds should correspond to certain very special Laurent polynomials in n variables [12]. This conjecture has been established in dimensions up to three [13], where the classification of Fano manifolds is known [32, 41]. Little is known about the classification of four-dimensional Fano manifolds, but there is strong evidence that the conjecture holds for four-dimensional toric complete intersections [16]. The results of Chapter 3 will provide a first step towards establishing the conjectures for these four dimensional Fano quiver flag zero loci.

In the final chapter of the thesis, Chapter 4, we discuss future directions of this work. Specifically, we discuss toric degenerations of quiver flag varieties, and their role in finding mirrors of Fano quiver flag zero loci. For a certain family of quivers, we provide a systematic (and still conjectural) method of finding Laurent polynomial mirrors of quiver flag zero loci which are subvarieties of these quivers.

Figure 1: Degrees and Euler numbers for four-dimensional Fano quiver flag zero loci and toric complete intersections; cf. [16, Figure 5]. Quiver flag zero loci that are not toric complete intersections are highlighted in red.

1

Mirror heuristics

In [23], the authors Galkin and Iritani recover the Laurent polynomial mirror of projective space using Givental's equivariant loop space heuristics. In this chapter, we find the analogue for Grassmannians. We show how the Abelian/non-Abelian correspondence for Grassmannians arises from the same considerations. That is, we use a heuristic argument to produce the mirror oscillatory integral to the Grassmannian, and show that it takes the form predicted by Hori-Vafa and the Abelian/non-Abelian correspondence.

1.1 Quantum cohomology and the quantum differential equations

We first briefly review quantum cohomology and the quantum differential equations. Let X be a smooth Fano variety. The quantum cohomology ring is defined by giving a deformation of the usual cup product of $H^{*}(X)$ for every $t \in H^{*}(X)$. The structural constants defining the new product are given by Gromov-Witten invariants.

A nodal curve C is a projective, connected curve with singularities that are at most nodes, that is, of the local form $x y=0$. An n-pointed nodal curve is pair (C, ϵ) where C is a nodal curve, and ϵ is a set $\left\{p_{1}, \ldots, p_{n}\right\}$ of n non-singular points on C. The moduli space of stable maps $\bar{M}_{g, n}(X, \beta)$ parametrizes stable maps $f: C \rightarrow X$ up to isomorphism. Here C is a possibly nodal curve of arithmetic genus g, with n marked points, and $f_{*}([C])=\beta$. In general, $\bar{M}_{g, n}(X, \beta)$ may have components of different dimensions; however, it is possible to define a virtual fundamental class of
the expected dimension:

$$
(\operatorname{dim}(X)-3)(g-1)+\int_{\beta} c_{1}(X)+n
$$

There are natural maps $e v_{i}: \bar{M}_{g, n}(X, \beta) \rightarrow X$, where $e v_{i}([f: C \rightarrow X])=f\left(p_{i}\right)$. Let $\alpha_{1}, \ldots, \alpha_{n} \in H^{*}(X)$.

Definition 1.1.1. A Gromov-Witten invariant of X is

$$
\int_{\left[\bar{M}_{0, n}(X, \beta)\right]^{v i r t}} e v_{1}^{*}\left(\alpha_{1}\right) \cup \cdots \cup e v_{n}^{*}\left(\alpha_{n}\right)
$$

for some $n \in \mathbb{Z}_{>0}, \alpha_{i} \in H^{*}(X)$ and $\beta \in H_{2}(X)$.

Let $\left\{T_{i}\right\}$ be a homogenous basis of $H^{*}(X, \mathbb{C})$ and $\left\{T^{i}\right\}$ a dual basis. Let $t \in$ $H^{2}(X, \mathbb{C})$. The small quantum product is defined by

$$
\left\langle T^{a} o_{t} T^{b}, T^{c}\right\rangle:=\sum_{d \in H_{2}(X)} e^{\int_{d} t} \int_{\left[M_{0,3}(X, d)\right]^{v i r t}} e v_{1}^{*}\left(T^{a}\right) e v_{2}^{*}\left(T^{b}\right) e v_{3}^{*}\left(T^{c}\right) .
$$

If T_{1}, \ldots, T_{r} are a basis of $H^{2}(X, \mathbb{C})$, and t_{i} a parameter for T_{i}, define $q_{i}:=e^{t_{i}}$. For $d=\sum_{i=1}^{r} d_{i} T_{i}$, write $q^{d}=q_{1}^{d_{1}} \cdots q_{r}^{d_{r}}$. We can re-write the above as

$$
\left\langle T^{a} \circ T^{b}, T^{c}\right\rangle:=\sum_{d \in H_{2}(X)} q^{d} \int_{\left[M_{0,3}(X, d)\right]^{v i r t}} e v_{1}^{*}\left(T^{a}\right) e v_{2}^{*}\left(T^{b}\right) e v_{3}^{*}\left(T^{c}\right),
$$

This gives a product on $T^{*}\left(H^{*}(X)\right)=H^{*}(X) \times H^{*}(X)$ at every point in $H^{2} X$. Associated to this product structure is the quantum differential equations. As $H^{*}(X) \times H^{*}(X)$ is trivial over $H^{*}(X)$, there is a natural flat connection d given by the parameters on the base.

$$
\nabla_{i}^{z}=\nabla_{\frac{\partial}{\partial t_{i}}} s=z d_{\frac{\partial}{\partial t_{i}}} s+T_{i} \circ .
$$

In fact, this is a flat connection (see, for example, [5]). The quantum differential equations are the differential equations satisfied by the sections.

This connection also gives quantum cohomology $H^{*}(X) \otimes \mathbb{C}[z]\left[\left[q_{1}, \ldots, q_{r}\right]\right]$ the structure of a D module. Here we follow [31]. Let D be a Heisenberg algebra:

$$
D:=\mathbb{C}[z]\left[\left[q_{1}, \ldots, q_{r}\right]\right]\left[p_{1}, \ldots, p_{r}\right],
$$

with $\operatorname{deg}\left(q_{i}\right)=\int_{P D\left(t_{i}\right)} c_{1}\left(T_{X}\right)$, and $\operatorname{deg}\left(p_{i}\right)=\operatorname{deg}(z)=2$. The commutation relations
are given by

$$
\left[p_{a}, q_{b}\right]=z \delta_{b}^{a} q_{b},\left[p_{a}, p_{b}\right]=\left[q_{a}, q_{b}\right]=0,\left[p_{a}, f\right]=z \frac{\partial}{\partial q_{a}} f, f \in \mathbb{C}\left[\left[q_{1}, \ldots, q_{r}\right]\right] .
$$

Then D operates on the quantum cohomology ring $H^{*}(X) \otimes \mathbb{C}[z]\left[\left[q_{1}, \ldots, q_{r}\right]\right]$ by $q_{a} \mapsto q_{a}$ and $p_{a} \mapsto \nabla_{a}^{z}$.

In [26], Givental conjectured that equivariant Floer cohomology (not rigorously defined) should have the structure of a D module, and that this D module should be isomorphic to the quantum D module.

Let $L X$ be the loop space of X : that is, the space of free contractible loops in X. The symplectic form ω on X induces a symplectic form on $L X$: vector fields on X can be identified with vector fields on X over a loop γ; given two such vector fields w, v, the symplectic form is given by

$$
\oint \omega(w(\gamma(t), v(\gamma(t))) d t .
$$

Reparametrization of loops gives an action of S^{1} on $L X$ which preserves the symplectic form; however, the Hamiltonian associated to it is multivalued: it assigns to a loop the symplectic area of a disc contracting the loop. To make this better defined, let $\tilde{L X}$ be a covering space of $L X$. Givental then discusses the S^{1} equivariant Floer cohomology of $\tilde{L X}$: by definition this is the cohomology of the critical set of the Hamiltonian. That is, it is the cohomology of the fixed points of the S^{1} action, which are constant loops. We therefore get a copy of X at each level of the covering space. Assuming that X is simply connected, we can identify $\pi_{2}(X)$ with $H_{2}(X, \mathbb{Z})$. Note that the deck transformation group of $L X \rightarrow L X$ is $\pi_{1}(L X)=\pi_{2}(X)$. Let q_{1}, \ldots, q_{r} be a basis of the lattice. As an additive object, the cohomology is then identified with

$$
H^{*}\left(X, \mathbb{C}[z]\left[q_{1}^{ \pm}, \ldots, q_{r}^{ \pm}\right]\right)
$$

Here z is the equivariant parameter, and the q_{i} can be understood as determining the level in $\tilde{L X}$. Givental shows that the Heisenberg algebra D above acts on this cohomology as follows. Given a basis Poincaré dual to the chosen one for $H_{2}(X, \mathbb{Z})$, let $\omega_{1}, \ldots, \omega_{r}$ be the associated S^{1} equivariant symplectic forms on $\tilde{L X}$. Then we obtain H_{1}, \ldots, H_{r}, the Hamiltonians for the S^{1} action with respect to each symplectic form. Define the action of p_{i} in D on the Floer cohomology by mapping

$$
p_{i} \mapsto \omega_{i}+z H_{i} .
$$

One can check that this gives the Floer cohomology the structure of a D module.

Givental conjectured that these two D modules - the one associated to quantum cohomology and the one associated to Floer cohomology - are isomorphic. Suppose there exists $c \in \mathcal{M}:=H^{*}\left(X, \mathbb{C}[z]\left[q_{1}^{ \pm}, \ldots, q_{r}^{ \pm}\right]\right)$such that the cohomology is generated by c as D module (otherwise, we can simply consider the sub- D module generated by c). This gives an identification of the equivariant Floer cohomology with D / I_{c}, where I_{c} is the ideal of operators which annihilate c. Givental's conjecture implies that c is a solution to the quantum differential equations.
$H^{*}(X, \mathbb{C})$ can be mapped into \mathcal{M} : given a Poincaré dual cycle γ, consider the cycle in the critical set at each level in $\tilde{L X}$. Then take the downwards gradient flow with respect to the Hamiltonian (a infinite dimensional version of the unstable manifold): the corresponding cycle is the desired element in \mathcal{M}. If $H^{*}(X)$ is generated in degree 2 (which is not the case for the Grassmannian), then the Poincaré dual of the image of the fundamental cycle gives the proposed c. It consists of the boundary values of all holomorphic discs in X. Givental did a formal computation to find a solution, which is the I function (later proved to be a solution to the quantum differential equations using different methods). Below, we do a formal calculation to show that one obtains the oscillatory integrals that satisfy the quantum differential equations of the Grassmannian given the Abelian/non-Abelian correspondence. In the second chapter of the thesis, we prove the Abelian/non-Abelian correspondence for quiver flag varieties rigorously.

1.2 The algebraic loop space for GIT quotients

Following Givental and [23], we use an algebraic analogue of the loop space. Let V be a \mathbb{C} vector space, equipped with a G action for a group G that is a product of $G l\left(r_{i}\right)$, so that G acts linearly. Choosing coordinates on V, we have the standard symplectic form ω. By the Kempf-Ness theorem, the GIT quotient (after choosing a stability condition) $X:=V / / G$ is diffeomorphic to the symplectic quotient $\mu^{-1}(u) / K$, where K is the maximal compact subgroup of G such that $K_{\mathbb{C}}=G$, and $\mu: V \rightarrow \mathfrak{k}^{*}$ is a moment map for the action.

Example 1.2.1 (The Grassmannian). Let $V=\operatorname{Mat}(r \times N ; \mathbb{C})$ where $G=G l(r)$ acts by multiplication on the left. $K:=U(r)$ is the unitary group. \mathfrak{k} is the skew Hermitian matrices, and \mathfrak{k}^{*} is identified with Hermitian matrices via the pairing $\left\langle h_{1}, h_{2}\right\rangle:=i \operatorname{tr}\left(h_{1} h_{2}\right) \in \mathbb{R}$. One can check that this action is Hamiltonian with moment map $\mu(A):=\pi A A^{*}$ where the symplectic form is

$$
\omega:=\sum_{i=1}^{N} \sum_{j=1}^{r} \frac{\sqrt{-1}}{2} d a_{i, j} \wedge d \overline{a_{i, j}} .
$$

Example 1.2.2 (Quiver flag varieties). Let (Q, \mathbf{r}) be the data giving a quiver flag variety (see 2.1.1). Let $K:=\prod_{i=1}^{\rho} U\left(r_{i}\right)$, and

$$
V:=\bigoplus_{a \in Q_{1}} \operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}^{r_{s(a)}}, \mathbb{C}^{r_{t(a)}}\right)
$$

acting by change of basis. Write coordinates on V as $\left[\left[a_{i, j}^{(a)}\right]_{1 \leq i \leq r_{s(a)}, 1 \leq j \leq r_{t(a)}}\right]_{a \in Q_{1}}$. Let ω be the standard symplectic form. Then this action is Hamiltonian with moment map

$$
\mu\left(\left(A_{a}\right)_{a \in Q_{1}}\right)=\left(\pi \sum_{a \in Q_{1}, t(a)=i} A_{a} A_{a}^{*}-\pi \sum_{a \in Q_{1}, s(a)=i} A_{a}^{*} A_{a}\right)_{i=1}^{\rho} .
$$

Let $V\left[\zeta, \zeta^{-1}\right]:=\oplus_{n=-\infty}^{\infty} V \zeta^{n}$ be the infinite dimensional vector space over \mathbb{C} identified with replacing the scalar entries of a vector in V with Laurent polynomials in ζ. This induces an action of G (and K) on $V\left[\zeta^{ \pm 1}\right]$. If b_{i} were coordinates on V, then we can write coordinates on $V\left[\zeta^{ \pm 1}\right]$ as $b_{i}^{(n)}, n \in \mathbb{Z}$ and define

$$
\omega_{\infty}:=\sum_{n \in \mathbb{Z}} \sum_{i=1}^{\operatorname{dim}(V)} b_{i}^{(n)} \wedge \overline{b_{i}^{(n)}} .
$$

We can similarly define

$$
\mu_{\infty}: V\left[\zeta^{ \pm 1}\right] \rightarrow \mathfrak{k}^{*} ; \mu_{\infty}\left(\left(v_{n}\right)_{n \in \mathbb{Z}}\right) \mapsto \sum_{n \in \mathbb{Z}} \mu\left(v_{n}\right) .
$$

Because the K action was defined just by extending linearly, it follows that μ_{∞} is a moment map for the K action on $V\left[\zeta^{ \pm 1}\right]$. The polynomial loop space of X is defined to be

$$
L_{\text {poly }}(X):=\mu_{\infty}^{-1}(u) / K
$$

Let ω_{u} be the induced symplectic form.
$L_{\text {poly }}(X)$ should be considered as the algebraic analogue of the covering of the infinite loop space. An element of $L_{\text {poly }}(X)$ defines a loop in X by varying $\zeta \in S^{1}$. S^{1} acts on $L_{\text {poly }}(X)$ by re-parametrizing the loops; that is $\zeta \mapsto \lambda \zeta$ for $\lambda \in S^{1}$. Let H_{u} be the Hamiltonian for this action; it is the restriction and quotient to $L_{p o l y}(X)$ of

$$
\pi \sum_{n \in \mathbb{Z}} \sum_{i} n\left|b_{i}^{(n)}\right|^{2}
$$

on $V\left[\zeta^{ \pm 1}\right]$.
The analogue of the deck transformation of the covering space is an action for each element of $\pi_{2}(X) \cong H_{2}(X) \cong \chi(G)^{\vee}$ (assuming X is simply connected and a Mori dream space). Given a co-character $\chi: \mathbb{C}^{*} \rightarrow G$, we get an action on of \mathbb{C}^{*} on V,
which for some choice of basis and β_{i} is given by, for $\zeta \in \mathbb{C}^{*}$:

$$
\zeta \cdot\left[b_{i}^{(n)}\right] \mapsto\left[\zeta^{\beta_{i}} b_{i}^{(n)}\right] .
$$

Hence we can interpret this as a deck transformation on $V\left[\zeta^{ \pm 1}\right]$ in the obvious way.
Example 1.2.3. Suppose $X:=\mathbb{P}^{n} \times \mathbb{P}^{m}$, so that $G:=\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on $V=\mathbb{C}^{m+1} \times \mathbb{C}^{n+1}$ by scaling each factor. An element of $V\left[\zeta^{ \pm 1}\right]$ is $(\underline{f}, \underline{g})$ where \underline{f} is an $n+1$ tuple of Laurent polynomials in ζ, and \underline{g} is an $m+1$ tuple. $\operatorname{Hom}\left(\mathbb{C}^{*}, G\right) \cong \mathbb{Z}^{2}$, so taking $(a, b) \in \mathbb{Z}^{2}$, the corresponding deck transformation is

$$
(\underline{f}, \underline{g}) \mapsto\left(\zeta^{a} \underline{f}, \zeta^{b} \underline{g}\right) .
$$

Now we are ready to start considering the integral indicated by Givental, which we have discussed in the first section. For each co-character χ, there is copy of X denoted X_{χ} at the level χ in $L_{\text {poly }}(X)$. That is, X_{χ} is the equivalence classes of elements of $\chi(V) . X_{0}$ is just the image of the constant polynomial V in $V\left[\zeta^{ \pm 1}\right]$ in $L_{\text {poly }}(X)$. The image of the fundamental class of X under the map $H^{*}(X) \rightarrow$ $\mathcal{M}=H^{*}\left(X, \mathbb{C}[z]\left[q_{1}^{ \pm}, \ldots, q_{r}^{ \pm}\right]\right)$is given by the class Poincaré dual to the closure of the stable manifold of X_{0}. The class of the closure of the stable manifold, denoted Δ, is the image of $V[\zeta] \cap \mu_{\infty}^{-1}(u)$ under the quotient $\mu_{\infty}^{-1}(u) \rightarrow L_{\text {poly }}(X) . \Delta$ defines a class in $\mathcal{M}:=H^{*}\left(X, \mathbb{C}[z]\left[q_{1}^{ \pm}, \ldots, q_{r}^{ \pm}\right]\right)$.

1.3 Mirror heuristics for Grassmannians

For Grassmannians, we can be much more explicit. From now on, assume we are in the case of the Grassmannian, using the notation of Example 1.2.1: $V=\operatorname{Mat}(r \times$ $N, \mathbb{C})$ with coordinates $a_{i j}$. The coordinates on $V\left[\zeta^{ \pm}\right]$are given by $a_{i j}^{(n)}$. The moment map is

$$
\mu(A)=\pi \sum_{n} A^{(n)}\left(A^{(n)}\right)^{*}
$$

if $A^{(n)}=\left[a_{i j}^{(n)}\right]_{1 \leq i \leq r, 1 \leq j \leq N}$. In these coordinates, H is given by

$$
\pi \sum_{n \in \mathbb{Z}} \sum_{i, j} n\left|a_{i j}^{(n)}\right|^{2} .
$$

Givental conjectures that Δ satisfies the quantum differential equations of X. As he suggests, one can instead take the Fourier transform: consider the integral

$$
\begin{equation*}
\int_{\Delta} e^{\omega_{u} / z-H_{u}} . \tag{1.1}
\end{equation*}
$$

For shorthand, we refer to this integral as the mirror integral for the rest of this chapter.

Following the case of projective space (in [23]), we would like to write this as an integral over $V[\zeta]$ instead.

Suppose ϕ is a principal one form for the principal K bundle $\pi: \mu^{-1}(u) \rightarrow L_{\text {poly }}(X)$. By definition, ϕ is a \mathfrak{k}-valued one form which is K equivariant. Choose a basis f_{1}, \ldots, f_{k} of \mathfrak{k}^{*}. We can define k scalar-valued one forms $\phi_{1}, \ldots, \phi_{k}$ via $\phi_{i}:=\left\langle\phi, f_{i}\right\rangle$. As the restriction of $\phi_{1} \wedge \cdots \wedge \phi_{k}$ to a fiber is the volume form,

$$
\int_{\Delta} e^{\omega_{u} / z-H_{u}}=\int_{\mu^{-1}(u) \cap V[\zeta]} e^{\omega / z-H} \phi_{1} \wedge \cdots \wedge \phi_{k} .
$$

We then change coordinates $a_{i j}^{(n)} \mapsto \sqrt{z} a_{i j}^{(n)}$ (having chosen ϕ such that ϕ_{i} are invariant under this change of coordinates, as in [23]), and obtain

$$
\int_{\mu^{-1}(u / z) \cap V[\zeta]} e^{\omega-z H} \phi_{1} \wedge \cdots \wedge \phi_{k}
$$

Note that $\mu^{*}\left(\delta_{u / z} f_{1} \wedge \cdots \wedge f_{n}\right)=\delta(\mu-u / z) d \mu_{1} \wedge \cdots \wedge d \mu_{k}$ where δ is the Dirac delta function and the $d \mu_{i}$ are defined as follows. The one form $d \mu$ is \mathfrak{k}^{*}-valued. Let e_{1}, \ldots, e_{k} be a dual basis to the f_{1}, \ldots, f_{k} : define $d \mu_{i}=\left\langle d \mu, e_{i}\right\rangle$. Now note that the mirror integral can be written as

$$
\int_{V[\zeta]} e^{\omega-z H} \delta(\mu-u / z) \phi_{1} \wedge \cdots \wedge \phi_{k} \wedge d \mu_{1} \wedge \cdots \wedge d \mu_{k} .
$$

Suppose that ϕ is scaled so that the top degree term of $e^{\omega} \wedge \phi_{1} \wedge \cdots \wedge \phi_{k} \wedge d \mu_{1} \wedge \cdots \wedge d \mu_{k}$ is

$$
d \mathrm{vol}=\bigwedge_{i=1}^{r} \bigwedge_{j=1}^{N} \bigwedge_{n \in \mathbb{Z}} \frac{\sqrt{-1}}{2} d a_{i j}^{(n)} \wedge d \overline{a_{i j}^{(n)}} .
$$

Then, in analogue to the finite dimensional situation, we write the mirror integral as

$$
\int_{V[\zeta]} \delta(\mu-u / z) e^{-z H} d \mathrm{vol} .
$$

As μ is vector (or rather, matrix) valued, we use the matrix δ function defined by [50]: for C an $r \times r$ Hermitian matrix,

$$
\begin{gathered}
\delta(C):=\frac{1}{2^{r} \pi^{r^{2}}} \int_{\mathfrak{k}^{*}} e^{i T r\left(X T^{t}\right)}[d T], \\
d T:=\prod_{j=1}^{r} d t_{j j} \prod_{1 \leq i<j \leq r} d \operatorname{Re}\left(t_{i j}\right) d \operatorname{Im}\left(t_{i j}\right) .
\end{gathered}
$$

Here $t_{i j}$ are the usual coordinates on Hermitian matrices. We take the transpose (which amounts to changing variables) just to ease notation. This is equivalent to taking a product of scalar delta functions, one for each coordinate.

Using the definitions of H and μ, the mirror integral becomes

$$
\frac{1}{2^{r} \pi^{r^{2}}} \int_{\mathfrak{k}^{*}}[d T] \prod_{\substack{1 \leq i \leq r, r \\ 1 \leq j \leq r}}\left(e^{-i t_{i j} u_{i j} / z}\right) \int_{V[\zeta]} d \operatorname{vol} \prod_{n=0}^{\infty}\left(\prod_{1 \leq i, j \leq r} \prod_{k=1}^{N}\left(e^{i \pi a_{i k}^{(n)} a_{j k}^{(n)}} \overline{i d j}^{\substack{1 \leq}} \prod_{\substack{1 \leq i \leq r, 1 \leq j \leq N}} e^{-\pi n z\left|a_{i j}^{(n)}\right|^{2}}\right) .\right.
$$

We can compute the integral over $V[\zeta]$ as it is an (infinite) product of Gaussian integrals. Recall that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-a x^{2}+b x+c} d x=\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}+c} . \tag{1.2}
\end{equation*}
$$

It's easiest to do this by fixing n and l and considering the integral over $a_{i l}^{(n)}$ for all i. Recall that i and l index the rows and columns of elements of $V=\operatorname{Mat}(r \times N ; \mathbb{C})$. In the proof of the following proposition, we start at the bottom row, $i=r$, and go up, and show that that the following recursive definition gives the integral:

$$
\begin{gathered}
A_{r}^{(n)}(i)=i t_{i r}, C_{r}^{(n)}=n z-i t_{r r}, i<r \\
A_{k}^{(n)}(i):=i t_{i k}+\sum_{j=k+1}^{r}\left(A_{j}^{(n)}(k)\right)^{t} A_{j}^{(n)}(i) / C_{j}^{(n)}, i<k \\
C_{k}^{(n)}:=n z-i t_{k k}-\sum_{j=k+1}^{r} A_{j}^{(n)}(k)\left(A_{j}^{(n)}(k)\right)^{t} / C_{j}^{(n)} .
\end{gathered}
$$

Here taking the transpose means $t_{i j} \mapsto t_{j i}$ in the formula.
Proposition 1.3.1. The mirror integral is

$$
\frac{1}{2^{r} \pi^{r^{2}}} \int_{\mathfrak{k}^{*}}[d T] \prod_{1 \leq i, j \leq r}\left(e^{-i t_{i j} u_{i j} / z}\right) \prod_{n=0}^{\infty} \prod_{k=1}^{r} \frac{1}{\left(C_{k}^{(n)}\right)^{N}}
$$

Proof. From now on, we suppress the (n) notation as n is fixed.
We compute the integral step by step, starting by integrating out the $a_{r l} \bar{a}_{r l}$ variables. We claim that after integrating up to k (so from $r, \ldots, k+1$), the term involving $a_{k l}$ is

$$
\begin{equation*}
e^{\pi\left(\sum_{i=1}^{k-1} A_{k}(i) a_{i l}\right) \overline{a_{k l}}+\pi\left(\sum_{i=1}^{k-1} A_{k}^{t}(i) \overline{a_{i l}}\right) a_{k l}-\pi C_{k}^{(n)}\left|a_{k k}\right|^{2}} . \tag{1.3}
\end{equation*}
$$

As the $k=r$ step (the induction step) is straightforward, assume the statement is true for $j>k$. After changing coordinates to the real and imaginary parts of $a_{j l}$, we
can use (1.2) twice to see that at the $j^{\text {th }}$ step we get a contribution of

$$
\frac{1}{C_{j}} e^{\pi\left(\sum_{i=1}^{j-1} A_{j}(i) a_{i l}\right)\left(\sum_{i=1}^{j-1} A_{j}^{t}(i) \overline{a_{i l}}\right) / C_{j}} .
$$

Note that here we use the identity $-(a-b)^{2}+(a+b)^{2}=4 a b$.
Now we gather all the terms involving $a_{k l}$, including the contributions from the original integrand and each of the $k-1$ integrations previously - and it is precisely as given in (1.3).

To prove the proposition, note that for $k=1$, the final step, we are computing

$$
\int_{\mathbb{C}} e^{-\pi C_{1}^{(n)}\left|a_{11}\right|^{2}} \prod_{i=2}^{r} \frac{1}{C_{i}^{(n)}} d a_{1 l} \wedge d \overline{a_{1 l}},
$$

which yields the proposition.
We can write this in a much nicer form. To do this we use the following lemma. Let A be an $n \times n$ matrix. If $S, T \subset\{1, \ldots, n\}, \# S=\# T$, then $A_{S T}$ denotes the determinant of the minor of A obtained by removing rows S and columns T. If $S=\{i\}, T=\{j\}$ we denote it $A_{i j}$.

Lemma 1.3.2. Let A be an $n \times n$ matrix, $1<i<j<n$.

$$
B:=\left[\begin{array}{ll}
A_{i i} & A_{i j} \\
A_{j i} & A_{j j}
\end{array}\right]
$$

Then if $A_{\{i, j\}\{i, j\}} \neq 0$,

$$
\operatorname{det}(A)=\operatorname{det}(B) / A_{\{i, j\}\{i, j\}} .
$$

Proof. The base case $n=2$ is obvious. Suppose it is true for $n-1$. It suffices to prove the case $\{i, j\}=\{1,2\}$. By induction, we can write

$$
A_{12}=\operatorname{det}\left(\left[\begin{array}{ll}
A_{\{1,2\}\{1,2\}} & A_{\{1,2\}\{2,3\}} \\
A_{\{1,3\}\{1,2\}} & A_{\{1,3\}\{2,3\}}
\end{array}\right]\right) / A_{\{1,2,3\}\{1,2,3\}} .
$$

We can similarly expand the other entries in B. Taking the determinant of B, one gets

$$
\begin{array}{r}
\left(A_{\{1,2\}\{2,3\}}\left(-A_{\{1,3\}\{1,3\}} A_{\{2,3\}\{1,2\}}+A_{\{1,3\}\{1,2\}} A_{\{2,3\}\{1,3\}}\right)\right. \\
+A_{\{1,2\}\{1,3\}}\left(A_{\{1,3\}\{2,3\}} A_{\{2,3\}\{1,2\}}-A_{\{1,3\}\{1,2\}} A_{\{2,3\}\{2,3\}}\right) \\
\left.+A_{\{1,2\}\{1,2\}}\left(-A_{\{1,3\}\{2,3\}} A_{\{2,3\}\{1,3\}}+A_{\{1,3\}\{1,3\}} A_{\{2,3\}\{2,3\}}\right)\right) / A_{\{1,2,3\}\{1,2,3\}} .
\end{array}
$$

Each term can be re-written using the induction step. For example,

$$
-A_{\{1,3\}\{1,3\}} A_{\{2,3\}\{1,2\}}+A_{\{1,3\}\{1,2\}} A_{\{2,3\}\{1,3\}} / A_{\{1,2,3\}\{1,2,3\}}=A_{31} .
$$

Then we get

$$
\frac{1}{A_{\{1,2,3\}\{1,2,3\}}}\left(A_{\{1,2\}\{2,3\}} A_{31}-A_{\{1,2\}\{1,3\}} A_{32}+A_{\{1,2\}\{1,2\}} A_{33}\right) .
$$

Expand the $n-2 \times n-2$ minors using Laplace's formula, going across the third row. The first term in each expansion looks like, for $i=1,2,3$,

$$
a_{3 i} A_{\{1,2,3\}\{1,2,3\}} A_{3 i} .
$$

Cancelling the $A_{\{1,2,3\}\{1,2,3\}}$, the sum of these first terms is:

$$
\operatorname{det}(A)-\sum_{i=4}^{n}(-1)^{i+1} a_{3 i} A_{3 i} .
$$

The rest of the expansion of Laplace's formula contributes

$$
\frac{1}{A_{\{1,2,3\}\{1,2,3\}}} \sum_{i=4}^{n}(-1)^{i+1} a_{3 i}\left(A_{\{1,2,3\}\{i, 2,3\}} A_{31}-A_{\{1,2,3\}\{1, i, 3\}} A_{32}+A_{\{1,2,3\}\{1,2, i\}} A_{33}\right) .
$$

So it suffices to show that

$$
A_{\{1,2,3\}\{i, 2,3\}} A_{31}-A_{\{1,2,3\}\{1, i, 3\}} A_{32}+A_{\{1,2,3\}\{1,2, i\}} A_{33}-A_{\{1,2,3\}\{1,2,3\}} A_{3 i}=0
$$

In fact, this is one of the quadratic Plucker relations cutting out the complete flag variety (see [40, pp. 277]). Let $\tau=\{1,4, \ldots, n\}-\{i\}$ and $\sigma=\{2, \ldots, n\}$. Let π be a permutation of $\{1, \ldots, n\}$. Define

$$
\begin{gathered}
\pi(\tau)=\{\pi(1), 4, \ldots, \hat{i}, \ldots, n\}, \\
\pi(\sigma)=\{\pi(2), \ldots, \pi(n)\}
\end{gathered}
$$

Denote $p_{S, T}$ as the Plücker coordinate given by taking the determinant of the matrix with rows taken from S and and columns from T. Then the relation is equivalent to

$$
\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) p_{\{4, \ldots, n\}, \pi(\tau)} p_{\{1,2,4, \ldots, n\}, \pi(\sigma)}=0 .
$$

This is multi-linear and alternating in the n columns of the $n-1 \times n$ matrix formed by removing the third row of A. As these columns form at most an $n-1$ dimensional space, the relation is identically zero.

Proposition 1.3.3. Let I be the $r \times r$ identity matrix. Let $E^{(n)}:=n z I-\left[i t_{i j}\right]$. Then

$$
\prod_{k=1}^{r} C_{k}^{(n)}=\operatorname{det}\left(E^{(n)}\right)
$$

Proof. We suppress n from the notation. Denote the entries of E by $e_{i j}$. We prove by induction on k (starting at r) that for $i<k$:

$$
\begin{aligned}
& A_{k}(i)=\frac{-1}{\prod_{j=k+1}^{r} C_{j}} E_{\{1, \ldots, i-1, i+1, \ldots, k\}\{1, \ldots, k-1\}}, \\
& A_{k}^{t}(i)=\frac{-1}{\prod_{j=k+1}^{r} C_{j}} E_{\{1, \ldots, k-1\}\{1, \ldots, i-1, i+1, \ldots, k\}} .
\end{aligned}
$$

We use this to extend the definition of $A_{k}(i)$ to $i=k$, and prove that

$$
C_{k}=-A_{k}(k):=\frac{1}{\prod_{j=k+1}^{r} C_{j}} E_{\{1, \ldots, k-1\}\{1, \ldots, k-1\}} .
$$

If $k=r$ this is obvious. Suppose it is true for $j>k$ for some $k \geq 1$. Note that

$$
\begin{gathered}
A_{k}(i):=-e_{i k}+\sum_{j=k+1}^{r}\left(A_{j}(k)\right)^{t} A_{j}(i) / C_{j} \\
C_{k}
\end{gathered}=e_{k k}-\sum_{j=k+1}^{r} A_{j}(k)\left(A_{j}(k)\right)^{t} / C_{j} .
$$

So the relation between $C_{k}, A_{k}(k)$ is clear. Now by induction:

$$
\begin{align*}
A_{k}(i)= & \frac{1}{\prod_{j=k+1}^{r} C_{j}^{j-k}}(\underbrace{-e_{i k} \prod_{j=k+1}^{r} C_{j}^{j-k}}_{\text {term A }} \\
& +\underbrace{\left.\sum_{j=k+1}^{r}\left(E_{\{1, \ldots, j-1\}\{1, \ldots, \hat{k}, \ldots, j\}} E_{\{1, \ldots, \hat{i}, \ldots, j\}\{1, \ldots, j-1\}}\right) \frac{\prod_{s=k+1}^{r} C_{s}^{(s-k)}}{C_{j} \prod_{s=j+1}^{r} C_{s}^{2}}\right)}_{\text {term B }} . \tag{1.4}
\end{align*}
$$

Note that $\prod_{s=t}^{r} C_{s}=E_{\{1, \ldots, t-1\}\{1, \ldots, t-1\}}, t>k$. So in particular

$$
\begin{gathered}
\prod_{j=k+1}^{r} C_{j}^{j-k}=\prod_{i=k+1}^{r} E_{\{1, \ldots, i-1\}}\{1, \ldots, i-1\}, \\
\frac{\prod_{s=k+1}^{r} C_{s}^{(s-k)}}{C_{j} \prod_{s=j+1}^{r} C_{s}^{2}}=\prod_{s=k+1}^{j-1} E_{\{1, \ldots, s-1\}\{1, \ldots, s-1\}} \prod_{s=j+2}^{r} E_{\{1, \ldots, s-1\}\{1, \ldots, s-1\}} .
\end{gathered}
$$

Consider the sum of term A and the $j=r$ contribution of term B in (1.4). Together,
they simplify to

$$
\begin{array}{r}
\prod_{i=k+1}^{r-1} E_{\{1, \ldots, i-1\}\{1, \ldots, i-1\}}\left(e_{r k} e_{i r}-e_{i k} e_{r r}\right) \tag{1.5}\\
=-\left(\prod_{i=k+1}^{r-2} E_{\{1, \ldots, i-1\}\{1, \ldots, i-1\}}\right) E_{\{1, \ldots, \hat{i}, \ldots, r-1\}\{1, \ldots, \hat{k}, \ldots, r-1\}} E_{\{1, \ldots, r-1\}\{1, \ldots, r-1\}} .
\end{array}
$$

Now consider the sum of (1.5) and the $j=r-1$ term in term B in (1.4): this simplifies to

$$
\begin{array}{r}
\left(\prod_{i=k+1}^{r-2} E_{\{1, \ldots, i-1\}\{1, \ldots, i-1\}}\right)\left(E_{\{1, \ldots, r-2\}\{1, \ldots, \hat{k}, \ldots, r-1\}} E_{\{1, \ldots, \hat{i}, \ldots, r-1\}\{1, \ldots, r-2\}}\right. \\
\left.-E_{\{1, \ldots, \hat{i}, \ldots, r-1\}\{1, \ldots, \hat{k}, \ldots, r-1\}} E_{\{1, \ldots, r-2\}\{1, \ldots, r-2\}}\right)
\end{array}
$$

The right hand factor is a determinant of the form found in the lemma for the 3×3 matrix obtained from E by removing rows $\{1, \ldots, \hat{i}, \ldots, r-2\}$ and columns $\{1, \ldots, \hat{k}, \ldots, r-2\}$. Applying the lemma we obtain:

$$
-\left(\prod_{i=k+1}^{r-3} E_{\{1, \ldots, i-1\}\{1, \ldots, i-1\}}\right) E_{\{1, \ldots, \hat{i}, \ldots, r-2\}\{1, \ldots, \hat{k}, \ldots, r-2\}} E_{\{1, \ldots, r-3\}\{1, \ldots, r-3\}} E_{\{1, \ldots, r-1\}\{1, \ldots, r-1\}}
$$

We now see that we will be able to repeat this process until we have simplified to a single term (inside the brackets of (1.4)):

$$
-\prod_{s=k+2}^{r} E_{\{1, \ldots, s-1\}\{1, \ldots, s-1\}} E_{\{1, \ldots, \hat{i}, \ldots, k\},\{1, \ldots, k-1\}}
$$

When we consider the factor, we arrive at the induction statement. The statement for the 'transpose' follows from the invariance of the determinant under transpose. This proves the proposition, as it implies that

$$
C_{1}=\frac{1}{C_{2} \ldots C_{r}} \operatorname{det} E^{(n)}
$$

Therefore the mirror integral is

$$
\frac{1}{2^{r} \pi^{r^{2}}} \int_{\mathfrak{k}^{\star}}[d T]\left(e^{-i \operatorname{Tr}\left(u T^{t}\right) / z}\right) \prod_{n=0}^{\infty} \frac{1}{\operatorname{det}\left(E^{(n)}\right)^{N}}
$$

We can change variables again to remove the transpose. The infinite product looks like a matrix version of the Zeta function. Before we can use zeta function regularization, however, we have to use the Harish-Chandra formula, which allows us to
integrate over just diagonal Hermitian matrices.
Let a_{1}, \ldots, a_{n} be the entries of a diagonal matrix A. Then the Vandermonde determinant of A is

$$
V(A)=\prod_{i<j}\left(a_{i}-a_{j}\right)
$$

Theorem 1.3.4 (The Harish-Chandra formula). Let Φ be a conjugation invariant function of Hermitian matrices, let U be an $r \times r$ Hermitian matrix with eigenvalues u_{1}, \ldots, u_{n}. Let U^{\prime} be the diagonal matrix conjugate to U. Then

$$
\int_{\mathbb{k}^{*}} \Phi(T) e^{-i t r(T U)}[d T]=(-2 \pi i)^{r(r-1) / 2} V\left(U^{\prime}\right)^{-1} \int_{\mathbb{R}^{r}} \Phi(D) e^{-i t r(D Y)} V(D) d D
$$

where D is a real diagonal matrix.

Applying this to the integral we have obtained (taking $\left.U=\operatorname{diag}\left(u_{1}, \ldots, u_{r}\right)\right)$:

$$
\frac{(-2 \pi i)^{r(r-1) / 2}}{2^{r} \pi^{r^{2}} V(U)} \int_{\mathbb{R}^{r}}[d D] \prod_{i=1}^{r}\left(e^{-i d_{i} u_{i} / z}\right) \prod_{j=1}^{r} \prod_{n=0}^{\infty} \frac{1}{\left(-i d_{j}+n z\right)^{N}} V(D) .
$$

1.4 Zeta function Regularization

The zeta function is

$$
\zeta(s, a):=\sum_{n=1}^{\infty}(n+a)^{-s} .
$$

It converges for s such that $\mathbb{R} e(s)>1$, but can be extended meromorphically to the whole plane by analytic continuation. This gives a way of making sense of infinite sums and products where they may not converge. In particular, we can apply this to products of the form

$$
\prod_{n=1}^{\infty}(a n+b)=\exp \left(\sum_{n=1}^{\infty} \log (a n+b)\right) .
$$

Let $f(s)=a^{-s} \zeta(s, b / a)=\sum_{n=1}^{\infty}(a n+b)^{-s}$. Then

$$
f^{\prime}(s)=\sum_{n=1}^{\infty} \log (a n+b)(a n+b)^{-s},
$$

and hence

$$
\prod_{n=1}^{\infty}(a n+b)=\exp \left(f^{\prime}(0)\right)
$$

On the other hand, as $\zeta(0, b / a)=-1 / 2-b / a$ and

$$
\frac{\partial}{\partial s} \zeta(0, b / a)=1 / 2 \log (2 \pi)+\log (\Gamma(b / a+1))
$$

we also see that:

$$
\begin{array}{r}
f^{\prime}(0)=\left.\left((-\log (a)) a^{-s} \zeta(s, b / a)+a^{-s} \frac{\partial}{\partial s} \zeta(s, b / a)\right)\right|_{s=0}= \\
\quad((-1 / 2-b / a) \log (a)+\log (\Gamma(b / a+1)+1 / 2 \log (2 \pi) .
\end{array}
$$

So we conclude that

$$
\prod_{n=1}^{\infty}(a n+b) \sim a^{-1 / 2-b / a} \Gamma(b / a+1)(2 \pi)^{1 / 2} .
$$

We can apply this to remove the infinite sum in the mirror integral, as

$$
\prod_{j=1}^{r} \prod_{n=0}^{\infty} \frac{1}{\left(-i d_{j}+n z\right)^{N}} \sim \prod_{j=1}^{r}\left((2 \pi z)^{-1 / 2} z^{-i d_{j} / z} \Gamma\left(-i d_{j} / z\right)\right)^{N} .
$$

Together with a change of coordinates $d_{j} \rightarrow z d_{j}$, the mirror integral is

$$
\left.\frac{(-2 \pi i)^{r(r-1) / 2}}{2^{r} \pi^{r^{2}}(2 \pi z)^{N r / 2} V(U)} z^{N} \int_{\mathbb{R}^{r}} \prod_{j=1}^{r}\left(\mathrm{~d} d_{j} e^{-i\left(u_{j}+N \log z\right) d_{j}}\right) \Gamma\left(-i d_{j}\right)^{N}\right) V(D) .
$$

The integral representation for the Gamma function is

$$
\Gamma(w)=\int_{0}^{\infty} x^{w-1} e^{-w} d x
$$

Placing this in the mirror integral, we obtain

$$
\begin{aligned}
& \frac{(-2 \pi i)^{r(r-1) / 2}}{2^{r} \pi^{r^{2}}(2 \pi z)^{N r / 2} V(U)} z^{N} \\
& \int_{\mathbb{R}^{r}} \prod_{j=1}^{r}\left(\mathrm{~d} d_{j} \int_{[0, \infty)^{N}} \frac{\mathrm{~d} x_{j 1}}{x_{j 1}} \cdots \frac{\mathrm{~d} x_{j N}}{x_{j N}} e^{-i\left(u_{j}+N \log z+\sum_{i=1}^{N} \log \left(x_{j i}\right)\right) d_{j}} e^{\sum_{i=1}^{N} x_{j i}}\right) V(D) .
\end{aligned}
$$

This is the mirror for $\left(\mathbb{P}^{N-1}\right)^{r}$ with an extra factor of $V(D)$. It matches precisely with the mirror from Hori-Vafa.

