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Abstract

These notes are based on an invited mini-course delivered at the 2019 PIMS-Fields Summer
School on Algebraic Geometry in High-Energy Physics at the University of Saskatchewan. They
give an introduction to mirror constructions for Fano GIT quotients and their subvarieties, es-
pecially as relates to the Fano classification program. They are aimed at beginning graduate
students. We begin with an introduction to GIT, then construct toric varieties via GIT, outlining
some basic properties that can be read off the GIT data. We describe how to produce a Laurent
polynomial mirror for a Fano toric complete intersection, and explain the proof in the case of P2.
We then describe conjectural mirror constructions for some non-Abelian GIT quotients. There are
no original results in these notes.

1 Introduction

The classification of Fano varieties up to deformation is a major open problem in mathematics. One
motivation comes from the minimal model program, which seeks to study and classify varieties up
to birational morphisms. Running the minimal model program on varieties breaks them up into
fundamental building blocks. These building blocks come in three types, one of which is Fano varieties.
The classification of Fano varieties would thus give insight into the broader structure of varieties.

In this lecture series, we consider smooth Fano varieties over C. There is only one Fano variety in
dimension 1: P'. This is quite easy to see, as the degree of a genus g curve is 2—2¢g. The curve is Fano
if and only if the degree is positive, so only if g = 0. The classification of dimension 2 Fano varieties
(called del Pezzo surfaces) is more difficult, but is known classically. The classification in dimension 3 is
due to Iskovskih [I5] and Mori-Mukai [23] — it is one of the major results of 20*" century mathematics.
One of the interesting features of this lists is that they can all be written as certain subvarieties, called
representation theoretic subvarieties, of GIT quotients of vector spaces [5]. Moreover, the ambient
GIT quotients are either toric varieties or quiver flag varieties (certain non-Abelian GIT quotients
generalising type A flag varieties).

The techniques used to classify Fano threefolds do not generalise to higher dimensions. Another
suggested approach is via mirror symmetry. Very roughly, mirror symmetry suggests that the sym-
plectic geometry of X should be equivalent to the complex geometry of the mirror of X, often denoted
XVY. When X is a Calabi—Yau variety, then so is its mirror. In particular, X and X" have mirror
Hodge diamonds:

hP4(X) = R P9XY) n=dim(X).

This is the origin of the the name mirror symmetry. For Fano varieties, the mirror is a Landau—
Ginzburg model. It’s expected that this Landau-Ginzburg model can be described as a family of
certain Laurent polynomials, related by mutation. Another way to describe the expected picture (as
conjectured precisely by Kasprzyk—Tveiten [19]) is as:

{n - dimensional Fano varieties up to deformation}
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{certain Laurent polynomials in n — variables up to mutation}.

Part of the conjectures is precisely what is meant by ‘certain’.

Mirror symmetry opens another way of attack in the classification of Fano varieties by proposing
to classify the mirrors of Fano varieties instead. This is the Fano classification program of Coates,
Corti, Galkin, Golyshev, Kasprzyk and others.

As it happens, mirror symmetry for Fano varieties is best understood for GIT quotients of vector
spaces and their subvarieties. These varieties are thus the most accessible testing ground for these
conjectures and are also expected to include most (if not all) small dimensional Fano varieties (the
first example of a Fano variety which is not such a subvariety is in dimension 66). So it’s hoped
that understanding mirror symmetry for these types of Fano varieties would be major step towards
classifying all Fano varieties.

I’ll start by going into slightly more detail about mirror symmetry for Fano varieties, then give an
introduction to Geometric Invariant Theory (GIT), with a goal of understanding the GIT quotients in
which most (and all dimension less than three) Fano varieties can be found. As mentioned, these come
in two types: toric varieties and quiver flag varieties. I'll construct toric varieties as GIT quotients,
and then explain the mirror statement for toric varieties, and prove it for P2. In the last part of
these notes, I'll talk about quiver flag varieties and abelianisation, a powerful tool for understanding
non-Abelian GIT quotients by reducing to the toric case.

2 Mirror symmetry for Fano varieties and Fano classification

Let X be an n-dimensional smooth complete variety over C. You can think of it as a complex manifold
if you are more comfortable with this language. Then X is Fano if —-Kx = A"TX is an ample line
bundle. A line bundle L is ample if it has ‘enough’ sections in the following sense: there is some tensor
power of L, say L®" such that the map

i: X >P(D(X,L)"),z ~ evg, evg(s) = s(x)

is an embedding.
In particular, we can see that all Fano varieties are projective.

Example 2.1. P" is Fano, as is any hypersurface of degree d, d <n + 1.

One of the things which makes Fano varieties extremely special is that, up to deformation, there
are only finitely many n-dimensional Fano varieties.

Conjecturally, under mirror symmetry, n-dimensional Fano varieties (up to mutation) should cor-
respond to certain Laurent polynomials in n-variables (up to mutation). We can associate to each of f
and X a period, defined in each case below. A Fano variety X is mirror to a Laurent polynomial f if
the quantum period of X is equal to the reqularised classical period of f. Each period satisfies certain
differential equations, so this can also be said as an equality of differential equations or as one period
satisfying the differential equations of the other.