There doesn't seem to be a way to get a Laurent polynomial mirror from this integral, unlike in the case of projective space. In Chapter 4, we suggest different methods for finding mirrors of quiver flag varieties and their subvarieties.

2

Four dimensional Fano quiver flag Zero

In this chapter, which is based on work which appears in [33], we discuss quiver flag varieties and certain of their subvarieties, which we call quiver flag zero loci. We give a different construction of quiver flag varieties as subvarieties of products of Grassmannians, and use this to prove the Abelian/non-Abelian correspondence for quiver flag zero loci.

2.1 Quiver flag varieties

Quiver flag varieties are generalizations of Grassmannians and type A flag varieties ([18]). Like flag varieties, they are GIT quotients and fine moduli spaces. We begin by recalling Craw's construction. A quiver flag variety $M(Q, \mathbf{r})$ is determined by a quiver Q and a dimension vector \mathbf{r}. The quiver Q is assumed to be finite and acyclic, with a unique source. Let $Q_{0}=\{0,1, \ldots, \rho\}$ denote the set of vertices of Q and let Q_{1} denote the set of arrows. Without loss of generality, after reordering the vertices if necessary, we may assume that $0 \in Q_{0}$ is the unique source and that the number $n_{i j}$ of arrows from vertex i to vertex j is zero unless $i<j$. Write $s, t: Q_{1} \rightarrow Q_{0}$ for the source and target maps, so that an arrow $a \in Q_{1}$ goes from $s(a)$ to $t(a)$. The dimension vector $\mathbf{r}=\left(r_{0}, \ldots, r_{\rho}\right)$ lies in $\mathbb{N}^{\rho+1}$, and we insist that $r_{0}=1 . M(Q, \mathbf{r})$ is defined to be the moduli space of θ-stable representations of the quiver Q with dimension vector \mathbf{r}. Here θ is a fixed stability condition defined below, determined by the dimension vector.

2.1.1 Quiver flag varieties as Git quotients.

Consider the vector space

$$
\operatorname{Rep}(Q, \mathbf{r})=\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(\mathbb{C}^{r_{s(a)}}, \mathbb{C}^{r_{t(a)}}\right)
$$

and the action of $\mathrm{GL}(\mathbf{r}):=\prod_{i=0}^{\rho} \mathrm{GL}\left(r_{i}\right)$ on $\operatorname{Rep}(Q, \mathbf{r})$ by change of basis. The diagonal copy of GL(1) in GL(r) acts trivially, but the quotient $G:=\mathrm{GL}(\mathbf{r}) / \mathrm{GL}(1)$ acts effectively; since $r_{0}=1$, we may identify G with $\prod_{i=1}^{\rho} \mathrm{GL}\left(r_{i}\right)$. The quiver flag variety $M(Q, \mathbf{r})$ is the GIT quotient $\operatorname{Rep}(Q, \mathbf{r}) \|_{\theta} G$, where the stability condition θ is the character of G given by

$$
\theta(g)=\prod_{i=1}^{\rho} \operatorname{det}\left(g_{i}\right), \quad g=\left(g_{1}, \ldots, g_{\rho}\right) \in \prod_{i=1}^{\rho} \mathrm{GL}\left(r_{i}\right)
$$

For the stability condition θ, all semistable points are stable. To identify the θ-stable points in $\operatorname{Rep}(Q, \mathbf{r})$, set $s_{i}=\sum_{a \in Q_{1}, t(a)=i} r_{s(a)}$ and write

$$
\operatorname{Rep}(Q, \mathbf{r})=\bigoplus_{i=1}^{\rho} \operatorname{Hom}\left(\mathbb{C}^{s_{i}}, \mathbb{C}^{r_{i}}\right)
$$

Then $w=\left(w_{i}\right)_{i=1}^{\rho}$ is θ-stable if and only if w_{i} is surjective for all i.
Example 2.1.1. Consider the quiver Q given by

so that $\rho=1, n_{01}=n$, and the dimension vector $\mathbf{r}=(1, r)$. Then $\operatorname{Rep}(Q, \mathbf{r})=$ $\operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{r}\right)$, and the θ-stable points are surjections $\mathbb{C}^{n} \rightarrow \mathbb{C}^{r}$. The group G acts by change of basis, and therefore $M(Q, \mathbf{r})=\operatorname{Gr}(n, r)$, the Grassmannian of r dimensional quotients of \mathbb{C}^{n}. More generally, the quiver

gives the flag of quotients $\operatorname{Fl}(n, a, b, \ldots, c)$.

Quiver flag varieties are non-Abelian GIT quotients unless the dimension vector $\mathbf{r}=(1,1, \ldots, 1)$. In this case $G \cong \prod_{i=1}^{\rho} \mathrm{GL}_{1}(\mathbb{C})$ is Abelian, and $M(Q ; \mathbf{r})$ is a toric variety. We call such $M(Q, \mathbf{r})$ toric quiver flag varieties. Not all toric varieties are toric quiver flag varieties.

2.1.2 Quiver flag varieties as ambient spaces: Quiver flag zero loci

As mentioned in the introduction, GIT quotients have a special class of subvarieties, sometimes called representation theoretic subvarieties. In this subsection, we discuss these subvarieties in the specific case of quiver flag varieties.

We have expressed the quiver flag variety $M(Q, \mathbf{r})$ as the geometric quotient by G of the stable locus $\operatorname{Rep}(Q, \mathbf{r})^{s} \subset \operatorname{Rep}(Q, \mathbf{r})$. A representation E of G, therefore, defines a vector bundle $E_{G} \rightarrow M(Q, \mathbf{r})$ with fiber E; here $E_{G}=E \times{ }_{G} \operatorname{Rep}(Q, \mathbf{r})^{s}$. In the next chapter, we will study subvarieties of quiver flag varieties cut out by regular sections of such bundles. If E_{G} is globally generated, a generic section cuts out a smooth subvariety. We refer to such subvarieties as quiver flag zero loci, and such bundles as representation theoretic bundles. As mentioned above, quiver flag varieties can also be considered natural ambient spaces via their moduli space construction ([18], [19]).

The representation theory of $G=\prod_{i=1}^{\rho} \mathrm{GL}\left(r_{i}\right)$ is well-understood, and we can use this to write down the bundles E_{G} explicitly. Irreducible polynomial representations of $\mathrm{GL}(r)$ are indexed by partitions (or Young diagrams) of length at most r. The irreducible representation corresponding to a partition α is the Schur power $S^{\alpha} \mathbb{C}^{r}$ of the standard representation of $\mathrm{GL}(r)$ [22, chapter 8]. For example, if α is the partition (k) then $S^{\alpha} \mathbb{C}^{r}=\operatorname{Sym}^{k} \mathbb{C}^{r}$, the k th symmetric power, and if α is the partition $(1,1, \ldots, 1)$ of length k then $S^{\alpha} \mathbb{C}^{r}=\Lambda^{k} \mathbb{C}^{r}$, the k th exterior power. Irreducible polynomial representations of G are therefore indexed by tuples ($\alpha_{1}, \ldots, \alpha_{\rho}$) of partitions, where α_{i} has length at most r_{i}. The tautological bundles on a quiver flag variety are representation theoretic: if $E=\mathbb{C}^{r_{i}}$ is the standard representation of the $i^{\text {th }}$ factor of G, then $W_{i}=E_{G}$. More generally, the representation indexed by $\left(\alpha_{1}, \ldots, \alpha_{\rho}\right)$ is $\otimes_{i=1}^{\rho} S^{\alpha_{i}} \mathbb{C}^{r_{i}}$, and the corresponding vector bundle on $M(Q, \mathbf{r})$ is $\otimes_{i=1}^{\rho} S^{\alpha_{i}} W_{i}$.
Example 2.1.2. Consider the vector bundle $\operatorname{Sym}^{2} W_{1}$ on $\operatorname{Gr}(8,3)$. By duality which sends a quotient $\mathbb{C}^{8} \rightarrow V \rightarrow 0$ to a subspace $0 \rightarrow V^{*} \rightarrow\left(\mathbb{C}^{8}\right)^{*}$ - this is equivalent to considering the vector bundle $\operatorname{Sym}^{2} S_{1}^{*}$ on the Grassmannian of 3-dimensional subspaces of $\left(\mathbb{C}^{8}\right)^{*}$, where S_{1} is the tautological sub-bundle. A generic symmetric 2form ω on $\left(\mathbb{C}^{8}\right)^{*}$ determines a regular section of $\mathrm{Sym}^{2} S_{1}^{*}$, which vanishes at a point V^{*} if and only if the restriction of ω to V^{*} is identically zero. So the associated quiver flag zero locus is the orthogonal Grassmannian $\operatorname{OGr}(3,8)$.

2.1.3 Quiver flag varieties as moduli spaces.

To give a morphism to $M(Q, \mathbf{r})$ from a scheme B is the same as to give:

- globally generated vector bundles $W_{i} \rightarrow B, i \in Q_{0}$, of rank r_{i} such that $W_{0}=$ \mathcal{O}_{B}; and
- morphisms $W_{s(a)} \rightarrow W_{t(a)}, a \in Q_{1}$ satisfying the θ-stability condition
up to isomorphism. Thus $M(Q, \mathbf{r})$ carries universal bundles $W_{i}, i \in Q_{0}$. It is also a Mori Dream Space (see Proposition 3.1 in [18]). The GIT description gives an isomorphism between the Picard group of $M(Q, \mathbf{r})$ and the character group $\chi(G) \cong$ \mathbb{Z}^{ρ} of G. When tensored with \mathbb{Q}, the fact that this is a Mori Dream space (see Lemma 4.2 in [30]) implies that this isomorphism induces an isomorphism of wall and chamber structures given by the Mori structure (on the effective cone) and the GIT structure (on $\chi(G) \otimes \mathbb{Q}$); in particular, the GIT chamber containing θ is the ample cone of $M(Q, \mathbf{r})$. The Picard group is generated by the determinant line bundles $\operatorname{det}\left(W_{i}\right), i \in Q_{0}$.

2.1.4 Quiver flag varieties as towers of Grassmannian bundles.

Generalizing Example 2.1.1, all quiver flag varieties are towers of Grassmannian bundles [18, Theorem 3.3]. For $0 \leq i \leq \rho$, let $Q(i)$ be the subquiver of Q obtained by removing the vertices $j \in Q_{0}, j>i$, and all arrows attached to them. Let $\mathbf{r}(i)=\left(1, r_{1}, \ldots, r_{i}\right)$, and write $Y_{i}=M(Q(i), \mathbf{r}(i))$. Denote the universal bundle $W_{j} \rightarrow Y_{i}$ by $W_{j}^{(i)}$. Then there are maps

$$
M(Q, \mathbf{r})=Y_{\rho} \rightarrow Y_{\rho-1} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y_{0}=\operatorname{Spec} \mathbb{C},
$$

induced by isomorphisms $Y_{i} \cong \operatorname{Gr}\left(\mathcal{F}_{i}, r_{i}\right)$, where \mathcal{F}_{i} is the locally free sheaf

$$
\mathcal{F}_{i}=\bigoplus_{a \in Q_{1}, t(a)=i} W_{s(a)}^{(i-1)}
$$

of rank s_{i} on Y_{i-1}. This makes clear that $M(Q, \mathbf{r})$ is a smooth projective variety of dimension $\sum_{i=1}^{\rho} r_{i}\left(s_{i}-r_{i}\right)$, and that W_{i} is the pullback to Y_{ρ} of the tautological quotient bundle over $\operatorname{Gr}\left(\mathcal{F}_{i}, r_{i}\right)$. Thus W_{i} is globally generated, and $\operatorname{det}\left(W_{i}\right)$ is nef. Furthermore the anti-canonical line bundle of $M(Q, \mathbf{r})$ is

$$
\begin{equation*}
\bigotimes_{a \in Q_{1}} \operatorname{det}\left(W_{t(a)}\right)^{r_{s(a)}} \otimes \operatorname{det}\left(W_{s(a)}\right)^{-r_{t(a)}} . \tag{2.1}
\end{equation*}
$$

In particular, $M(Q, \mathbf{r})$ is Fano if $s_{i}>s_{i}^{\prime}:=\sum_{a \in Q_{1}, s(a)=i} r_{t(a)}$. This condition is not if and only if.

2.1.5 The Euler SEQUENCE

Quiver flag varieties, like both Grassmannians and toric varieties, have an Euler sequence.

Proposition 2.1.3. Let $X=M(Q, \mathbf{r})$ be a quiver flag variety, and for a $\in Q_{1}$, denote $W_{a}:=W_{s(a)}^{*} \otimes W_{t(a)}$. There is a short exact sequence

$$
0 \rightarrow \bigoplus_{i=1}^{\rho} W_{i}^{*} \otimes W_{i} \rightarrow \bigoplus_{a \in Q_{1}} W_{a} \rightarrow T_{X} \rightarrow 0
$$

Proof. We proceed by induction on the Picard rank ρ of X. If $\rho=1$ then this is the usual Euler sequence for the Grassmannian. Suppose that the proposition holds for quiver flag varieties of Picard rank $\rho-1$, for $\rho>1$. Then the fibration $\pi: \operatorname{Gr}\left(\pi^{*} \mathcal{F}_{\rho}, r_{\rho}\right) \rightarrow Y_{\rho-1}$ from §2.1.4 above gives a short exact sequence

$$
0 \rightarrow W_{\rho}^{*} \otimes W_{\rho} \rightarrow \pi^{*} \mathcal{F}_{\rho}^{*} \otimes W_{\rho} \rightarrow S^{*} \otimes W_{\rho} \rightarrow 0
$$

where S is the kernel of the projection $\pi^{*} \mathcal{F}_{\rho} \rightarrow W_{\rho}$. Note that

$$
\pi^{*} \mathcal{F}_{\rho}^{*} \otimes W_{\rho}=\bigoplus_{a \in Q_{1}, t(a)=\rho} W_{a}
$$

Pulling back the short exact sequence from the induction hypothesis and summing with the above, we obtain

$$
0 \rightarrow \bigoplus_{i=1}^{\rho} W_{i}^{*} \otimes W_{i} \rightarrow \bigoplus_{a \in Q_{1}} W_{a} \rightarrow \pi^{*} T_{Y_{\rho-1}} \oplus S^{*} \otimes W_{\rho} \rightarrow 0
$$

This shows the proposition.

If X is a quiver flag zero locus cut out of the quiver flag variety $M(Q, \mathbf{r})$ by a regular section of the representation theoretic vector bundle E then there is a short exact sequence

$$
\begin{equation*}
\left.0 \rightarrow T_{X} \rightarrow T_{M(Q, \mathbf{r})}\right|_{X} \rightarrow E \rightarrow 0 \tag{2.2}
\end{equation*}
$$

Thus T_{X} is the K-theoretic difference of representation theoretic vector bundles.

2.2 Quiver flag varieties as subvarieties

There are three well-known constructions of flag varieties: as GIT quotients, as homogeneous spaces, and as subvarieties of products of Grassmannians. Craw's
construction gives quiver flag varieties as GIT quotients. General quiver flag varieties are not homogeneous spaces, so the second construction does not generalize. In this section we generalize the third construction of flag varieties, exhibiting quiver flag varieties as subvarieties of products of Grassmannians. It is this description that will allow us to prove the Abelian/non-Abelian correspondence for quiver flag varieties.

Proposition 2.2.1. Let $M_{Q}:=M(Q, \mathbf{r})$ be a quiver flag variety with $\rho>1$. Then M_{Q} is cut out of $Y=\prod_{i=1}^{\rho} \operatorname{Gr}\left(H^{0}\left(M_{Q}, W_{i}\right), r_{i}\right)$ by a tautological section of

$$
E=\bigoplus_{a \in Q_{1}, s(a) \neq 0} S_{s(a)}^{*} \otimes Q_{t(a)}
$$

where S_{i} and Q_{i} are the pullbacks to Y of the tautological sub-bundle and quotient bundle on the $i^{\text {th }}$ factor of Y.

Proof. As vector spaces, there is an isomorphism $H^{0}\left(M_{Q}, W_{i}\right) \cong e_{0} \mathbb{C} Q e_{i}$, where $\mathbb{C} Q$ is the path algebra over \mathbb{C} of Q (Corollary 3.5, [18]). This isomorphism identifies a basis of global sections of W_{i} from the set of paths from vertex 0 to i in the quiver. Let $e_{a} \in \mathbb{C} Q$ be the element associated to the arrow $a \in Q_{1}$. Thus

$$
H^{0}\left(M_{Q}, W_{i}\right)=\bigoplus_{a \in Q_{1}, t(a)=i, s(a) \neq 0} H^{0}\left(M_{Q}, W_{s(a)}\right) \oplus \bigoplus_{a \in Q_{1}, s(a)=0, t(a)=i} \mathbb{C} e_{a} .
$$

Let $F_{i}=\oplus_{t(a)=i} Q_{s(a)}$. Combining the tautological surjective morphisms

$$
H^{0}\left(M_{Q}, W_{s(a)}\right) \otimes \mathcal{O}_{Y}=H^{0}\left(Y, Q_{s(a)}\right) \otimes \mathcal{O}_{Y} \rightarrow Q_{s(a)}
$$

gives the exact sequence

$$
0 \rightarrow \underset{t(a)=i, s(a) \neq 0}{ } S_{s(a)} \rightarrow H^{0}\left(M_{Q}, W_{i}\right) \otimes \mathcal{O}_{Y} \rightarrow F_{i} \rightarrow 0
$$

Thus

$$
\left(H^{0}\left(M_{Q}, W_{i}\right)^{*} \otimes \mathcal{O}_{Y}\right) / F_{i}^{*} \cong \bigoplus_{t(a)=i, s(a) \neq 0} S_{s(a)}^{*}
$$

and it follows that $E=\oplus_{i=2}^{\rho} \operatorname{Hom}\left(Q_{i}^{*},\left(H^{0}\left(M_{Q}, W_{i}\right)^{*} \otimes \mathcal{O}_{Y}\right) / F_{i}^{*}\right)$.
Consider the section s of E given by the compositions

$$
Q_{i}^{*} \rightarrow H^{0}\left(M_{Q}, W_{i}\right)^{*} \otimes \mathcal{O}_{Y} \rightarrow\left(H^{0}\left(M_{Q}, W_{i}\right)^{*} \otimes \mathcal{O}_{Y}\right) / F_{i}^{*} .
$$

The section s vanishes at quotients $\left(V_{1}, \ldots, V_{\rho}\right)$ if and only if $V_{i}^{*} \subset \oplus_{t(a)=i} V_{s(a)}^{*}$; dually, the zero locus is where there is a surjection $F_{i} \rightarrow Q_{i}$ for each i. We now
identify $Z(s)$ with $M(Q, \mathbf{r})$. Since the W_{i} are globally generated, there is a unique map

$$
f: M_{Q} \rightarrow Y=\prod_{i=1}^{\rho} \operatorname{Gr}\left(H^{0}\left(M_{Q}, W_{i}\right), r_{i}\right)
$$

such that Q_{i} on Y pulls back to W_{i} on $M(Q, \mathbf{r})$. In particular, $f^{*}\left(F_{i}\right)$ is the pullback to M_{Q} of the bundle $\pi^{*} \mathcal{F}_{i}$ from $\S 2.1 .4$ (here π is the projection $Y_{\rho} \rightarrow Y_{\rho-1}$). By construction of M_{Q} there are surjections

$$
\pi^{*} \mathcal{F}_{i}=f^{*}\left(\oplus_{a \in Q_{1}, t(a)=i} Q_{s(a)}\right) \rightarrow W_{i} \rightarrow 0,
$$

so $f\left(M_{Q}\right) \subset Z(s)$.
Any variety X with vector bundles V_{i} of rank r_{i} for $i=1, \ldots, \rho$ and maps $H^{0}\left(M_{Q}, W_{i}\right) \rightarrow$ $V_{i} \rightarrow 0$ that factor as

$$
H^{0}\left(M_{Q}, W_{i}\right) \rightarrow \bigoplus_{t(a)=i} V_{s(a)} \rightarrow V_{i}
$$

has a unique map to $M(Q, \mathbf{r})$ as the V_{i} form a flat family of θ-stable representations of Q of dimension \mathbf{r}. The $\left(\left.Q_{i}\right|_{Z(s)}\right)_{i=1}^{\rho}$ on $Z(s)$ give precisely such a set of vector bundles. The surjections $\left.H^{0}\left(M_{Q}, W_{i}\right) \rightarrow Q_{i}\right|_{Z(s)} \rightarrow 0$ follow from the fact that these are restrictions of the tautological bundles on a product of Grassmannians. That these maps factor as required is precisely the condition that s vanishes.

Let $g: Z(s) \rightarrow M_{Q}$ be the induced map. By the universal property of $M(Q, \mathbf{r})$, the composition $g \circ f: M_{Q} \rightarrow Z(s) \rightarrow M_{Q}$ must be the identity. The composition $f \circ g: Z(s) \rightarrow M(Q, \mathbf{r}) \rightarrow Y$ must be the inclusion $Z(s) \rightarrow Y$ by the universal property of Y. Therefore $Z(s)$ and $M(Q, \mathbf{r})$ are canonically isomorphic.

Suppose that X is a quiver flag zero locus cut out of $M(Q, \mathbf{r})$ by a regular section of a representation theoretic vector bundle E_{G} determined by a representation E. The product of Grassmannians $Y=\prod_{i=1}^{\rho} \operatorname{Gr}\left(H^{0}\left(W_{i}\right), r_{i}\right)$ is a GIT quotient $V^{s s} / G$ for the same group G (one can see this by constructing Y as a quiver flag variety). Therefore E also determines a vector bundle E_{G}^{\prime} on Y :

$$
E_{G}^{\prime}:=E \times V^{s s} / G \rightarrow Y .
$$

We see that X is deformation equivalent to the zero locus of a generic section of the vector bundle

$$
\begin{equation*}
F:=E_{G}^{\prime} \oplus \bigoplus_{a \in Q_{1}, s(a) \neq 0} S_{s(a)}^{*} \otimes Q_{t(a)} \tag{2.3}
\end{equation*}
$$

Although Y is a quiver flag variety, this is not generally an additional model of X as a quiver flag zero locus, as the summand $S_{s(a)}^{*} \otimes Q_{t(a)}$ in F does not in general
come from a representation of G. We refer to the summands of F of this form as arrow bundles.

Remark 2.2.2. Suppose α is a non-negative Schur partition. Then [47] shows that $S^{\alpha}\left(Q_{i}\right)$ is globally generated on Y (using the notation as above). This implies that $S^{\alpha}\left(W_{i}\right)$ is globally generated on $M(Q, \mathbf{r})$.

2.3 Equivalences of quiver flag zero loci

The representation of a given variety X as a quiver flag zero locus, if it exists, is far from unique. In this section we describe various methods of passing between different representations of the same quiver flag zero locus. This is important in practice, because our systematic search for four-dimensional quiver flag zero loci described in the Appendix finds a given variety in many different representations. Furthermore, geometric invariants of a quiver flag zero locus X can be much easier to compute in some representations than in others. The observations in this section allow us to compute invariants of four-dimensional Fano quiver flag zero loci using only a few representations, where the computation is relatively cheap, rather than doing the same computation many times and using representations where the computation is expensive (see 3.4 for more details). However, the results of this section will be only used in the Appendix: the rest of the chapter is independent of this section.

2.3.1 Dualising

As we saw in the previous section, a quiver flag zero locus X given by $(M(Q, \mathbf{r}), E)$ can be thought of as a zero locus in a product of Grassmannians Y. Unlike general quiver flag varieties, Grassmannians come in canonically isomorphic dual pairs:

The isomorphism interchanges the tautological quotient bundle Q with S^{*}, where S is the tautological sub-bundle. One can then dualize some or none of the Grassmannian factors in Y, to get different models of X. Depending on the representations in E, after dualizing, E may still be a representation theoretic vector bundle, or the direct sum of a representation theoretic vector bundle with bundles of the form $S_{i}^{*} \otimes W_{j}$. If this is the case, one can then undo the product representation process to obtain another model $\left(M\left(Q^{\prime}, \mathbf{r}^{\prime}\right), E_{G}^{\prime}\right)$ of X.

Example 2.3.1. Consider X given by the quiver

and bundle $\wedge^{2} W_{2}$; here and below the vertex numbering is indicated in blue. Then writing it as a product:

with bundle $\wedge^{2} W_{2} \oplus S_{1}^{*} \otimes W_{2}$ (as in equation (2.3)) and dualizing the first factor, we get

with bundle $\wedge^{2} W_{2} \oplus W_{1} \otimes W_{2}$, which is a quiver flag zero locus.

2.3.2 Removing arrows

Example 2.3.2. Note that $\operatorname{Gr}(n, r)$ is the quiver flag zero locus given by $(\operatorname{Gr}(n+$ $\left.1, r), W_{1}\right)$. This is because the space of sections of W_{1} is \mathbb{C}^{n+1}, where the image of the section corresponding to $v \in \mathbb{C}^{n+1}$ at the point $\phi: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{r}$ in $\operatorname{Gr}(n+1, r)$ is $\phi(v)$. This section vanishes precisely when $v \in \operatorname{ker} \phi$, so we can consider its zero locus to be $\operatorname{Gr}\left(\mathbb{C}^{n+1} /\langle v\rangle, r\right) \cong \operatorname{Gr}(n, r)$. The restriction of W_{1} to $\operatorname{Gr}(n, r)$ is its tautological quotient bundle, and the restriction of S is the direct sum of the tautological subbundle on $\operatorname{Gr}(n, r)$ with $\mathcal{O}_{\operatorname{Gr}(n, r)}$.

This example generalises. Let $M(Q, \mathbf{r})$ be a quiver flag variety. A choice of arrow $i \rightarrow j$ in Q determines a canonical section of $W_{i}^{*} \otimes W_{j}$, and the zero locus of this section is $M\left(Q^{\prime}, \mathbf{r}\right)$, where Q^{\prime} is the quiver obtained from Q by removing one arrow from $i \rightarrow j$.

Example 2.3.3. Similarly, $\operatorname{Gr}(n, r)$ is the zero locus of a section of S^{*}, the dual of the tautological sub-bundle, on $\operatorname{Gr}(n+1, r+1)$. The exact sequence $0 \rightarrow W_{1}^{*} \rightarrow$ $\left(\mathbb{C}^{n+1}\right)^{*} \rightarrow S^{*} \rightarrow 0$ shows that a global section of S^{*} is given by a linear map ψ : $\mathbb{C}^{n+1} \rightarrow \mathbb{C}$. The image of the section corresponding to ψ at the point $s \in S$ is $\psi(s)$, where we evaluate ψ on s via the tautological inclusion $S \rightarrow \mathbb{C}^{n+1}$. Splitting
$\mathbb{C}^{n+1}=\mathbb{C}^{n} \oplus \mathbb{C}$ and choosing ψ to be projection to the second factor shows that ψ vanishes precisely when $S \subset \mathbb{C}^{n}$, that is, precisely along $\operatorname{Gr}(n, r)$. The restriction of S to $\operatorname{Gr}(n, r)$ is its tautological sub-bundle, and the restriction of W_{1} is the direct sum of its tautological quotient bundle and $\mathcal{O}_{\operatorname{Gr}(n, r)}$.

2.3.3 Grafting

Let Q be a quiver. We say that Q is graftable at $i \in Q_{0}$ if:

- $r_{i}=1$ and $0<i<\rho$;
- if we remove all of the arrows out of i we get a disconnected quiver.

Call the quiver with all arrows out of i removed Q^{i}. If i is graftable, we call the grafting set of i

$$
\left\{j \in Q_{0} \mid 0 \text { and } j \text { are in different components of } Q^{i}\right\} .
$$

Example 2.3.4. In the quiver below, vertex 1 is not graftable.

If we removed the arrow from vertex 0 to vertex 2, then vertex 1 would be graftable and the grafting set would be $\{2\}$.

Proposition 2.3.5. Let $M(Q, \mathbf{r})$ be a quiver flag variety and let i be a vertex of Q that is graftable. Let J be its grafting set. Let Q^{\prime} be the quiver obtained from Q by replacing each arrow $i \rightarrow j$, where $j \in J$, by an arrow $0 \rightarrow j$. Then

$$
M(Q, \mathbf{r})=M\left(Q^{\prime}, \mathbf{r}\right) .
$$

Proof. Define $V_{j}:=W_{i}^{*} \otimes W_{j}$ for $j \in J$, and $V_{j}:=W_{j}$ otherwise.
Note that by construction of J, for $j \in J$, there is a surjective morphism

$$
W_{i}^{\oplus d_{i j}} \rightarrow W_{j} \rightarrow 0 .
$$

Here $d_{i j}$ is the number of paths $i \rightarrow j$. Tensoring this sequence with W_{i}^{*} shows that V_{j} is globally generated.

Now we show that the $V_{j}, j \in\{0, \ldots, \rho\}$ are a θ-stable representation of Q^{\prime}. It suffices
to check that there are surjective morphisms

$$
\bigoplus_{a \in Q_{1}^{\prime}, t(a)=j} V_{s(a)} \rightarrow V_{j} .
$$

If $j \notin J$, this is just the same surjection given by the fact that the W_{i} are a θ-stable representation of Q. If $j \in J$, one must, as above, tensor the sequence from Q with W_{i}^{*}. The V_{j} then give a map $M(Q, \mathbf{r}) \rightarrow M\left(Q^{\prime}, \mathbf{r}\right)$. Reversing this procedure shows that this is a canonical isomorphism.

Example 2.3.6. Consider the quiver flag zero locus X given by the quiver in (a) below, with bundle

$$
W_{1} \otimes W_{3} \oplus W_{1}^{\oplus 2} \oplus \operatorname{det} W_{1}
$$

Notice we have chosen a different labelling of the vertices for convenience. Writing X inside a product of Grassmannians gives $W_{1} \otimes W_{3} \oplus W_{1}^{\oplus 2} \oplus \operatorname{det} W_{1}$ on the quiver in (b), with arrow bundle $S_{2}^{*} \otimes W_{1}$. Removing the two copies of W_{1} using Example 2.3.2 gives

$$
W_{1} \otimes W_{3} \oplus \operatorname{det} W_{1}
$$

on the quiver in (c), with arrow bundle $S_{2}^{*} \otimes W_{1}$. We now apply Example 2.3.3 to remove $\operatorname{det} W_{1}=\operatorname{det} S_{1}^{*}=S_{1}^{*}$. As mentioned in Example 2.3.3, W_{1} on (c) becomes $W_{1} \oplus \mathcal{O}$ after removing S_{1}^{*}. The arrow bundle therefore becomes

$$
S_{2}^{*} \otimes\left(W_{1} \oplus \mathcal{O}\right)=S_{2}^{*} \oplus S_{2}^{*} \otimes W_{1}
$$

Similarly, $W_{1} \otimes W_{3}$ becomes $W_{3} \oplus W_{1} \otimes W_{3}$. We can remove the new S_{2}^{*} and W_{3} summands (reducing the $\operatorname{Gr}(8,6)$ factor to $\operatorname{Gr}(7,5)$ and the $\operatorname{Gr}(8,2)$ factor to $\operatorname{Gr}(7,2)$ respectively). Thus, we see that X is given by $W_{1} \otimes W_{3}$ on the quiver in (d), with arrow bundle $S_{2}^{*} \otimes W_{1}$. Dualising at vertices 1 and 2 now gives the quiver in (e), with arrow bundle $S_{1}^{*} \otimes W_{2} \oplus S_{1}^{*} \otimes W_{3}$. Finally, undoing the product representation of \$2.2 exhibits X as the quiver flag variety for the quiver in (f).
(a)

(b)

(c)

2.4 The ample cone

We now discuss how to compute the ample cone of a quiver flag variety. This is essential if one wants to search systematically for quiver flag zero loci that are Fano. In [18], Craw gives a conjecture that would in particular solve this problem, by relating a quiver flag variety $M(Q, \mathbf{r})$ to a toric quiver flag variety. We give a counterexample to this conjecture, and determine the ample cone of $M(Q, \mathbf{r})$ in terms of the combinatorics of the quiver: this is Theorem 2.4.14 below. Our method also involves a toric quiver flag variety: the Abelianization of $M(Q, \mathbf{r})$.

2.4.1 The multi-graded Plücker embedding

Given a quiver flag variety $M(Q, \mathbf{r})$, Craw ($\S 5$ of [18], Example 2.9 in [19]) defines a multi-graded analogue of the Plücker embedding:

$$
p: M(Q, \mathbf{r}) \hookrightarrow M\left(Q^{\prime}, \mathbf{1}\right) \quad \text { with } \mathbf{1}=(1, \ldots, 1)
$$

Here Q^{\prime} is the quiver with the same vertices as Q but with the number of arrows $i \rightarrow j, i<j$ given by

$$
\operatorname{dim}\left(\operatorname{Hom}\left(\operatorname{det}\left(W_{i}\right), \operatorname{det}\left(W_{j}\right)\right) / S_{i, j}\right)
$$

where $S_{i, j}$ is spanned by maps which factor through maps to $\operatorname{det}\left(W_{k}\right)$ with $i<k<j$. This induces an isomorphism $p^{*}: \operatorname{Pic}\left(M\left(Q^{\prime}, \mathbf{1}\right)\right) \otimes \mathbb{R} \rightarrow \operatorname{Pic}(M(Q, \mathbf{r})) \otimes \mathbb{R}$ that sends $\operatorname{det}\left(W_{i}^{\prime}\right) \mapsto \operatorname{det}\left(W_{i}\right)$. In [18], it is conjectured that this induces a surjection of Cox rings $\operatorname{Cox}\left(M\left(Q^{\prime}, \mathbf{1}\right)\right) \rightarrow \operatorname{Cox}(M(Q, \mathbf{r}))$. This would give information about the Mori wall and chamber structure of $M(Q, \mathbf{r})$. In particular, by the proof of Theorem 2.8 of [37], a surjection of Cox rings together with an isomorphism of Picard groups (which we have here) implies an isomorphism of effective cones.

We provide a counterexample to the conjecture. To do this, we exploit the fact that quiver flag varieties are Mori Dream Spaces, and so the Mori wall and chamber structure on $\operatorname{NE}^{1}(M(Q, \mathbf{r})) \subset \operatorname{Pic}(M(Q, \mathbf{r}))$ coincides with the GIT wall and chamber structure. This gives GIT characterizations for effective divisors, ample divisors,
nef divisors, and the walls.
Theorem 2.4.1. [21] Let X be a Mori Dream Space obtained as a GIT quotient in which G acts on $V=\mathbb{C}^{N}$ with stability condition $\tau \in \chi(G)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$. Identifying $\operatorname{Pic}(X) \cong \chi(G)$, we have that:

- $v \in \chi(G)$ is ample if $V^{s}(v)=V^{s s}(v)=V^{s}(\tau)$.
- v is on a wall if $V^{s s}(v) \neq V^{s}(v)$.
- $v \in \operatorname{NE}^{1}(X)$ if $V^{s s} \neq \varnothing$.

When combined with King's characterisation [35] of the stable and semistable points for the GIT problem defining $M(Q, \mathbf{r})$, this determines the ample cone of any given quiver flag variety. In Theorem 2.4.14 below we make this effective, characterising the ample cone in terms of the combinatorics of Q. We can also use 2.4.1 to see a counterexample to Conjecture 6.4 in [18].

Example 2.4.2. Consider the quiver Q and dimension vector \mathbf{r} as in (a). The target $M\left(Q^{\prime}, \mathbf{1}\right)$ of the multi-graded Plücker embedding has the quiver Q^{\prime} shown in (b).
(a)

(b)

One can see this by noting that $\operatorname{Hom}\left(\operatorname{det}\left(W_{2}\right), \operatorname{det}\left(W_{1}\right)\right)=0$, and that after taking $\wedge^{3}\left(\right.$ respectively $\left.\wedge^{2}\right)$ the surjection $\mathcal{O}^{\oplus 5} \rightarrow W_{1} \rightarrow 0$ (respectively $\mathcal{O}^{\oplus 10} \rightarrow W_{2} \rightarrow 0$) becomes

$$
\mathcal{O}^{\oplus 10} \rightarrow W_{1} \rightarrow 0\left(\text { respectively } \mathcal{O}^{\oplus 45} \rightarrow W_{2} \rightarrow 0\right) .
$$

In this case, $M\left(Q^{\prime}, \mathbf{1}\right)$ is a product of projective spaces and so the effective cone coincides with the nef cone, which is just the closure of the positive orthant. The ample cone of $M(Q, \mathbf{r})$ is indeed the positive orthant, as we will see later. However, here we will find an effective character not in the nef cone. We will use King's characterisation (Definition 1.1 of [35]) of semi-stable points with respect to a character χ of $\prod_{i=0}^{\rho} G l\left(r_{i}\right)$: a representation $R=\left(R_{i}\right)_{i \in Q_{0}}$ is semi-stable with respect to $\chi=\left(\chi_{i}\right)_{i=0}^{\rho}$ if and only if

- $\sum_{i=0}^{\rho} \chi_{i} \operatorname{dim}_{\mathbb{C}}\left(R_{i}\right)=0$; and
- for any subrepresentation R^{\prime} of $R, \sum_{i=0}^{\rho} \chi_{i} \operatorname{dim}_{\mathbb{C}}\left(R_{i}^{\prime}\right) \geq 0$.

Consider the character $\chi=(-1,3)$ of G, which we lift to a character of $\prod_{i=0}^{\rho} G l\left(r_{i}\right)$ by taking $\chi=(-3,-1,3)$. We will show that there exists a representation $R=$
$\left(R_{0}, R_{1}, R_{2}\right)$ which is semi-stable with respect to χ. The maps in the representation are given by a triple $(A, B, C) \in \operatorname{Mat}(3 \times 5) \times \operatorname{Mat}(2 \times 3) \times \operatorname{Mat}(2 \times 3)$. Suppose that

$$
\text { A has full rank, } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad C=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and that R^{\prime} is a subrepresentation with dimensions a, b, c. We want to show that $-3 a-b+3 c \geq 0$. If $a=1$ then $b=3$, as otherwise the image of A is not contained in R_{1}^{\prime}. Similarly, this implies that $c=2$. So suppose that $a=0$. The maps B and C have no common kernel, so $b>0$ implies $c>0$, and $-b+3 c \geq 0$ as $b \leq 3$. Therefore R is a semi-stable point for χ, and as quiver flag varieties are Mori Dream Spaces, χ is in the effective cone.

Therefore, there cannot exist a Mori embedding of $M(Q, r)$ into $M\left(Q^{\prime}, \mathbf{1}\right)$ because it would induce an isomorphism of effective cones.

2.4.2 Abelianization

We consider now the toric quiver flag variety associated to a given quiver flag variety $M(Q, \mathbf{r})$ which arises from the corresponding Abelian quotient. Let $T \subset G$ be the diagonal maximal torus. Then the action of G on $\operatorname{Rep}(Q, \mathbf{r})$ induces an action of T on $\operatorname{Rep}(Q, \mathbf{r})$, and the inclusion $i: \chi(G) \hookrightarrow \chi(T)$ allows us to interpret the special character θ as a stability condition for the action of T on $\operatorname{Rep}(Q, \mathbf{r})$. The Abelian quotient is then $\operatorname{Rep}(Q, \mathbf{r}) \|_{i(\theta)} T$. Let us see that $\operatorname{Rep}(Q, \mathbf{r}) \|_{\theta} T$ is a toric quiver flag variety. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\rho}\right)$ denote an element of $T=\prod_{i=1}^{\rho}\left(\mathbb{C}^{*}\right)^{r_{i}}$, where $\lambda_{j}=\left(\lambda_{j 1}, \ldots, \lambda_{j r_{j}}\right)$. Let $\left(w_{a}\right)_{a \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{r})$. Here w_{a} is an $r_{t(a)} \times r_{s(a)}$ matrix. The action of λ on $\left(w_{a}\right)_{a \in Q_{1}}$ is defined by

$$
w_{a}(i, j) \mapsto \lambda_{s(a) i}^{-1} w_{a}(i, j) \lambda_{t(a) j} .
$$

Hence this is the same as the group action on the quiver $Q^{\text {ab }}$ with vertices

$$
Q_{0}^{\mathrm{ab}}=\left\{v_{i j}: 0 \leq i \leq \rho, 1 \leq j \leq r_{i}\right\}
$$

and the number of arrows between $v_{i j}$ and $v_{k l}$ is the number of arrows in the original quiver between vertices i and k. Clearly $i(\theta) \in \chi(T)$ is the character prescribed by §2.1.1. Hence

$$
\operatorname{Rep}(Q, \mathbf{r}) \|_{\theta} T=M\left(Q^{\mathrm{ab}}, \mathbf{1}\right) .
$$

We call Q^{ab} the Abelianized quiver.

Example 2.4.3. Let Q be the quiver

Then Q^{ab} is

Martin [39] has studied the relationship between the cohomology of Abelian and non-Abelian quotients. We state his result specialized to quiver flag varieties, then extend this to a comparison of the ample cones. To simplify notation, denote $M_{Q}=$ $M(Q, \mathbf{r}), M_{Q^{\text {ab }}}=M\left(Q^{\mathrm{ab}},(1, \ldots, 1)\right)$ and $V=\operatorname{Rep}(Q, \mathbf{r})=\operatorname{Rep}\left(Q^{\mathrm{ab}},(1, \ldots, 1)\right)$. For $v \in \chi(G)$, let $V_{v}^{s}(T)$ denote the T-stable points of V and $V_{v}^{s}(G)$ denote the G stable points, dropping the subscript if it is clear from context. It is easy to see that $V^{s}(G) \subset V^{s}(T)$. The Weyl group W of (G, T) is $\prod_{i=1}^{\rho} S_{r_{i}}$, where $S_{r_{i}}$ is the symmetric group on r_{i} letters. Let $\pi: V^{s}(G) / T \rightarrow V^{s}(G) / G$ be the projection. The Weyl group acts on the cohomology of $M\left(Q^{\text {ab }}, \mathbf{1}\right)$, and also on the Picard group, by permuting the $W_{v_{i 1}}, \ldots, W_{v_{i_{i}}}$. It is well-known (see e.g. Atiyah-Bott [4]) that

$$
\pi^{*}: H^{*}\left(V^{s}(G) / T\right)^{W} \cong H^{*}\left(M_{Q}\right)
$$

Theorem 2.4.4. [39] There is a graded surjective ring homomorphism

$$
\phi: H^{*}\left(M_{Q^{\mathrm{ab}}}, \mathbb{C}\right)^{W} \rightarrow H^{*}\left(V^{s}(G) / T, \mathbb{C}\right) \xrightarrow{\pi^{*}} H^{*}\left(M_{Q}, \mathbb{C}\right)
$$

where the first map is given by the restriction $V^{s}(T) / T \rightarrow V^{s}(G) / T$. The kernel is the annihilator of $e=\prod_{i=1}^{\rho} \prod_{1 \leq j, k \leq r_{i}} c_{1}\left(W_{v_{i j}}^{*} \otimes W_{v_{i k}}\right)$.

Remark 2.4.5. This means that any class $\sigma \in H^{*}\left(M_{Q}\right)$ can be lifted (non-uniquely) to a class $\tilde{\sigma} \in H^{*}\left(M_{Q^{\mathrm{ab}}}\right)$. Moreover, e $\cap \tilde{\sigma}$ is uniquely determined by σ.

Corollary 2.4.6. Let E be a representation of G defining representation theoretic bundles $E_{G} \rightarrow M_{Q}$ and $E_{T} \rightarrow M_{Q^{\text {ab }}}$. Then $\phi\left(c_{i}\left(E_{T}\right)\right)=c_{i}\left(E_{G}\right)$.

Proof. Recall that

$$
\begin{aligned}
& E_{G}=\left(V^{s}(G) \times E\right) / G \rightarrow M_{Q}, \\
& E_{T}=\left(V^{s}(T) \times E\right) / T \rightarrow M_{Q^{\mathrm{ab}}} .
\end{aligned}
$$

Define

$$
E_{G}^{\prime}=\left(V^{s}(G) \times E\right) / T \rightarrow V^{s}(G) / T .
$$

Let f be the inclusion $V^{s}(G) / T \rightarrow V^{s}(T) / T$. Clearly $f^{*}\left(E_{T}\right)=E_{G}^{\prime}$ as E_{G}^{\prime} is just the restriction of E_{T}. Considering the square

we see that $\pi^{*}\left(E_{G}\right)=E_{G}^{\prime}$. Then we have that $f^{*}\left(E_{T}\right)=\pi^{*}\left(E_{G}\right)$, and so in particular $f^{*}\left(c_{i}\left(E_{T}\right)\right)=\pi^{*}\left(c_{i}\left(E_{G}\right)\right)$. The result now follows from Martin's theorem (Theorem 2.4.4).

Remark 2.4.7. Note that E_{T} always splits as a direct sum of line bundles on $M\left(Q^{a b},(1, \ldots, 1)\right)$, as any representation of T splits into rank one representations. In particular, this means that if $\left(Q, E_{G}\right)$ defines a quiver flag zero locus, $\left(Q^{a b}, E_{T}\right)$ which is also a toric complete intersection.

The corollary shows that in degree 2, the inverse of Martin's map is

$$
i: c_{1}\left(W_{i}\right) \mapsto \sum_{j=1}^{r_{i}} c_{1}\left(W_{v_{i j}}\right)
$$

In particular, using (2.1), we have that $i\left(\omega_{M_{Q}}\right)=\omega_{M_{Q^{\text {ab }}}}$, where ω_{X} is the canonical bundle of X.

Proposition 2.4.8. Let $\operatorname{Amp}(Q), \operatorname{Amp}\left(Q^{\mathrm{ab}}\right)$ denote the ample cones of M_{Q} and $M_{Q^{\text {ab }}}$ respectively. Then

$$
i(\operatorname{Amp}(Q))=\operatorname{Amp}\left(Q^{\mathrm{ab}}\right)^{W} .
$$

Proof. Let α be a character for G, denoting its image under $i: \chi(G) \hookrightarrow \chi(T)$ as α as well. The image of i is W-invariant, and in fact $i(\chi(G))=\chi(T)^{W}$ (this reflects that W-invariant lifts of divisors are unique).

Note that $V_{\alpha}^{s s}(G) \subset V_{\alpha}^{s s}(T)$. To see this, suppose $v \in V$ is semi-stable for α as a character of G. Let $\lambda: \mathbb{C}^{*} \rightarrow T$ be a one-parameter subgroup of T such that
$\lim _{t \rightarrow 0} \lambda(t) \cdot v$ exists. By inclusion, λ is a one-parameter subgroup of G, and so $\langle\alpha, \lambda\rangle \geq 0$ by semi-stability of v. Hence $v \in V_{\alpha}^{s s}(T)$. It follows that, if $\alpha \in \operatorname{NE}^{1}\left(M_{Q}\right)$, then $V_{\alpha}^{s s}(G) \neq \varnothing$, so $V_{\alpha}^{s s}(T) \neq \varnothing$, and hence by Theorem 2.4.1 $\alpha \in \mathrm{NE}^{1}\left(M_{Q^{\mathrm{ab}}}\right)^{W}$.

Ciocan-Fontanine-Kim-Sabbah use duality to construct a projection [10]

$$
p: \operatorname{NE}_{1}\left(M_{Q^{\mathrm{ab}}}\right) \rightarrow \mathrm{NE}_{1}\left(M_{Q}\right) .
$$

Suppose that $\alpha \in \operatorname{Amp}(Q)$. Then for any $C \in \mathrm{NE}_{1}\left(M_{Q^{\mathrm{ab}}}\right), i(\alpha) \cdot C=\alpha \cdot p(C)>0$. So $i(\alpha) \in \operatorname{Amp}\left(Q^{\mathrm{ab}}\right)^{W}$.

Let $\operatorname{Wall}(G) \subset \operatorname{Pic}\left(M_{Q}\right)$ denote the union of all GIT walls given by the G action, and similarly for $\operatorname{Wall}(T)$. Recall that $\alpha \in \operatorname{Wall}(G)$ if and only if it has a non-empty strictly semi-stable locus. Suppose $\alpha \in \operatorname{Wall}(G)$, with v in the strictly semi-stable locus. That is, there exists a non-trivial $\lambda: \mathbb{C}^{*} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) \cdot v$ exists and $\langle\alpha, \lambda\rangle=0$. Now we don't necessarily have $\operatorname{Im}(\lambda) \subset T$, but the image is in some maximal torus, and hence there exists $g \in G$ such that $\operatorname{Im}(\lambda) \subset g^{-1} T g$. Consider $\lambda^{\prime}=g \lambda g^{-1}$. Then $\lambda^{\prime}\left(\mathbb{C}^{*}\right) \subset T$. Since $g \cdot v$ is in the orbit of v under G, it is semi-stable with respect to G, and hence with respect to T. In fact, it is strictly semi-stable with respect to T, since $\lim _{t \rightarrow 0} \lambda^{\prime}(t) g \cdot v=\lim _{t \rightarrow 0} g \lambda(t) \cdot v$ exists, and $\left\langle\alpha, \lambda^{\prime}\right\rangle=\langle\alpha, \lambda\rangle=0$. So as a character of T, α has a non-empty strictly semi-stable locus, and we have shown that

$$
i(\operatorname{Wall}(G)) \subset \operatorname{Wall}(T)^{W}
$$

This means that the boundary of $i(\operatorname{Amp}(Q))$ has empty intersection with $\operatorname{Amp}\left(Q^{\mathrm{ab}}\right)^{W}$. Since both are full dimensional cones in the W invariant subspace, the inclusion $i(\operatorname{Amp}(Q)) \subset \operatorname{Amp}\left(Q^{\mathrm{ab}}\right)^{W}$ is in fact an equality.

Remark 2.4.9. Note that the proof of this proposition provides a stronger result. The inclusion of walls in the effective chamber of Q into the walls of the effective chamber of $Q^{a b}$ implies that the wall-and-chamber decomposition of $\mathrm{NE}_{1}\left(M_{Q}\right)$ is just the one restricted from $\mathrm{NE}_{1}\left(M_{Q^{a b}}\right)$. Notice, however, that it can happen that $V_{\theta}^{s s}(G)=\varnothing$, but $V_{\theta}^{s s}(T) \neq \varnothing$. So the Weyl invariant part of the effective cone of the Abelianized quiver may have chambers that do not show up in the effective cone of the non-Abelian quotient (as flag varieties demonstrate).

Example 2.4.10. Consider again the example

The Abelianization of this quiver is

Walls are generated by collections of divisors that generate cones of codimension 1 . We then intersect them with the Weyl invariant subspace, generated by $(1,1,1,0,0)$ and $(0,0,0,1,1)$. In this subspace, the walls are generated by

$$
(1,1,1,0,0), \quad(0,0,0,1,1), \quad(-2,-2,-2,3,3) .
$$

Combined with Example 2.4.2, this determines the wall-and-chamber structure of the effective cone of $M(Q, \mathbf{r})$. That is, it has three walls, each generated by one of $v_{1}:=(1,0), v_{2}:=(-2,3)$, and $v_{3}=(0,1)$. There are two maximal cones generated by $\left(v_{1}, v_{3}\right)$ and $\left(v_{2}, v_{3}\right)$ respectively.

2.4.3 The toric case

As a prelude to determining the ample cone of a general quiver flag variety, we first consider the toric case. Recall that a smooth projective toric variety (or orbifold) can be obtained as a GIT quotient of \mathbb{C}^{N} by a ρ-dimensional torus.

Definition 2.4.11. The GIT data for a toric variety is an ρ-dimensional torus K with cocharacter lattice $L=\operatorname{Hom}\left(\mathbb{C}^{*}, K\right)$, and m characters $D_{1}, \ldots, D_{m} \in L^{\vee}$, together with a stability condition $w \in L^{\vee} \otimes \mathbb{R}$.

These linear data give a toric variety (or Deligne-Mumford stack) as the quotient of an open subset $U_{w} \subset \mathbb{C}^{m}$ by K, where K acts on \mathbb{C}^{m} via the map $K \rightarrow\left(\mathbb{C}^{*}\right)^{m}$ defined by the $D_{i} . U_{w}$ is defined as

$$
\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m} \mid w \in \operatorname{Cone}\left(D_{i}: z_{i} \neq 0\right)\right\}
$$

that is, its elements can have zeroes at $z_{i}, i \in I$, only if w is in the cone generated by $D_{i}, i \notin I$. Assume that all cones given by subsets of the divisors that contain w are full dimensional, as is the case for toric quiver flag varieties. Then the ample cone is the intersection of all of these.

In [20], the GIT data for a toric quiver flag variety is detailed; we present it slightly differently. The torus is $K=\left(\mathbb{C}^{*}\right)^{\rho}$. Let e_{1}, \ldots, e_{ρ} be standard basis of $L^{\vee}=\mathbb{Z}^{\rho}$ and
set $e_{0}:=0$. Then each $a \in Q_{1}$ gives a weight $D_{a}=-e_{s(a)}+e_{t(a)}$. The stability condition is $\mathbf{1}=(1,1, \ldots, 1)$. Identify $L^{\vee} \cong \operatorname{Pic} M(Q, \mathbf{1})$. Then $D_{a}=W_{a}:=W_{s(a)}^{*} \otimes W_{t(a)}$.
A minimal generating set for a full dimensional cone for a toric quiver flag variety is given by ρ linearly independent $D_{a_{i}}, a_{i} \in Q_{1}$. Therefore for each vertex i with $1 \leq i \leq \rho$, we need an arrow a_{i} with either $s(a)=i$ or $t(a)=i$, and these arrows should be distinct. For the positive span of these divisors to contain 1 requires that $D_{a_{i}}$ has $t\left(a_{i}\right)=i$. Fix such a set $S=\left\{a_{1}, \ldots, a_{\rho}\right\}$, and denote the corresponding cone by C_{S}. As mentioned, the ample cone is the intersection of such cones C_{S}. The set S determines a path from 0 to i for each i, given by concatenating (backwards) a_{i} with $a_{s\left(a_{i}\right)}$ and so on; let us write $f_{i j}=1$ if a_{j} is in the path from 0 to i, and 0 otherwise. Then

$$
e_{i}=\sum_{j=1}^{\rho} f_{i j} D_{a_{j}} .
$$

This gives us a straightforward way to compute the cone C_{S}. Let B_{S} be the matrix with columns given by the $D_{a_{i}}$, and let $A_{S}=B_{S}^{-1}$. The columns of A_{S} are given by the aforementioned paths: the j th column of A_{S} is $\sum_{i=1}^{\rho} f_{i j} e_{i}$. If $c \in \operatorname{Amp}(Q)$, then $A_{S} c \in A_{S}(\operatorname{Amp}(Q)) \subset A_{S}\left(C_{S}\right)$. Since $A_{S} D_{a_{i}}=e_{i}$, this means that $A_{S} c$ is in the positive orthant.

Proposition 2.4.12. Let $M(Q, 1)$ be a toric quiver flag variety. Let $c \in \operatorname{Amp}(Q)$, $c=\left(c_{1}, \ldots, c_{\rho}\right)$, be an ample class, and suppose that vertex i of the quiver Q satisfies the following condition: for all $j \in Q_{0}$ such that $j>i$, there is a path from 0 to j not passing through i. Then $c_{i}>0$.

Proof. Choose a collection S of arrows $a_{j} \in Q_{1}$ such that the span of the associated divisors $D_{a_{j}}$ contains the stability condition 1 , and such that the associated path from 0 to j for any $j>i$ does not pass through i. Then the (i, i) entry of A_{S} is 1 and all other entries of the $i^{\text {th }}$ row are zero. As $A_{S} c$ is in the positive orthant, $c_{i}>0$.

2.4.4 The ample cone of a quiver flag variety

First, note the following corollary of the previous section.
Corollary 2.4.13. Let $M(Q, \mathbf{r})$ be a quiver flag variety, not necessarily toric. If $c=\left(c_{1}, \ldots, c_{\rho}\right) \in \operatorname{Amp}(Q)$ and $r_{j}>1$, then $c_{j}>0$.

Proof. Consider the Abelianized quiver. For any vertex $v \in Q_{0}^{\text {ab }}$, we can always choose a path from the origin to v that does not pass through $v_{j 1}$: if there is an arrow between $v_{j 1}$ and v, then there is an arrow between $v_{j 2}$ and v, so any path
through $v_{j 1}$ can be rerouted through $v_{j 2}$. Then we obtain that the $j 1$ entry of $i(c)$ is positive - but this is just c_{j}.

Let $M(Q, \mathbf{r})$ be a quiver flag variety and $Q^{a b}$ be the associated Abelianized quiver. Here paths are defined to be directed paths consisting of at least one arrow. A path passes through a vertex i if either the source or the target of one of the arrows in the path is i. For each $i \in\{1, \ldots, \rho\}$, define

$$
T_{i}:=\left\{j \in Q_{0} \mid \text { all paths from the source to } v_{j 1} \text { pass through } v_{i 1} \text { in } Q^{a b}\right\} .
$$

Note that $i \in T_{i}$, as every path from 0 to $v_{i 1}$ passes through $v_{i 1}$ by definition. There are no paths from the source to the source, which is therefore not in T_{i} for any i. If $r_{i}>1$ then $T_{i}=\{i\}$.

Theorem 2.4.14. The nef cone of $M(Q, \mathbf{r})$ is given by the following inequalities. Suppose that $a=\left(a_{1}, \ldots, a_{\rho}\right) \in \operatorname{Pic}\left(M_{Q}\right)$. Then a is nef if and only if

$$
\begin{equation*}
\sum_{j \in T_{i}} r_{j} a_{j} \geq 0 \quad i=1,2, \ldots, \rho . \tag{2.4}
\end{equation*}
$$

Proof. We have already shown that the Weyl invariant part of the nef cone of $M_{Q^{a b}}:=$ $M\left(Q^{a b}, \mathbf{1}\right)$ is the image of the nef cone of $M_{Q}:=M(Q, \mathbf{r})$ under the natural map i : $\operatorname{Pic}\left(M_{Q}\right) \rightarrow \operatorname{Pic}\left(M_{Q^{a b}}\right)$. Label the vertices of $Q^{a b}$ as $v_{i j}, i \in\{0, \ldots, \rho\}, j \in\left\{1, \ldots, r_{i}\right\}$, and write coordinates on $\operatorname{Pic}\left(M_{Q^{a b}}\right)$ as $\left(b_{i j}\right)$ (with respect to the basis given by the tautological line bundles). The inequalities defining the ample cone of $M_{Q^{a b}}$ are given by a choice of arrow $A_{i j} \in Q_{1}^{a b}, t\left(A_{i j}\right)=v_{i j}$ for each $v_{i j}$. This determines a path $P_{i j}$ from $0 \rightarrow v_{i j}$ for each vertex $v_{i j}$. For each $v_{i j}$ the associated inequality is:

$$
\begin{equation*}
\sum_{v_{i j} \in P_{k l}} b_{k l} \geq 0 \tag{2.5}
\end{equation*}
$$

Suppose that a is nef. We want to show that a satisfies the inequalities (2.4). We do this by finding a collection of arrows such that the inequality (2.5) applied to $i(a)$ is just the inequality (2.4).

It suffices to do this for i such that $r_{i}=1$ (as we have already shown that the inequalities are the same in the $r_{i}>1$ case). Choose a set of arrows such that the associated paths avoid $v_{i 1}$ if possible: in other words, if $v_{i 1} \in P_{k l}$, then assume $k \in T_{i}$. Notice that if $v_{i 1} \in P_{k l_{1}}$, then $v_{i 1} \in P_{k l_{2}}$. By assumption $i(a)$ satisfies the $i^{t h}$ inequality associated to this collection of arrows, that is:

$$
\sum_{k \in T_{i}} r_{k} a_{k}=\sum_{v_{i 1} \in P_{k l}} a_{k} \geq 0
$$

Therefore, if C is the cone defined by (2.4), we have shown that $\operatorname{Nef}\left(M_{Q}\right) \subset C$.
Suppose now that $a \in C$ and take a choice of arrows $A_{k l}$. Write $i(a)=\left(a_{i j}\right)$. We prove that the inequalities (2.5) are satisfied starting at $v_{\rho r_{\rho}}$. For ρ, the inequality is $a_{\rho r_{\rho}} \geq 0$, which is certainly satisfied. Suppose the $(i j+1),(i j+2), \ldots,\left(\rho r_{\rho}\right)$ inequalities are satisfied. The inequality we want to establish for $(i j)$ is

$$
\sum_{v_{i 1} \in P_{k l}} a_{k l}=a_{i j}+\sum_{k \in T_{i}-\{i\}} \sum_{l=1}^{r_{l}} a_{k l}+\Gamma=a_{i}+\sum_{k \in T_{i}-\{i\}} r_{k} a_{k}+\Gamma \geq 0,
$$

where

$$
\Gamma=\sum_{s\left(A_{k l}\right)=v_{i j}, k \notin T_{i}}\left(a_{k l}+\sum_{v_{k l} \in P_{s t}} a_{s t}\right) .
$$

This uses the fact that for $k \in T_{i}, v_{i 1} \in P_{k l}$ for all l, and that if $k \notin T_{i}$, and $v_{k l} \in P_{s t}$, we also have that $s \notin T_{i}$.

As $a \in C$ it suffices to show that $\Gamma \geq 0$. By the induction hypothesis $a_{k l}+\sum_{v_{k l} \in P_{s t}} a_{s t} \geq$ 0 , and therefore $\Gamma \geq 0$. This shows that $i(a)$ satisfies (2.5).

Example 2.4.15. The quiver flag variety given by the quiver

has ample cone defined by the inequalities

$$
c_{1}+2 c_{2} \geq 0, c_{2} \geq 0
$$

Notice that vertex 1 in the previous example can be grafted (by 2.3.5) and that the resulting quiver flag variety has ample cone given by the positive orthant. This holds more generally.

Corollary 2.4.16. Let Q be a quiver which has no graftable vertices. Then the nef cone is the positive orthant.

Proof. The corollary followings from noting that for $i \in\{1, \ldots, \rho\}, r_{i}>0$ we have that $T_{i} \neq\{i\}$ if and only if T_{i} is graftable.

2.4.5 Nef line bundles are globally generated

We conclude this section by proving that nef line bundles on quiver flag varieties are globally generated. Craw [18] has shown that the nef line bundles $\operatorname{det}\left(W_{i}\right)$ on
$M(Q, \mathbf{r})$ are globally generated; they span a top-dimensional cone contained in the nef cone (and thus all line bundles in this cone are globally generated). Nef line bundles on toric varieties are known to be globally generated. This result for quiver flag varieties will be important for us because in order to use the Abelian/nonAbelian Correspondence to compute the quantum periods of quiver flag zero loci, we need to know that the bundles involved are convex. Convexity is a difficult condition to understand geometrically, but it is implied by global generation.

To prove the proposition, we will need the following lemma about the structure of the T_{i}. The set $\left\{T_{i}: i \in\{1, \ldots, \rho\}\right\}$ has a partial order given by

$$
T_{i} \leq T_{j} \Leftrightarrow T_{i} \subset T_{j}
$$

(this order, rather than the opposite one, is chosen as it has the property that $T_{i} \leq T_{j}$ implies $i \leq j$).

Lemma 2.4.17. For all j, the set $\left\{T_{i} \leq T_{j}\right\}$ is a chain.

Proof. Observe that if $i \in T_{j} \cap T_{k}$ for $j<k$, then $T_{k} \subset T_{j}$: if all paths from 0 to $i 1$ pass through both $j 1$ and $k 1$, then all paths from 0 to $k 1$ must pass through $j 1$. So $k \in T_{j}$ and hence $T_{k} \subset T_{j}$. Therefore, if $T_{j} \leq T_{i}$ and $T_{k} \leq T_{i}$ for $j<k$, then $i \in T_{j} \cap T_{k}$, and so $T_{j} \leq T_{k}$. Hence $\left\{T_{k} \mid T_{k} \leq T_{j}\right\}$ is totally-ordered for all j.

Proposition 2.4.18. Let L be a nef line bundle on $M(Q, r)$. Then L is globally generated.

Proof. Let $M:=\left\{T_{i} \mid T_{i}\right.$ is minimal $\}$. By the lemma, $\{1, \ldots, \rho\}=\bigsqcup_{T_{i} \in M} T_{i}$. Suppose L is given by the character $\left(a_{1}, \ldots, a_{\rho}\right)$. Write L as $L=\otimes_{T_{i} \in M} L_{T_{i}}$, where each $L_{T_{i}}$ comes from a character $\left(b_{1}, \ldots, b_{\rho}\right) \in \chi(G)$ satisfying $b_{j}=0$ if $j \notin T_{i}$.
L is nef if and only if all the $L_{T_{i}}, T_{i} \in M$ are nef. To see this, note that for each j the inequality

$$
\sum_{k \in T_{j}} r_{k} a_{k} \geq 0
$$

involves terms from a minimal T_{i} if and only if $j \in T_{i}$, in which case it involves only terms from T_{i}. It therefore suffices to show the statement of the proposition for each L_{j}. Therefore suppose that $\left\{j \mid a_{j} \neq 0\right\} \subset T_{i}$ for T_{i} minimal. If $r_{i}>1$, then $T_{i}=\{i\}$, so $L=\operatorname{det}\left(W_{i}\right)^{\otimes a_{i}}$ which is globally generated. So we further assume that $r_{i}=1$. For $k \in T_{i}, k>i$, define $h^{\prime}(k)$ such that $T_{h^{\prime}(k)}$ is the maximal element such that $T_{i} \leq T_{h^{\prime}(k)}<T_{k}$. This is well-defined because the set $\left\{T_{j} \mid T_{j}<T_{k}\right\}$ is a chain.

A section of L is a G-equivariant section of the trivial line bundle on $\operatorname{Rep}(Q, \mathbf{r})$, where the action of G on the line bundle is given by the character $\Pi \chi_{i}^{a_{i}}$. A point
of $\operatorname{Rep}(Q, \mathbf{r})$ is given by $\left(\phi_{a}\right)_{a \in Q_{1}}, \phi_{a}: \mathbb{C}^{r_{s(a)}} \rightarrow \mathbb{C}^{r_{t(a)}}$, where G acts by change of basis. A choice of path $i \rightarrow j$ on the quiver gives an equivariant map $\operatorname{Rep}(Q, \mathbf{r}) \rightarrow$ $\operatorname{Hom}\left(\mathbb{C}^{r_{i}}, \mathbb{C}^{r_{j}}\right)$ where G acts on the image by $g \cdot \phi=g_{j} \phi g_{i}^{-1}$. If $r_{i}=r_{j}=1$, such maps can be composed.

For $j \in T_{i}$, define f_{j} as follows:

- If $j=i$, let f_{i} be any homogeneous polynomial of degree $d_{i}=\sum_{k \in T_{i}} r_{k} a_{k} \geq 0$ in the maps given by paths $0 \rightarrow i$. Therefore f_{i} is a section of the line bundle given by the character $\chi_{i}^{d_{i}}$.
- If $j>i, r_{j}=1$, let f_{j} be any homogeneous polynomial of degree $d_{j}=\sum_{k \in T_{j}} r_{k} a_{k} \geq$ 0 in the maps given by paths $h^{\prime}(j) \rightarrow j$. Note that $r_{h^{\prime}(j)}=1$ as by construction $j, h^{\prime}(j) \in T_{h^{\prime}(j)}$. So f_{j} defines a section of the line bundle given by character $\chi_{h(j)}^{-d_{j}} \chi_{j}^{d_{j}}$.
- If $j>i, r_{j}>1$, let f_{j} be a homogeneous polynomial of degree $a_{k} \geq 0$ in the minors of the matrix whose columns are given by the paths $h^{\prime}(j) \rightarrow j$. That is, f_{j} is a section of the line bundle given by character $\chi_{h^{\prime}(j)}^{-r_{j} a_{j}} \chi_{j}^{a_{j}}$.

For any $x \in \operatorname{Rep}(Q, \mathbf{r})$ which is semi-stable, and for any $j \in T_{i}$, there exists an f_{j} as above with $f_{j}(x) \neq 0$, because $j \in T_{h^{\prime}(j)}$. Fixing x, choose such f_{j}. Define $\sigma:=\prod_{j \in T_{i}} f_{j}: \operatorname{Rep}(Q, \mathbf{r}) \rightarrow \mathbb{C}$. Then σ defines a section of the line bundle given by character

$$
\prod_{j \in T_{i}} \chi_{j}^{b_{j}}=\chi_{i}^{d_{i}} . \prod_{j \in T_{i}, j \neq i, r_{j}=1} \chi_{h^{\prime}(j)}^{-d_{j}} \chi_{j}^{d_{j}} \cdot \prod_{j \in T_{i}, j \neq i, r_{j}>1} \chi_{h^{\prime}(j)}^{-r_{j} a_{j}} \chi_{j}^{a_{j}} .
$$

We need to check that $b_{l}=a_{l}$ for all l. This is obvious for $l \in T_{i}$ with $r_{l}>1$. For $r_{l}=1$,

$$
b_{l}=\sum_{j \in T_{l}} r_{j} a_{j}-\sum_{k \in T_{l}-\{l\}, h^{\prime}(k)=l} \sum_{j \in T_{k}} r_{j} a_{j} .
$$

This simplifies to a_{l} because $T_{l}-\{l\}=\sqcup_{j \in T_{l}, h^{\prime}(j)=l} T_{j}$. Therefore σ gives a well-defined non-vanishing section of L, so L is globally generated.

2.5 The Abelian/non-Abelian Correspondence

The main theoretical result of this thesis, Theorem 2.5.4 below, proves the Abelian/nonAbelian Correspondence with bundles [10, Conjecture 6.1.1] for quiver flag zero loci. This determines all genus-zero Gromov-Witten invariants, and hence the quantum cohomology, of quiver flag varieties, as well as all genus-zero Gromov-Witten invariants of quiver flag zero loci involving cohomology classes that come from the ambient
space. In particular, it determines the quantum period (see Definition 2.5.1) of a quiver flag varieties or quiver flag zero locus X with $c_{1}\left(T_{X}\right) \geq 0$.

2.5.1 A brief Review of Gromov-Witten theory

We give a very brief review of Gromov-Witten theory, mainly to fix notation, See $[13,10]$ for more details and references. Let Y be a smooth projective variety. Given $n \in \mathbb{Z}_{\geq 0}$ and $\beta \in H_{2}(Y)$, let $M_{0, n}(Y, \beta)$ be the moduli space of genus zero stable maps to Y of class β, and with n marked points [36]. While this space may be highly singular and have components of different dimensions, it has a virtual fundamental class $\left[M_{0, n}(Y, \beta)\right]^{\text {virt }}$ of the expected dimension $[8,38]$. There are natural evaluation maps $e v_{i}: M_{0, n}(Y, \beta) \rightarrow Y$ taking the class of a stable map $f: C \rightarrow Y$ to $f\left(x_{i}\right)$, where $x_{i} \in C$ is the $i^{\text {th }}$ marked point. There is also a line bundle $L_{i} \rightarrow M_{0, n}(Y, \beta)$ whose fiber at $f: C \rightarrow Y$ is the cotangent space to C at x_{i}. The first Chern class of this line bundle is denoted ψ_{i}. Define:

$$
\begin{equation*}
\left\langle\tau_{a_{1}}\left(\alpha_{1}\right), \ldots, \tau_{a_{n}}\left(\alpha_{n}\right)\right\rangle_{n, \beta}=\int_{\left[M_{0, n}(Y, \beta)\right]^{v i r t}} \prod_{i=1}^{n} e v_{i}^{*}\left(\alpha_{i}\right) \psi_{i}^{a_{i}} \tag{2.6}
\end{equation*}
$$

where the integral on the right-hand side denotes cap product with the virtual fundamental class. If $a_{i}=0$ for all i, this is called a (genus zero) Gromov-Witten invariant and the τ notation is omitted; otherwise it is called a descendant invariant. It is deformation invariant.

We consider a generating function for descendant invariants called the J-function. Write q^{β} for the element of $\mathbb{Q}\left[H_{2}(Y)\right]$ representing $\beta \in H_{2}(Y)$. Write $N(Y)$ for the Novikov ring of Y :

$$
N(Y)=\left\{\begin{array}{l|l}
\sum_{\beta \in \mathrm{NE}_{1}(Y)} c_{\beta} q^{\beta} & \begin{array}{l}
c_{\beta} \in \mathbb{C}, \text { for each } d \geq 0 \text { there are only finitely } \\
\text { many } \beta \text { such that } \omega \cdot \beta \leq d \text { and } c_{\beta} \neq 0
\end{array}
\end{array}\right\}
$$

Here ω is the Kähler class on Y. The J-function assigns an element of $H^{*}(Y) \otimes$ $N(Y)\left[\left[z^{-1}\right]\right]$ to every element of $H^{*}(Y)$, as follows. Let $\phi_{1}, \ldots, \phi_{N}$ be a homogeneous basis of $H^{*}(Y)$, and let $\phi^{1}, \ldots, \phi^{N}$ be the Poincaré dual basis. Then the J -function is given by

$$
\begin{equation*}
J_{X}(\tau, z):=1+\tau z^{-1}+z^{-1} \sum_{i}\left\langle\left\langle\phi_{i} /(z-\psi)\right\rangle\right\rangle \phi^{i} . \tag{2.7}
\end{equation*}
$$

Here 1 is the unit class in $H^{0}(Y), \tau \in H^{*}(Y)$, and

$$
\begin{equation*}
\left\langle\left\langle\phi_{i} /(z-\psi)\right\rangle\right\rangle=\sum_{\beta \in \mathrm{NE}_{1}(Y)} q^{\beta} \sum_{n=0}^{\infty} \sum_{a=0}^{\infty} \frac{1}{n!z^{a+1}}\left\langle\tau_{a}\left(\phi_{i}\right), \tau, \ldots, \tau\right\rangle_{n+1, \beta} . \tag{2.8}
\end{equation*}
$$

The small J-function is the restriction of the J-function to $H^{0}(Y) \oplus H^{2}(Y)$; closed forms for the small J-function of toric complete intersections and toric varieties are known [25].

Definition 2.5.1. The quantum period $G_{Y}(t)$ is the component of $J(0)$ along $1 \in$ $H^{\bullet}(Y)$ after the substitutions $z \mapsto 1, q^{\beta} \mapsto t^{\left\langle-K_{Y}, \beta\right\rangle}$. This is a power series in t.

The quantum period satisfies an important differential equation called the quantum differential equation.

A vector bundle $E \rightarrow Y$ is defined to be convex if for every genus 0 stable map $f: C \rightarrow Y, H^{1}\left(C, f^{*} E\right)=0$. Globally generated vector bundles are convex. Let $X \subset Y$ be the zero locus of a generic section of a convex vector bundle $E \rightarrow Y$ and let e denote the total Chern class, which evaluates on a vector bundle F of rank r as

$$
\begin{equation*}
\mathbf{e}(F)=\lambda^{r}+\lambda^{r-1} c_{1}(F)+\cdots+\lambda c_{r-1}(F)+c_{r}(F) . \tag{2.9}
\end{equation*}
$$

The notation here indicates that one can consider $\mathbf{e}(F)$ as the \mathbb{C}^{*}-equivariant Euler class of F, with respect to the canonical action of \mathbb{C}^{*} on F which is trivial on the base of F and scales all fibers. In this interpretation, $\lambda \in H_{\mathbb{C}^{*}}^{*}(p t)$ is the equivariant parameter. The twisted J-function $J_{\mathbf{e}, E}$ is defined exactly as the J-function (2.7), but replacing the virtual fundamental class which occurs there (via equations (2.8) and (2.6)) by $\left[M_{0, n}(Y, \beta)\right]^{v i r t} \cap \mathbf{e}\left(E_{0, n, \beta}\right)$, where $E_{0, n, \beta}$ is $\pi_{*}\left(e v_{n+1}^{*}(E)\right)$, $\pi: M_{0, n+1}(Y, \beta) \rightarrow M_{0, n}(Y, \beta)$ is the universal curve, and $e v_{n+1}: M_{0, n+1}(Y, \beta) \rightarrow Y$ is the evaluation map. $E_{0, n, \beta}$ is a vector bundle over $M_{0, n}(Y, \beta)$, because E is convex. Functoriality for the virtual fundamental class [34] implies that

$$
\left.j^{*} J_{\mathbf{e}, E}(\tau, z)\right|_{\lambda=0}=J_{X}\left(j^{*} \tau, z\right)
$$

where $j: X \rightarrow Y$ is the embedding [11, Theorem 1.1]. Thus one can compute the quantum period of X from the twisted J-function. We will use this to compute the quantum period of Fano fourfolds which are quiver flag zero loci.

The Abelian/non-Abelian correspondence is a conjecture [10] relating the J-functions (and more broadly, the quantum cohomology Frobenius manifolds) of GIT quotients $V / / G$ and $V / / T$, where $T \subset G$ is the maximal torus. It also extends to considering zero loci of representation theoretic bundles, by relating the associated twisted Jfunctions. As the Abelianization $V / / T$ of a quiver flag variety $V / / G$ is a toric quiver
flag variety, the Abelian/non-Abelian correspondence conjectures a closed form for the J-functions of Fano quiver flag zero loci. Ciocan-Fontanine-Kim-Sabbah proved the Abelian/non-Abelian correspondence (with bundles) when $V / / G$ is a flag manifold [10]. We will build on this to prove the conjectures when $V / / G$ is a quiver flag variety.

2.5.2 The I-Function

We give the J-function in the way usual in the literature: first, by defining a cohomology-valued hypergeometric function called the I-function (which should be understood as a mirror object, but we omit this perspective here), then relating the J-function to the I-function. We follow the construction given by [10] in our special case. Let X be a quiver flag zero locus given by $\left(Q, E_{G}\right)$ (where we assume E_{G} is globally generate), and write $M_{Q}=M(Q, \mathbf{r})$ for the ambient quiver flag variety. Let $\left(Q^{\text {ab }}, E_{T}\right)$ be the associated Abelianized quiver and bundle, $M_{Q^{\mathrm{ab}}}=M\left(Q^{\mathrm{ab}},(1, \ldots, 1)\right)$. Assume, moreover, that E_{T} splits into nef line bundles; this implies that E_{T} is convex. To define the I-function, we need to relate the Novikov rings of M_{Q} and $M_{Q^{\mathrm{ab}}}$. Let $\operatorname{Pic} Q$ (respectively $\operatorname{Pic} Q^{\text {ab }}$) denote the Picard group of M_{Q} (respectively of $M_{Q^{\mathrm{ab}}}$), and similarly for the cones of effective curves and effective divisors. The isomorphism $\operatorname{Pic} Q \rightarrow\left(\operatorname{Pic} Q^{\text {ab }}\right)^{W}$ gives a projection $p: \mathrm{NE}_{1}\left(M_{Q^{\text {ab }}}\right) \rightarrow \mathrm{NE}_{1}\left(M_{Q}\right)$. In the bases dual to $\operatorname{det}\left(W_{1}\right), \ldots, \operatorname{det}\left(W_{\rho}\right)$ of Pic M_{Q} and $W_{i j}, 1 \leq i \leq \rho, 1 \leq j \leq r_{i}$ of Pic $M_{Q^{\mathrm{ab}}}$, this is

$$
p:\left(d_{1,1}, \ldots, d_{1, r_{1}}, d_{2,1}, \ldots, d_{\rho, r_{\rho}}\right) \mapsto\left(\sum_{i=1}^{r_{1}} d_{1 i}, \ldots, \sum_{i=1}^{r_{\rho}} d_{\rho i}\right) .
$$

For $\beta=\left(d_{1}, \ldots, d_{\rho}\right)$, define

$$
\epsilon(\beta)=\sum_{i=1}^{\rho} d_{i}\left(r_{i}-1\right) .
$$

Then, following [10, equation 3.2.1], the induced map of Novikov rings $N\left(M_{Q^{\text {ab }}}\right) \rightarrow$ $N\left(M_{Q}\right)$ sends

$$
q^{\tilde{\beta}} \mapsto(-1)^{\epsilon(\beta)} q^{\beta}
$$

where $\beta=p(\tilde{\beta})$. We write $\tilde{\beta} \rightarrow \beta$ if and only if $\tilde{\beta} \in \mathrm{NE}_{1}\left(M_{Q^{\mathrm{ab}}}\right)$ and $p(\tilde{\beta})=\beta$.
For a representation theoretic bundle E_{G} of rank r on M_{Q}, let $D_{1}, \ldots, D_{r} \in \operatorname{Pic}\left(Q^{a b}\right)$ be the divisors on $M_{Q^{\text {ab }}}$ giving the split bundle E_{T}. Given $\tilde{d} \in \mathrm{NE}_{1}\left(M_{Q^{\text {ab }}}\right)$ define

$$
I_{E_{G}}(\tilde{d})=\frac{\prod_{i=1}^{r} \prod_{m \leq 0}\left(D_{i}+m z\right)}{\prod_{i=1}^{r} \prod_{m \leq\left\langle\tilde{d}, D_{i}\right\rangle}\left(D_{i}+m z\right)}
$$

Notice that all but finitely many factors cancel here. If E is K-theoretically a representation theoretic bundle, in the sense that there exists A_{G}, B_{G} such that

$$
0 \rightarrow A_{G} \rightarrow B_{G} \rightarrow E \rightarrow 0
$$

is an exact sequence, we define

$$
\begin{equation*}
I_{E}(\tilde{d})=\frac{I_{B_{G}(\tilde{d})}}{I_{A_{G}(\tilde{d})}} \tag{2.10}
\end{equation*}
$$

Example 2.5.2. The Euler sequence from Proposition 2.1.3 shows that for the tangent bundle $T_{M_{Q}}$

$$
I_{T_{M_{Q}}}(\tilde{d})=\frac{\prod_{a \in Q_{1}^{a b}} \prod_{m \leq 0}\left(D_{a}+m z\right)}{\prod_{a \in Q_{1}^{a b}} \prod_{m \leq\left\langle\tilde{d}, D_{a}\right\rangle}\left(D_{a}+m z\right)} \frac{\prod_{i=1}^{\rho} \prod_{j \neq k} \prod_{m \leq\left\langle\tilde{d}, D_{i j}-D_{i k}\right\rangle}\left(D_{i j}-D_{i k}+m z\right)}{\prod_{i=1}^{\rho} \prod_{j \neq k} \prod_{m \leq 0}\left(D_{i j}-D_{i k}+m z\right)} .
$$

Here $D_{i j}$ is the divisor corresponding to the tautological bundle $W_{i j}$ for vertex $i j$, and $D_{a}:=-D_{s(a)}+D_{t(a)}$ is the divisor on $M_{Q^{a b}}$ corresponding to the arrow $a \in Q_{1}^{a b}$.

Example 2.5.3. If X is a quiver flag zero locus in M_{Q} defined by the bundle E_{G}, then the adjunction formula (see equation (2.2)) implies that

$$
I_{T_{X}}(\tilde{d})=I_{T_{M_{Q}}}(\tilde{d}) / I_{E_{G}}(\tilde{d}) .
$$

Define the I-function of $X \subset M_{Q}$ to be

$$
I_{X, M_{Q}}(z)=\sum_{d \in \mathrm{NE}_{1}\left(M_{Q}\right)} \sum_{\tilde{d} \rightarrow d}(-1)^{\epsilon(d)} q^{d} I_{T_{X}}(\tilde{d}) .
$$

Note that $I_{T_{X}}(\tilde{d})$ is homogenous of degree $\left(i\left(K_{X}\right), \tilde{d}\right)$, so defining the grading of q^{d} to be $\left(-K_{X}, d\right), I_{X, M_{Q}}(z)$ is homogeneous of degree 0 . If X is Fano, we can write $I_{T_{X}}(\tilde{d})$ as

$$
\begin{equation*}
z^{\left(\omega_{X}, \tilde{d}\right)}\left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots\right), b_{i} \in H^{2 i}(X) \tag{2.11}
\end{equation*}
$$

Since $I_{X, M_{Q}}$ is invariant under the action of the Weyl group on the $D_{i j}$, by viewing these as Chern roots of the tautological bundles W_{i} we can express it as a function in the Chern classes of the W_{i}. We can therefore regard the I-function as an element

[^1]of $H \cdot\left(M_{Q}, \mathbb{C}\right) \otimes N\left(M_{Q}\right) \otimes \mathbb{C}\left[\left[z^{-1}\right]\right]$. If X is Fano,
\[

$$
\begin{equation*}
I_{X, M_{Q}}(z)=1+z^{-1} C+O\left(z^{-2}\right) \tag{2.12}
\end{equation*}
$$

\]

where $O\left(z^{-2}\right)$ denotes terms of the form αz^{k} with $k \leq-2$ and $C \in H^{0}\left(M_{Q}, \mathbb{C}\right) \otimes$ $N\left(M_{Q}\right)$; furthermore (by (2.11)) C vanishes if the Fano index of X is greater than 1.

Theorem 2.5.4. Let X be a Fano quiver flag zero locus given by $\left(Q, E_{G}\right)$, and let $j: X \rightarrow M_{Q}$ be the embedding of X into the ambient quiver flag variety. Then

$$
J_{X}(0, z)=e^{-c \mid z} j^{*} I_{X, M_{Q}}(z)
$$

where $c=j^{*} C$.
Remark 2.5.5. Via the Divisor Equation and the String Equation [46, §1.2], Theorem 2.5.4 determines $J_{X}(\tau, z)$ for $\tau \in H^{0}(X) \oplus H^{2}(X)$.

2.5.3 Proof of Theorem 2.5.4

Givental has defined [27,15] a Lagrangian cone \mathcal{L}_{X} in the symplectic vector space $H_{X}:=H^{*}(X, \mathbb{C}) \otimes N(X) \otimes \mathbb{C}\left(\left(z^{-1}\right)\right)$ that encodes all genus-zero Gromov-Witten invariants of X. Note that $J_{X}(\tau, z) \in H_{X}$ for all τ. The J-function has the property that $(-z) J_{X}(\tau,-z)$ is the unique element of \mathcal{L}_{X} of the form

$$
-z+\tau+O\left(z^{-1}\right)
$$

(see $[15, \S 9]$) and this, together with the expression (2.12) for the I-function and the String Equation

$$
J_{X}(\tau+c, z)=e^{c / z} J_{X}(\tau, z)
$$

shows that Theorem 2.5.4 follows immediately from Theorem 2.5.6 below. Theorem 2.5.6 is stronger: it does not require the hypothesis that the quiver flag zero locus X be Fano.

Theorem 2.5.6. Let X be a quiver flag zero locus given by $\left(Q, E_{G}\right)$, and let $j: X \rightarrow$ M_{Q} be the embedding of X into the ambient quiver flag variety. Then $(-z) j^{*} I_{X, M_{Q}}(-z) \in$ \mathcal{L}_{X}.

Proof. Let $Y=\prod_{i=1}^{\rho} \operatorname{Gr}\left(H^{0}\left(W_{i}\right), r_{i}\right)$. Denote by $Y^{a b}=\prod_{i=1}^{\rho} \mathbb{P}\left(H^{0}\left(W_{i}\right)\right)^{\times r_{i}}$ the Abelianization of Y. In $\S 2.2$ we constructed a vector bundle V on Y such that M_{Q} is cut
out of Y by a regular section of V :

$$
V=\bigoplus_{i=2}^{\rho} Q_{i} \otimes H^{0}\left(W_{i}\right)^{*} / F_{i}^{*}
$$

where $F_{i}=\oplus_{t(a)=i} Q_{s(a)}$. V is globally generated and hence convex. It is not representation theoretic, but it is K-theoretically: the sequence

$$
0 \rightarrow F_{i}^{*} \otimes Q_{i} \rightarrow H^{0}\left(W_{i}\right)^{*} \otimes Q_{i} \rightarrow H^{0}\left(W_{i}\right)^{*} \otimes Q_{i} / F_{i}^{*} \rightarrow 0
$$

is exact. Let $i: M_{Q} \rightarrow Y$ denote the inclusion.
Both Y and M_{Q} are GIT quotients by the same group; we can therefore canonically identify a representation theoretic vector bundle E_{G}^{\prime} on Y such that $\left.E_{G}^{\prime}\right|_{M_{Q}}$ is E_{G}. Our quiver flag zero locus X is cut out of Y by a regular section of $V^{\prime}=V \oplus E_{G}^{\prime}$. Note that

$$
I_{T_{M_{Q}}}(\tilde{d}) / I_{V}(\tilde{d})=I_{T_{Y}}(\tilde{d}) / I_{V^{\prime}}(\tilde{d})
$$

The I-function $I_{X, M_{Q}}$ defined by considering X as a quiver flag zero locus in M_{Q} with the bundle E_{G} then coincides with the pullback $i^{*} I_{X, Y}$ of the I-function defined by considering X as a quiver flag zero locus in Y with the bundle V^{\prime}. It therefore suffices to prove that

$$
(-z)(i \circ j)^{*} I_{X, Y}(-z) \in \mathcal{L}_{X}
$$

We consider a \mathbb{C}^{*}-equivariant counterpart of the I-function, defined as follows. λ is the equivariant parameter given by the action on the bundle which is trivial on the base, as in (2.9). For a representation theoretic bundle W_{G} on Y, let D_{1}, \ldots, D_{r} be the divisors on $Y^{a b}$ giving the split bundle W_{T}, and for $\tilde{d} \in \mathrm{NE}_{1}\left(Y^{\mathrm{ab}}\right)$ set

$$
I_{W_{G}}^{\mathrm{C}^{*}}(\tilde{d})=\frac{\prod_{i=1}^{r} \prod_{m \leq 0}\left(\lambda+D_{i}+m z\right)}{\prod_{i=1}^{r} \prod_{m \leq\left\langle\tilde{d}, D_{i}\right\rangle}\left(\lambda+D_{i}+m z\right)}
$$

We extend this definition to bundles on Y - such as V^{\prime} - that are only K-theoretically representation theoretic in the same way as (2.10). Let $\tilde{s}_{i}:=\operatorname{dim} H^{0}\left(W_{i}\right)$. Recalling that

$$
I_{T_{Y}}(\tilde{d})=\frac{\prod_{i=1}^{\rho} \prod_{j \neq k} \Pi_{m \leq\left\langle\tilde{d}, D_{i j}-D_{i k}\right\rangle}\left(D_{i j}-D_{i k}+m z\right)}{\prod_{i=1}^{\rho} \prod_{j \neq k} \prod_{m \leq 0}\left(D_{i j}-D_{i k}+m z\right)} \frac{\prod_{i=1}^{\rho} \prod_{j=1}^{r_{i}} \Pi_{m \leq 0}\left(D_{i j}+m z\right)^{\tilde{s}_{i}}}{\prod_{i=1}^{\rho} \prod_{j=1}^{r_{i}} \prod_{m \leq\left\langle\tilde{d}, D_{i j}\right\rangle}\left(D_{i j}+m z\right)^{\tilde{s}_{i}}},
$$

we define

$$
I_{X, Y}^{\mathbb{C}^{*}}(z)=\sum_{d \in \mathrm{NE}_{1}(Y)} \sum_{\tilde{d} \rightarrow d}(-1)^{\epsilon(d)} q^{d} I_{T_{Y}}(\tilde{d}) / I_{V^{\prime}}^{\mathbb{C}^{*}}(\tilde{d})
$$

The I-function $I_{X, Y}$ can be obtained by setting $\lambda=0$ in $I_{X, Y}^{\mathbb{C}^{*}}$. In view of [11, Theorem 1.1], it therefore suffices to prove that

$$
(-z) I_{X, Y}^{\mathbb{C}^{*}}(-z) \in \mathcal{L}_{\mathrm{e}, V^{\prime}}
$$

where $\mathcal{L}_{\mathbf{e}, V^{\prime}}$ is the Givental cone for the Gromov-Witten theory of Y twisted by the total Chern class e and the bundle V^{\prime}.

If V^{\prime} were a representation theoretic bundle, this would follow immediately from the work of Ciocan-Fontanine-Kim-Sabbah: see the proof of Theorem 6.1.2 in [10]. In fact V^{\prime} is only K -theoretically representation theoretic, but their argument can be adjusted almost without change to this situation. Suppose that A_{G} and B_{G} are representation theoretic vector bundles, and that

$$
0 \rightarrow A_{G} \rightarrow B_{G} \rightarrow V \rightarrow 0
$$

is exact. Then we can also consider an exact sequence

$$
0 \rightarrow A_{T} \rightarrow B_{T} \rightarrow F \rightarrow 0
$$

on the Abelianization, and define $V_{T}:=F$. Using the notation of the proof of $[10$, Theorem 6.1.2], the point is that

$$
\Delta(V) \Delta\left(A_{G}\right)=\Delta\left(B_{G}\right)
$$

Here, $\Delta(V)$ is the twisting operator that appears in the Quantum Lefschetz theorem [15]. We can then follow the same argument for

$$
\Delta\left(B_{G}\right) / \Delta\left(A_{G}\right)
$$

After Abelianizing, we obtain $\Delta\left(B_{T}\right) / \Delta\left(A_{T}\right)=\Delta(F)$, and conclude that

$$
(-z) I_{X, Y}^{\mathbb{C}^{*}}(-z) \in \mathcal{L}_{\mathrm{e}, V^{\prime}}
$$

as claimed. This completes the proof.

3

The search for Fano fourfolds

In this chapter, we describe the computer search for four dimensional Fano quiver flag zero loci with codimension at most four. Code to perform this and similar analyses, using the computational algebra system Magma [9], is available at the repository [1]. A database of Fano quiver flag varieties, which was produced as part of the calculation, is available at the repository [2]. This work is joint with T. Coates and A. Kasprzyk, and also appears in the appendices of the paper [33]. The tables with the results of our computations can be found in Appendix A.

3.1 Classifying quiver flag varieties

The first step is to find all Fano quiver flag varieties of dimension at most 8. A nonnegative integer matrix $A=\left[a_{i, j}\right]_{0 \leq i, j \leq \rho}$ and a dimension vector $\mathbf{r} \in \mathbb{Z}_{>0}^{\rho+1}$ determine a vertex-labelled directed multi-graph: the $\rho+1$ vertices are labelled by the r_{i}, and the adjacency matrix for the graph is A. Here, by adjacency matrix of a directed multi-graph, we mean the $\rho+1 \times \rho+1$ square matrix $A=\left[a_{i j}\right]$ such that $a_{i j}$ is the number of (directed) edges from i to j. Such a graph, if it is acyclic with a unique source, and the label of the source is 1 , also determines a quiver flag variety. Two (A, \mathbf{r}) pairs can determine the same graph and hence the same quiver flag varieties.

Definition 3.1.1. A pair (A, \mathbf{r}) determining a quiver flag variety is in normal form if \mathbf{r} is increasing and, under all permutations of the $\rho+1$ indices that preserve \mathbf{r}, the columns of A are lex minimal.

Two pairs in normal form determine the same quiver flag variety (and hence the
same graph) if and only if they are equal.
Recall that quiver flag varieties are towers of Grassmannians (see §2.1.4), and that the i th step in the tower is given by the relative Grassmannian $\operatorname{Gr}\left(\mathcal{F}_{i}, r_{i}\right)$, where \mathcal{F}_{i} is a vector bundle of rank s_{i}. Using this construction it is easy to see that if $s_{i}=r_{i}$ then this quiver flag variety is equivalent to the quiver flag variety \tilde{Q} with vertex i removed, and one arrow $k \rightarrow j$ for every path of the form $k \rightarrow i \rightarrow j$. Therefore we can assume that $s_{i}>r_{i}$, and hence that every vertex contributes strictly positively to the dimension of the quiver flag variety. With this constraint, there are only finitely many quiver flag varieties with dimension at most 8 , and each such has at most 9 vertices.

The algorithm to build all quiver flag varieties with dimension at most 8 is as follows. Start with the set S of all Grassmannians of dimension at most 8. Given an element of S of dimension less than 8 , add one extra labelled vertex and extra arrows into this vertex, in all possible ways such that the dimension of the resulting quiver flag variety is at most 8. Put these in normal form and include them in S. Repeat until there are no remaining elements of S of dimension less than 8 .

In this way we obtain all quiver flag varieties of dimension at most 8 . We then compute the ample cone and anti-canonical bundle for each, and discard any which are not Fano. We find 223044 Fano quiver flag varieties of dimension at most 8; 223017 of dimension $4 \leq d \leq 8$. Of these 50617 (respectively 50612) are non-toric quiver flag varieties. Note that in many cases we find the same variety multiple times: for example, in the table below, there are two quiver flag varieties of dimension 2 and Picard rank 1 given by $\mathbb{P}^{2}=\operatorname{Gr}(3,1)$ and $\mathbb{P}^{2}=\operatorname{Gr}(3,2)$.

	ρ							
d	1	2	3	4	5	6	7	8
1	1							
2	2	3						
3	2	8	11					
4	3	17	44	48				
5	2	27	118	262	231			
6	4	41	264	903	1647	1202		
7	2	54	498	2484	7005	10618	6541	
8	4	74	872	5852	23268	54478	69574	36880

Table 3.1: The number of Fano quiver flag varieties by dimension d and Picard rank ρ

Remark 3.1.2. In our codebase we define new Magma intrinsics:

```
QuiverFlagVariety(A,r),
```

which creates a quiver flag variety from an adjacency matrix A and dimension vector \mathbf{r}, and

```
QuiverFlagVarietyFano(id),
```

which creates a Fano quiver flag variety, in normal form, from its ID [1, 2]. We assign IDs to Fano quiver flag varieties of dimension at most 8, in the range $\{1 \ldots 223044\}$, by placing them in normal form and then ordering them first by dimension, then by Picard rank, then lexicographically by dimension vector, then lexicographically by the columns of the adjacency matrix. We also define Magma intrinsics NefCone(Q), MoriCone(Q), PicardLattice(Q), and CanonicalClass(Q) that compute the nef cone, Mori cone, Picard lattice and canonical class of a quiver flag variety Q, and an intrinsic PeriodSequence $(Q, 1)$ that computes the first $l+1$ terms of the Taylor expansion of the regularised quantum period of Q. See $\S 3.5$ for more details.

3.2 The class of vector bundles that we consider

We consider all bundles E on a given quiver flag variety that:

- are direct sums of bundles of the form

$$
\begin{equation*}
L \otimes S^{\alpha_{1}}\left(W_{1}\right) \otimes \cdots \otimes S^{\alpha_{\rho}}\left(W_{\rho}\right) \tag{3.1}
\end{equation*}
$$

where each $S^{\alpha_{i}}$ is a non-negative Schur power and L is a nef line bundle; and

- have rank c, where c is four less than the dimension of the ambient quiver flag variety.

Remark 2.2.2 shows that non-negative Schur powers $S^{\alpha}\left(W_{i}\right)$ are globally generated, and Proposition 2.4.18 shows that nef line bundles are globally generated. Since the tensor product of globally generated vector bundles is globally generated, the first condition ensures that E is globally generated. In particular, therefore, the zero locus X of a generic section of E is smooth. The second condition ensures that the zero locus X, if non-empty, is a fourfold. Global generation also implies that the bundle E is convex, which allows us to compute the quantum period of X as described in §2.5.1.

Consider a summand as in (3.1). We can represent the partition α_{i} as a length r_{i} decreasing sequence of non-negative integers, and write $L=\otimes_{j=1}^{\rho}\left(\operatorname{det} W_{j}\right)^{a_{j}}$ where a_{j} may be negative. Therefore each such summand is determined by a length ρ sequence of generalised partitions: the partition (with possibly negative entries) corresponding to index i is $\alpha_{i}+\left(a_{i}, \ldots, a_{i}\right)$.

Remark 3.2.1. In our codebase we define a new Magma intrinsic

```
QuiverFlagBundle(Q,[A1,...,Ak])
```

which creates a bundle of the above form, on the quiver flag variety Q, from a sequence of generalised partitions $(A 1, \ldots, A k)$.

We also define an intrinsic FirstChernClass(E) that computes the first Chern class of such a bundle E; intrinsics Degree(E) and EulerNumber(E) that compute the degree and Euler number* of the zero locus X of a generic section of E.

Finally, we define intrinsics HilbertCoefficients(E, l) and PeriodSequence(E, 1) that compute the first $l+1$ terms of, respectively, the Hilbert series of X and the Taylor expansion of the regularised quantum period of X. See §3.5.

3.3 Classifying quiver flag bundles

In this step, we describe the algorithm for determining all bundles on a given quiver flag variety that determine a smooth four-dimensional Fano quiver flag zero locus. A vector bundle as above is determined by a tuple (A, \mathbf{r}, P), where A is an adjacency matrix, \mathbf{r} is a dimension vector, and $P=\left(P_{1}, \ldots, P_{k}\right)$ is a sequence where each P_{i} is a length- ρ sequence of generalised partitions such that the j th partition in each P_{i} is of length r_{j}. Note that we regard the summands (3.1) in our vector bundles as unordered; also, as discussed above, different pairs (A, \mathbf{r}) can determine the same quiver flag variety. We therefore say that a tuple (A, \mathbf{r}, P) is in normal form if the pair (A, \mathbf{r}) is in normal form, P is in lex order, and under all permutations of the vertices preserving these conditions, the sequence P is lex minimal; we work throughout with tuples in normal form.

Given a Fano quiver flag variety $M(Q, \mathbf{r})$ of dimension $4+c, c \leq 4$, with anti-canonical class $-K_{Q}$ and nef cone $\operatorname{Nef}(Q)$, we search for all bundles E such that

- E is a direct sum of bundles of the form (3.1);

[^2]- $\operatorname{rank}(E)=c$;
- $-K_{Q}-c_{1}(E) \in \operatorname{Amp}(Q)$.

The last condition ensures that the associated quiver flag zero locus X, if non-empty, is Fano. We proceed as follows. We first find all possible summands that can occur; that is, all irreducible vector bundles E of the form (3.1) such that $\operatorname{rank}(E) \leq c$ and $-K_{Q}-c_{1}(E) \in \operatorname{Amp}(Q)$. Let $\operatorname{Irr}(Q)$ be the set of all such bundles. Write $\operatorname{Irr}(Q)=\operatorname{Irr}(Q)_{1} \sqcup \operatorname{Irr}(Q)_{2}$, where $\operatorname{Irr}(Q)_{1}$ contains vector bundles of rank strictly larger than 1 , and $\operatorname{Irr}(Q)_{2}$ contains only line bundles. We then search for two vector bundles E_{1}, E_{2} such that E_{i} is a direct sum of bundles from $\operatorname{Irr}(Q)_{i}$ and that $E=E_{1} \oplus E_{2}$ satisfies the conditions above.

For each $x \in \operatorname{Nef}(Q)$ such that $-K_{Q}-x$ is ample, we find all possible ways to write x as

$$
\begin{equation*}
x=\sum_{i=1}^{l} a_{i} \tag{3.2}
\end{equation*}
$$

where the a_{i} are (possibly repeated) elements of a Hilbert basis for $\operatorname{Nef}(Q)$. There are only finitely many decompositions (3.2); finding them efficiently is a knapsacktype problem that has already been solved [16]. For each $\tilde{c} \leq c$ and each partition of the a_{i} into at most $c / 2$ groups S_{1}, \ldots, S_{s}, we find all possible choices of $F_{1}, \ldots, F_{s} \in$ Irr_{1} such that

$$
c_{1}\left(F_{i}\right)=\sum_{j \in S_{i}} a_{j} \quad \operatorname{rank}\left(F_{1}\right)+\cdots+\operatorname{rank}\left(F_{s}\right)=\tilde{c}
$$

Set $E_{1}=F_{1} \oplus \cdots \oplus F_{s}$. Then for each $y \in \operatorname{Nef}(Q)$ such that $-K_{Q}-x-y$ is ample, we again find all ways of writing

$$
y=\sum_{j=1}^{m} b_{j}
$$

as a sum of Hilbert basis elements. Each partition of the b_{j} into $c-\tilde{c}$ groups gives a choice of nef line bundles $L_{1}, \ldots, L_{c-\tilde{c}} \in \operatorname{Irr}_{2}(Q)$, and we set $E_{2}=\oplus L_{j}$.

Remark 3.3.1. Treating the higher rank summands Irr_{2} and line bundles Irr_{1} separately here is not logically necessary, but it makes a huge practical difference to the speed of the search.

3.4 Classifying quiver flag zero loci

For each of the Fano quiver flag varieties Q of dimension between 4 and 8, found in $\S 3.1$, we use the algorithm described in $\S 3.3$ to find all bundles on Q of the form
described in $\S 3.2$. This produces 10788446 bundles. Each such bundle E determines a quiver flag zero locus X that is either empty or a smooth Fano fourfold. We discard any varieties that are empty or disconnected (first doing a cheap check by Remark 3.4.1 and then computing the degree), and for the remainder compute the first fifteen terms of the Taylor expansion of the regularised quantum period of X, using Theorem 2.5.4. For many of the quiver flag zero loci that we find, this computation is extremely expensive (the main factor is the Picard rank of the abelianised quiver, as this determines the size of the cohomology ring of the abelianised quiver flag variety where the computations are done; Gröbner basis calculations that allow the computation of products in this ring become more expensive as the size of the ring grows). In practice, therefore, it is essential to use the equivalences described in §2.3 to replace such quiver flag zero loci by equivalent and more tractable models. The number of equivalence classes is far smaller than the number of quiver flag zero loci that we found, and so this replaces roughly 10 million calculations, many of which are hard, by around half a million calculations, almost all of which are easy. In this way we find 749 period sequences. We record these period sequences, together with the construction, Euler number, and degree for a representative quiver flag zero locus, in Appendix A below. 141 of the period sequences that we find are new. Thus we find at least 141 new four-dimensional Fano manifolds ${ }^{\dagger}$.

Remark 3.4.1. A computationally cheap sufficient condition for a quiver flag zero locus to be empty arises as follows. If W is the tautological quotient bundle on $G r(n, r)$, where $2 r-1>n$, then a generic global section of $\wedge^{2} W$ or $\operatorname{Sym}^{2} W$ has an empty zero locus. Thus if i is a vertex in a quiver Q such that all arrows into i are from the source, and $2 r_{i}-1>n_{0 i}=s_{i}$, then there are no global sections of $\wedge^{2} W_{i}$ or Sym $^{2} W_{i}$ with non-empty zero locus: to see this, apply Proposition 2.2.1 to Q.

3.5 Cohomological computations for Quiver flag zero loci

In this section we describe how we compute the degree, Euler characteristic, Hilbert coefficients, and Taylor expansion of the regularised quantum period for quiver flag varieties and quiver flag zero loci. This relies on Martin's integration formula [39] and Theorem 2.5.4.

Let V be a smooth projective variety with an action of G on V, let T be a maximal torus in G, and consider the GIT quotients $V / / G$ and $V / / T$ determined by a character of G. Let $\pi: V^{s s}(G) / T \rightarrow V / / G$ be the projection and $i: V^{s s}(G) / T \rightarrow V^{s s}(T) / T=$

[^3]$V / / T$ be the inclusion. Let W be the Weyl group, and $e=\prod_{\lambda \in \operatorname{Roots}(G)} c_{1}\left(L_{\lambda}\right)$, where L_{λ} is the line bundle on $V / / T$ associated to the character λ.

Theorem 3.5.1 (Martin's Integration Formula, [39]). For any $a \in H^{*}(V / / G, \mathbb{C})$ and any $\tilde{a} \in H^{*}(V / / T, \mathbb{C})$ satisfying $\pi^{*}(a)=i^{*}(\tilde{a})$

$$
\int_{V / / G} a=\frac{1}{|W|} \int_{V / / T} \tilde{a} \cup e .
$$

If $a \in H^{*}(V / / G, \mathbb{C})$ and $\tilde{a} \in H^{*}(V / / T, \mathbb{C})$ satisfy $\pi^{*}(a)=i^{*}(\tilde{a})$ then we say that \tilde{a} is a lift of a.

In our case the Abelianization $V / / T$ is a smooth toric variety, and the cohomology rings of such varieties, being Stanley-Reisner rings, are easy to work with computationally [9, 48]. For example, we can use this to compute the number of components $h^{0}\left(X, \mathcal{O}_{X}\right)$ of a Fano quiver flag zero locus X. By Kodaira vanishing, $h^{0}\left(X, \mathcal{O}_{X}\right)=\chi(X)$, and applying the Hirzebruch-Riemann-Roch theorem gives

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}\right)=\int_{X} \operatorname{ch}\left(\mathcal{O}_{X}\right) \cup T d\left(T_{X}\right)=\int_{X} T d\left(T_{X}\right) . \tag{3.3}
\end{equation*}
$$

We need to find a lift of the Todd class of T_{X}. Writing T_{X} as a K-theoretic quotient of representation theoretic bundles via the Euler sequence, as in the proof of Theorem 2.5.4, gives the lift that we seek; we then use Martin's formula to reduce the integral (3.3) to an integral in the cohomology ring of the Abelianization. The same approach allows us to compute the first two terms $\chi\left(X,-K_{X}\right), \chi\left(X,-2 K_{X}\right)$ of the Hilbert series of X as well as the degree and Euler characteristic of X. To compute the first few Taylor coefficients of the quantum period of X, we combine this approach with the explicit formula in Theorem 2.5.4.

4

Future directions: Laurent polynomial mirrors for Fano quiver flag zero loci

In the final chapter of this thesis, we discuss mirrors for the quiver flag zero loci found in Appendix A. This is work in progress. First, we briefly describe the conjectures relating Fano varieties and Laurent polynomials, and explain how toric degenerations are expected to play a role. Secondly, using new coordinates on quiver flag varieties, we provide a recipe for finding toric degenerations of quiver flag varieties modelled on the Gonciulea-Lakshmibai toric degeneration [28] of a flag variety. In the third section, we introduce ladder diagrams, a combinatorial picture used to describe the toric degeneration of [28], and generalise them to Y shaped quiver flag varieties. We give a new interpretation of ladder diagrams as quivers. Finally, even beyond the complete intersection case, we use these constructions to find mirrors of some of the new Fano fourfolds which are subvarieties of Y shaped quiver flag varieties. We also present two degenerations of quiver flag varieties beyond this context. Many of the proofs of this section are still work in progress, and so the main focus is on the examples.

4.1 Mirror symmetry for Fano varieties

Conjecturally (see, for example [3] and [24]), n dimensional Fano varieties up to deformation should correspond to certain Laurent polynomials in n variables up to a type of equivalence called mutation.

Definition 4.1.1. Let f be a Laurent polynomial in $\mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$. The classical period of f, denoted $\pi_{t}(f)$ is

$$
\frac{1}{(2 \pi i)^{n}} \int_{\left(S^{1}\right)^{n}} \frac{1}{1-t f} \frac{d x_{1}}{x_{1}} \wedge \cdots \wedge \frac{d x_{n}}{x_{n}} .
$$

Repeated applications of the residue theorem allows one to re-write $\pi_{f}(t)$ as $\sum_{i=0}^{\infty} a_{i} t^{i}$, where a_{i} is the constant term in the expansion of f^{i}.

Let X be a smooth Fano variety. A Laurent polynomial $f \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$is mirror to X if the quantum period X is equal to $\pi_{f}(t)$, the classical period of f.

The class of Laurent polynomials mirror to Fano varieties is conjectured to be rigid maximally mutable Laurent polynomials. To define this class, we first need to define the notion of a mutation. We follow [3]. Mutations are compositions of two types of operations - GL (n, \mathbb{Z}) equivalences and certain birational transformations - on a Laurent polynomial f. For the first, let $A=\left[a_{i j}\right] \in \operatorname{GL}(n ; \mathbb{Z})$. A defines a $\operatorname{GL}(n, \mathbb{Z})$ equivalence $\phi:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$ via

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\prod_{i=1}^{n} x_{i}^{a_{1 i}}, \ldots, \prod_{i=1}^{n} x_{i}^{a_{n i}}\right)
$$

This defines a new Laurent polynomial $\phi^{*}(f)$. For the second type of map, write

$$
f=\sum_{i} C_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i}
$$

and suppose that C_{i} is divisible by h^{-i} for a fixed Laurent polynomial $h\left(x_{1}, \ldots, x_{n-1}\right)$. This defines a birational transformation $\phi:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$ via

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}, h x_{n}\right) .
$$

We obtain a new Laurent polynomial g by pullback where

$$
g=\sum_{i} h^{i} C_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i} .
$$

A one-step mutation is defined to be the composition of a $\operatorname{GL}(n, \mathbb{Z})$ equivalence, a birational transformation of this type, and another $\operatorname{GL}(n, \mathbb{Z})$ equivalence. A mutation is a composition of one-step mutations.

A polytope P^{\prime} is defined to be a mutation of a polytope P if there exists f, f^{\prime} such that P^{\prime} is the Newton polytope of f^{\prime}, P is the Newton polytope of f, and f^{\prime} is a mutation of f. A mutation of P is said to be compatible with a Laurent polynomial
f if the mutation of P is induced from a mutation of f.
Definition 4.1.2. Let f be a Laurent polynomial with Newton polytope P. f is rigid maximally mutable if there is a set of mutations S on P such that f is compatible with all mutations in S and up to scaling, f is the only Laurent polynomial compatible with all mutations in S.

A limited amount is known about rigid maximally mutable Laurent polynomials. In dimension 4 , a polytope may support two different such polynomials.

For Fano toric complete intersections in Fano toric varieties subject to some extra, technical conditions (the ability to find a nef partition), there is a well understood method of producing a Laurent polynomial mirror, called the Przyjalkowski method. The paper [17] explains this in detail. However, it isn't known whether this always produces a rigid maximally mutable Laurent polynomial (but there are no known counterexamples). One can formally follow the same method when the toric variety and the toric complete intersection are singular: below, we show examples when this method does not produce a rigid maximally mutable Laurent polynomial. The correct mirror, in this case, is the rigid maximally mutable Laurent polynomial with the same Newton polytope. There is code written by Kasprzyk to find maximally mutable Laurent polynomials.

To understand mirrors for Fano varieties which are not toric complete intersections, toric degenerations are one of the main tools used.

Definition 4.1.3. Let X be a smooth variety. A flat family $\pi: \mathfrak{X} \rightarrow U \subset \mathbb{C}$ is a toric degeneration of X if the generic fiber is X and the special fiber X_{0} of π is a toric variety. We also require that the family is \mathbb{Q}-Gorenstein.

A toric degeneration is called a small toric degeneration if in addition, \mathfrak{X} is irreducible, X_{0} has at worst Gorenstein terminal singularities, and for any t, the map

$$
\operatorname{Pic}(\mathfrak{X} / U) \rightarrow \operatorname{Pic}\left(X_{t}\right)
$$

is an isomorphism.
Batyrev conjectured (see [6]) that if X is a smooth Fano variety with small toric degeneration to some X_{0}, then the formal mirror to X_{0} (produced as described above) should be a mirror to X. Given a toric complete intersection X such that the Przyjalkowski method produces a mirror f, [29] and [17] produce a toric degeneration of X to the toric variety with fan the spanning fan of the Newton polytope of f.

Below, we will describe a certain toric degeneration of flag varieties, which was first constructed by [28]. This is a small toric degeneration. If X is a Fano complete
intersection in a flag variety, the degeneration of the ambient space degenerates X to complete intersection in the degenerate toric variety. Applying the Przyjalkowski method to this toric complete intersection, one can find a Laurent polynomial mirror for X. We will discuss a generalisation of this degeneration for certain quiver flag varieties, and use it to produce conjectural mirrors to their quiver flag zero loci, going beyond the complete intersection case.

4.2 SAGBI basis degenerations of quiver flag varieties

4.2.1 A DEGENERATION of A FLAG VARIETY

In this section, we follow Miller and Sturmfels in [40] to present the toric degeneration of the flag variety from [28]. Consider the flag variety $\mathrm{Fl}\left(n ; r_{1}, \ldots, r_{\rho}\right)$. Let $k_{i}:=n-r_{i}$. The Cox ring of the flag variety is generated by the top aligned minors of size k_{1}, \ldots, k_{ρ} of the matrix

$$
\left[\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{k_{\rho} 1} & \cdots & x_{k_{\rho} n}
\end{array}\right] .
$$

One can also think of these minors as sections of the determinants of the duals of tautological sub-bundles on $\operatorname{Fl}\left(n ; r_{1}, \ldots, r_{\rho}\right)$, and so they define the Plücker map $\mathrm{Fl}\left(n ; r_{1}, \ldots, r_{\rho}\right) \rightarrow \prod_{i=1}^{\rho} \mathbb{P}^{\left(k_{i}\right)-1}$. The variables can be thought of as coordinates on V, where V is the vector space such that $V / / G=\operatorname{Fl}\left(n ; r_{1}, \ldots, r_{\rho}\right)$.

Consider the subalgebra $A \subset \mathbb{C}\left[x_{i j}: 1 \leq i \leq r_{1}, 1 \leq j \leq n\right]$ generated by these minors. In [40], they show that the basis given by the minors is a SAGBI basis for A under the monomial order given by the lex ordering on the $x_{i j}$. That is, for any f in the algebra, the initial term of f is a monomial in the initial terms of the basis. A SAGBI basis defines a flat degeneration of the flag variety in $\prod_{i=1}^{\rho} \mathbb{P}^{\left(k_{i}^{n}\right)-1}$ to the toric subvariety defined by the monomials which are the initial terms of the basis elements.

Example 4.2.1. Consider the flag variety $\operatorname{Gr}(4,2)$. Then the matrix above is

$$
\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right] .
$$

The algebra is generated by the six 2×2 minors of this matrix. Their initial terms are

$$
x_{11} x_{22}, x_{11} x_{23}, x_{11} x_{24}, x_{12} x_{23}, x_{12} x_{24}, x_{13} x_{24} .
$$

The toric degeneration of $\operatorname{Gr}(4,2)$ is the closure of the map $\left(\mathbb{C}^{*}\right)^{8} \rightarrow \mathbb{P}^{5}$ defined by these monomials.

4.2.2 Coordinates on quiver flag varieties

The first step towards generalising this construction to quiver flag varieties is to choose appropriate coordinates (or equivalently, appropriate line bundles). One option would be to consider the Cox ring of the quiver flag variety. In section 4.5.2, we do this in a particular example. However, generators of the Cox ring of a quiver flag variety are not known in general, so in practice this isn't helpful. As an alternative, we propose specific line bundles coming from the subvariety construction of quiver flag varieties 2.2.1.

Let $M(Q, \mathbf{r})$ be quiver flag variety. Use 2.2 .1 to write $M(Q, \mathbf{r})$ as a subvariety of

$$
Y:=\prod_{i=1}^{\rho} \operatorname{Gr}\left(\tilde{s_{i}}, r_{i}\right), \tilde{s_{i}}=\operatorname{dim} H^{0}\left(W_{i}\right) .
$$

The line bundles required are $\left.\operatorname{det}\left(S_{i}^{*}\right)\right|_{M(Q, \mathbf{r})} i=1, \ldots, \rho ;\left.\operatorname{det}\left(S_{i}^{*}\right)\right|_{M(Q, \mathbf{r})}$ has a basis of sections given by the maximal minors of a $\tilde{s_{i}}-r_{i} \times \tilde{s_{i}}$ matrix. Before writing down the general construction, we do an example

Example 4.2.2. Consider the quiver flag variety M_{Q} given by

This quiver flag variety can be seen as a subvariety of $Y=\operatorname{Gr}(4,2) \times \operatorname{Gr}(5,1) \times$ $\operatorname{Gr}(8,1)$. A point of this space given by a triple $\left(V_{1} \subset \mathbb{C}^{4}, V_{2} \subset \mathbb{C}^{8}, V_{3} \subset \mathbb{C}^{5}\right)$, of dimension 2,7 , and 4 respectively, is in the subvariety $M(Q, \mathbf{r})$ if $\{0\} \oplus V_{1} \subset V_{3}, V_{1} \oplus$ $V_{1} \subset V_{2}$. A basis of sections of the $\left.\operatorname{det}\left(S_{i}^{*}\right)\right|_{M_{Q}}$ are given by the minors of the 3 matrices below. The entries of these matrices should be seen as coordinates on $V=\operatorname{Mat}(2 \times 4) \times \operatorname{Mat}(7 \times 8) \times \operatorname{Mat}(4 \times 5)$ (so that Y is a GIT quotient of $V)$; the form of the matrices comes from the conditions on the V_{i} cutting out M_{Q}. The first set of minors are the size 2 minors of

$$
\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right]
$$

The second set of minors are the 7×7 minors of

$$
\left[\begin{array}{cccccccc}
z_{11} & z_{12} & z_{13} & z_{14} & z_{15} & z_{16} & z_{17} & z_{18} \\
z_{21} & z_{22} & z_{23} & z_{24} & z_{25} & z_{26} & z_{27} & z_{28} \\
z_{31} & z_{32} & z_{33} & z_{34} & z_{35} & z_{36} & z_{37} & z_{38} \\
x_{11} & x_{12} & x_{13} & x_{14} & 0 & 0 & 0 & 0 \\
x_{21} & x_{22} & x_{23} & x_{24} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x_{11} & x_{12} & x_{13} & x_{14} \\
0 & 0 & 0 & 0 & x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right]
$$

and the third set of minors are the 4×4 minors of

$$
\left[\begin{array}{ccccc}
y_{11} & y_{12} & y_{13} & y_{14} & y_{15} \\
y_{21} & y_{22} & y_{23} & y_{24} & y_{25} \\
0 & x_{11} & x_{12} & x_{13} & x_{14} \\
0 & x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right]
$$

The general construction proceeds exactly as in the example. That is, a point in Y can be given as ρ vector subspaces $\left(V_{i} \subset \mathbb{C}^{\tilde{s_{i}}}\right)_{i=1}^{\rho}$; this point lies in $M(Q, \mathbf{r})$ iff

$$
\bigoplus_{a \in Q_{1}, s(a) \neq 0, t(a)=i} V_{s(a)} \oplus \mathbb{C}^{n_{0 i}} \subset V_{i} .
$$

This is by Proposition 2.2.1. Recall that $n_{0 i}$ is the number of arrows from 0 to i. Y is the GIT quotient of $\prod_{i=1}^{\rho} \operatorname{Mat}\left(\left(\tilde{s}_{i}-r_{i}\right) \times \tilde{s}_{i}\right)$ by $\prod_{i=1}^{\rho} \mathrm{GL}\left(\tilde{s}_{i}-r_{i}\right)$ with stability condition in the positive orthant. From the above, we can see that $M(Q, \mathbf{r})$ is the GIT quotient of the $V^{\prime} \subset V$ intersected with the stable locus. We write down coordinates on V^{\prime} (via the entries of the $\left(M_{i}\right) \in V^{\prime}$) using Proposition 2.2.1.

For each i, by definition, M_{i} is $\left(\tilde{s}_{i}-r_{i}\right) \times \tilde{s}_{i}$ matrix. Each $a \in Q_{1}, t(a)=i$ corresponds to $r_{s(a)}$ columns; this gives a partition of the columns of M_{i}. We can also partition the rows where there is a subset for each $a \in Q_{1}, t(a)=i, s(a) \neq 0$ of size $\tilde{s}_{s(a)}-r_{s(a)}$, and one remaining subset of size $s_{i}-r_{i}$ as

$$
\tilde{s}_{i}-\sum_{a \in Q_{1}, t(a)=i, s(a) \neq 0}\left(\tilde{s}_{s(a)}-r_{s(a)}\right)-r_{i}=s_{i}-r_{i} .
$$

One can see this by considering the conditions which define $M(Q, \mathbf{r})$ in Y.
Then for this matrix to describe an element of V^{\prime}, the submatrix of M_{i} corresponding to the rows given for $a \in Q_{1}, t(a)=i, s(a) \neq 0$ is 0 except for the sub-submatrix of corresponding to the columns determined by a : this sub-submatrix is $M_{s(a)}$.

In this way we get coordinates on Y^{\prime}, and we see that the sections of $\left.\operatorname{det}\left(S_{i}^{*}\right)\right|_{M(Q, \mathbf{r})}$ are spanned by the minors of M_{i}. They define an embedding $M(Q, \mathbf{r}) \rightarrow \prod_{i=1}^{\rho} \mathbb{P}^{\left(\mathbb{s}_{i}\right)-1}$. If for some monomial order they are a SAGBI basis, we would obtain a toric degeneration of $M(Q, \mathbf{r})$.

4.2.3 Toric degenerations of Y-Shaped quivers

There is a class of quiver for which I conjecture that the minors defined in the previous section form a SAGBI basis (the details of the proof are still work in progress). We call these Y shaped quivers, and they are characterised as follows. If $\{0, \ldots, \rho\}$ is a labelling of the vertices such that $n_{i j}=0$ if $i \geq j$, then vertex 1 can have at most 2 arrows out of it, and all other non-source vertices can have at most one arrow out. For any vertex i, there is at most one arrow a with $t(a)=i$ and $s(a) \neq 0$. We can assume that for all $j>1$, there is a path $1 \rightarrow j$, as otherwise the associated quiver flag variety is a product of two Y-shaped quiver flag varieties. The quiver in Example 4.2.2 is not a Y-shaped quiver because of the double arrow.

Example 4.2.3. The following is an example of a Y-shaped quiver:

By definition, there are at most 2 arrows out of vertex 1 in a Y-shaped quiver. If there are two, call them a_{1} and a_{2}, and define a partition $S_{1} \sqcup S_{2}=\{1, \ldots, \rho\}$ by $i \in S_{2}$ if $i=1$ or the path from $1 \rightarrow i$ contains a_{2}. Essentially, we just subdivide the two branches of the quiver.

Let Q be a Y-shaped quiver. Let $\left(A_{i}\right)_{i=1}^{\rho}$ be the ρ matrices with coordinate entries defined by the previous subsection for a Y-shaped quiver Q. For each i, there are $\left(s_{i}-r_{i}\right)\left(\tilde{s_{i}}\right)$ new variables appearing in A_{i} as the entries of $s_{i}-r_{i}$ rows. We use the partition $S_{1} \sqcup S_{2}$ to define an order on these coordinates: variables introduced in A_{i} take priority over variables introduced in A_{j} if $i \in S_{2}$ and $j \in S_{1}$.

More formally, denote the variables $x_{j, k}^{(i)}, 1 \leq j \leq s_{i}-r_{i}, 1 \leq k \leq \tilde{s}_{i}$. We now define an order on the $x_{j k}^{(i)}$ for all i. For a given i, we define

$$
x_{11}^{(i)}>x_{12}^{(i)}>\cdots>x_{\left(s_{i}-r_{i}\right) \tilde{s}_{i}}^{(i)} .
$$

Secondly, if $i_{1} \in S_{1}, i_{2} \in S_{2}$ then $x_{j k}^{\left(i_{1}\right)}<x_{l m}^{\left(i_{2}\right)}$. If $i_{1}, i_{2} \in S_{2}$, and $i_{2}>i_{1}$, then $x_{j k}^{\left(i_{1}\right)}<x_{j k}^{\left(i_{2}\right)}$. If $i_{1}, i_{2} \in S_{1}$, and $i_{2}>i_{1}$, then $x_{j k}^{\left(i_{1}\right)}>x_{j k}^{\left(i_{2}\right)}$.

Conjecture 4.2.4. The $k_{i} \times k_{i}$ minors of the A_{i} for all i form a SAGBI basis under the above defined order.

To prove this, it should be possible to simply follow [40], which proves the statement for flag varieties (which are an example of a Y shaped quiver).

4.3 LADDER DIAGRAMS FOR CERTAIN DEGENERATIONS

In [7], the authors Batyrev, Ciocan-Fontanine, Kim, and van Straten use ladder diagrams to give a concrete description of the toric variety to which the flag variety degenerates. In this section, we give a new description of the degenerate toric variety by considering the ladder diagram as a quiver. We then generalise this construction to the degenerations of the Y-shaped quiver described in the previous section. We then explain the importance of this description in finding mirrors to quiver flag zero loci.

For a general definition of a ladder diagram of a flag variety, see Definition 2.1.1 in [7]. It can also be described as follows: the ladder diagram of $\operatorname{Gr}(n, r)$ is an $n-r \times r$ grid of unit squares such that the bottom left corner is at $(0,0)$. Let O denote this vertex. For example, the ladder diagram of $\operatorname{Gr}(5,2)$ is

where O is marked. The ladder diagram of $\operatorname{Fl}\left(n, r_{1}, \ldots, r_{\rho}\right)$ is the union of the ladder diagrams of $\operatorname{Gr}\left(n, r_{i}\right)$ for all i : for example, the ladder diagram of $\operatorname{Fl}(5,3,2,1)$ is

The authors in [7] associate to the ladder diagram another graph, and then describe the polytope of the degeneration of the flag variety given above by paths in this graph. Instead, we associate to the ladder diagram a quiver.

The first step is to add more vertices to the ladder diagram. For $\operatorname{Gr}(n, r)$, add vertices at (i, j) for $1 \leq j<r, 1 \leq i<n-r$ and at $(n-r, r)$. So for $\operatorname{Gr}(5,2)$, the new
diagram is

For a flag variety, the new diagram is again the union of the diagrams for each $\operatorname{Gr}\left(n, r_{i}\right)$, with an extra vertex at $\left(n_{i-1}-r_{i-1}, r_{i}\right)$ for each $i>1$. So the ladder diagram for $\mathrm{Fl}(5,3,2,1)$ is

To make this a quiver, we consider paths between vertices where one is allowed to travel up and to the right only. We call such a path primitive if it doesn't pass through any vertices other than its source and target. We define the ladder quiver to be the quiver where the vertices are the vertices in the ladder diagram, and the number of arrows between two vertices is the number of primitive paths in the ladder diagram between them. This quiver is denoted $Q=L\left(n, r_{1}, \ldots, r_{\rho}\right)$. This defines a quiver flag variety $M(Q, \mathbf{1})$ which is a GIT quotient $V / /_{\theta} T$. We define the toric variety $X\left(n, r_{1}, \ldots, r_{\rho}\right)$ to be the GIT quotient $V / /_{\kappa} T$ where κ is the canonical stability condition.

For example, the quiver with dimension vector associated to $\operatorname{Gr}(5,2)$ is

Theorem 4.3.1. The degenerate toric variety described by [28] and in the previous section is $X\left(n, r_{1}, \ldots, r_{\rho}\right)$.

Proof. Sketch. In [7] they describe the rays of the fan of the Fano toric variety of [28]. It suffices to check that the cokernel of the ray map is precisely given by the transpose of the weight matrix of the toric variety described above, as the higher dimensional cones are determined by the fact that the toric variety is Fano.

We now define ladder quivers for Y-shaped quivers. First, suppose Q is a Y-shaped quiver such that there is only one arrow out of vertex 1 . An example of such a quiver is

Build the ladder diagram almost exactly as for the flag case: it is the union of the ladder diagrams of $\operatorname{Gr}\left(\tilde{s}_{i}, r_{i}\right)$ for $i=1, \ldots, \rho$; however, we truncate this diagram by insisting that the maximum height of the diagram between $x=0$ and $\tilde{s}_{i}-r_{i}$ is at most r_{i}. We add vertices as in the flag case: at interior points and at the intersection points $\left(\tilde{s}_{i-1}-r_{i-1}, r_{i}\right)$ for each $i>1$. The ladder diagram of the above example is then:

One notices that the corresponding toric variety has the correct dimension.
We can now describe the proposed ladder diagram of a general Y shaped quiver Q. Assume that there are exactly two arrows out of vertex 1 . Recall that we have partitioned the non-source vertices $\{1, \ldots, \rho\}=S_{1} \sqcup S_{2}$ according to which of the two branches of the quiver the vertex is on, and we assume $1 \in S_{2}$. Consider the subquiver of Q with vertices $S_{1} \cup\{0,1\}$: this is a Y-shaped quiver for which we know how to build a ladder diagram. Take this ladder diagram, and reflect it across the line $y=-x$, and then translate it so that what was the origin is at $\left(\tilde{s}_{i}-r_{i}, r_{i}\right)$. The ladder diagram of Q is the union of this ladder diagram with the ladder diagram of the second subquiver with vertices $S_{2} \cup\{0\}$.

Example 4.3.2. We draw the ladder diagram for

Set $S_{1}:=\{2\}, S_{2}:=\{1,3,4\}$. The reflected diagram of the quiver with vertices $\{0,1,2\}$
and the ladder diagram of the quiver with vertices $\{0,1,3,4\}$ are pictured below:

The ladder diagram for the entire quiver is

As in the flag case, we can define a toric variety using the ladder diagram of a Yshaped quiver, by interpreting the ladder diagram as a quiver (now without a unique source). I conjecture that this ladder diagram is indeed the toric degeneration of the quiver flag variety from the previous section. I have checked this in many examples. The details of the proof are still a work in progress, but, roughly, this should involve using certain globally generated line bundles (one for each $i \in Q_{0}$) to embed the associated toric variety of the ladder quiver into $\prod_{i=1}^{\rho} \mathbb{P}^{\left(\frac{\tilde{s}_{i}}{k_{i}}\right)-1}$, and then check that the image is precisely that of the SAGBI basis degeneration.

There is a natural identification between the sections of the L_{i} and initial terms of the monomials of the $i^{\text {th }}$ matrix from 4.2.2. We illustrate this for the quiver flag variety in Example 4.3.2. The matrices which give the minors "defining" the embedding of the quiver flag variety in $\prod_{i=1}^{\rho} \mathbb{P}^{\left(\bar{s}_{k_{i}}^{s_{i}}\right)-1}$ are

$$
\begin{gathered}
A_{1}=\left[\begin{array}{ccccc}
x_{11}^{(1)} & x_{12}^{(1)} & x_{13}^{(1)} & x_{14}^{(1)} & x_{15}^{(1)} \\
x_{21}^{(1)} & x_{22}^{(1)} & x_{23}^{(1)} & x_{24}^{(1)} & x_{25}^{(1)}
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccccc}
x_{11}^{(1)} & x_{12}^{(1)} & x_{13}^{(1)} & x_{14}^{(1)} & x_{15}^{(1)} \\
x_{21}^{(1)} & x_{22}^{(1)} & x_{23}^{(1)} & x_{24}^{(1)} & x_{25}^{(1)} \\
x_{11}^{(2)} & x_{12}^{(2)} & x_{13}^{(2)} & x_{14}^{(2)} & x_{15}^{(2)}
\end{array}\right], \\
A_{3}= \\
{\left[\begin{array}{ccccccc}
x_{11}^{(3)} & x_{12}^{(3)} & x_{13}^{(3)} & x_{14}^{(3)} & x_{15}^{(3)} & x_{16}^{(3)} & x_{17}^{(3)} \\
0 & 0 & x_{11}^{(1)} & x_{12}^{(1)} & x_{13}^{(1)} & x_{14}^{(1)} & x_{15}^{(1)} \\
0 & 0 & x_{21}^{(1)} & x_{22}^{(1)} & x_{23}^{(1)} & x_{24}^{(1)} & x_{25}^{(1)}
\end{array}\right],}
\end{gathered}
$$

$$
A_{4}=\left[\begin{array}{cccccccc}
x_{11}^{(4)} & x_{12}^{(4)} & x_{13}^{(4)} & x_{14}^{(4)} & x_{15}^{(4)} & x_{16}^{(4)} & x_{17}^{(4)} & x_{18}^{(4)} \\
x_{21}^{(4)} & x_{22}^{(4)} & x_{23}^{(4)} & x_{24}^{(4)} & x_{25}^{(4)} & x_{26}^{(4)} & x_{27}^{(4)} & x_{28}^{(4)} \\
x_{31}^{(4)} & x_{32}^{(4)} & x_{33}^{(4)} & x_{34}^{(4)} & x_{35}^{(4)} & x_{36}^{(4)} & x_{37}^{(4)} & x_{38}^{(4)} \\
x_{41}^{(4)} & x_{42}^{(4)} & x_{43}^{(4)} & x_{44}^{(4)} & x_{45}^{(4)} & x_{46}^{(4)} & x_{47}^{(4)} & x_{48}^{(4)} \\
0 & x_{11}^{(3)} & x_{12}^{(3)} & x_{13}^{(3)} & x_{14}^{(3)} & x_{15}^{(3)} & x_{16}^{(3)} & x_{17}^{(3)} \\
0 & 0 & 0 & x_{11}^{(1)} & x_{12}^{(1)} & x_{13}^{(1)} & x_{14}^{(1)} & x_{15}^{(1)} \\
0 & 0 & 0 & x_{21}^{(1)} & x_{22}^{(1)} & x_{23}^{(1)} & x_{24}^{(1)} & x_{25}^{(1)}
\end{array}\right]
$$

The identification is given by labelling the ladder diagram of the quiver as follows:

For example, sections of L_{3} correspond to paths from $(0,0)$ (the blue vertex) to $(3,4)$. For each such path, we identify it with the monomial which is the product of all the variables in the path. So, for example, the path marked in red below corresponds to $x_{13}^{(3)} x_{12}^{(1)} x_{23}^{(1)}$, which is the initial term of the minor of A_{3} given by the choice of columns 3, 4, 5.

To prove that this ladder diagram is the degeneration given by 4.2 .4 would require that this identification provides an isomorphism of between the cones defined by the monomials corresponding to the sections of L_{i} and the monomials of the initial terms of the minors of A_{i}.

4.4 Mirrors of quiver flag zero loci

The usefulness of ladder diagrams becomes clear when we start trying to find mirrors of quiver flag zero loci. Let $L(Q)$ be a ladder diagram for some Y-shaped quiver Q, and let X be the associated toric variety (to which, at least conjecturally, $M(Q, \mathbf{r})$ degenerates). The paths in $L(Q)$ between vertices are associated with Weil divisors in X, by first associating them to a monomial in the Cox ring of X. One might hope that a quiver flag zero locus in Q degenerates to a toric complete intersection in X to which we can apply the Przyjalkowski method.

We explain how to associate to a quiver flag zero locus in a Y-shaped quiver the weights and divisor data necessary for the Przyjalkowski method (not necessarily admitting a nef partition). For complete intersections in flag varieties, this was first noted in [7]. Given a flag variety $\mathrm{Fl}\left(n, r_{1}, \ldots, r_{\rho}\right)$ and Z a complete intersection quiver flag zero locus, Z degenerates to a complete intersection in $X\left(n, r_{1}, \ldots, r_{\rho}\right)$. The line bundle $\operatorname{det}\left(Q_{i}\right)$ on the flag variety corresponds to the rank one reflexive sheaf arising from the Weil divisor corresponding to the paths from $(0,0)$ to $\left(n_{i}-\right.$ r_{i}, r_{i}) on the ladder diagram. In [7], they prove that this path gives in fact a Cartier divisor, and we call the associated line bundle L_{i}. To deal with general zero loci, the ideal situation would be to find r_{i} line bundles (or at least rank one reflexive sheaves) on $X\left(n, r_{1}, \ldots, r_{\rho}\right)$ whose direct sum corresponds to Q_{i}. If they exist, their tensor product would equal L_{i}. There are multiple choices of r_{i} such rank one reflexive sheaves on $X\left(n, r_{1}, \ldots, r_{\rho}\right)$ whose tensor product corresponds to L_{i}. For example, consider the three paths in the ladder quiver of $\operatorname{Gr}(6,3)$:

In general, though, these are not Cartier divisors. In many examples, this works to find mirrors of quiver flag zero loci, by using these r Weil divisors to choose Weil divisors corresponding to Schur powers of Q. We illustrate the full method below in an example of a quiver flag zero locus for which a Laurent polynomial mirror previously wasn't known.

Example 4.4.1. Consider the quiver flag zero loci on $\operatorname{Gr}(8,6)$ with bundles

$$
\wedge^{5} Q \oplus \operatorname{det}(Q) \oplus \operatorname{det}(Q)
$$

The summand $\wedge^{5} Q$ is a rank 6 bundle. Suppose L_{1}, \ldots, L_{6} are the 6 rank one reflexive
sheaves on $X(8,6)$ corresponding to Q (there's only one choice here). By considering $\wedge^{5}\left(L_{1} \oplus \cdots \oplus L_{6}\right)$, it is clear that the six rank one reflexive sheaves corresponding to $\wedge^{5} Q$ on $X(8,6)$ are given by the following six paths on the ladder diagram

The ladder diagram determines a weight matrix for $X(8,6)$:

$$
\left[\begin{array}{cccccccccccccccccc}
1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

The weights for the rank one reflexive sheaves are given by

$$
\left[\begin{array}{cccccccc}
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

The ladder diagrams give a way of picking a nef partition for these bundles. One can formally follow the Przyjalkowski method (see [177) to produce a Laurent polynomial. This Laurent polynomial is not rigid maximally mutable, but it is also does not have the correct period sequence. There is a unique rigid maximally mutable Laurent polynomial on the Newton polytope of this polynomial. It has the correct classical
period, up to 10 terms. The Laurent polynomial is

$$
\begin{aligned}
& x y z w+x y z+x y w+2 x y+x y / w+x z w+x z \\
& +x w+2 x+x / w+x / z+x /(z w)+y z w+y z+y w \\
& +2 y+y / w+z w+z+w+2 / w+2 / z+2 /(z w)+1 / y \\
& +1 /(y w)+1 /(y z)+1 /(y z w)+1 / x+1 /(x w)+1 /(x z)+1 /(x z w)+1 /(x y) \\
& +1 /(x y w)+1 /(x y z)+1 /(x y z w) .
\end{aligned}
$$

We can generalise the above discussion to the ladder diagrams of Y-shaped quivers, because they are built out of the ladder diagrams of Grassmannian factors.

Example 4.4.2. Consider the quiver flag zero locus given by the quiver

with bundles $W_{1} \otimes W_{2}$. This Fano variety has PID 115 (see the tables in Appendix A). The paths on the ladder diagram which give the divisors suggested by the above method is

Again, to find a mirror with the correct period sequence, one must find a rigid maximally mutable Laurent polynomial supported on the resulting Newton polytope. This is

$$
x+y w+y+z+w+1 / x+1 /(x w)+1 /(x z)+z /(x y w)+1 /(x y)+1 /(x y w)+1 /(x y z)
$$

Example 4.4.3. Consider the quiver flag zero locus given by the quiver flag variety

and bundle $W_{1} \oplus W_{2}$. It corresponds to PID 20. The toric degeneration is given by the following ladder diagram:

The mirror produced is

$$
x+y+z+w+z / y+1 /(y w)+w / x+1 /(x z) .
$$

Example 4.4.4. Consider the quiver flag zero locus with PID 232 given by the quiver flag variety

and the quiver flag bundles $\operatorname{det}\left(W_{1}\right) \oplus W_{1} \otimes W_{3}$. The ladder diagram and paths given by the prescribed method are

The mirror is

$$
\begin{array}{r}
x+y+z+w+w / y+1 / y+1 / x+1 /(x w) \\
+1 /(x z)+1 /(x z w)+2 /(x y)+1 /(x y w)+1 /(x y z)+1 /(x y z w)+1 /\left(x^{2} z w\right) \\
+1 /\left(x^{2} y w\right)+2 /\left(x^{2} y z w\right)+1 /\left(x^{2} y z w^{2}\right)+1 /\left(x^{3} y z w^{2}\right) .
\end{array}
$$

In total, of the approximately forty quiver flag zero loci I have attempted to find mirrors for (from the tables in Appendix A), I have been successful in about thirty. There are two sources of failures. The first source is when there is no nef partition supporting the choice of divisors. The next example is an example of this; in this case (but not usually), one is able to find a degeneration of the complete intersection to a toric variety; we find the Laurent polynomial associated to this toric variety and after taking the rigid maximally mutable Laurent polynomial on its polytope, find a mirror.

Example 4.4.5 (PID 104). Consider the quiver flag variety obtained from the quiver flag variety with PID 104 in the tables by grafting:

The quiver flag zero locus is given by bundles $W_{1} \otimes W_{4} \oplus W_{2} \otimes W_{4}$. The toric degeneration is given by the product of the 3 toric varieties given by the three ladder diagrams below:

Notice that there is no nef partition which will give these bundles, because there is no choice of basis of divisors in the first ladder diagram such that all chosen divisors are in the positive span. We instead construct a toric degeneration, using similar ideas to that of [29]. Suppose the fan of the toric variety is in the lattice $N_{\mathbb{R}}$. I find $v_{1}, \ldots, v_{4} \in\left(N^{\vee}\right)_{\mathbb{R}}$ such that they define binomial sections of the four rank one reflexive sheaves; the associated toric subvariety has the following Laurent polynomial mirror, with matching period sequence.
$x+y+z+w+y /(x w)+1 / x+1 /(x w)+w /(x z)+1 /(x z)+1 /(x y)+w /(x y z)+1 /(x y z)$

In other examples, I am unable to find a mirror because the degeneration has too low Picard rank. Consider the quiver flag variety which appeared in one of the factors in the previous example:

with toric degeneration given by the ladder diagram

Notice that from the quiver flag variety, we would expect to have a class group of
rank at least 3 (generated by two Weil divisors coming from W_{2} and one Cartier divisor from W_{1}), but the toric degeneration (which is in this case smooth: it is $\left.\mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(1) \oplus \mathcal{O}(1))\right)$ has rank only 2 . In the previous example, we are still able to find a mirror, because the bundles only involve W_{2}. However, in the case of PID 15 , where the quiver flag variety is

and the bundles are $W_{1} \otimes W_{2}$, this method fails to produce a mirror. The ladder diagram is

Writing the degeneration of W_{2} to $L_{1} \oplus L_{2}$ and that of W_{1} and L_{3} we see that L_{1} and L_{2} are the same sheaf.

4.5 Degenerations beyond Y-shaped quivers

To find mirrors of quiver flag zero loci more generally, we need to find good degenerations of quiver flag varieties beyond Y shaped quivers. In the last section of this chapter and thesis, we give two examples of such degenerations. The first example is a SAGBI basis degeneration of the sections of the $\operatorname{det}\left(S_{i}^{*}\right)$ (see 4.2.2) which cannot be represented as a ladder diagram: instead it is represented by what one might call a bound ladder diagram. Bound quivers were used in [20] to produce certain subvarieties of toric quiver flag varieties. For the second example, no monomial order on the sections of the $\operatorname{det}\left(S_{i}^{*}\right)$ that I could find produced a good degeneration of the quiver flag variety. However, I produce a degeneration using the entire Cox ring.

4.5.1 A DEgEneration of a quiver flag variety with a double arrow

Consider the quiver flag variety M_{Q}

The coordinates on M_{Q} given by $\S 4.2 .2$ are the maximal minors of the matrices

$$
\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right],\left[\begin{array}{cccccccc}
x_{11} & x_{12} & x_{13} & x_{14} & 0 & 0 & 0 & 0 \\
x_{21} & x_{22} & x_{23} & x_{24} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x_{11} & x_{12} & x_{13} & x_{14} \\
0 & 0 & 0 & 0 & x_{21} & x_{22} & x_{23} & x_{24} \\
z_{11} & z_{12} & z_{13} & z_{14} & z_{15} & z_{16} & z_{17} & z_{18} \\
z_{21} & z_{22} & z_{23} & z_{24} & z_{25} & z_{26} & z_{27} & z_{28} \\
z_{31} & z_{32} & z_{33} & z_{34} & z_{35} & z_{36} & z_{37} & z_{38}
\end{array}\right] .
$$

These minors define M_{Q} as a subvariety of $\mathbb{P}^{5} \times \mathbb{P}^{6}$. Define a monomial ordering induced by

$$
z_{1 i_{1}}>x_{1 i_{2}}>z_{2 i_{3}}>x_{2 i_{4}}>z_{3 i_{5}}
$$

and the lex ordering within the rows. This defines a toric degeneration of M_{Q}; the associated Laurent polynomial has correct period sequence. One can also describe the degeneration as a subvariety of the ladder diagram

Notice that the ladder diagram is the ladder diagram for the quiver flag variety

M_{Q} is a subvariety of this quiver flag variety cut out by a section of $S_{1}^{*} \otimes W_{2}$.

To describe the subvariety of the ladder diagram, recall that each arrow in the corresponding ladder quiver determines a variable in the Cox ring of the toric variety. We label the vertices in the ladder diagram by their Cartesian coordinates, so that the source is at $(0,0)$. We draw the relevant arrows on the diagram below, and label
them in the text for further clarity.

Label three of the paths from $(0,0)$ to $(7,1)$ with variables x_{1}, x_{2}, x_{3} (these arrows are marked in yellow on the above diagram). Label the arrow from from $(0,1)$ to $(2,2)$ as y_{1} (in red), the arrow from $(1,1)$ to $(2,2)$ as y_{2} (in green), the arrow from $(0,1)$ to $(1,1)$ as y_{3} (in blue), the arrow from $(1,1)$ to $(2,1)$ as y_{4} (in orange), and the arrow from $(2,1)$ to $(2,2)$ as y_{5} (in violet). Then the ideal determining the toric variety is given by the binomial relations

$$
\left(x_{1} y_{2} y_{3}-y_{1} x_{2}, x_{1} y_{3} y_{4} y_{5}-y_{1} x_{3}, x_{2} y_{3} y_{4} y_{5}-x_{3} y_{2} y_{3}\right)
$$

In other words, this identifies the right most two boxes with the uppermost two boxes.

The quiver flag zero locus X given by M_{Q} and the bundle $W_{2}^{\oplus 3}$ has period sequence PID 29. Pulling back the divisors indicated by choosing three distinct paths from $(0,0)$ to $(7,1)$ in the ladder diagram result in the following candidate Laurent polynomial mirror with matching period sequence (up to ten terms) to X :

$$
x+y+z+w+w / z+1 /(y z)+z /(x w)+1 /(x w)+1 /(x y)+1 /(x y z) .
$$

4.5.2 A Cox ring degeneration

Consider the quiver flag variety M_{Q} given by the quiver

None of the monomial orders I tried on the coordinates given by $\S 4.2 .2$ produced a degeneration with a correct period sequence. Instead, one can use the entire Cox ring (or rather, what I conjecture to be the entire Cox ring). From Proposition 2.4.8,
we can see that the effective cone in \mathbb{R}^{4} of M_{Q} is contained in the cone generated by

$$
\begin{aligned}
& e_{i}: i \in\{1, \ldots, 4\},[-1,1,1,0],[-1,1,1,0],[-1,1,0,1], \\
& {[-1,2,0,0],[-1,0,2,0],[-1,0,0,2],}
\end{aligned}
$$

as this is the Weyl invariant part of the effective cone of the abelianisation of M_{Q}. In fact, the last three bundles have no global sections (one can also check directly using the GIT characterisations that they are not in the effective cone). All the others do have sections. Write coordinates on $\operatorname{Rep}(Q, \mathbf{r})$ as

$$
\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \tag{4.1}\\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right], \quad\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right], \quad\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right], \quad\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right] .
$$

For example, the global sections of $\operatorname{det}\left(W_{1}\right)^{*} \otimes W_{2} \otimes W_{3}$ (corresponding to weight $[-1,1,1,0])$ are generated by

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]\right)
$$

The global sections of W_{2} are given by the 1×1 minors of

$$
\left[\begin{array}{llll}
a_{1} x_{11}+a_{2} x_{21} & a_{1} x_{12}+a_{2} x_{22} & a_{1} x_{13}+a_{2} x_{23} & a_{1} x_{14}+a_{2} x_{24}
\end{array}\right] .
$$

I conjecture that the sections of all of these line bundles generate the Cox ring. If this is the case, by [30, Proposition 2.11], these sections define a map from M_{Q} to the toric variety Y given with weights

$$
\left[\begin{array}{ccccccccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

and stability condition in the positive orthant. These weights are given by the six sections of $\operatorname{det}\left(W_{1}\right)$, the single section of each of $\operatorname{det}\left(W_{1}\right)^{*} \otimes W_{2} \otimes W_{3}, \operatorname{det}\left(W_{1}\right)^{*} \otimes W_{2} \otimes$ W_{4}, and $\operatorname{det}\left(W_{1}\right)^{*} \otimes W_{3} \otimes W_{4}$, and of the four sections each of W_{2}, W_{3}, W_{4}. Choosing a monomial order of the variables given by their appearance in (4.1) produces a degeneration of M_{Q} in Y to the image of the monomials

$$
\begin{aligned}
& x_{11} x_{22}, x_{11} x_{23}, x_{11} x_{24}, x_{12} x_{23}, x_{12} x_{24}, x_{13} x_{24}, \\
& a_{1} b_{2}, a_{1} c_{2}, b_{1} c_{2}, a_{1} x_{1 i}, b_{1} x_{1 i}, c_{1} x_{1 i}, i \in\{1, \ldots, 4\} .
\end{aligned}
$$

Using Mathematica one can find the binomial ideal defining the subvariety of the degeneration. This subvariety is the Fano toric variety X with weights

$$
\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right] .
$$

Using these weights, one can follow the Przyjalkowski method to find a Laurent polynomial. This Laurent polynomial is not rigid maximally mutable. However, its Newton polytope supports a unique rigid maximally mutable Laurent polynomial: it has the same period sequence as M_{Q}, up to 10 terms. This is the only example I know where the Przyjalkowski method for a toric variety (not a complete intersection) fails to produce a maximally mutable Laurent polynomial.

The rank one reflexive sheaves corresponding to the weights

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

pullback to W_{2}, W_{3} and W_{4} on M_{Q} by construction. However, on X, W_{2} and W_{3} pullback to the same rank one reflexive sheaves. This is similar to the situation for PID 15 described above. As a result, this toric degeneration cannot be used to find a mirror for the quiver flag zero locus $W_{2} \oplus W_{3} \oplus W_{4}$ (PID 26), but only that of the quiver flag zero locus given by W_{4}.

Bibliography

[1] Code repository. bitbucket.org/fanosearch/magma-core, 2018.
[2] Code and data repository. bitbucket.org/fanosearch/db, 2018.
[3] M. Akhtar, T. Coates, S. Galkin, and A. M. Kasprzyk. Minkowski Polynomials and Mutations. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 08(094), dec 2012.
[4] M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. Topology, 23(1):1-28, 1984.
[5] M. Audin. An introduction to Frobenius manifolds, moduli spaces of stable maps, and quantum cohomology. 1997.
[6] V. V. Batyrev. Toric Degenerations of Fano Varieties and Constructing Mirror Manifolds. arXiv e-prints, pages alg-geom/9712034, Dec 1997, alggeom/9712034.
[7] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten. Mirror symmetry and toric degenerations of partial flag manifolds. Acta Mathematica, 184(1):1-39, 2000.
[8] K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45-88, 1997.
[9] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[10] I. Ciocan-Fontanine, B. Kim, and C. Sabbah. The abelian/nonabelian correspondence and Frobenius manifolds. Invent. Math., 171(2):301-343, 2008.
[11] T. Coates. The quantum Lefschetz principle for vector bundles as a map between Givental cones. arXiv:1405.2893 [math.AG], 2014.
[12] T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk. Mirror symmetry and Fano manifolds. In European Congress of Mathematics, pages 285-300. Eur. Math. Soc., Zürich, 2013.
[13] T. Coates, A. Corti, S. Galkin, and A. Kasprzyk. Quantum periods for 3dimensional Fano manifolds. Geom. Topol., 20(1):103-256, 2016.
[14] T. Coates, S. Galkin, A. Kasprzyk, and A. Strangeway. Quantum periods for certain four-dimensional Fano manifolds. Experimental Mathematics, 0(0):139, 2018.
[15] T. Coates and A. Givental. Quantum Riemann-Roch, Lefschetz and Serre. Ann. of Math. (2), 165(1):15-53, 2007.
[16] T. Coates, A. Kasprzyk, and T. Prince. Four-dimensional Fano toric complete intersections. Proc. A., 471(2175):20140704, 14, 2015.
[17] T. Coates, A. Kasprzyk, and T. Prince. Laurent Inversion. arXiv e-prints, page arXiv:1707.05842, Jul 2017, 1707.05842.
[18] A. Craw. Quiver flag varieties and multigraded linear series. Duke Math. J., 156(3):469-500, 2011.
[19] A. Craw, Y. Ito, and J. Karmazyn. Multigraded linear series and recollement. Mathematische Zeitschrift, 289(1):535-565, Jun 2018.
[20] A. Craw and G. G. Smith. Projective toric varieties as fine moduli spaces of quiver representations. American Journal of Mathematics, 130(6):1509-1534, 2008.
[21] I. V. Dolgachev and Y. Hu. Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math., (87):5-56, 1998. With an appendix by Nicolas Ressayre.
[22] W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry.
[23] S. Galkin and H. Iritani. Gamma conjecture via mirror symmetry. arXiv eprints, page arXiv:1508.00719, Aug 2015, 1508.00719.
[24] S. Galkin and A. Usnich. Mutations of potentials. 2010. .
[25] A. Givental. A mirror theorem for toric complete intersections. In Topological field theory, primitive forms and related topics (Kyoto, 1996), volume 160 of Progr. Math., pages 141-175. Birkhäuser Boston, Boston, MA, 1998.
[26] A. B. Givental. Homological geometry I. Projective hypersurfaces. Selecta Mathematica, 1(2):325-345, Sep 1995.
[27] A. B. Givental. Symplectic geometry of Frobenius structures. In Frobenius manifolds, Aspects Math., E36, pages 91-112. Friedr. Vieweg, Wiesbaden, 2004.
[28] N. Gonciulea and V. Lakshmibai. Degenerations of flag and Schubert varieties to toric varieties. Transformation Groups, 1(3):215-248, 1996.
[29] A. Harder and C. F. Doran. Toric Degenerations and the Laurent polynomials related to Givental's Landau-Ginzburg models. ArXiv e-prints, 2015, 1502.02079 .
[30] Y. Hu and S. Keel. Mori dream spaces and GIT. Michigan Math. J., 48(1):331348, 2000.
[31] H. Iritani. Quantum D-modules and equivariant Floer theory for free loop spaces. Mathematische Zeitschrift, 252(3):577-622, Mar 2006.
[32] V. A. Iskovskih. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat., 41(3):516562, 717, 1977.
[33] E. Kalashnikov. Four dimensional Fano quiver flag zero loci (with an appendix by T. Coates, E. Kalashnikov, and A. Kasprzyk). Proceedings of the Royal Society A. To appear.
[34] B. Kim, A. Kresch, and T. Pantev. Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee. J. Pure Appl. Algebra, 179(1-2):127-136, 2003.
[35] A. D. King. Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2), 45(180):515-530, 1994.
[36] M. Kontsevich. Enumeration of rational curves via torus actions. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 335368. Birkhäuser Boston, Boston, MA, 1995.
[37] J. Levitt. On embeddings of Mori dream spaces. Geom. Dedicata, 170:281-288, 2014.
[38] J. Li and G. Tian. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc., 11(1):119-174, 1998.
[39] S. Martin. Symplectic quotients by a nonabelian group and by its maximal torus. arXiv:math/0001002 [math.SG], 2000.
[40] E. Miller and B. Sturmfels. Combinatorial Commutative Algebra. Springer New York, New York, NY, 2005.
[41] S. Mori and S. Mukai. Classification of Fano 3 -folds with $B_{2} \geq 2$. Manuscripta Math., 36(2):147-162, 1981/82.
[42] S. Mori and S. Mukai. On Fano 3-folds with $B_{2} \geq 2$. In Algebraic varieties and analytic varieties (Tokyo, 1981), volume 1 of Adv. Stud. Pure Math., pages 101-129. North-Holland, Amsterdam, 1983.
[43] S. Mori and S. Mukai. Classification of Fano 3-folds with $B_{2} \geq 2$. I. In Algebraic and topological theories (Kinosaki, 1984), pages 496-545. Kinokuniya, Tokyo, 1986.
[44] S. Mori and S. Mukai. Erratum: "Classification of Fano 3-folds with $B_{2} \geq 2$ ". Manuscripta Math., 110(3):407, 2003.
[45] S. Mori and S. Mukai. Extremal rays and Fano 3-folds. In The Fano Conference, pages 37-50. Univ. Torino, Turin, 2004.
[46] R. Pandharipande. Rational curves on hypersurfaces (after A. Givental). Astérisque, (252):Exp. No. 848, 5, 307-340, 1998. Séminaire Bourbaki. Vol. 1997/98.
[47] D. M. Snow. On the ampleness of homogeneous vector bundles. Transactions of the American Mathematical Society, 294(2):585-594, 1986.
[48] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.4.0), 2018. http://www. sagemath.org.
[49] R. Webb. The Abelian-Nonabelian correspondence for I-functions. arXiv:1804.07786 [math.AG], 2018.
[50] L. Zhang. Dirac Delta Function of Matrix Argument. arXiv e-prints, page arXiv:1607.02871, Jul 2016, 1607.02871.

A

Regularized quantum periods for quiver flag zero loci

A.0.3 The TABLE OF REPRESENTATIVES

As described in Chapter 3, we divided the 4-dimensional quiver flag zero loci X that we found into 749 buckets, according to the first 15 terms of the Taylor expansion of the regularised quantum period of X. We refer to these Taylor coefficients as the period sequence. Table 1 below gives, for each of the 749 period sequence buckets, a representative quiver flag zero locus X as well as the degree and Euler number of X. (In some cases we do not know that all the quiver flag zero loci in a bucket are isomorphic, but we checked that they all have the same degree, Euler number, and Hilbert series.) The quiver flag zero locus X is represented by the adjacency matrix and dimension vector of its ambient quiver flag variety $Y=M(Q, \mathbf{r})$, together with the sequence of generalised partitions that determine a vector bundle $E \rightarrow Y$ such that X is the zero locus of a generic section of E. The generalised partitions are written as Young diagrams, with:

- \varnothing representing the empty Young diagram;
- a filled Young diagram, such as $\boldsymbol{\square}$, representing the dual to the vector bundle represented by the unfilled Young diagram \square.

Filled Young diagrams that occur always represent line bundles.

The entries in Table 1 give representatives of each period sequence bucket that are chosen so as to make the computation of geometric data (the period sequence etc.) straightforward*. Even though the Table is constructed by considering all four-dimensional Fano manifolds that occur as quiver flag zero loci in codimension up to four, in all four cases there is no tractable representative as a quiver flag zero locus of low codimension. In these cases the Table contains a representative as a quiver flag zero locus in higher codimension; the reader who prefers models in lower-dimensional ambient spaces should consult Table A.1.

Table A.1: Representatives for certain Period IDs in codimension at most four

A.0.4 The table of period sequences

Table 2 records the first 8 terms of the period sequence, $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{7}$, for each of the 749 period sequence buckets. It also records, where they exist, the names of known four-dimensional Fano manifolds which have the same first fifteen terms of the period sequence. Notation is as follows:

- \mathbb{P}^{n} denotes n-dimensional complex projective space;
- Q^{n} denotes a quadric hypersurface in \mathbb{P}^{n+1};
- FI_{k}^{4} is the k th four-dimensional Fano manifold of index 3 , as in [14, §5];
- V_{k}^{4} is the k th four-dimensional Fano manifold of index 2 and Picard rank 1, as in [14, §6.1];

[^4]- MW_{k}^{4} is the k th four-dimensional Fano manifold of index 2 and Picard rank at least 2 , as in $[14, \S 6.2]$;
- $\mathrm{B}_{\square} \mathrm{S}_{k}^{4}$ is the k th four-dimensional toric Fano manifold, as in $[14, \S 7]$;
- Str_{k} are the Strangeway fourfolds described in [14, §8];
- CKP_{k} is the k th four-dimensional toric complete intersection, as in [16];
- S_{k}^{2} denotes the del Pezzo surface of degree k;
- V_{k}^{3} denotes the three-dimensional Fano manifold of Picard rank 1, Fano index 1 , and degree k;
- B_{k}^{3} denotes the three-dimensional Fano manifold of Picard rank 1, Fano index 2 , and degree $8 k$;
- $\mathrm{MM}_{\rho-k}^{3}$ denotes the k th entry in the Mori-Mukai list of three-dimensional Fano manifolds of Picard rank ρ [41, 42, 43, 44, 45]. We use the ordering as in [13], which agrees with the original papers of Mori-Mukai except when $\rho=4$.

Remark A.0.1. It appears from Table 2 as if the period sequences with IDs 72 and 73 might coincide. This is not the case. The coefficients α_{8}, α_{9}, and α_{10} in these cases are:

Period ID	α_{8}	α_{9}	α_{10}
72	32830	212520	1190952
73	32830	227640	1190952

Remark A.0.2. 590 of the period sequences that we find coincide with period sequences for toric complete intersections, at least for the first 15 terms. 579 of these are realised by quiver flag zero loci that are also toric complete intersections. For the remaining 11 cases - period sequences with IDs 17, 48, 73, 144, 145, 158, 191, 204, 256, 280, and 282 - there is no model as a toric complete intersection that is also a quiver flag zero locus in codimension at most four. In four of these cases with IDs 17, 48, 144, and 256 - the toric complete intersection period sequence is realised by a smooth four-dimensional toric variety.

Table A.2: Certain 4-dimensional Fano manifolds with Fano index 1 that arise as quiver flag zero loci

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector				Generalized partitions	Degree	Euler Number
11	$\begin{array}{llll} 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1		1	1		405	12
12	$\begin{array}{llll} 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	1		1	1	$(\square, \square, \varnothing)$	384	13
13	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	1	1	1		$(\square, \varnothing),(\square, \varnothing)$	351	9
14	$\begin{array}{lll} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 5 & 0 \end{array}$	1	1	1		$(\square, \square),(\square, \square)$	486	9
15	$\begin{array}{lll} 0 & 5 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	1	1	2		(\square, \square)	433	9
16	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1	1	1	1	$(\square, \varnothing, \varnothing)$	401	13
17	$\begin{array}{llll} 0 & 3 & 5 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1	1	1	2	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\varnothing, \square, \square)$	406	13
18	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}$	1	1	1	11	$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	322	18
19	$\begin{array}{lll} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	1	1			$(\varnothing, \square),(\square, \varnothing)$	378	10

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
20	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} 0_{0}^{1}$	1112	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	358	13
21	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} 0_{1}^{1}$	1112	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	347	13
22	$\begin{array}{llll}0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0\end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	330	14
23	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	111	$(\square, ■),(\square, \square)$	297	13
24	$\begin{array}{ll} 0 & 5 \\ 0 & 0 \end{array}$	12		405	6
25	$\begin{array}{lll}0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	122	$(\square, \varnothing),(\square, \varnothing)$	325	10
26	0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0		$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	290	18
27	$\begin{array}{lll}0 & 7 \\ 0 & 0\end{array}$	1	(\square), (\square)	324	12
28	$\begin{array}{lll} 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	(\varnothing, \square),(■,■)	292	14

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
29	$\begin{array}{llll}0 & 5 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	112	($\square, \square),(\square, \square)$	273	9
30		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	261	17
31	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	(■, \square),(■, ■)	244	16
32	$\begin{array}{llll}0 & 5 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	114	(\square, \boxminus)	225	5
33	$\begin{array}{ll} 0 & 6 \\ 0 & 0 \end{array}$	1	(■)	243	27
34	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	(\square, \square)	211	29
35	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	1111		544	8
36	$\begin{array}{llll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	111	$(\square, ■),(\square, \square)$	512	8
37	$\begin{array}{llll} 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$			464	12
38	$\begin{array}{lllll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$		$(\square, \varnothing, \square),(\square, \square, \square)$	431	11

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
39	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	(\varnothing, \square)	480	8
40	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	(\square, \square)	416	10
41	$\begin{array}{llll} 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \varnothing, \square)$	400	12
42	$\begin{array}{llll} 0 & 1 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square)$	383	13
43	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	(\square, \varnothing)	350	12
44	$\begin{array}{llll} 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$		480	12
45	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square),(\square, \varnothing)$	432	9
46	$\begin{array}{llll} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \square),(\square, \varnothing, \square)$	496	12
47	$\begin{array}{llll} 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$		432	12

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
48	$\begin{array}{llll} 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & \\ \end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square)$	433	13
49	$\begin{array}{llll} 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$		432	12
50	$\begin{array}{lllll} 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$		432	16
51	$\begin{array}{llll} 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$		400	12
52	$\begin{array}{lllll} 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing, \varnothing)$	384	16
53	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \square, \square \square)$	378	12
54	$\begin{array}{llll} 0 & 1 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square)$	464	16
55	$\begin{array}{llll} 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square)$	416	12

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
56	$\begin{array}{llll} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square)$	384	13
57	$\begin{array}{lllll} 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \square)$	384	16
58	$\begin{array}{lllll} 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square)$	357	17
59	$\begin{array}{llll} 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\square, \square, \varnothing)$	336	14
60	$\begin{array}{lllll} 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square)$	357	16
61	$\begin{array}{llll} 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	336	13
62	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square),(\square, \varnothing)$	324	12
63	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	336	12

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
64	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \square, \square)$	303	13
65	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square),(\square, \square)$	270	9
66	$\begin{array}{llll} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \square),(\square, \varnothing, \varnothing)$	480	12
67	$\begin{array}{llll} 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$		432	12
68	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square),(\square, \square)$	432	8
69	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing)$	368	13
70	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	(\square, \square)	352	12
71	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$		448	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
72	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \square)$	389	16
73		$1 \begin{array}{lllll}1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \varnothing, \square, \varnothing),(\square, \varnothing, \varnothing, \square)$	369	17
74	$\begin{array}{llll} 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing)$	352	13
75	$\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	368	12
76	$\begin{array}{llll} 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1122	($\varnothing, \square, \square)$	337	13
77	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square)$	347	16
78	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$		$(■, \square, \varnothing, \varnothing),(■, \square, \varnothing, \square),(\square, \varnothing, \varnothing, \varnothing)$	331	17

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
79	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	335	15
80		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	305	13
81		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	368	12
82	$\begin{array}{lll} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	($\varnothing, \square, \square)$	352	12
83		$1{ }_{1} 111$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	336	14
84	0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 0	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, ■),(\square, \varnothing, \varnothing, \varnothing)$	352	16
85	$\begin{array}{lllll} 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	11111	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	346	12
86	$\begin{array}{lllll} 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square)$	310	17

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
87	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	299	15
88	$\begin{array}{lllll} 0 & 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	289	18
89	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	304	13
90	$\begin{array}{lllll} 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \varnothing, \varnothing, \varnothing)$	309	18
91	$\begin{array}{llll} 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	273	15
92	$\begin{array}{lllll} 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \square, \varnothing, \square)$	299	17
93	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square)$	282	14

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
94	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \varnothing, ■),(\square, \varnothing, \square)$	288	8
95	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1{ }_{1} 1111$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	282	18
96	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \varnothing, \square)$	266	16
97	$\begin{array}{llll} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \varnothing, ■),(\square, \square, \varnothing)$	249	17
98	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	111	(\square, \varnothing)	216	16
99	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \square),(\square, \varnothing, \square)$	480	16
100	$\begin{array}{llll}0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0\end{array}$	11111	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	384	13
101	$\begin{array}{lll}0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	122	$(\varnothing, \square),(\square, \varnothing)$	352	9
102	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \varnothing)$	320	10

Period ID	Adjacency matrix	Dimension vector					Generalized partitions	Degree	Euler Number
103	$\begin{array}{lllll} 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \end{array}$	1	1	1	1	1	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \varnothing, \square)$	362	17
104	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	1	1	1	1	2	$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \square)$	305	18
105	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	1	1	1	1		$(\varnothing, \varnothing, \square),(\square, \square, \square)$	352	16
106	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	1	1	1	1		$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	304	14
107	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$	1	1	1	1	1	$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \square)$	304	17
108	$\begin{array}{lllll} 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	1	1	1		1	$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	283	18
109	$\begin{array}{lll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$		1				$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus)$	272	8

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
110	$\begin{array}{lllll} 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\square, \square, ■)$	256	17
111	$\begin{array}{lll} 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square)$	320	0
112	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	(\varnothing, \square), (■, \square)	304	12
113	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	(■, \square), ($\square, \square)$	272	15
114			$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	282	16
115	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	112	($\square, \square \square$	272	10
116	$\begin{array}{lllll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	1122	$(\varnothing, \boxminus, \varnothing),(\varnothing, \boxminus, \varnothing),(\square, \varnothing, \varnothing)$	257	15
117		$1{ }_{1} 111$	$(\varnothing, \square, \square),(\square, \square, \varnothing)$	256	18
118	$\begin{array}{llll}0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0\end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	256	15

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
119	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \varnothing)$	260	16
120	$\begin{array}{llll} 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	229	19
121	$\begin{array}{llll} 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	230	20
122	$\begin{array}{llll} 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \varnothing)$	213	19
123	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square),(\square, \varnothing)$	196	16
124	$\begin{array}{lll} 0 & 5 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 2\end{array}$	$(\square, \varnothing),(\square, \square),(\square, \boxminus)$	240	13
125	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 2\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	211	15
126	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \quad 12$	$(\varnothing, \boxminus),(\square, \boxminus)$	224	13
127	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square \square)$	240	-12

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
128	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	(\square, \square)	224	20
129		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square)$	202	24
130	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	($\square, \square, \square)$	180	32
131	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	($\square, \square)$	163	31
132	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\square, \square),(\square, \varnothing),(\square, \varnothing),(\square, \varnothing)$	192	18
133	$\begin{array}{llll} 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$		464	12
134		11111		448	12
135	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & 2 \end{array}$		$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing)$	384	16
136	$\begin{array}{lll}0 & 5 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	112	$(\varnothing, \boxminus),(\square, \varnothing),(\square, \square)$	384	8

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
137	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	111	(\varnothing, \square)	352	10
138	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing)$	320	16
139	$\begin{array}{llll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	111	$(\square, \varnothing),(\square, \varnothing)$	320	12
140	$\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	111	$(\varnothing, \square),(\square, \square)$	432	12
141	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	400	12
142	$\begin{array}{llll}0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxminus)$	352	10
143	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$		$(\varnothing, \varnothing, \varnothing, \square),(\square, \square, \varnothing, \square \square)$	400	16
144	0 3 3 2 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	$1 \begin{array}{lllll}1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \varnothing, \varnothing, \square)$	369	17

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
145	$\begin{array}{llll} 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 2 & 2\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	353	14
146	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\square, \varnothing, \square, \square \square)$	368	16
147	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\varnothing, \square, \varnothing, \varnothing)$	367	15
148	$\begin{array}{lllll} 0 & 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing, \varnothing)$	351	15
149	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	352	13
150	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	352	16
151	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 3 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \square)$	331	17

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
152		$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	326	16
153	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} 0_{1}^{1}$	$11_{1} 11$	$(\square, \varnothing, \square)$	319	13
154		1112	$(■, \square, \square),(\varnothing, \varnothing, \boxminus),(\square, \varnothing, \varnothing)$	320	12
155	$\begin{array}{llllllll} 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 2 & 0 \end{array}$		$(\varnothing, \varnothing, \varnothing, \square, \square),(\varnothing, \varnothing, \varnothing, \square, \varnothing),(\square, \varnothing, \square, \varnothing, \square \mathbf{)}$	310	21
156	$\begin{array}{llll} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} 0$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \square, \varnothing)$	303	17
157	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	304	16
158	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	122	($\square, \square)$	274	16
159	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ & & & \\ \end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	288	15

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
160		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	256	12
161	$\begin{array}{ll} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \boldsymbol{m})$	416	16
162	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, ■)$	384	16
163	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$		$(\varnothing, \square, ■),(\square, \square, \boldsymbol{\square})$	378	15
164			$(\varnothing, \varnothing, \square),(\square, \square, \boldsymbol{m})$	368	12
165		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	336	12
166	$\begin{array}{llll} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{array}$	11811	$(\square, \varnothing, ■),(\square, \square, ■)$	335	13
167	$\begin{array}{llll}0 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 0\end{array}$	1111	(\square, \varnothing)	272	16

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
168	$\begin{array}{lllll} 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \varnothing, \square),(\square, \varnothing, \square, ■)$	352	16
169			$(\varnothing, \square, \varnothing, ■),(\square, \varnothing, \square, ■)$	335	16
170			$(\varnothing, \varnothing, \varnothing, \square),(\square, \square, \varnothing, \square \square)$	336	16
171			$(\varnothing, \varnothing, \square, \varnothing),(\square, \square, \varnothing, \square \square)$	320	17
172	$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	314	16
173	$\begin{array}{llll} 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1122	$(\varnothing, \boxminus, \varnothing),(\varnothing, \boxminus, \varnothing)$	298	13
174	0 0 0 1 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 3 2 0 0	$\begin{array}{lllll} 1 & 1 & 1 & 1 \end{array}$	$(\varnothing, \square, \varnothing, ■),(\square, \varnothing, \square, ■)$	309	19

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
175	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square)$	288	15
176	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	304	14
177	$\begin{array}{llllll} 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \square, \varnothing, \square)$	325	20
178	$\begin{array}{llll} 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \square, \varnothing)$	304	12
179	$\begin{array}{lllll} 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \varnothing, \varnothing)$	304	16
180	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square)$	304	17
181	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square \square)$	304	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
182		1112	($\varnothing, \square, \square),(\square, \square, \square)$	273	15
183			$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	293	16
184	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	($\square, \varnothing, \square)$	272	13
185	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 \end{array}$		$(\square, \varnothing, \varnothing, ■),(\square, \square, \varnothing, ■)$	277	17
186	$\begin{array}{lllll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	$1{ }_{1}^{1} 111$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	252	16
187	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	277	17
188	$\begin{array}{llll} 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\varnothing, \square, \square)$	272	12

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
189			$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, ■)$	262	19
190	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{1}^{1}$	1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\square, \varnothing, \varnothing)$	256	14
191		1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus)$	241	17
192	$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	256	18
193	$\begin{array}{lllll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \square, \square \square)$	256	14
194	$\begin{array}{lllll} 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\square, \square, \varnothing, ■)$	252	22
195	$\begin{array}{llll}0 & 3 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 0\end{array}$	112	$(\boldsymbol{m}, ~ 日),(\boldsymbol{m}, ~ \exists),(\varnothing, \square)$	288	10
196	$\begin{array}{llll}0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0\end{array}$	$1 \begin{array}{lllll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	304	12

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
197	$\begin{array}{llll} 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \varnothing, \square)$	255	19
198	$\begin{array}{lllll} 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\square, \varnothing, \square, \square)$	330	20
199	$\begin{array}{lllll} 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \square, \varnothing, \square)$	288	17
200	$\begin{array}{llllll} 0 & 0 & 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing, \varnothing, \varnothing)$	299	20
201	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 2\end{array}$	$(\varnothing, \square, \square, \square),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	278	16
202	$\begin{array}{llll} 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \boxminus, \varnothing),(\square, \varnothing, \varnothing)$	267	13
203	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\varnothing, \square, \square, \square)$	271	19

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
204	$\begin{array}{lllll} 0 & 0 & 2 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 2\end{array}$	$(\varnothing, \square, \varnothing, \boxminus),(\square, \varnothing, \square, \square)$	257	19
205	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing, \square),(\varnothing, \varnothing, \square, \square, \square),(\square, \square, \varnothing, \varnothing, \square)$	283	21
206	$\begin{array}{lllll} 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \square)$	277	18
207	$\begin{array}{lllll} 0 & 0 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \varnothing, \varnothing, \varnothing)$	262	18
208	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \varnothing, \square, ■),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	257	17
209	$\begin{array}{lllll} 0 & 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	257	17

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
210	0 0 1 2 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0	$1 \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	($\varnothing, \varnothing, \square, \square),(\square, \varnothing, \square, ■)$	256	18
211	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	241	15
212	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} 0_{1}^{1}$	1112	($\square, \varnothing, \square)$	235	15
213		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	256	18
214		1111	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	240	16
215	0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \square, ■)$	235	19
216	$\begin{array}{llll} 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \square, \varnothing)$	219	19
217	$\begin{array}{llll} 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	225	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
218	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 1 & 0 \end{array}$		$(\varnothing, \square, \varnothing, ■),(\square, \square, \varnothing, ■)$	229	21
219	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}$	113	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \varnothing)$	224	9
220			$(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	195	18
221	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \varnothing)$	288	16
222	$\begin{array}{llll}0 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	111	(\varnothing, \square), (■, \square)	240	16
223			$(\varnothing, \square, \varnothing),(\varnothing, \square, \boldsymbol{\square})$	256	16
224	$\begin{array}{llll} 0 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	1122	$(\varnothing, \square, \varnothing),(\varnothing, \boxminus, \varnothing),(\square, \varnothing, \square)$	251	14
225	$\begin{array}{llll} 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \varnothing)$	230	18

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
226	$\begin{array}{llll} 0 & 3 & 5 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	225	18
227	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 2\end{array}$	$(\varnothing, \square, \square, \varnothing),(\varnothing, \square, \square, \boxminus),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	236	19
228	$\begin{array}{llll} 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	220	18
229	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 2 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square \square)$	241	18
230	$\begin{array}{lll} 0 & 5 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & \\ \end{array}$	$(\varnothing, \boxminus),(\square, \square),(\square, \varnothing)$	240	8
231	$\begin{array}{llll} 0 & 3 & 5 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing),(\square, \varnothing, \boxminus)$	225	17
232	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \square)$	230	14
233	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	235	19

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
234	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \varnothing)$	215	21
235	$\begin{array}{llll} 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1122	$(\varnothing, \square, 日),(\square, \square, \varnothing)$	199	16
236	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1{ }_{1} 111$	$(\varnothing, \square, \varnothing),(\square, \square, \square)$	208	18
237			$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	200	24
238	$\begin{array}{lll}0 & 5 & 4 \\ 0 & 5 & \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	112	$(\varnothing, \boxplus),(\square, \varnothing),(\square, \square)$	192	0
239	$\begin{array}{llll}0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	266	20
240			$(\varnothing, \square, \square),(\square, \varnothing, \square)$	224	19
241	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 3 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \square, \boldsymbol{\square})$	235	20

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
242	$\begin{array}{llll} 0 & 1 & 5 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1113	$(\varnothing, \square, \boxminus),(\square, \varnothing, \boxminus)$	224	16
243		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \varnothing)$	203	20
244		1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \boxminus)$	203	17
245		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	208	16
246	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	111	($\square, \square)$	192	30
247	$\begin{array}{lll}0 & 0 & \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 7 & 0\end{array}$	111	$(\square, \square),(\square, \varnothing),(\square, \varnothing),(\square, \square \square)$	208	16
248		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	208	20
249	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 5 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \square),(\square, \varnothing),(\square, \varnothing)$	176	16
250	$\begin{array}{lllll}0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0\end{array}$	$1 \begin{array}{lllll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, ■),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	193	19

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
251		1111	$(\square, \square, \square)$	176	33
252	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 2 & 0 \end{array}$	11111	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	177	21
253	$\begin{array}{llll}0 & 5 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \square)$	177	17
254	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}$	111	$(\square, \varnothing),(\square, \square)$	160	30
255	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	111	$(\square, \varnothing),(\square, \square)$	144	23
256	$\begin{array}{lllll} 0 & 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \varnothing, \square),(\varnothing, \varnothing, \varnothing, \square)$	385	17
257	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing)$	384	12
258	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \varnothing)$	320	10
259	$\begin{array}{llll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	1111	$(\square, ■),(\square, \square)$	256	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
260		$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \boldsymbol{m})$	384	16
261			$(\varnothing, \varnothing, \square, \square),(\square, \varnothing, \varnothing, \varnothing)$	336	16
262			$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square \square)$	320	16
263	$\begin{array}{llll} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	304	18
264		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	288	13
265	$\begin{array}{llll} 0 & 3 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1122	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	273	14
266	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	250	19

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
267	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \square \square),(\square, \varnothing, \varnothing, \varnothing)$	336	20
268	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	320	12
269	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square \square, \square),(\varnothing, \varnothing, \square, \square, \varnothing),(\square, \square, \varnothing, \varnothing, \square)$	320	20
270	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing)$	304	16
271	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, ■),(\square, \varnothing, \varnothing, \varnothing)$	293	18
272	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square)$	288	16
273	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square)$	282	18

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector					Generalized partitions	Degree	Euler Number
274	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	1	1	1	1		$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	288	16
275	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	1	1	1	1		$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	272	14
276	$\begin{array}{llll} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1	1	1	1		$(\varnothing, \square, \varnothing)$	286	16
277	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	1		1		11	$(\varnothing, \varnothing, \varnothing, \varnothing, \square),(\varnothing, \varnothing, \square, ■, \square),(\square, \square, \varnothing, \varnothing, \square)$	278	21
278	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 2 & 0 \end{array}$	1	1	1		1	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \square, \square \square)$	272	17
279	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	1	1	1	1		$(\varnothing, \square, \varnothing),(\square, \square, \square \square)$	256	14

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
280	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	122	$(\varnothing, \boxminus),(\square, \varnothing)$	228	20
281			$(\varnothing, \square, \square, ■),(\square, \varnothing, \varnothing, \varnothing)$	256	18
282		1112	$(\varnothing, \square, \boxminus),(\square, \square, \varnothing),(\square, \square, \square)$	225	19
283	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$		$(\varnothing, \square, ■),(\square, \square, \square)$	224	19
284	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	324	18
285	$\begin{array}{llllll} 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing, \varnothing)$	293	21
286	$\begin{array}{lllll} 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \square, ■)$	288	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
294	$\begin{array}{llll} 0 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 2 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \boxminus, \varnothing),(\square, \square, \varnothing)$	241	14
295	$\begin{array}{llll} 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	244	13
296	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing)$	246	18
297	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing, \varnothing),(\square, \square, \square, \varnothing)$	246	17
298	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \square, \square)$	240	19
299	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	239	13

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
300	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square \square),(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square \square)$	236	22
301	$\begin{array}{llll} 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	226	18
302	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 2 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, ■),(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing),(\square, \varnothing, \square, \square \square)$	230	18
303	$\begin{array}{llll} 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \boldsymbol{\square}, \boxminus),(\varnothing, \boldsymbol{\square}, \boxminus),(\varnothing, \varnothing, \square)$	209	16
304	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square \square, \square \square),(\square, \varnothing, \square)$	256	8
305	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square \square),(\varnothing, \square, \varnothing, \varnothing)$	246	18
306	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square)$	245	19

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
307		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	238	22
308		11111	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	220	16
309	$\begin{array}{lllllll} 0 & 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\square, \square, \varnothing, \varnothing, \square)$	251	21
310			$(\varnothing, \varnothing, \square, \square),(\square, \square, \varnothing, ■)$	230	18
311			$(\varnothing, \varnothing, \square, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	250	22
312	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 5 & 0\end{array}$	111	(\varnothing, \square), ($\square, \square),(\square, \varnothing),(\square, \square \square)$	224	16
313	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	11111	$(\varnothing, \square, ■),(\varnothing, \square, \square)$	240	12

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
314	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \square)$	230	18
315	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	218	14
316	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square \square)$	208	20
317	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square)$	214	20
318	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 2 & 2\end{array}$	$(■, \square, \varnothing, \varnothing),(\varnothing, \varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \varnothing, \boxminus),(\square, \varnothing, \varnothing, \varnothing)$	209	15
319	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\square, \varnothing, \square, \square \square)$	209	20

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
320	$\begin{array}{ll} 0 & 3 \\ 0 & 5 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}^{0} 0$	1112	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square),(\varnothing, \square, \boxminus)$	193	20
321	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	1112	$(\square, \varnothing, \exists)$	202	18
322		1112	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \square, \square)$	198	9
323	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & 2 \end{array}$		$(\varnothing, \varnothing, \square, ■),(\varnothing, \square, \square, ■)$	202	22
324		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \square, \varnothing)$	178	20
325	$\begin{array}{lllll} 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing)$	186	20
326	$\begin{array}{llll} 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	1122	$(\boldsymbol{m}, \exists, \varnothing),(\boldsymbol{m}, \square, \varnothing),(\mathbf{\square}, \varnothing, \boxminus)$	209	17
327	$\begin{array}{lllll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square)$	204	15

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
328	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square)$	214	20
329	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	209	19
330	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\square, \varnothing, \varnothing),(\square, \square, \square \square)$	204	20
331	$\begin{array}{llll} 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	188	19
332	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \square \square)$	194	19
333	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\square, \square, \varnothing, \square)$	188	22
334	$\begin{array}{llll} 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	244	24

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
335		11111	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	208	22
336		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, ■),(\square, \varnothing, \varnothing),(\square, \square, \square)$	198	18
337		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	173	23
338			$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, \square)$	199	15
339			$(■, \square, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	199	13
340		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \square \square)$	214	24
341	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}^{1}$	1112	$(\varnothing, \square, \varnothing),(\square, \varnothing, \boxminus)$	178	19

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
342	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	1112	$(\varnothing, \varnothing, \boxminus),(\square, \square, \varnothing)$	188	16
343		1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \boxminus),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	183	17
344		1122	$(\boldsymbol{m}, ~,, \square),(\varnothing, \square, \varnothing)$	178	17
345			$(\varnothing, \square, \square),(\square, \square, ■)$	177	21
346		1122	($\varnothing, \square, \square)$	150	18
347			$(\varnothing, \square, \square),(\varnothing, \square, \varnothing)$	176	20
348		11811	$(\square, \square, \varnothing),(\square, \square, \varnothing)$	166	22
349	$\begin{array}{llll}0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}$		$(\varnothing, \square, \varnothing),(\square, \square, \varnothing)$	166	20

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
350	$\begin{array}{lll} 0 & 4 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	123	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus)$	177	18
351	$\begin{array}{lllll} 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \varnothing)$	187	24
352	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \square, \square \square)$	172	20
353	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square \square, \square \square),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	178	22
354	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square),(\square, \square)$	176	16
355	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square),(\square, \square \square)$	160	32
356	$\begin{array}{llll} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square)$	149	34
357	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	162	19

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
358	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	11111	$(\square, \varnothing, \square),(\square, \square, \square)$	151	25
359			$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	160	24
360		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \square, \varnothing)$	145	33
361	$\begin{array}{llll}0 & 4 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \boxminus)$	129	31
362	$\begin{array}{llll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	111	$(\square, \square),(\square, \varnothing)$	112	52
363	$\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	111	$(\varnothing, \square),(\square, \boldsymbol{\square})$	384	16
364	$\begin{array}{llll}0 & 3 & \\ 0 & 3 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0\end{array}$	112	$(\boldsymbol{m}, ~]),(\boldsymbol{m}, ~ \square),(\boldsymbol{\square}, ~ \square),(\square, \varnothing)$	320	8
365	$\begin{array}{lll}0 & 6 \\ 0 & 0\end{array}$	12	(\square), ($\mathrm{\square}),(\square),(\square)$	224	12
366	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$		$(\varnothing, \varnothing, \square),(\square, \square, \boldsymbol{m})$	336	20

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
367	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \square)$	304	16
368	$\begin{array}{llll} 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	282	20
369	$\begin{array}{lllll} 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	304	20
370	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \square, \varnothing, \square \square)$	294	25
371	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square, \square),(\varnothing, \varnothing, \square, \square, \square),(\varnothing, \square, \varnothing, \square, \square)$	288	20
372	$\begin{array}{llll} 0 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 2 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing),(\varnothing, \boxminus, \varnothing),(\square, \varnothing, \varnothing)$	272	12
373	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square \square),(\square, \varnothing, \varnothing)$	256	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
374	$\begin{array}{lll} 0 & 7 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$1 \quad 12$	$(\square, \square),(\square, \square)$	193	21
375	$\begin{array}{llll} 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square)$	208	20
376	$\begin{array}{llll} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \square),(\square, \square, \varnothing)$	186	33
377	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	288	24
378	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square \square),(\square, \varnothing, \square, \square)$	282	22
379	$\begin{array}{llllll} 0 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \varnothing, \square)$	272	20

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
380	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\varnothing, \square, \square, \square)$	256	22
381	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing)$	256	16
382	$\begin{array}{llllll} 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing, \square)$	246	21
383	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\square, \square, \square \square)$	240	16
384	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	224	13
385	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	122	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\boxminus, \varnothing),(\boxminus, \varnothing)$	193	15
386	$\begin{array}{llll} 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	252	20

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
387	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\varnothing, \square, \square, \square)$	256	20
388	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\square, \varnothing, \varnothing)$	240	12
389	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square)$	192	20
390	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square)$	240	16
391	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square, \square),(\varnothing, \square, \varnothing, \square \square \square),(\square, \varnothing, \varnothing, \square, \varnothing)$	230	22
392	$\begin{array}{lllll} 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \square)$	219	20
393	$\begin{array}{lllll} 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ & & & & \end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	220	22

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
394	$\begin{array}{lllll} 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \square, \square)$	214	19
395	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square \square)$	208	14
396	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square),(\square, \varnothing, \varnothing, \varnothing),(\square, \varnothing, \square, \square \square)$	204	18
397	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \square, \square)$	192	18
398	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 2\end{array}$	$(\varnothing, \boxminus),(\varnothing, \square)$	164	20
399	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \square \square)$	230	22

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
400	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & x_{3} & 1 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\square, \square, \square, \square \square \square)$	224	12
401			$(\varnothing, \varnothing, \varnothing, \square),(\varnothing, \square, \varnothing, \varnothing)$	224	22
402	$\begin{array}{ll} 0 & 0 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{array} 0$	11111	$(\varnothing, \varnothing, \square),(\square, \square, \varnothing)$	204	20
403		$1 \begin{array}{lllll}1 & 1 & 1\end{array}$	$(■, \varnothing, \square, \varnothing),(\varnothing, \varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, ■, \boxminus)$	204	18
404	$\begin{array}{ll} 0 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}^{0} 0$	1122	$(\boldsymbol{m}, \varnothing, \boxminus),(\boldsymbol{m}, ~ \exists, \varnothing),(\mathbf{m}, \boxminus, \varnothing)$	193	17
405	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$		$(\varnothing, \varnothing, \square),(\square, \square, \square)$	192	22
406	$\begin{array}{lllll} 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	1122	$(\boldsymbol{m}, ~(),, \varnothing),(\boldsymbol{m}, ~(, ~ \varnothing),(\varnothing, \square, \varnothing)$	183	16
407	$\begin{array}{lll} 0 & 6 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}$	$1{ }^{1} 2$	(■, \square), (■, ${ }^{\text {, }}$)	161	31

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
408	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \square, \square),(\square, \square, \varnothing, \varnothing, \square)$	209	23
409	$\begin{array}{llll} 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \square)$	182	22
410	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \varnothing)$	197	24
411	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	203	19
412	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \square, \square \square)$	188	21
413	$\begin{array}{llll} 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \square \square, \boxminus),(\varnothing, \varnothing, \square),(\square, \square \square, \varnothing)$	188	14
414	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 3 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square),(\square, \varnothing, \varnothing, \varnothing)$	188	20

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
415		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\varnothing, \square, \boldsymbol{\square}),(\square, \varnothing, \varnothing)$	184	24
416			$(\varnothing, \square, \square, \square),(\square, \varnothing, \varnothing, \varnothing)$	182	24
417	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \varnothing),(\square, \varnothing, \square, ■)$	182	22
418	$\begin{array}{llll}0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0\end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	176	20
419		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \varnothing, \square),(\square, \square, \varnothing)$	162	21
420	$\begin{array}{lllll} 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	11111	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	161	22
421	$\begin{array}{lllll} 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1112	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing)$	183	15
422	$\begin{array}{llll}0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$	1112	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square),(\square, \varnothing, \boxminus)$	172	18

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
423	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} 0_{0}^{0} 0$	1112	$(■, \square, \square),(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\square, \varnothing, \varnothing)$	167	19
424	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	1112	$(\varnothing, \varnothing, \boxminus),(\varnothing, \varnothing, \boxminus),(\square, \square, \varnothing),(\square, ■, \boxminus)$	161	20
425	$\begin{array}{lll} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	111	(\varnothing, \square), (■,■)	160	30
426	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	123	$(\square, \varnothing),(\square, \boxminus)$	147	19
427			$(\varnothing, \varnothing, \square),(\varnothing, \square, \boldsymbol{m})$	192	4
428		1112	$(■, \square, \square),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	163	17
429	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$		$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	167	24
430	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & \\ & & \end{array}$	$(■, \square, \varnothing),(\square, \square, \boxminus),(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \varnothing)$	162	18

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
431	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}$	122	$(\varnothing, \boxminus),(\varnothing, \square)$	148	20
432			$(\varnothing, \varnothing, \square),(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	156	20
433	$\begin{array}{lllll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \square, \square)$	141	33
434		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	161	24
435		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	151	22
436	$\begin{array}{llll} 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	151	25
437	$\begin{array}{lllll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square \square),(\square, \varnothing, \square)$	148	22
438	$\begin{array}{lllll} 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array}$	1112	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	131	25

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
439	$\begin{array}{lll} 0 & 5 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1{ }^{1} 4$	$(\varnothing, \boxminus),(\varnothing, \theta),(\varnothing, \exists),(\varnothing, \boxminus),(\square, \square)$	141	19
440	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	130	26
441	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	$1 \begin{array}{lll}1\end{array}$	$(\square, \square),(\square, \square)$	129	41
442	$\begin{array}{lll} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square),(\varnothing, \square)$	256	0
443	$\begin{array}{ll} 0 & 5 \\ 0 & 0 \end{array}$	12	(\square)	192	16
444	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square \square)$	288	24
445	$\begin{array}{llll} 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	240	8
446	$\begin{array}{llll} 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	218	20
447	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \square \square)$	252	30

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
448	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 1 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \square \square),(\varnothing, \square, \varnothing, \square \square)$	240	20
449	$\begin{array}{llll} 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square),(\square, \varnothing, \square),(\square, \square, \square)$	188	8
450	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	224	12
451	$\begin{array}{llll} 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	180	36
452	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 2 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \square \square),(\varnothing, \square, \square, \square \square)$	224	16
453	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	208	4
454	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 3 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \square, \square \square),(\square, \square, \varnothing, \square \square)$	204	22

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
455		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	176	24
456		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	270	21
457		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \varnothing, \boldsymbol{\square})$	208	24
458		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \square)$	206	13
459	$\begin{array}{llllll} 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\square, \square, \varnothing, \square \square)$	202	28
460	$\begin{array}{lllll} 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	1122	$(\boldsymbol{m}, ~ \exists, \varnothing),(\boldsymbol{m}, \boxminus, \varnothing),(\boldsymbol{m}, \boxminus, \varnothing),(\square, \varnothing, \varnothing)$	208	12
461	$\begin{array}{llllll} 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \varnothing, \square \square \square),(\varnothing, \varnothing, \square, \square, \square),(\square, \square, \varnothing, \square, \varnothing)$	198	24

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
462	$\begin{array}{lllll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, \varnothing),(\square, \square, \varnothing, \boldsymbol{\square})$	188	19
463	$\begin{array}{lllll} 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \square)$	172	20
464	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	123	$(\varnothing, \boxminus),(\varnothing, \nabla),(\square, \varnothing),(\square, \varnothing)$	162	14
465	$\begin{array}{llll} 0 & 0 & 0 & 2 \\ 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} 0$		$(\square, \square, \varnothing, ■),(\square, \varnothing, \varnothing, \boldsymbol{\square})$	188	24
466	$\begin{array}{llll} 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \end{array}$	$11_{1} 11$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	185	17
467		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \square, \boldsymbol{\Pi})$	172	22
468	$\begin{array}{lllll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{array}$	11111	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \Pi \square)$	182	22
469	$\begin{array}{llll}0 & 2 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}$	$\begin{array}{lllll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	172	24

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
470	0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 2 3 1 0		$(\varnothing, \varnothing, \square, \boldsymbol{\square}),(\varnothing, \square, \varnothing, \varnothing)$	182	20
471			$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \varnothing, \varnothing)$	172	22
472	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	1112	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	162	18
473	$\begin{array}{llll}0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	122	(\square, \square)	146	20
474	$\begin{array}{llll}0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	122	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \boxminus)$	165	6
475	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & 4 \end{array}$		$(\varnothing, \varnothing, \square, \square),(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square),(\square, \varnothing, \square, \square)$	162	22
476	$\begin{array}{llll} 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$		$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	156	20
477	0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 1 0 0		$(\square, \square, \varnothing, ■),(\square, \square, \varnothing, ■)$	167	22

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
478		1123		162	16
479		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \varnothing, \square),(\square, \varnothing, \square)$	146	24
480		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \square, \boldsymbol{\square})$	146	22
481	$\begin{array}{llll} 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \varnothing)$	150	32
482	$\begin{array}{lllll} 0 & 0 & 0 & 0 & y^{3} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \square, \boxminus),(\square, \square, \Pi \square, \square)$	162	15
483	$\begin{array}{lll}0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	122	$(\varnothing, \boxminus),(\square, \varnothing),(\boxminus, \varnothing),(\square, \varnothing)$	146	16
484		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\varnothing, \square, \square \square),(\square, \varnothing, \varnothing)$	146	20
485	$\begin{array}{llll} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	144	34

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
486	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	140	36
487	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0$	$1{ }_{1} 111$	$(\square, \square, \varnothing)$	133	35
488	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	142	20
489			$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \square, \boldsymbol{\square})$	136	22
490	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \square, \square)$	130	26
491	$\begin{array}{ll} 0 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0$	11111	$(\varnothing, \square, \square),(\square, \square, \varnothing)$	130	34
492	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} 0$		$(\varnothing, \square, \varnothing),(\square, \square, \square)$	125	34
493	$\begin{array}{llll} 0 & 2 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	140	24

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
494	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \varnothing)$	128	40
495	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square),(\square \square, \varnothing)$	98	52
496	$\begin{array}{ll} 0 & 5 \\ 0 & 0 \end{array}$	12	$(\square),(\square)$	160	28
497	$\begin{array}{lllll} 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \varnothing, \square),(\varnothing, \square, \varnothing, \square \square)$	216	36
498	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	224	16
499	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \square)$	240	28
500	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \varnothing),(\square, \varnothing, \square, \square)$	208	16
501	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\square, \varnothing, \varnothing),(\square, \square, \square \square \square)$	192	12

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
510	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \square, \varnothing, \square \square)$	176	20
511	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	176	4
512	$\begin{array}{llll} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 4 \\ 0 & 1 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, ■ \square, \boxminus),(\varnothing, \square, \boxminus),(\square, \square, \varnothing),(\square \square, \square \square, \varnothing)$	152	16
513	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\square, \square, \square \square),(\square, \square, \square \square)$	152	22
514	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square)$	156	24
515	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \varnothing)$	144	24
516	$\begin{array}{lllll} 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}$	$1 \begin{array}{llllll}1 & 1 & 1 & 2 & 2\end{array}$	$(\varnothing, \boldsymbol{\square}, \boxminus, \varnothing),(\varnothing, \square \square, \exists, \varnothing),(\varnothing, \square, \boxminus, \varnothing),(\square, \square, \varnothing, \varnothing)$	141	20
517	$\begin{array}{lll}0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	$1 \begin{array}{lll}1 & 1 & 2\end{array}$	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \square)$	131	18

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
518	$\begin{array}{lllll} 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	11111	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	134	38
519	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 4 \\ 0 & 1 & 0 & 0 \end{array}$	11212	$(\varnothing, \boldsymbol{\square}, ~ \exists),(\square, \boldsymbol{\square} \boldsymbol{\square}, \exists),(\square, \square, \varnothing),(\square, \varnothing, \varnothing)$	141	21
520	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 3 & 2 \end{array}$		$(\varnothing, \square, \square, \boldsymbol{\square}),(\varnothing, \square, \square, ■)$	146	25
521	$\begin{array}{llll} 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1112	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\varnothing, \square, \nabla),(\square, \varnothing, В)$	136	22
522		11111	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \square, \boldsymbol{\square})$	136	20
523		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	131	22
524		1112	$(\varnothing, \varnothing, \boxplus),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \square, \varnothing)$	136	8
525	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	124	27

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
526	$\begin{array}{lllll} 0 & 4 & 4 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1112	$(\varnothing, \square, \varnothing),(\square, \varnothing, \boxminus),(\square, \square, \square)$	116	25
527	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus)$	114	23
528	$\begin{array}{lll}0 & 0 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}$	111	$(\square, ■),(\square, \square)$	112	68
529	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	112	$(\varnothing, \square),(\square, \varnothing)$	110	23
530	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}$	111	(\varnothing, \square), (■,■)	192	-12
531		$1{ }_{1} 111$	$(\varnothing, \varnothing, \square),(\square, \square, \square \square \square)$	240	28
532	0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 3 0 0 0	$1 \begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \boldsymbol{\square}),(\square, \varnothing, \varnothing, \square)$	210	35
533	$\begin{array}{lllll} 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	11111	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing)$	180	40
534	$\begin{array}{lllll} 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{array}$	11811	$(\varnothing, \varnothing, \square \square),(\square, \square, \square)$	141	-3

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
535		11111	$(\varnothing, \square, \square),(\square, \varnothing, ■)$	176	-4
536		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	154	30
537		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \square \square)$	192	16
538		$\begin{array}{llllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square, \square),(\square, \varnothing, \square, \square)$	192	16
539	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & y_{3} & 1 & 0 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \varnothing, ■)$	162	19
540	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{array} 0$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \varnothing)$	156	24
541			$(\varnothing, \square, \square, ■),(\varnothing, \square, \varnothing, \boldsymbol{\square})$	156	28

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
542	$\begin{array}{llll} 0 & 0 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$		$(\varnothing, \varnothing, \varnothing, \square),(\square, \varnothing, \varnothing, \varnothing)$	146	24
543	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}^{0}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square)$	125	29
544			$(\varnothing, \square, \square),(\varnothing, \square, \varnothing)$	134	34
545		$1{ }_{1} 1111$	$(\varnothing, \varnothing, \square),(\square, \square, \Pi \square)$	160	24
546	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 2 & 0 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \square)$	155	24
547	$\begin{array}{llll}0 & 3 & 4 \\ 0 & & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	112	($\square, \square),(\square, \square)$	116	21
548	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 2 & 2 \end{array}$		$(\varnothing, \varnothing, \square, \varnothing),(\varnothing, \square, \square, \square \square \square)$	146	23
549	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1{ }^{1} 2$	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \varnothing)$	126	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
550	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square \square)$	130	23
551	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \square, \varnothing)$	126	27
552	$\begin{array}{lll} 0 & 5 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	11	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \square),(\square, \square)$	116	19
553	$\begin{array}{llll} 0 & 2 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing)$	120	26
554	$\begin{array}{lll} 0 & 4 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & \\ \end{array}$	(\square, \square)	90	18
555	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 2\end{array}$	$(\varnothing, \varnothing, \boxminus),(\varnothing, \square, \boxminus)$	120	32
556	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	119	34
557	$\begin{array}{llll} 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \square)$	113	45

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
558	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	122	$(\varnothing, \boxminus),(\boxplus, \varnothing)$	114	32
559	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \boxminus)$	110	30
560	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing),(\square, \square, ■)$	110	34
561		$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \varnothing)$	110	34
562	$\begin{array}{llll}0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	112	(\varnothing, \square)	99	33
563	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	113	40
564	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 3 \end{array} 0_{0}^{0}$	11111	$(\square, \varnothing, \square),(\square, \square, \square)$	103	63
565	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	11111	$(\varnothing, \square, ■),(\square, \square, \varnothing)$	98	55
566	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	112	$(\varnothing, \square),(\varnothing, \square),(\square, \varnothing)$	94	36

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
567	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	(\square, \square)	81	101
568	$\begin{array}{lll}0 & 8 \\ 0 & 0\end{array}$	11	(\square), (\square), (\square)	128	48
569	$\begin{array}{lll} 0 & 1 & 7 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square),(\square, \square)$	124	36
570			$(\varnothing, \varnothing, \square, \boldsymbol{\square}),(\varnothing, \square, \varnothing, ■)$	180	42
571	$\begin{array}{lll} 0 & 2 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \square),(\square, \square)$	114	42
572			$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \square)$	176	12
573	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{array}$	11111	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	160	0
574	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} 0_{0} 0$	$1 \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square, \boldsymbol{\square}),(\varnothing, \square, \varnothing, \square)$	146	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
575		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \mathbf{\square}),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	160	4
576		$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	136	24
577	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} 0$		$(\varnothing, \square, \varnothing, \varnothing),(\varnothing, \square, \square, \square \square \square)$	140	26
578	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\square, \square, \square \square \square)$	132	22
579	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	112	$(\square, \varnothing),(\square, \varnothing),(\square, \boxminus)$	101	31
580	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square \square)$	144	-8
581		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\square, \square, \boldsymbol{\square}),(\square, \square, \square)$	120	36
582	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	113	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \exists),(\square, \varnothing)$	116	16

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector				Generalized partitions	Degree	Euler Number
583	$\begin{array}{lll} 0 & 4 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	1	2	2		$(\square, \boxminus),(\square, \square)$	106	21
584	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	1	1	1	1	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	115	27
585	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	1	1	1	1	$(\varnothing, \square, \square),(\varnothing, \square, \square),(\square, \varnothing, \varnothing),(\square, \varnothing, \varnothing)$	116	22
586	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	1	1	1		$(\square, \square),(\square, \square),(\square, \square)$	99	51
587	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	1	1	1	1	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \square, \square \square)$	120	24
588	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 \end{array}$	1	1	1	1	$(\varnothing, \square, \square),(\varnothing, \square, \square),(\square, \varnothing, \varnothing),(\square, \square, \square \square)$	110	26
589	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	1	2	2		$(\square, \boxminus),(\square, \boxminus)$	85	28
590	$\begin{array}{lll} 0 & 2 & 6 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	1	1	1		$(\varnothing, \square),(\varnothing, \square),(\square, \varnothing)$	120	24
591	$\begin{array}{llll} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{array}$	1	1	1	2	$(\varnothing, \Pi \square, \boxminus),(\varnothing, \Pi \square, \boxminus),(\varnothing, \Pi \square, \boxminus),(\varnothing, \Pi, \boxminus)$	160	8

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
592	$\begin{array}{llll} 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square)$	134	36
593	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}^{0}$	1112	$(\varnothing, \boldsymbol{m}, \boxminus),(\varnothing, \boldsymbol{m}, ~ \exists),(\varnothing, \boldsymbol{m}, ~ \exists),(\square, \boldsymbol{m}, ~ \exists)$	130	20
594	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \end{array}$		$(\varnothing, \square, \square, \square),(\square, \varnothing, \square, \square)$	125	28
595	$\begin{array}{llll} 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{array}$	$1 \begin{array}{llllll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	112	56
596	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \square),(\square, \varnothing)$	104	40
597	$\begin{array}{lll}0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}$	112	$(\square, \square),(\square, \square)$	100	32
598	$\begin{array}{lllll} 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	1111	$(\varnothing, \varnothing, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	110	26
599	$\begin{array}{llll}0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0\end{array}$		$(\varnothing, \square, \square),(\square, \varnothing, \square)$	104	37

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
600	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	112	$(\varnothing, \square),(\square, \square),(\square, \varnothing)$	100	24
601			$(\varnothing, \square, ■),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \square, \square)$	100	36
602	$\begin{array}{llll} 0 & 0 & 3 & 3 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \varnothing)$	99	40
603	$\begin{array}{llll}0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	122	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus),(\varnothing, \boxminus)$	100	22
604	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	113	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \varnothing),(\square, \boxminus)$	95	31
605	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\square, \square, ■),(\square, \square, ■)$	90	45
606	$\begin{array}{lll} 0 & 4 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}$	111	$(\varnothing, \square),(\square, \square),(\square, \square)$	84	52
607	$\begin{array}{lllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$		$(\varnothing, \square, \varnothing, \square),(\square, \varnothing, \square, \square)$	150	49
608	$\begin{array}{llll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}$	$1{ }^{1} 11$	$(\varnothing, \square),(\varnothing, \square)$	216	24

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
609	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$1 \quad 11$	$(\varnothing, \square),(\varnothing, \square)$	132	12
610	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\varnothing, \square, \square \square),(\square, \square, \square)$	120	40
611	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \square \square),(\square, \varnothing, \square)$	116	20
612	$\begin{array}{lll} 0 & 6 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & \\ \end{array}$	$(\square, \varnothing),(\square \square \square)$	113	-11
613	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square \square, \square, \square \square \square)$	102	21
614	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 4\end{array}$	(\square, \square)	86	34
615	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\square, \square, \square)$	100	34
616	$\begin{array}{lll} 0 & 5 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & \\ \end{array}$	$(\varnothing, \square),(\square, \square),(\square, \varnothing)$	96	8
617	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1 & 2\end{array}$	$(\varnothing, \square),(\square, \square)$	90	25

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
618	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} 0$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square)$	192	32
619	$\begin{array}{lll} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 7 & 0 \end{array}$	111	$(\square, \square),(\square, \varnothing),(\square, \square \square),(\square, \Pi \square)$	128	4
620	$\begin{array}{lllll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	144	4
621	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \square)$	112	24
622	$\begin{array}{llllll} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \end{array}$		$(\varnothing, \square, \square, \varnothing),(\square, \varnothing, \varnothing, \varnothing)$	114	31
623	$\begin{array}{llll} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{array}$	$11_{1} 12$	$(\varnothing, \boldsymbol{m}, ~ \exists),(\varnothing, \boldsymbol{m}, ~ \exists),(\varnothing, \boldsymbol{\square}, \square),(\square, \boldsymbol{m m}, ~ \exists)$	105	25
624	$\begin{array}{llll}0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0\end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	95	29
625	$\begin{array}{lll} 0 & 5 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	112	($\square, \square),(\square, \square),(\square, \square)$	85	42
626	$\begin{array}{lll}0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	112	$(\varnothing, \square),(\square, \square),(\square, \varnothing)$	90	32

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
627	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0} 0$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square \Pi)$	83	72
628	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	113	$(\square, \square),(\square, \varnothing)$	80	36
629	$\begin{array}{llll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	122	$(\varnothing, \boxminus),(\square, \square),(\square, \square)$	80	35
630	$\begin{array}{ll} 0 & 7 \\ 0 & 0 \end{array}$	11	(■),(■)	96	90
631	$\begin{array}{lll} 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	($\varnothing, \square \square),(\square, \square)$	93	51
632	$\begin{array}{lll} 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	(\varnothing, \square),(■,Ш)	92	78
633	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 6 & 6 \end{array}$	1111	$(\varnothing, \square),(\square, \square),(\square, \square \Pi),(\square, \boldsymbol{\square})$	192	32
634		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square),(\varnothing, \square, ■),(\square, \square, \boldsymbol{\square})$	168	40
635	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\square, \square),(\square, \square)$	83	77
636	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square)$	128	-8

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
637		1112	$(\varnothing, \boldsymbol{m}, \boxminus),(\varnothing, \boldsymbol{m}, ~ \exists),(\varnothing, \boldsymbol{m m}, \square),(\square, \boldsymbol{m m}, \square)$	100	32
638	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \square, \square)$	104	40
639			$(\varnothing, \square, \square),(\varnothing, \square, \boldsymbol{m})$	100	26
640	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	11111	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square)$	94	32
641	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \end{array}$	$1{ }_{1} 111$	$(\square, \square, \boldsymbol{m}),(\square, \square, \varnothing)$	84	54
642	$\begin{array}{llll}0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxplus)$	82	54
643	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square \square),(\square, \varnothing)$	90	12
644	$\begin{array}{lllll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square),(\varnothing, \square, \boldsymbol{\square}),(\square, \square, \boldsymbol{m})$	144	48
645	$\begin{array}{llll}0 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	111	$(\varnothing, \square),(\square, \square)$	82	84

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
646	$\begin{array}{lllll} 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square)$	89	40
647	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	111	$(\square, \square),(\square, \varnothing)$	74	68
648	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	$1{ }^{1} 1$	$(\square, \square),(\square, \square)$	68	93
649		$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \varnothing)$	108	20
650	$\begin{array}{lllll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$1 \begin{array}{lllll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	86	21
651	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \varnothing),(\square, \varnothing),(\square, \square \square)$	80	40
652	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square)$	80	40
653	$\begin{array}{lll} 0 & 3 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{array}$	112		75	42
654	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	$(\varnothing, \square),(\varnothing, \square)$	68	64

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
655	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square),(\varnothing, \square, \square),(\square, \square, \square \square \square)$	120	56
656	$\begin{array}{llll} 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square \square),(\varnothing, \square, \square \square)$	128	0
657	$\begin{array}{llll} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 6 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square, \square \square),(\varnothing, \square, \square \square),(\square, \varnothing, \varnothing)$	104	12
658	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 5 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \varnothing),(\square, \varnothing),(\square, \varnothing),(\square, \varnothing)$	70	60
659	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 6 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \varnothing),(\square, \varnothing),(\square, \varnothing),(\square, \square \square)$	70	52
660	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \square, \square \square)$	84	58
661	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \square, \varnothing)$	74	64
662	$\begin{array}{lll} 0 & 3 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & \\ 1\end{array}$	$(\square \square \square \square, \square),(\square \square, \boxminus),(\varnothing, \square)$	74	38
663	$\begin{array}{lll}0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$1{ }^{1} 13$	$(\varnothing, \square),(\square, \varnothing)$	112	-12

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
664	$\begin{array}{lll} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	112	$(\varnothing, \boxminus),(\square, \boxminus)$	69	68
665	$\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$	112	(\square, \boxplus)	64	77
666	$\begin{array}{lll} 0 & 4 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square),(\square, \varnothing)$	88	40
667			$(\varnothing, \varnothing, \square),(\varnothing, \varnothing, \square)$	84	32
668	$\begin{array}{lllll} 0 & 0 & 0 & 3 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	1112	$(\boldsymbol{\square}, \square, \square),(\boldsymbol{\square}, \square, \varnothing),(\square, \varnothing, \varnothing)$	89	-3
669	$\begin{array}{llll}0 & 3 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 0\end{array}$	112	$(\boldsymbol{m}, ~ \exists),(\boldsymbol{m}, ~ \exists),(\boldsymbol{\Pi}, ~ \exists),(\varnothing, \boxminus)$	70	49
670	$\begin{array}{llll}0 & 3 & 5 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}$	111	$(\varnothing, \square),(\varnothing, \square),(\square, \square)$	64	56
671	$\begin{array}{lll} 0 & 7 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{array}$	112	$(\varnothing, \square),(\square, \square)$	55	59
672	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square),(\square, \varnothing, \square)$	112	-8

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
682	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 6 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, ■),(\square, \varnothing),(\square, \varnothing),(\square \square \square)$	55	85
683	$\begin{array}{ll}0 & 6 \\ 0 & 0\end{array}$	11	$(\square \square)$	64	188
684	$\begin{array}{lll} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square \square)$	61	149
685	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \varnothing)$	68	62
686	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 2\end{array}$	$(\varnothing, \boxminus),(\varnothing, \square),(\square, \varnothing)$	96	-20
687	$\begin{array}{lll} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	(\square, \square)	52	168
688	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \varnothing, \square)$	65	37
689	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	$1 \begin{array}{lll}1 & 2\end{array}$	(\square, \square)	51	51
690	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square \square),(\square, \square)$	162	27
691	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square \square)$	99	27

Continued from previous page.
$\left.\begin{array}{ccccccc}\hline \text { Period ID } & \text { Adjacency matrix } & \text { Dimension vector } & \text { Generalized partitions } & \text { Degree } & \text { Euler Number } \\ \hline 692 & 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 5 & 0\end{array}\right)$

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
700	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square \square),(\varnothing, \square, \boldsymbol{\square})$	108	54
701	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \square, ■),(\square, \square, \square)$	54	105
702	$\begin{array}{llll}0 & 0 & 3 \\ 0 & 0 & \\ 0 & 0 & 0 \\ 0 & 7 & 0\end{array}$	111	$(\square, \square),(\square, \varnothing),(\square \square \square \square),(\square, \square)$	50	86
703	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0} 0$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square \square),(\square, \square, \square \square \square)$	90	63
704	$\begin{array}{lll} 0 & 0 & 3 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square \square),(\square, \square, \square)$	81	36
705	$\begin{array}{llll}0 & 2 & 3 \\ 0 & 0 & \\ 0 & 0 & 0 \\ 0 & 2 & 0\end{array}$	111	$(\square \square, \varnothing)$	51	135
706	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \varnothing, \square \square),(\varnothing, \square, \varnothing)$	96	-12
707	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} 0_{0}^{0} 0$	$1 \begin{array}{lllll}1 & 1 & 1\end{array}$	$(\varnothing, \varnothing, \square \square),(\varnothing, \square, \varnothing)$	78	0
708	$\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4 & 0\end{array}$	111	($\square, \square),(\square, \square)$	46	93

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
709	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 5 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square),(\square, \square),(\square \square, \square \square \square)$	72	72
710	$\begin{array}{llll}0 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}$	111	$(\varnothing, \square),(\square \square, \varnothing)$	66	84
711	$\begin{array}{lllll} 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\varnothing, \square \square, \square \square \square)$	63	48
712	$\begin{array}{lll} 0 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square \square),(\square, \square)$	48	99
713	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \square),(\square, \varnothing),(\square \square, \square ா \square)$	60	12
714	$\begin{array}{lll} 0 & 3 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \end{array}$	112	$(\boldsymbol{\square m m}, \boxplus),(\boldsymbol{m}, \boxminus),(\boldsymbol{m}, \boxminus),(\square, \varnothing)$	80	-32
715	$\begin{array}{ll} 0 & 6 \\ 0 & 0 \end{array}$	14	(\boxminus)	42	73
716	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	111	(■, \square), ($\square, \square)$	41	109
717	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	112	$(\varnothing, \boxminus),(\varnothing, \boxplus),(\square, \varnothing),(\square, \square)$	50	52
718	$\begin{array}{llll}0 & 0 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 7 & 0\end{array}$	111	$(\square, ■),(\square, \varnothing),(\square, \varnothing),(\square \square, \square \square \square)$	45	63

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
719	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\varnothing, \square, \square)$	80	-28
720	$\begin{array}{llll} 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \square),(\square, \square, \square \square)$	62	44
721	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \varnothing),(\square, \varnothing)$	40	152
722	$\begin{array}{llll} 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$(\varnothing, \square, \varnothing),(\square, \varnothing, \square)$	53	80
723	$\begin{array}{lll} 0 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 2\end{array}$	$(\varnothing, \boxminus),(\varnothing, \boxminus),(\square, \varnothing),(\square, \square)$	45	94
724	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square),(\square, \varnothing)$	40	144
725	$\begin{array}{lll} 0 & 3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\square, \square \square)$	38	191
726	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square \square),(\square, \square)$	42	27
727	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	$(\varnothing, \square \square),(\square \square, \square \square \square)$	54	81

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
728	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\square \square, \square \square)$	44	116
729	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\square, \varnothing),(\square, \square)$	35	155
730	$\begin{array}{lll}0 & 6 \\ 0 & 0\end{array}$	12	(B$),(\mathrm{\square}),(\square)$	33	90
731	$\begin{array}{lll} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 7 & 0 \end{array}$	111	$(\varnothing, \square),(\square, \boldsymbol{\square}),(\square, \boldsymbol{\square}),(\square, \square \Pi)$	64	-48
732	$\begin{array}{lll} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 8 & 0 \end{array}$	111	$(\square, \varnothing),(\square, \boldsymbol{\square}),(\square, \boldsymbol{\square}),(\square, \boldsymbol{\square})$	40	72
733	$\begin{array}{lll} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 8 & 0 \end{array}$	111	$(\square, \boldsymbol{\square}),(\square, \boldsymbol{\Pi}),(\square, \boldsymbol{\Pi}),(\square, \boldsymbol{\square})$	36	92
734	$\begin{array}{ll}0 & 6 \\ 0 & 0\end{array}$	12		28	140
735	$\begin{array}{lll} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \end{array}$	111	$(\square, ■),(\square, \square)$	26	251
736	$\begin{array}{lll} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square \square)$	48	-72
737	$\begin{array}{lll} 0 & 2 & 5 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	111	$(\varnothing, \square),(\varnothing, \square \square)$	30	114
738	$\begin{array}{llll}0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 2 & 0\end{array}$	$1{ }^{1} 11$	$(\varnothing, \square \square),(\square, \square)$	27	99

Continued from previous page.

Period ID	Adjacency matrix	Dimension vector	Generalized partitions	Degree	Euler Number
739	$\begin{array}{lll} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	(\varnothing, \square), (■,Ш)	26	186
740	$\begin{array}{lll}0 & 5 \\ 0 & 0\end{array}$	12	(\boxplus), (\boxplus)	20	176
741	$\begin{array}{ll} 0 & 9 \\ 0 & 0 \end{array}$	11	(\square), (\square), (\square), (\square)	16	224
742	$\begin{array}{lll}0 & 5 \\ 0 & 0\end{array}$	12	(\square), (\square)	15	318
743	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{array}$	111	$(\varnothing, \square \square),(\square, \boldsymbol{\square})$	32	-112
744	$\begin{array}{lll} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{array}$	111	$(\varnothing, \square \square),(\square, \varnothing)$	20	212
745	$\begin{array}{lll} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	111	$(\square, \square),(\square, \square \square)$	17	293
746	$\begin{array}{lll}0 & 8 \\ 0 & 0\end{array}$	11	(\square),(■),(■■)	12	324
747	$\begin{array}{ll}0 & 7 \\ 0 & 0\end{array}$	11	(■),(■)	9	369
748	$\begin{array}{ll} 0 & 7 \\ 0 & 0 \end{array}$	11	(■),(■■)	8	552
749	$\begin{array}{ll}0 & 6 \\ 0 & 0\end{array}$	11	(■ए)	5	825

Table A.3: Some regularized period sequences obtained from 4-dimensional Fano manifolds that arise as quiver flag zero loci.

Period ID	Name		α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
1	$\mathrm{B} \mathrm{S}_{124}^{4}, \mathbb{P}^{4}, \mathrm{CKP}_{1}$		1	0	0	0	0	120	0	0
2	BØS ${ }_{115}^{4}$, CKP_{2}		1	0	0	0	24	120	0	0
3	CKP_{3}, Q^{4}		1	0	0	0	48	0	0	0
4	CKP_{4}		1	0	0	0	48	120	0	0
5	BØS ${ }_{118}^{4}, \mathrm{CKP}_{8}$		1	0	0	6	0	120	90	0
6	BØS ${ }_{47}^{4}, \mathrm{CKP}_{10}$		1	0	0	6	24	0	90	2520
7	$\mathrm{B} \emptyset \mathrm{S}_{94}^{4}, \mathrm{CKP}_{11}$		1	0	0	6	24	120	90	1260
8	BØS ${ }_{37}^{4}, \mathrm{CKP}_{12}$		1	0	0	6	24	120	90	2520
9	$\mathrm{CKP}_{13}, \mathrm{~B}_{1} \mathrm{~S}_{74}^{4}$		1	0	0	6	48	0	90	2520
10	CKP_{14}		1	0	0	6	48	0	90	3780
11	$\mathrm{CKP}_{15}, \mathrm{~B}_{1} \mathrm{~S}_{86}^{4}$		1	0	0	6	48	120	90	2520
12	CKP_{16}		1	0	0	6	48	120	90	3780
13	CKP_{18}		1	0	0	6	72	120	90	5040
14	$\begin{aligned} & \mathbb{P}^{2} \times \mathbb{P}^{2}, \quad \mathrm{CKP}_{20}, \\ & {\mathrm{~B} \emptyset \mathrm{~S}_{123}^{4}}^{2} \end{aligned}$	$\mathrm{FI}_{6}^{4},$	1	0	0	12	0	0	900	0
15			1	0	0	12	0	120	540	0
16	$\mathrm{BOS}_{114}^{4}, \mathrm{CKP}_{21}$		1	0	0	12	0	120	900	0
17	$\mathrm{CKP}_{23}, \mathrm{~B}_{\mathrm{CS}}^{46} 4$		1	0	0	12	24	0	900	3780

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
18	$\mathrm{CKP}_{25}, \mathrm{~B} \emptyset \mathrm{~S}_{32}^{4}$	1	0	0	12	24	240	900	5040
19	CKP_{26}	1	0	0	12	48	0	540	7560
20		1	0	0	12	48	0	900	7560
21		1	0	0	12	48	120	540	7560
22	CKP_{29}	1	0	0	12	72	120	540	10080
23	CKP_{30}	1	0	0	12	96	120	540	15120
24	FI_{5}^{4}	1	0	0	18	0	0	1710	0
25		1	0	0	18	48	0	1710	11340
26		1	0	0	18	48	120	2430	11340
27	$\mathrm{CKP}_{33}, \mathrm{FI}_{4}^{4}$	1	0	0	24	0	0	3240	0
28	CKP_{34}	1	0	0	24	48	0	3240	15120
29		1	0	0	24	48	120	3600	15120
30	CKP_{35}	1	0	0	24	96	120	3240	30240
31	CKP_{36}	1	0	0	24	120	120	3240	40320
32	Str ${ }_{1}$	1	0	0	30	120	240	5850	50400
33	$\mathrm{FI}_{3}^{4}, \mathrm{CKP}_{37}$	1	0	0	36	0	0	8100	0
34	CKP_{39}	1	0	0	36	144	120	8100	75600
35	$\mathrm{CKP}_{47}, \mathrm{~B} \emptyset \mathrm{~S}_{121}^{4}$	1	0	2	0	6	120	20	2520

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
36	$\begin{aligned} & \mathbb{P}^{1} \times \mathbb{P}^{3}, \mathrm{CKP}_{51}, \mathrm{~B}_{12} \mathrm{~S}_{122}^{4}, \\ & \mathrm{MW}_{14}^{4} \end{aligned}$	1	0	2	0	30	0	740	0
37	$B \emptyset S_{109}^{4}, \mathrm{CKP}_{54}$	1	0	2	0	30	120	380	2520
38	$\mathrm{CKP}_{55}, \mathrm{~B} \emptyset \mathrm{~S}_{104}^{4}$	1	0	2	0	30	120	740	2520
39	$\mathrm{CKP}_{60}, \mathrm{MW}_{13}^{4}$	1	0	2	0	54	0	740	0
40	$\mathrm{CKP}_{61}, \mathrm{MW}_{12}^{4}$	1	0	2	0	54	0	1100	0
41	CKP_{64}	1	0	2	0	54	120	740	2520
42	CKP_{65}	1	0	2	0	54	120	1100	2520
43	CKP_{67}	1	0	2	0	54	240	1460	5040
44	$\mathrm{B} \emptyset \mathrm{S}_{111}^{4}, \mathrm{CKP}_{76}$	1	0	2	6	6	180	110	2940
45	CKP_{78}	1	0	2	6	6	240	110	3780
46	BØS ${ }_{106}^{4}$, CKP_{79}	1	0	2	6	30	60	470	2940
47	$\mathrm{CKP}_{80}, \mathrm{~B}_{1} \mathrm{~S}_{45}^{4}$	1	0	2	6	30	60	830	2940
48	$\mathrm{CKP}_{81}, \mathrm{~B}_{1} \mathrm{~S}_{41}^{4}$	1	0	2	6	30	120	470	3780
49	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{2-33}^{3}, \quad \mathrm{~B} \emptyset \mathrm{~S}_{110}^{4}, \\ & \mathrm{CKP}_{83} \end{aligned}$	1	0	2	6	30	120	830	2520
50	BØS $\mathrm{S}_{82}^{4}, \mathrm{CKP}_{84}$	1	0	2	6	30	180	470	4200
51	$\mathrm{CKP}_{85}, \mathrm{~B} \emptyset \mathrm{~S}_{113}^{4}$	1	0	2	6	30	180	470	5460
52	BØS ${ }_{92}^{4}$, CKP_{86}	1	0	2	6	30	180	830	5460

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
53	CKP_{89}	1	0	2	6	30	240	830	5040
54	$B \emptyset S_{52}^{4}, \mathrm{CKP}_{91}$	1	0	2	6	54	60	830	2940
55	CKP_{92}	1	0	2	6	54	60	830	4200
56	CKP_{93}	1	0	2	6	54	60	1190	4200
57	$\mathrm{CKP}_{96}, \mathrm{~B}_{6} \mathrm{~S}_{91}^{4}$	1	0	2	6	54	180	830	5460
58	CKP_{98}	1	0	2	6	54	180	1190	6720
59	CKP_{99}	1	0	2	6	54	180	1190	7980
60	$B \emptyset S_{81}^{4}, \mathrm{CKP}_{100}$	1	0	2	6	54	240	1190	6300
61	CKP_{101}	1	0	2	6	54	240	1190	7560
62	CKP_{102}	1	0	2	6	54	360	1550	8820
63	CKP_{103}	1	0	2	6	78	180	1190	7980
64	CKP_{104}	1	0	2	6	78	360	1910	11340
65	CKP_{107}	1	0	2	6	102	600	2990	17640
66	CKP_{109}	1	0	2	12	6	120	920	840
67	$\mathrm{B} \mathrm{\emptyset S}_{112}^{4}, \mathrm{CKP}_{110}, \mathbb{P}^{2} \times S_{8}^{2}$	1	0	2	12	6	180	920	1680
68	$\mathrm{CKP}_{111}, \mathbb{P}^{1} \times Q^{3}$	1	0	2	12	6	240	560	2520
69	CKP_{113}	1	0	2	12	6	300	920	4200
70	CKP_{114}	1	0	2	12	6	360	560	5040
71	B ¢ S_{60}^{4}, CKP_{116}	1	0	2	12	30	120	920	4620

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
72	$\mathrm{B} \emptyset \mathrm{S}_{88}^{4}, \mathrm{CKP}_{117}$	1	0	2	12	30	180	1280	5460
73	$\mathrm{B} \emptyset \mathrm{S}_{35}^{4}, \mathrm{CKP}_{118}$	1	0	2	12	30	180	1280	5460
74	CKP_{119}	1	0	2	12	30	180	1640	5460
75	$\mathbb{P}^{1} \times \mathrm{MM}_{2-30}^{3}, \mathrm{CKP}_{120}$	1	0	2	12	30	240	1280	5040
76		1	0	2	12	30	300	920	9240
77	B ¢ $\mathrm{S}_{93}^{4}, \mathrm{CKP}_{121}$	1	0	2	12	30	300	1280	7980
78		1	0	2	12	30	300	1640	7980
79	CKP_{122}	1	0	2	12	30	360	1280	7560
80	CKP_{123}	1	0	2	12	30	420	1280	11760
81	CKP_{124}	1	0	2	12	54	120	1280	8400
82	CKP_{125}	1	0	2	12	54	120	1640	8400
83	CKP_{126}	1	0	2	12	54	180	1640	9240
84	$B \emptyset S_{85}^{4}, \mathrm{CKP}_{127}$	1	0	2	12	54	240	1280	9660
85	CKP_{128}	1	0	2	12	54	240	1280	10080
86	CKP_{130}	1	0	2	12	54	300	2000	11760
87	CKP_{131}	1	0	2	12	54	360	1640	12600
88	CKP_{132}	1	0	2	12	54	420	2000	15540
89	CKP_{134}	1	0	2	12	78	240	2000	14700
90	CKP_{135}	1	0	2	12	78	300	2000	14280

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
91	CKP_{136}	1	0	2	12	78	300	2720	16800
92	CKP_{137}	1	0	2	12	78	360	2000	15120
93	CKP_{138}	1	0	2	12	78	480	2360	17640
94	CKP_{139}	1	0	2	12	102	240	2000	18480
95	CKP_{141}	1	0	2	12	102	480	2720	20160
96	CKP_{142}	1	0	2	12	102	480	2720	22680
97	CKP_{144}	1	0	2	12	126	720	3800	30240
98	CKP_{145}	1	0	2	12	198	1200	6320	52920
99	$\mathrm{B} \mathrm{S}_{51}^{4}, \mathrm{CKP}_{146}$	1	0	2	18	6	180	1370	1260
100	CKP_{147}	1	0	2	18	6	240	1730	2100
101		1	0	2	18	6	300	1730	2940
102		1	0	2	18	6	420	1730	5460
103	CKP_{148}	1	0	2	18	30	240	2090	7140
104		1	0	2	18	30	360	2450	9660
105	$\mathrm{CKP}_{151}, \mathrm{~B} \emptyset \mathrm{~S}_{73}^{4}$	1	0	2	18	54	180	2090	11340
106	CKP_{152}	1	0	2	18	54	240	2810	13440
107	CKP_{153}	1	0	2	18	78	300	2450	18900
108	CKP_{154}	1	0	2	18	78	360	3170	21000
109		1	0	2	18	102	300	3170	26460

Continued from previous page

Period ID		Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
110	CKP_{155}		1	0	2	18	102	360	3890	28560
111	CKP_{158}		1	0	2	24	6	240	3260	1680
112	CKP_{159}		1	0	2	24	6	360	3260	3360
113	CKP_{160}		1	0	2	24	6	540	3260	6720
114	CKP_{161}		1	0	2	24	54	360	3980	18480
115			1	0	2	24	54	360	4340	18480
116			1	0	2	24	54	480	4700	21000
117	CKP_{162}		1	0	2	24	54	540	4340	21840
118	CKP_{163}		1	0	2	24	102	420	4700	35280
119	CKP_{164}		1	0	2	24	102	480	4700	35280
120	CKP_{165}		1	0	2	24	126	660	5780	49560
121	CKP_{166}		1	0	2	24	150	720	6140	55440
122	CKP_{167}		1	0	2	24	174	960	7220	70560
123	CKP ${ }_{168}$		1	0	2	24	246	1440	9740	105840
124	Str ${ }_{2}$		1	0	2	30	54	600	6590	26040
125			1	0	2	30	78	960	7670	46200
126			1	0	2	30	126	540	7670	56700
127	CKP_{169}		1	0	2	36	6	360	8120	2520
128	CKP_{170}		1	0	2	36	6	720	8120	8400

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
129	CKP_{171}	1	0	2	36	150	840	11000	86520
130	CKP_{172}	1	0	2	36	294	1680	15320	178920
131	CKP_{174}	1	0	2	36	438	2640	20360	287280
132	CKP_{175}	1	0	2	42	150	900	14690	99540
133	$\mathrm{B}_{\square} \mathrm{S}_{43}^{4}, \mathrm{CKP}_{181}$	1	0	4	0	36	120	400	5040
134	$\begin{aligned} & \mathrm{B} \mathrm{~S}_{117}^{4}, \mathrm{CKP}_{183}, \mathrm{MW}_{17}^{4}, \\ & \mathbb{P}^{1} \times \mathrm{MM}_{2-35}^{3}, \end{aligned}$	1	0	4	0	60	0	1480	0
135	$\mathrm{CKP}_{185}, \mathrm{~B} \mathrm{~S}_{36}^{4}$	1	0	4	0	60	120	1480	5040
136	MW ${ }_{11}^{4}$	1	0	4	0	84	0	2200	0
137	$\mathrm{MW}_{10}^{4}, \mathrm{CKP}_{186}$	1	0	4	0	84	0	2560	0
138	CKP_{187}	1	0	4	0	84	240	2560	10080
139	$\mathrm{CKP}_{189}, \mathrm{MW}_{7}^{4}$	1	0	4	0	108	0	3280	0
140	$\begin{aligned} & \mathrm{B}_{1} \mathrm{~S}_{122}^{4}, \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{2}, \mathbb{P}^{2} \times \\ & \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{1} \times \mathrm{MM}_{2-34}^{3}, \\ & \mathrm{CKP}_{195} \end{aligned}$	1	0	4	6	36	240	490	7560
141	CKP_{197}	1	0	4	6	36	300	490	9240
142		1	0	4	6	36	360	490	12600
143	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{3-30}^{3}, \quad \mathrm{CKP}_{200}, \\ & \mathrm{~B}_{2}, \end{aligned}$	1	0	4	6	60	180	1570	5460

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
144	$\mathrm{CKP}_{201}, \mathrm{~B}_{2} \mathrm{~S}_{34}^{4}$	1	0	4	6	60	180	1570	6720
145	CKP_{203}	1	0	4	6	60	240	1210	10080
146	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{3-26}^{3}, \quad \mathrm{CKP}_{204}, \\ & \mathrm{~B}_{1}, \end{aligned}$	1	0	4	6	60	240	1570	8820
147	$\mathrm{CKP}_{205}, \mathrm{~B}_{2} \mathrm{~S}_{102}^{4}$	1	0	4	6	60	240	1570	9660
148	$\mathrm{CKP}_{206},{\mathrm{~B} \emptyset \mathrm{~S}_{44}^{4}}^{4}$	1	0	4	6	60	240	1930	9660
149	CKP_{207}	1	0	4	6	60	300	1210	11760
150	CKP_{208}	1	0	4	6	60	300	1570	10500
151	CKP_{209}	1	0	4	6	60	360	1570	13860
152	CKP_{214}	1	0	4	6	84	240	2650	10080
153	CKP_{215}	1	0	4	6	84	240	2650	12180
154		1	0	4	6	84	300	2290	13020
155	$\mathrm{B} \emptyset \mathrm{S}_{29}^{4}, \mathrm{CKP}_{217}$	1	0	4	6	84	360	2650	15120
156	CKP_{218}	1	0	4	6	84	360	3010	17220
157	CKP_{219}	1	0	4	6	84	420	2650	16800
158	CKP_{220}	1	0	4	6	108	240	3370	13860
159	CKP_{222}	1	0	4	6	108	300	3370	15540

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
160	CKP_{224}	1	0	4	6	132	660	4810	30660
161	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{3-31}^{3}, \quad \mathrm{CKP}_{225}, \\ & \mathrm{~B}_{2}, \end{aligned}$	1	0	4	12	36	360	940	8400
162	$S_{8}^{2} \times S_{8}^{2}, \mathrm{~B} \mathrm{\emptyset S}_{83}^{4}, \mathrm{CKP}_{226}$	1	0	4	12	36	360	1300	8400
163	$\mathrm{CKP}_{227}, \mathrm{~B}_{1} \mathrm{~S}_{101}^{4}, \mathbb{P}^{2} \times S_{7}^{2}$	1	0	4	12	36	360	1300	9660
164	$\mathrm{CKP}_{228}, \mathrm{P}^{1} \times \mathrm{MM}_{2-31}^{3}$	1	0	4	12	36	420	940	11760
165	CKP_{230}	1	0	4	12	36	480	1300	13440
166	CKP_{231}	1	0	4	12	36	480	1300	14700
167	CKP_{233}	1	0	4	12	36	720	940	25200
168	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{3-25}^{3}, \quad \mathrm{CKP}_{236}, \\ & \mathrm{~B} \mathrm{~S}_{108}^{4} \end{aligned}$	1	0	4	12	60	360	2020	10920
169	CKP_{239}	1	0	4	12	60	360	2380	13440
170	$\mathrm{CKP}_{240}, \mathbb{P}^{1} \times \mathrm{MM}_{3-23}^{3}$	1	0	4	12	60	420	2020	14280
171	CKP_{243}	1	0	4	12	60	480	2020	17220
172	CKP_{244}	1	0	4	12	60	480	2380	18480
173		1	0	4	12	60	480	2740	18480
174	CKP_{246}	1	0	4	12	60	540	2020	19320
175	CKP_{247}	1	0	4	12	60	600	2020	23520
176	CKP_{248}	1	0	4	12	84	360	3100	15960

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
177	$\mathrm{B}_{\square} \mathrm{S}_{80}^{4}, \mathrm{CKP}_{251}$	1	0	4	12	84	420	2740	17640
178		1	0	4	12	84	420	2740	19320
179	CKP_{252}	1	0	4	12	84	420	3100	18900
180	CKP_{255}	1	0	4	12	84	480	2740	19740
181	$\mathbb{P}^{1} \times \mathrm{MM}_{3-19}^{3}, \mathrm{CKP}_{256}$	1	0	4	12	84	480	3100	20160
182		1	0	4	12	84	480	3100	23520
183	CKP_{258}	1	0	4	12	84	480	3460	22260
184	CKP_{259}	1	0	4	12	84	600	3460	28560
185	CKP_{260}	1	0	4	12	84	600	3820	27300
186	CKP_{262}	1	0	4	12	84	720	3100	32760
187	CKP_{265}	1	0	4	12	108	540	4180	27720
188		1	0	4	12	108	600	3820	28560
189	CKP_{266}	1	0	4	12	108	600	4180	31080
190		1	0	4	12	108	600	4900	32340
191	CKP_{267}	1	0	4	12	108	720	4180	38640
192	CKP_{268}	1	0	4	12	108	720	4900	37380
193	CKP_{269}	1	0	4	12	132	600	4900	33600
194	CKP_{270}	1	0	4	12	132	720	5260	37800
195		1	0	4	18	36	720	2110	21000

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
196	$\mathrm{CKP}_{277}, \mathbb{P}^{1} \times \mathrm{MM}_{2-27}^{3}$	1	0	4	18	60	600	2830	19740
197	CKP_{279}	1	0	4	18	60	840	3910	32340
198	$\mathrm{CKP}_{280}, \mathrm{~B} \emptyset \mathrm{~S}_{53}^{4}$	1	0	4	18	84	480	3190	20580
199	CKP_{282}	1	0	4	18	84	540	3910	25200
200	$\mathrm{CKP}_{283}, \mathrm{~B}_{2} \mathrm{~S}_{84}^{4}$	1	0	4	18	84	600	3550	25620
201		1	0	4	18	84	600	4270	26880
202		1	0	4	18	84	720	3910	32340
203	CKP_{284}	1	0	4	18	84	720	4630	32340
204	CKP_{285}	1	0	4	18	84	780	4270	34020
205	CKP_{286}	1	0	4	18	108	600	4270	30660
206	CKP_{287}	1	0	4	18	108	600	4630	31920
207	CKP_{288}	1	0	4	18	108	660	4990	34020
208	CKP_{289}	1	0	4	18	108	720	4990	38220
209	CKP_{290}	1	0	4	18	108	780	4990	39060
210	CKP_{291}	1	0	4	18	108	780	5350	40320
211		1	0	4	18	108	840	4990	44940
212		1	0	4	18	108	960	6070	49980
213	CKP_{292}	1	0	4	18	132	780	5350	42840
214	CKP_{293}	1	0	4	18	132	840	5710	48720

Continued from previous page

Period ID		Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
215	CKP_{294}		1	0	4	18	132	960	7150	55020
216	CKP_{295}		1	0	4	18	132	960	7510	57540
217	CKP_{296}		1	0	4	18	156	840	7150	56280
218	CKP_{297}		1	0	4	18	156	1020	7870	63000
219			1	0	4	18	180	1020	7870	66780
220	CKP_{298}		1	0	4	18	180	1080	9310	77700
221	CKP_{299}		1	0	4	24	36	720	3640	16800
222	CKP_{300}		1	0	4	24	36	1080	3640	33600
223	CKP_{301}		1	0	4	24	84	720	5800	31920
224			1	0	4	24	84	840	5800	38220
225	CKP_{302}		1	0	4	24	84	1080	5800	48720
226			1	0	4	24	84	1140	5800	51660
227			1	0	4	24	108	960	6880	49560
228	CKP_{303}		1	0	4	24	108	1080	6520	58800
229	CKP_{304}		1	0	4	24	132	840	6880	53340
230			1	0	4	24	132	840	7240	53760
231			1	0	4	24	132	840	7960	54600
232			1	0	4	24	132	1020	7600	60480
233	CKP_{305}		1	0	4	24	156	960	7960	63420

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
234	CKP_{306}	1	0	4	24	156	1080	9040	72240
235		1	0	4	24	180	1440	11560	99120
236	CKP_{307}	1	0	4	24	204	1260	10480	95760
237	CKP_{308}	1	0	4	24	228	1440	12280	110880
238		1	0	4	24	276	1680	13720	137760
239	CKP_{309}	1	0	4	30	84	840	6610	36540
240	CKP_{310}	1	0	4	30	84	1200	8050	54600
241	CKP_{311}	1	0	4	30	132	960	8770	61740
242		1	0	4	30	132	1140	9490	70560
243	CKP_{312}	1	0	4	30	156	1320	11650	92400
244		1	0	4	30	204	1440	12730	113820
245	CKP_{313}	1	0	4	30	228	1440	12370	116340
246	CKP_{314}	1	0	4	36	36	1800	8500	58800
247	CKP_{315}	1	0	4	36	84	1440	10660	64680
248	CKP_{316}	1	0	4	36	156	1200	12820	90720
249	CKP_{318}	1	0	4	36	324	2160	20740	223440
250	CKP_{319}	1	0	4	42	156	1680	16510	119700
251	CKP_{320}	1	0	4	42	180	2040	19390	155400
252	CKP_{321}	1	0	4	42	252	2040	21190	196980

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
253		1	0	4	48	180	1920	22000	156240
254	CKP_{322}	1	0	4	60	204	2640	33340	231840
255	CKP_{323}	1	0	4	60	564	4140	49900	648480
256	$\mathrm{CKP}_{324}, \mathrm{~B} \mathrm{~S}_{38}^{4}$	1	0	6	0	90	120	1860	7560
257	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{2-32}^{3}, \quad \mathrm{MW}_{16}^{4}, \\ & \mathrm{CKP}_{325} \end{aligned}$	1	0	6	0	114	0	3300	0
258	$\mathrm{CKP}_{326}, \mathrm{MW}_{8}^{4}$	1	0	6	0	138	0	4740	0
259	$\mathrm{MW}_{5}^{4}, \mathrm{CKP}_{327}$	1	0	6	0	186	0	7980	0
260	$\begin{aligned} & \mathbb{P}^{1} \times \mathbb{P}^{1} \times S_{8}^{2}, \mathrm{CKP}_{328}, \mathbb{P}^{1} \times \\ & \mathrm{MM}_{3-28}^{3}, \mathrm{~B}_{1} \mathrm{~S}_{107}^{4} \end{aligned}$	1	0	6	6	90	300	1950	13020
261	$\mathrm{CKP}_{330}, \mathbb{P}^{1} \times \mathrm{MM}_{3-24}^{3}$	1	0	6	6	114	300	3390	14280
262	CKP_{332}	1	0	6	6	114	360	3390	18480
263	CKP_{334}	1	0	6	6	138	300	4830	15540
264	CKP_{335}	1	0	6	6	138	360	4830	21000
265		1	0	6	6	138	420	4830	24360
266	CKP_{336}	1	0	6	6	186	360	8070	24780
267	$\mathrm{B}_{\square} \mathrm{S}_{79}^{4}, S_{8}^{2} \times S_{7}^{2}, \mathrm{CKP}_{340}$	1	0	6	12	90	540	2760	21420
268	$\mathrm{CKP}_{341}, \mathbb{P}^{1} \times \mathrm{MM}_{2-29}^{3}$	1	0	6	12	90	600	2400	26040

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
269	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{4-10}^{3}, \quad \mathrm{~B} \emptyset \mathrm{~S}_{90}^{4} \\ & \mathrm{CKP}_{345} \end{aligned}$	1	0	6	12	114	540	3840	23940
270	$\mathrm{CKP}_{346}, \mathbb{P}^{1} \times \mathrm{MM}_{3-20}^{3}$	1	0	6	12	114	600	3840	28560
271	CKP_{347}	1	0	6	12	114	660	3840	32760
272	CKP_{348}	1	0	6	12	114	660	4200	32760
273	CKP_{349}	1	0	6	12	114	720	4200	36960
274	$\mathbb{P}^{1} \times \mathrm{MM}_{3-17}^{3}, \mathrm{CKP}_{351}$	1	0	6	12	138	600	5280	31080
275	CKP_{352}	1	0	6	12	138	600	5280	33600
276	CKP_{354}	1	0	6	12	138	600	5640	35280
277	CKP_{355}	1	0	6	12	138	660	5280	35280
278	CKP_{356}	1	0	6	12	138	660	5640	36540
279	CKP_{357}	1	0	6	12	138	780	5640	45360
280	CKP_{359}	1	0	6	12	162	600	7080	38640
281	CKP_{360}	1	0	6	12	162	720	7080	44520
282	CKP_{361}	1	0	6	12	186	720	8520	51240
283	CKP_{363}	1	0	6	12	186	900	8880	63000
284	$\mathbb{P}^{2} \times S_{6}^{2}, \mathrm{~B}_{6} \mathrm{~S}_{99}^{4}, \mathrm{CKP}_{365}$	1	0	6	18	90	720	3570	28980
285	CKP_{367}	1	0	6	18	114	780	5010	34860
286	$\mathrm{CKP}_{368}, \mathbb{P}^{1} \times \mathrm{MM}_{3-18}^{3}$	1	0	6	18	114	840	4650	38220

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
287	CKP_{369}	1	0	6	18	114	960	5010	47040
288		1	0	6	18	114	1140	4650	61740
289	CKP_{372}	1	0	6	18	138	780	6090	39900
290	$\mathrm{CKP}_{373}, \mathrm{P}^{1} \times \mathrm{MM}_{3-16}^{3}$	1	0	6	18	138	900	6090	46620
291	CKP_{374}	1	0	6	18	138	900	6090	47460
292	CKP_{376}	1	0	6	18	138	960	5730	52080
293	CKP_{377}	1	0	6	18	138	960	7170	56700
294		1	0	6	18	138	1020	6450	57960
295		1	0	6	18	138	1080	7890	66780
296	CKP_{378}	1	0	6	18	162	960	7530	58380
297		1	0	6	18	162	960	7890	58380
298	CKP_{380}	1	0	6	18	162	1080	8250	65940
299	CKP_{381}	1	0	6	18	162	1080	8970	71820
300	CKP_{382}	1	0	6	18	186	1080	8970	69720
301	CKP_{383}	1	0	6	18	186	1140	8970	74340
302	CKP_{384}	1	0	6	18	186	1140	9690	76440
303		1	0	6	18	210	1320	11850	96180
304	$\mathrm{CKP}_{388}, \mathbb{P}^{1} \times \mathrm{MM}_{2-25}^{3}$	1	0	6	24	114	1200	5820	57120
305	CKP_{392}	1	0	6	24	138	1080	7980	57960

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
306	CKP_{393}	1	0	6	24	138	1260	7980	67620
307	CKP_{394}	1	0	6	24	138	1320	9060	78120
308	CKP_{395}	1	0	6	24	138	1440	7980	82320
309	CKP_{397}	1	0	6	24	162	1140	8700	67200
310	CKP_{399}	1	0	6	24	162	1320	9780	80640
311	CKP_{400}	1	0	6	24	186	1200	9780	76440
312	CKP_{401}	1	0	6	24	186	1200	10860	82320
313	$\mathbb{P}^{1} \times \mathrm{MM}_{2-24}^{3}, \mathrm{CKP}_{402}$	1	0	6	24	186	1260	10140	78120
314	CKP_{403}	1	0	6	24	186	1320	10500	85680
315	CKP_{404}	1	0	6	24	186	1560	12660	110880
316	CKP_{405}	1	0	6	24	210	1440	11940	107520
317	CKP_{406}	1	0	6	24	210	1500	12660	107940
318		1	0	6	24	210	1500	12660	110460
319	CKP_{407}	1	0	6	24	210	1620	13020	115500
320		1	0	6	24	210	1800	13380	133980
321		1	0	6	24	210	1800	15180	138600
322		1	0	6	24	234	1800	16620	146160
323	CKP_{408}	1	0	6	24	234	1920	16980	153720
324	CKP_{409}	1	0	6	24	282	1920	19140	169260

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
325	CKP_{410}	1	0	6	24	282	2280	21300	199080
326		1	0	6	30	162	1680	11670	103320
327		1	0	6	30	186	1800	13470	122220
328	CKP_{411}	1	0	6	30	210	1620	13470	116340
329	CKP_{412}	1	0	6	30	210	1740	14550	126420
330	CKP_{413}	1	0	6	30	234	1680	15270	133560
331	CKP_{414}	1	0	6	30	234	1980	16710	159600
332	CKP_{415}	1	0	6	30	282	1980	18150	168420
333	CKP_{416}	1	0	6	30	282	2160	19950	186480
334	CKP_{417}	1	0	6	36	186	1560	12480	97440
335	CKP_{418}	1	0	6	36	186	1920	15360	131880
336	CKP_{419}	1	0	6	36	186	2040	15720	138600
337	CKP_{420}	1	0	6	36	186	2520	16080	180600
338	CKP_{421}	1	0	6	36	210	1800	16440	136920
339		1	0	6	36	210	2100	16800	154980
340	CKP_{422}	1	0	6	36	234	1800	16080	137760
341		1	0	6	36	234	2520	19680	201600
342		1	0	6	36	258	2280	20400	191520
343		1	0	6	36	258	2340	21120	196980

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
344		1	0	6	36	282	2520	22920	224280
345	CKP_{423}	1	0	6	36	306	2280	23280	221760
346		1	0	6	36	330	2640	27600	274680
347	CKP_{424}	1	0	6	36	330	2880	27600	278040
348	CKP_{425}	1	0	6	36	330	3240	30480	312480
349	CKP_{426}	1	0	6	36	378	3480	34080	352800
350		1	0	6	42	162	2760	17610	178920
351	CKP_{427}	1	0	6	42	306	2460	24090	229320
352	CKP_{428}	1	0	6	42	306	2820	26970	270060
353	CKP_{429}	1	0	6	48	282	2760	27420	253680
354	CKP_{430}	1	0	6	48	282	2760	28500	257040
355	CKP_{432}	1	0	6	48	426	3360	37860	406560
356	CKP_{433}	1	0	6	48	522	4800	51180	595560
357	CKP_{435}	1	0	6	54	378	3480	38670	392700
358	CKP_{436}	1	0	6	60	354	4080	44520	441840
359	CKP_{437}	1	0	6	60	474	3960	45600	503160
360	CKP_{438}	1	0	6	66	474	4860	57930	637560
361		1	0	6	84	714	6840	96360	1211280
362	CKP $_{439}$	1	0	6	120	1146	11280	192300	2817360

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
363	$\begin{aligned} & \mathrm{MW}_{18}^{4}, \mathrm{~B}_{1} \mathrm{~S}_{119}^{4}, \mathrm{CKP}_{440}, \\ & \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{1} \times \\ & \mathrm{MM}_{3-27}^{3} \end{aligned}$	1	0	8	0	168	0	5120	0
364	$\mathrm{MW}_{9}^{4}, \mathbb{P}^{1} \times B_{5}^{3}$	1	0	8	0	192	0	6920	0
365	V_{14}^{4}	1	0	8	0	288	0	15200	0
366	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{4-11}^{3}, \quad \mathrm{~B}_{\mathrm{O}}^{97} \mathrm{~S}_{97}^{4}, \\ & \mathrm{CKP}_{442}, \mathbb{P}^{1} \times \mathbb{P}^{1} \times S_{7}^{2} \end{aligned}$	1	0	8	6	168	360	5210	19740
367	$\mathbb{P}^{1} \times \mathrm{MM}_{3-21}^{3}, \mathrm{CKP}_{443}$	1	0	8	6	192	360	7010	21000
368	CKP_{444}	1	0	8	6	216	360	8810	22260
369	$\mathbb{P}^{1} \times \mathrm{MM}_{4-9}^{3}, \mathrm{CKP}_{445}$	1	0	8	12	168	720	5660	39480
370	$\mathrm{CKP}_{446}, S_{7}^{2} \times S_{7}^{2}, \mathrm{~B} \mathrm{\emptyset S}_{75}^{4}$	1	0	8	12	168	720	6020	39480
371	$\mathrm{CKP}_{447}, \mathrm{P}^{1} \times \mathrm{MM}_{4-8}^{3}$	1	0	8	12	192	720	7460	42000
372	$\mathbb{P}^{1} \times \mathrm{MM}_{2-26}^{3}$	1	0	8	12	192	780	7460	47880
373	CKP_{448}	1	0	8	12	216	840	9620	57960
374		1	0	8	12	216	1440	8540	126000
375	CKP_{449}	1	0	8	12	288	1080	16100	92400
376	CKP_{450}	1	0	8	12	360	1200	23300	117600
377	$S_{8}^{2} \times S_{6}^{2}, \mathrm{~B}_{6} \mathrm{~S}_{78}^{4}, \mathrm{CKP}_{451}$	1	0	8	18	168	1020	6830	54600
378	CKP_{452}	1	0	8	18	168	1080	6470	59220

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
379	$\mathrm{CKP}_{454}, \mathbb{P}^{1} \times \mathrm{MM}_{4-7}^{3}$	1	0	8	18	192	1080	8270	63000
380	CKP_{455}	1	0	8	18	216	1080	10070	69300
381	$\mathrm{CKP}_{456}, \mathbb{P}^{1} \times \mathrm{MM}_{3-15}^{3}$	1	0	8	18	216	1140	10070	72660
382	CKP_{457}	1	0	8	18	216	1200	10430	79380
383	CKP_{458}	1	0	8	18	216	1260	11150	87360
384	CKP_{459}	1	0	8	18	240	1380	13310	105000
385		1	0	8	18	288	1560	16910	136500
386	CKP_{460}	1	0	8	24	168	1440	8360	78960
387	$\mathbb{P}^{1} \times \mathrm{MM}_{4-5}^{3}, \mathrm{CKP}_{461}$	1	0	8	24	216	1440	10880	89040
388	$\mathbb{P}^{1} \times \mathrm{MM}_{2-22}^{3}$	1	0	8	24	216	1560	11240	100800
389	CKP_{462}	1	0	8	24	216	2160	11240	168000
390	$\mathbb{P}^{1} \times \mathrm{MM}_{3-13}^{3}, \mathrm{CKP}_{463}$	1	0	8	24	240	1560	13040	105840
391	CKP_{464}	1	0	8	24	240	1560	13400	110460
392	CKP_{465}	1	0	8	24	240	1740	13760	126420
393	CKP_{466}	1	0	8	24	264	1680	15200	126840
394	CKP_{467}	1	0	8	24	264	1740	15920	133980
395	CKP_{468}	1	0	8	24	264	1920	17360	154560
396	CKP_{469}	1	0	8	24	288	1920	18440	159600
397	CKP_{470}	1	0	8	24	312	2160	22040	194880

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
398		1	0	8	24	360	2160	25640	218400
399	CKP_{471}	1	0	8	30	216	1800	13490	116340
400	$\mathbb{P}^{1} \times \mathrm{MM}_{3-11}^{3}, \mathrm{CKP}_{472}$	1	0	8	30	264	1980	16370	142800
401	CKP_{473}	1	0	8	30	264	1980	16730	147000
402	CKP_{474}	1	0	8	30	264	2160	17090	165900
403		1	0	8	30	288	2100	19250	171360
404		1	0	8	30	288	2220	20330	185640
405	CKP_{475}	1	0	8	30	312	2580	23930	229320
406		1	0	8	30	336	2520	25010	233940
407		1	0	8	36	216	3600	16100	294000
408	CKP_{476}	1	0	8	36	264	2280	19340	173880
409	CKP_{477}	1	0	8	36	264	2880	20420	232680
410	CKP_{478}	1	0	8	36	288	2700	21500	216720
411	CKP_{479}	1	0	8	36	312	2520	22940	210420
412	CKP_{480}	1	0	8	36	312	2760	24380	239820
413		1	0	8	36	312	2760	25100	243600
414	CKP_{481}	1	0	8	36	336	2760	26180	251160
415	CKP_{482}	1	0	8	36	360	2760	27260	261240
416	CKP_{483}	1	0	8	36	360	2940	28340	277200

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
417	CKP_{484}	1	0	8	36	360	3060	29780	295680
418	CKP_{485}	1	0	8	36	360	3300	31220	320040
419	CKP_{486}	1	0	8	36	408	3360	35180	358680
420	CKP_{487}	1	0	8	36	432	3780	39500	413280
421		1	0	8	42	312	3000	27350	263340
422		1	0	8	42	360	3540	32750	346080
423		1	0	8	42	408	3480	36350	368340
424		1	0	8	42	456	4320	44270	479220
425	CKP_{488}	1	0	8	48	264	4320	27440	366240
426		1	0	8	48	336	4680	35000	467040
427	$\mathrm{CKP}_{489}, \mathbb{P}^{1} \times \mathrm{MM}_{2-18}^{3}$	1	0	8	48	360	3360	31040	295680
428		1	0	8	48	384	3960	37160	400680
429	CKP_{490}	1	0	8	48	408	3960	38960	410760
430		1	0	8	48	432	4140	42560	454440
431		1	0	8	48	432	4320	44720	487200
432	CKP_{491}	1	0	8	48	504	4800	51560	572040
433	CKP_{492}	1	0	8	48	504	4920	53000	613200
434	CKP_{493}	1	0	8	54	360	4200	39770	406980
435	CKP_{494}	1	0	8	54	480	5160	53810	608580

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
436	CKP_{495}	1	0	8	60	360	5160	45260	514080
437	CKP_{496}	1	0	8	60	552	5280	60740	685440
438		1	0	8	60	672	7200	83060	1032360
439		1	0	8	66	456	6000	61550	699300
440	CKP_{497}	1	0	8	72	792	8460	104120	1339800
441	CKP_{498}	1	0	8	84	408	8040	78740	887040
442	$\mathbb{P}^{1} \times B_{4}^{3}, \mathrm{CKP}_{500}, \mathrm{MW}_{6}^{4}$	1	0	10	0	318	0	15220	0
443	V_{12}^{4}	1	0	10	0	438	0	28900	0
444	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{5-3}^{3}, \quad \mathrm{~B}_{1} \mathrm{~S}_{98}^{4}, \\ & \mathrm{CKP}_{501}, \mathbb{P}^{1} \times \mathbb{P}^{1} \times S_{6}^{2} \end{aligned}$	1	0	10	12	270	840	11080	55440
445	$\mathbb{P}^{1} \times \mathrm{MM}_{2-23}^{3}, \mathrm{CKP}_{502}$	1	0	10	12	318	960	15760	74760
446	CKP_{503}	1	0	10	12	366	960	20800	82320
447	$\mathrm{CKP}_{504}, S_{7}^{2} \times S_{6}^{2}, \mathrm{~B}_{6} \mathrm{~S}_{76}^{4}$	1	0	10	18	270	1320	12610	91560
448	$\mathrm{CKP}_{505}, \mathbb{P}^{1} \times \mathrm{MM}_{4-4}^{3}$	1	0	10	24	318	1800	17380	135240
449	CKP_{506}	1	0	10	24	318	2400	18460	215040
450	$\mathbb{P}^{1} \times \mathrm{MM}_{2-21}^{3}$	1	0	10	24	342	1920	19900	154560
451	CKP_{507}	1	0	10	24	462	2640	35740	287280
452	$\mathbb{P}^{1} \times \mathrm{MM}_{3-12}^{3}, \mathrm{CKP}_{508}$	1	0	10	30	342	2340	21070	186060
453	$\mathrm{CKP}_{509}, \mathbb{P}^{1} \times \mathrm{MM}_{2-19}^{3}$	1	0	10	30	342	2520	21430	208740

Continued from previous page.

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
454	CKP_{510}	1	0	10	30	366	2520	24670	221760
455	CKP_{511}	1	0	10	30	462	2760	35110	290640
456	$\mathrm{CKP}_{512}, \mathbb{P}^{2} \times S_{5}^{2}$	1	0	10	36	270	2160	15040	134400
457	CKP_{513}	1	0	10	36	366	2760	25840	235200
458	CKP_{514}	1	0	10	36	366	2880	28000	271740
459	CKP_{515}	1	0	10	36	366	3000	26200	260400
460	$\mathbb{P}^{1} \times \mathrm{MM}_{2-20}^{3}$	1	0	10	36	390	2940	27640	255360
461	CKP_{516}	1	0	10	36	390	3000	28720	273000
462	CKP_{517}	1	0	10	36	414	3180	31960	306600
463	CKP_{518}	1	0	10	36	414	3480	33400	351960
464		1	0	10	36	486	3720	42400	420000
465	CKP_{520}	1	0	10	42	414	3480	33850	334320
466	CKP_{521}	1	0	10	42	414	3840	38530	407820
467	CKP_{522}	1	0	10	42	462	4080	41770	436800
468	CKP_{523}	1	0	10	48	414	4080	36460	387240
469	CKP_{524}	1	0	10	48	414	4320	38260	425040
470	CKP_{525}	1	0	10	48	462	4200	41140	425880
471	CKP_{526}	1	0	10	48	486	4320	44740	465360
472		1	0	10	48	486	4680	47260	519960

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
473		1	0	10	48	486	5400	49420	631680
474		1	0	10	48	510	5160	56260	632100
475	CKP_{527}	1	0	10	48	534	4920	53020	578760
476	CKP_{528}	1	0	10	48	558	5280	57700	646800
477	CKP_{529}	1	0	10	54	486	4920	49150	534240
478		1	0	10	54	534	5100	54550	594300
479	CKP_{530}	1	0	10	54	582	5580	63910	711060
480	CKP_{531}	1	0	10	54	606	6180	68230	805140
481	CKP_{532}	1	0	10	60	510	6120	59680	714000
482		1	0	10	60	582	5760	61480	683760
483		1	0	10	60	582	6360	68680	807240
484	CKP_{533}	1	0	10	60	654	6840	77680	924840
485	CKP_{534}	1	0	10	60	654	7080	77320	945840
486	CKP_{535}	1	0	10	66	750	7920	93970	1156680
487	CKP_{536}	1	0	10	66	846	10080	125290	1619940
488	CKP_{538}	1	0	10	72	558	7200	74620	890400
489	CKP_{539}	1	0	10	72	726	8280	97660	1212120
490	CKP_{540}	1	0	10	72	846	9360	113860	1475880
491	CKP_{541}	1	0	10	78	750	8700	107110	1328880

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
492	CKP_{542}	1	0	10	78	846	10140	124030	1643880
493	CKP_{543}	1	0	10	84	750	8520	102880	1244040
494	CKP_{544}	1	0	10	96	702	10560	124660	1538880
495	CKP_{545}	1	0	10	168	1566	23040	402940	6002640
496	V_{10}^{4}	1	0	12	0	684	0	58800	0
497	$S_{6}^{2} \times S_{6}^{2}, \mathrm{CKP}_{546}, \mathrm{~B} \emptyset \mathrm{~S}_{77}^{4}$	1	0	12	24	396	2160	23160	186480
498	$\mathrm{P}^{1} \times \mathrm{MM}_{4-3}^{3}, \mathrm{CKP}_{547}$	1	0	12	24	444	2160	26760	191520
499	$S_{8}^{2} \times S_{5}^{2}, \mathrm{CKP}_{548}$	1	0	12	36	396	2820	24060	219240
500	$\mathbb{P}^{1} \times \mathrm{MM}_{3-10}^{3}, \mathrm{CKP}_{549}$	1	0	12	36	492	3360	35220	319200
501	CKP_{550}	1	0	12	36	492	3540	38460	371700
502	CKP_{551}	1	0	12	36	540	5400	41700	705600
503	$\mathbb{P}^{1} \times \mathrm{MM}_{2-17}^{3}$	1	0	12	42	540	4140	43230	423360
504	CKP_{552}	1	0	12	42	540	4560	49710	528360
505	$\mathrm{CKP}_{553}, \mathbb{P}^{1} \times \mathrm{MM}_{3-7}^{3}$	1	0	12	48	564	4680	48000	486360
506	CKP_{554}	1	0	12	48	588	5040	54480	577920
507	CKP_{555}	1	0	12	48	588	5040	55200	588000
508		1	0	12	48	636	5940	68880	780780
509		1	0	12	54	732	7680	84810	1136520
510	CKP_{556}	1	0	12	60	636	6000	64020	698460

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
511	$\mathrm{CKP}_{557}, \mathbb{P}^{1} \times \mathrm{MM}_{2-16}^{3}$	1	0	12	60	636	6120	63300	693000
512		1	0	12	60	684	6840	76620	893760
513	CKP_{558}	1	0	12	60	684	6840	77340	898800
514	CKP_{559}	1	0	12	60	708	6840	77700	893760
515	CKP_{560}	1	0	12	60	780	8400	101460	1254960
516		1	0	12	66	804	8400	100830	1237740
517		1	0	12	66	828	8880	108030	1369620
518	CKP $_{561}$	1	0	12	72	708	9120	93000	1254960
519		1	0	12	72	756	8580	97320	1209180
520	CKP_{562}	1	0	12	72	780	8340	97320	1178520
521		1	0	12	72	828	9000	108480	1354920
522	CKP_{563}	1	0	12	72	876	9600	118200	1501920
523	CKP_{564}	1	0	12	78	876	10440	125490	1649340
524		1	0	12	84	876	9960	122700	1540560
525	CKP_{565}	1	0	12	90	1116	13860	184350	2553600
526		1	0	12	96	1140	14400	193080	2721600
527		1	0	12	96	1356	17640	245640	3609480
528	CKP_{566}	1	0	12	108	756	16320	155100	2494800
529		1	0	12	120	1284	17700	253200	3671640

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
530	$\mathbb{P}^{1} \times B_{3}^{3}, \mathrm{MW}_{3}^{4}, \mathrm{CKP}_{567}$	1	0	14	0	690	0	50900	0
531	$\begin{aligned} & \mathbb{P}^{1} \times \mathbb{P}^{1} \times S_{5}^{2}, \mathbb{P}^{1} \times \mathrm{MM}_{6-1}^{3}, \\ & \mathrm{CKP}_{568}, \end{aligned}$	1	0	14	30	546	2760	33350	246540
532	$S_{7}^{2} \times S_{5}^{2}, \mathrm{CKP}_{569}$	1	0	14	36	546	3480	37040	330540
533	CKP_{570}	1	0	14	36	690	3960	57200	468720
534	CKP_{571}	1	0	14	36	690	5760	59000	821520
535	$\mathrm{CKP}_{572}, \mathbb{P}^{1} \times \mathrm{MM}_{2-15}^{3}$	1	0	14	36	714	4320	59720	519120
536	CKP_{573}	1	0	14	36	858	4560	83840	637560
537	$\mathrm{CKP}_{574}, \mathbb{P}^{1} \times \mathrm{MM}_{4-1}^{3}$	1	0	14	48	690	5280	59540	594720
538	$\mathbb{P}^{1} \times \mathrm{MM}_{3-8}^{3}, \mathrm{CKP}_{575}$	1	0	14	54	690	5700	61070	631260
539	CKP_{576}	1	0	14	60	786	7140	82760	933240
540	CKP_{577}	1	0	14	60	786	7320	84920	981120
541	CKP_{578}	1	0	14	66	834	8160	95450	1126440
542	CKP_{579}	1	0	14	72	882	9240	109940	1355760
543	CKP_{580}	1	0	14	72	1002	10800	138020	1807680
544	CKP_{581}	1	0	14	72	1026	10560	136220	1733760
545	CKP_{582}	1	0	14	78	834	8880	98870	1177260
546	CKP_{583}	1	0	14	78	906	9600	112190	1363320
547		1	0	14	78	1146	12780	174830	2377620

Continued from previous page.

Period ID		Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
548	CKP $_{584}$	1	0	14	84	930	10320	122720	α_{7}
549		1	0	14	84	1074	12600	161600	2189640
550	CKP $_{585}$	1	0	14	84	1074	12720	163040	2202060
551	CKP $_{586}$	1	0	14	96	1170	14040	184820	2526720
552		1	0	14	96	1194	15360	201740	2897160
553	CKP $_{587}$	1	0	14	96	1266	15240	207860	2918160
554		1	0	14	96	1434	18600	276620	4253760
555		1	0	14	102	1242	15720	211910	2994600
556	CKP $_{588}$	1	0	14	102	1338	17280	237830	3452400
557	CKP $_{589}$	1	0	14	102	1530	19800	284990	4270980
558		1	0	14	108	1218	17400	224600	3334800
559		1	0	14	108	1314	18240	245120	3690960
560	CKP $_{590}$	1	0	14	120	1506	20640	296420	4484760
561	CKP $_{591}$	1	0	14	120	1554	20520	298940	4515000
562		1	0	14	138	2106	30120	474530	7913220
563	CKP $_{592}$	1	0	14	144	1506	21480	311900	4544400
564	CKP $_{593}$	1	0	14	144	1506	24480	349700	5456640
565	CKP $_{594}$	1	0	14	156	2226	33000	534200	9067800
566		1	0	14	180	2082	33480	560480	9276960

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
567	CKP_{595}	1	0	14	288	2994	58440	1220900	21414960
568	$\mathrm{CKP}_{596}, V_{8}^{4}$	1	0	16	0	1296	0	160000	0
569	CKP_{597}	1	0	16	24	1296	4320	163240	840000
570	$S_{6}^{2} \times S_{5}^{2}, \mathrm{CKP}_{598}$	1	0	16	42	720	4920	58390	567840
571	CKP_{599}	1	0	16	60	1344	11520	192940	2347800
572	$\mathrm{CKP}_{600}, \mathbb{P}^{1} \times \mathrm{MM}_{3-6}^{3}$	1	0	16	66	936	8280	97630	1086540
573	$\mathbb{P}^{1} \times \mathrm{MM}_{2-12}^{3}, \mathrm{CKP}_{601}$	1	0	16	72	1056	9840	122920	1428000
574	CKP_{602}	1	0	16	78	1080	11040	138490	1725780
575	$\mathrm{CKP}_{603}, \mathbb{P}^{1} \times \mathrm{MM}_{2-13}^{3}$	1	0	16	84	1104	11400	137860	1685040
576	CKP_{604}	1	0	16	84	1152	12600	162700	2132760
577	CKP_{605}	1	0	16	90	1176	12900	164590	2139060
578	CKP_{606}	1	0	16	90	1200	13440	175750	2332680
579		1	0	16	96	1632	19320	302200	4447800
580	$\mathbb{P}^{1} \times \mathrm{MM}_{2-11}^{3}, \mathrm{CKP}_{607}$	1	0	16	108	1248	15600	188260	2538480
581	CKP_{608}	1	0	16	108	1488	18600	261700	3797640
582		1	0	16	108	1488	18960	267460	3922800
583		1	0	16	108	1632	20640	309220	4640160
584	CKP_{609}	1	0	16	114	1488	19440	268990	3973620
585	CKP_{610}	1	0	16	114	1488	19740	275470	4077780

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
586	CKP_{611}	1	0	16	114	1512	23640	303190	5285700
587	CKP_{612}	1	0	16	120	1488	19440	268360	3894240
588	CKP_{613}	1	0	16	126	1752	23940	355570	5509980
589		1	0	16	204	3264	52680	952180	18086880
590	CKP_{614}	1	0	18	48	1494	9120	206820	1864800
591	$\mathbb{P}^{1} \times \mathrm{MM}_{2-14}^{3}$	1	0	18	90	1302	13260	168570	2089080
592	CKP_{615}	1	0	18	102	1398	16200	212670	2919420
593		1	0	18	108	1542	18180	249480	3486420
594	CKP_{616}	1	0	18	114	1542	19200	262890	3780420
595	CKP_{617}	1	0	18	120	1878	23400	351180	5323080
596	CKP_{618}	1	0	18	120	1878	25200	379980	6032880
597		1	0	18	120	2022	26160	421020	6607440
598	CKP_{619}	1	0	18	132	1926	25800	388800	6041280
599	CKP_{620}	1	0	18	138	2166	30240	478170	7777560
600		1	0	18	144	2118	30960	481860	7971600
601	CKP_{621}	1	0	18	156	2190	32760	513720	8536080
602	CKP_{622}	1	0	18	156	2310	33240	537120	8919960
603		1	0	18	156	2358	34920	564120	9502920
604		1	0	18	174	2454	38880	636030	11007780

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
605	CKP_{623}	1	0	18	192	2862	46440	802980	14515200
606	CKP_{624}	1	0	18	228	2934	55320	969840	18061680
607	$\mathrm{CKP}_{625}, S_{5}^{2} \times S_{5}^{2}$	1	0	20	60	1140	9120	121700	1377600
608	$\mathrm{CKP}_{626}, \mathbb{P}^{2} \times S_{4}^{2}$	1	0	20	102	1188	11760	123050	1391880
609	CKP_{627}	1	0	20	120	1668	21120	303320	4519200
610	CKP_{628}	1	0	20	120	1860	23280	342200	5115600
611	CKP_{629}	1	0	20	126	1908	24480	361010	5470920
612		1	0	20	144	2148	31800	505280	8329440
613	CKP_{630}	1	0	20	156	2340	34080	540740	8942640
614	Str_{3}	1	0	20	156	2700	41040	697700	12503400
615	CKP_{631}	1	0	20	168	2580	38400	629120	10709160
616		1	0	20	168	2580	39600	648920	11239200
617		1	0	20	198	3228	52260	925130	17075100
618	$\mathrm{CKP}_{633}, S_{8}^{2} \times S_{4}^{2}$	1	0	22	102	1434	13740	160510	1881180
619	CKP_{634}	1	0	22	120	1914	23280	347980	5206320
620	$\mathbb{P}^{1} \times \mathrm{MM}_{3-3}^{3}, \mathrm{CKP}_{635}$	1	0	22	132	2058	24360	345280	4867800
621	CKP_{636}	1	0	22	144	2394	34200	557140	9241680
622	CKP_{637}	1	0	22	162	2490	34260	531490	8504160
623		1	0	22	168	2634	38040	613660	10263120

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
624	CKP_{638}	1	0	22	186	3090	47880	824530	14728980
625		1	0	22	186	3354	52980	960970	17852100
626		1	0	22	192	3258	51720	914620	16742880
627	CKP_{639}	1	0	22	246	4290	74280	1433830	28650720
628		1	0	22	264	4122	77880	1476220	29789760
629		1	0	22	264	4554	82200	1613740	33027120
630	$\mathrm{CKP}_{640}, V_{6}^{4}$	1	0	24	0	3240	0	672000	0
631	CKP_{641}	1	0	24	36	3240	10800	680100	3528000
632	CKP_{642}	1	0	24	72	3288	21600	720600	7101360
633	$\begin{aligned} & \mathbb{P}^{1} \times \mathrm{MM}_{7-1}^{3}, \mathbb{P}^{1} \times \mathbb{P}^{1} \times S_{4}^{2}, \\ & \mathrm{CKP}_{643}, \end{aligned}$	1	0	24	96	1704	14400	193920	2150400
634	$S_{7}^{2} \times S_{4}^{2}, \mathrm{CKP}_{644}$	1	0	24	102	1704	15720	205530	2452380
635	CKP_{645}	1	0	24	144	3480	46920	909600	16450560
636	$\mathrm{CKP}_{646}, \mathbb{P}^{1} \times \mathrm{MM}_{2-9}^{3}$	1	0	24	174	2784	37680	578490	9059820
637		1	0	24	186	3144	47280	804390	14118720
638	CKP_{647}	1	0	24	192	3048	45840	757680	13077120
639	CKP_{648}	1	0	24	192	3192	48120	816000	14306040
640	CKP_{649}	1	0	24	234	3648	60780	1060350	19603500
641	CKP_{650}	1	0	24	264	4632	83040	1611960	32664240

Continued from previous page

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
642		1	0	24	264	5352	101040	2040360	43219680
643	CKP_{651}	1	0	26	72	3534	22320	787580	7514640
644	$\mathrm{CKP}_{652}, S_{6}^{2} \times S_{4}^{2}$	1	0	26	108	1998	19080	270440	3435600
645	CKP_{653}	1	0	26	216	4302	72480	1371500	27676320
646	CKP_{654}	1	0	26	246	4302	72120	1339550	25814460
647	CKP_{655}	1	0	26	288	5166	102960	2038580	44530080
648	CKP_{656}	1	0	26	396	6222	151080	3168440	74446680
649	CKP_{657}	1	0	28	240	3996	62400	1067680	19007520
650	CKP_{658}	1	0	28	258	4764	82200	1573390	31316460
651	CKP_{659}	1	0	28	288	5484	100800	2038960	42887040
652	CKP_{660}	1	0	28	306	5580	104100	2099350	44273880
653		1	0	28	342	6540	129540	2770570	61901700
654	CKP_{661}	1	0	28	432	9660	210240	5004640	126134400
655	$S_{5}^{2} \times S_{4}^{2}, \mathrm{CKP}_{662}$	1	0	30	126	2658	27720	439590	6247500
656	$\mathbb{P}^{1} \times \mathrm{MM}_{2-10}^{3}, \mathrm{CKP}_{663}$	1	0	30	216	3858	54000	891660	14726880
657	CKP_{664}	1	0	30	240	4338	66960	1182900	21408240
658	CKP_{665}	1	0	30	300	6690	124920	2778600	61790400
659	CKP_{666}	1	0	30	372	7314	153720	3385200	79195200

Period ID		Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
660	CKP $_{667}$	1	0	32	318	6144	113280	2304770	α_{7}
661	CKP $_{668}$	1	0	32	384	7728	157800	3492320	48799800
662		1	0	32	384	8112	167520	3766640	80806320
663	$\mathbb{P}^{1} \times V_{14}^{3}$	1	0	34	312	5910	97920	1820140	88438560
664		1	0	34	390	8694	179520	4180750	34520640
665		1	0	34	498	10278	245040	5923330	100127580
666	CKP $_{669}$	1	0	36	336	6708	119520	2419200	153543600
667	CKP $_{670}$	1	0	36	360	7188	134400	2795400	50507520
668		1	0	36	396	7572	143160	2921580	60459840
669		1	0	36	456	9876	214680	5072760	62324640
670	CKP_{671}	1	0	36	552	12852	304080	7828200	125137740
671		1	0	36	768	18996	500640	14713200	210966000
672	$\mathrm{CKP}_{672}, \mathbb{P}^{1} \times \mathrm{MM}_{2-7}^{3}$	1	0	38	348	6954	117840	2268560	450203040
673	CKP_{673}	1	0	38	384	8106	156480	3390500	44336040
674	CKP_{674}	1	0	38	396	8010	150600	3136160	76130880
675	$\mathrm{CKP}_{675}, S_{4}^{2} \times S_{4}^{2}$	1	0	40	192	4776	59520	1120000	67735080
676	CKP_{676}	1	0	44	516	11580	248880	5903540	19138560
677	CKP_{677}	1	0	44	636	15804	393480	10666340	145945800
678	CKP_{678}	1	0	44	696	17388	445680	12371480	301939680

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
679		1	0	44	744	18396	492360	14028200	419215440
680	CKP_{679}	1	0	44	888	23052	649200	19904120	635293680
681	$\mathbb{P}^{1} \times \mathrm{MM}_{2-6}^{3}, \mathrm{CKP}_{680}$	1	0	46	528	11826	238560	5341780	122340960
682	CKP_{681}	1	0	46	714	18618	496560	14203810	428469300
683	$V_{4}^{4}, \mathrm{CKP}_{682}$	1	0	48	0	15120	0	7392000	0
684	CKP_{683}	1	0	48	216	15408	151320	7959000	117482400
685	CKP_{684}	1	0	48	660	15552	367320	9396300	251895000
686	$\mathbb{P}^{1} \times V_{12}^{3}$	1	0	50	600	13758	288480	6659420	157802400
687	CKP_{685}	1	0	50	792	21078	635760	18069260	600739440
688	CKP_{686}	1	0	52	696	17412	424440	11365000	317604000
689		1	0	52	1044	29124	874080	28285540	956113200
690	$\mathbb{P}^{2} \times S_{3}^{2}, \mathrm{CKP}_{687}$	1	0	54	498	9882	162000	2938770	54057780
691	CKP_{688}	1	0	54	528	11178	207720	4427820	98491680
692	CKP_{689}	1	0	54	744	19194	481680	13279500	381906000
693	CKP_{690}	1	0	54	888	24378	677520	20447820	644873040
694	$\mathrm{CKP}_{692}, S_{8}^{2} \times S_{3}^{2}$	1	0	56	498	10536	171900	3240110	60897480
695	CKP_{693}	1	0	56	528	11832	217920	4748600	106293600
696	CKP_{694}	1	0	56	600	14424	317100	7961600	207233040

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
697	$\mathbb{P}^{1} \times \mathbb{P}^{1} \times S_{3}^{2}, \mathrm{CKP}_{695}, \mathbb{P}^{1} \times$	1	0	58	492	11214	178440	3502120	65938320
	MM_{8-1}^{3}								
698	$\mathrm{CKP}_{696}, S_{7}^{2} \times S_{3}^{2}$	1	0	58	498	11214	181800	3561250	68151720
699		1	0	58	888	23694	632400	18393340	559525680
700	$S_{6}^{2} \times S_{3}^{2}, \mathrm{CKP}_{697}$	1	0	60	504	11916	195120	3962040	78104880
701	CKP_{698}	1	0	60	1068	30156	893280	28423860	948659040
702	CKP_{699}	1	0	60	1212	35916	1134480	38512860	1368087000
703	$\mathrm{CKP}_{700}, S_{5}^{2} \times S_{3}^{2}$	1	0	64	522	13392	225720	4887190	102194400
704	CKP_{701}	1	0	66	852	21510	504000	13009080	347891040
705	CKP_{702}	1	0	66	1356	47574	1614240	58420920	2223985680
706	$\mathbb{P}^{1} \times \mathrm{MM}_{2-5}^{3}, \mathrm{CKP}_{703}$	1	0	68	816	21012	465960	11662880	297392760
707	CKP_{704}	1	0	68	852	22308	520680	13640900	368091360
708	CKP_{705}	1	0	68	1320	43236	1421040	51100520	1914785040
709	$S_{4}^{2} \times S_{3}^{2}, \mathrm{CKP}_{706}$	1	0	74	588	17550	319560	7862600	185440080
710	CKP_{707}	1	0	78	1140	32706	877320	26208960	814453920
711	CKP_{708}	1	0	78	1176	34002	937080	28577940	909170640
712	CKP_{709}	1	0	78	1680	60066	2142720	82424580	3324124440
713	CKP_{710}	1	0	80	1212	36240	1020360	31974020	1043489160
714	$\mathbb{P}^{1} \times V_{10}^{3}$	1	0	80	1320	38688	1078320	32604200	1016215200

Period ID	Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}
715		1	0	84	1932	69636	2622480	106446900	4526098920
716	CKP_{711}	1	0	84	2148	77316	3051480	128188740	5649930720
717		1	0	90	1788	59886	2032920	74950920	2894154480
718	CKP_{712}	1	0	90	2040	76014	2873160	117404820	5023514160
719	$\mathbb{P}^{1} \times \mathrm{MM}_{2-4}^{3}, \mathrm{CKP}_{713}$	1	0	92	1518	47172	1357680	42774050	1385508600
720	CKP_{714}	1	0	92	1626	51492	1574580	52448150	1816414320
721	CKP_{715}	1	0	92	2112	83820	3281280	141863600	6368328960
722	CKP_{716}	1	0	102	1950	67002	2266320	83881470	3245543280
723		1	0	102	2274	84330	3207480	132223890	5710371660
724	CKP_{717}	1	0	102	2688	106410	4495680	203447460	9658434240
725	CKP_{718}	1	0	102	3408	146250	6695280	334814340	17506424880
726	CKP_{719}	1	0	104	2472	97944	3940320	171825080	7840793520
727	$\mathrm{CKP}_{720}, S_{3}^{2} \times S_{3}^{2}$	1	0	108	984	37260	848880	26609400	804368880
728	CKP_{721}	1	0	128	2976	120960	4959840	221633120	10369947840
729	CKP_{722}	1	0	138	4650	222918	11448480	632940330	36647730000
730		1	0	150	4866	241002	12623040	711272850	42024975300
731	$\mathrm{CKP}_{723}, \mathbb{P}^{1} \times V_{8}^{3}$	1	0	154	3840	159486	6504960	284808340	12889551360
732	CKP_{724}	1	0	168	4752	219624	10383840	531501360	28511659680
733	CKP_{725}	1	0	184	5688	286008	14876160	837897160	49505030400

Period ID		Name	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
734		1	0	224	9312	580704	38555520	2752140320	206084027520
735	CKP $_{726}$	1	0	272	13560	952176	73148160	5996559080	516454715280
736	CKP $_{727}, \mathbb{P}^{1} \times V_{6}^{3}$	1	0	398	17616	1221810	85572960	6386359700	493612489440
737	CKP $_{728}$	1	0	420	19992	1488708	114603120	9497959800	824518956240
738	CKP $_{729}$	1	0	444	22404	1771596	146305440	13047797460	1221757064640
739	CKP $_{730}$	1	0	468	24852	2065764	180367920	17014559940	1685867765400
740		1	0	540	37632	3836268	420664320	49565795760	6131551910400
741	CKP $_{731}$	1	0	1040	105984	15564048	2472668160	422070022400	75673543680000
742		1	0	1386	166284	28575342	5322513240	1065056580360	223880895211680
743	$\mathbb{P}^{1} \times V_{4}^{3}, \mathrm{CKP}_{732}$	1	0	1946	215808	35318526	5981882880	1074550170260	200205416839680
744	CKP_{733}	1	0	1992	227472	38459880	6796332000	1282447706160	252711084477600
745	CKP_{734}	1	0	2136	262896	48275736	9412519800	1975803279600	435882277192320
746	CKP_{735}	1	0	2664	466368	115475112	31137505920	9021039724800	2746619333498880
747	CKP_{736}	1	0	6804	2040912	852143652	389608626240	191430924575040	98894833331535360
748	CKP_{737}	1	0	12816	5435904	3188239632	2051802731520	1419118168838400	1032164932439531520
749	CKP_{738}	1	0	99000	130800000	233995275000	462392774925120	982577026659240000	2197113382189414080000

[^0]: *Another proof of this, using different methods, has recently been given by Rachel Webb [49].

[^1]: *Note that usually the I-function is written as a function in (τ, z), just like the J-function. This is what you obtain if you set $\tau=0$ (the only case we need).

[^2]: *This is the Euler characteristic of X as a topological space.

[^3]: ${ }^{\dagger}$ To be precise: we find at least 141 four-dimensional Fano manifolds for which the regularised quantum period was not previously known. The regularised quantum period of a Fano manifold X is expected to completely determine X. See $[16,14]$ for known quantum periods.

[^4]: *They are chosen to minimize the quantity $\sum_{i=0}^{\rho} r_{i}^{2}$, which is a rough proxy for the complexity of the Chow ring of the Abelianization.