The classical period of f Let f e C[z7,...,2X]. Then the period of f is

et = 1 /‘ 1 % dx,
Y= ey Jesoyn 1=tf 21 @n

Using the residue theorem, we can re-write this very concretely as

m(t) = 2Const(fi)zi,



where Const(f?) is the constant term in the expansion of f*. The regularised classical period is

rr(t) = 3 S i

i=0 i!
Mutations are certain birational maps ¢ : (C*)™ -» (C*)™ taking f’ to f by pullback. They are
constructed so as to preserve period sequences. See [I] for more details.

The quantum period of X The quantum period is much more complicated. We will this discuss
in more detail in but it is a power series built of genus 0 Gromov—Witten invariants. As a
consequence, it is deformation invariant. Therefore, if we can compute it, it can be used to distinguish
different Fano varieties (however, it is not known to be a complete invariant).

Example 2.2. The mirror of P? is z +y + ﬁ

The conjecture has been verified in dimension 2 ([I§]). In dimension 3, mirrors to all Fano varieties
have been found (Appendix A of [5]). For Fano varieties that are toric complete intersections, one can
compute both the quantum period and (usually) find a mirror. For subvarieties of quiver flag varieties,
we can compute the quantum period and there are conjectural methods for finding mirrors in certain
nice situations. As mentioned, these two cases cover all dimension less than 3 Fano varieties.

3 GIT quotients

In this section, we give a brief introduction to GIT quotients: why one might want to define them,
the definition in the affine and projective case, and how one can actually compute them (the Hilbert—
Mumford numerical criterion). Good references include Richard Thomas’ notes on the arxiv [27], which
I mostly follow, together with Newstead [24] and Proudfoot [26].

Let G be a linear algebraic group over C (i.e. G is a subgroup and subvariety of GL(n,C)). Suppose
X is a variety (either projective or affine) such that G acts on X algebraically. We want to define the
quotient X /G such that X /G is a variety like X. The following example illustrates why we might not
want to just do this naively.

Example 3.1. Consider G = C* acting on C? by scaling:
)\ . (Zl, 22) = ()\Zl, )\22)

Note that for any z = (21, 22),
limA-z=0.
A—0

The closure of the orbit of z contains 0. This means that if we take the topological quotient, it won’t
be Hausdorff (or rather separated). If we instead take the quotient C* — {0}, we obtain P

Some desirable properties for a construction of a quotient are the following;:
e X /G is separated.

e X/G satisfies a universal property: A G-invariant map p: X — Y is a categorical quotient if for
all G-invariant functions f: X — Z, there exists a unique map f:Y — Z such that fop=f.

e Functions on X /G should be the G-invariant functions of X. This is roughly what it means to
be an good quotient. Let p: X - Y be a surjective and G invariant morphism. Then p is a good
quotient if the following holds:

1. px—(OX)G = OY-



2. If Z is closed and G-stable, then p(Z) is closed. If Z; and Zs are closed, G-stable, and
disjoint, then p(Z) np(Z3) = @.

e A good quotient p: X - Y for which orbits of G in X correspond to points of Y is called an
geometric quotient.

One can show that a good quotient p : X — Y is a categorical quotient, so that these definition are
increasingly strong conditions. GIT will give us a way to remove certain orbits in order to obtain a
quotient which is well-behaved.

Remark 3.2. Note that the property of being a good or geometric quotient is local on the base. That
is, a G-invariant morphism p: X - Y is good/geometric if and only if there is an open cover {U;} of
Y such that each restriction p: p~t(U;) - U; is good/geometric.

3.1 The affine case

An affine variety is the zero locus of a finite number of polynomials p1,...,px € C[z1,...,2,]. The ring
of functions is C[z1,...,2,]/(f1,--., fx), and Spec gives a correspondence between integral domains
and affine varieties. Let G be a linear algebraic group acting rationally on an affine variety X (that
is, through a representation X — GL(n)). Then G acts on Ox, and the natural way to construct the
quotient is to consider the variety corresponding to O%. But is O a finitely generated algebra? In
general, the answer is no - that is why we consider only reductive groups, where it is always finitely
generated.
Let G be a linear algebraic group.

1. G is reductive if every smooth connected unipotent normal subgroup of G is trivial. Over C, we
can equivalently say that any representation of G splits into direct sums of irreducible represen-
tations.

2. @ is linearly reductive if for every rational representation V of GG, and any non-zero fixed point
v € V, there exists a homogeneous G-invariant polynomial f of degree 1 on V such that f(v) # 0.

3. G is geometrically reductive if for every rational representation V of G, and any non-zero fixed
point v € V, there exists a homogeneous G-invariant polynomial f on V such that f(v) # 0.

Over C, these 4 definitions all coincide, and the last two are more useful in GIT.
Example 3.3. The torus T is reductive, as is GL(n) and SO(n). The additive group is not reductive.

Theorem 3.4 (Nagata’s theorem). Let G be a geometrically reductive group acting rationally on a
finitely generated C-algebra R. Then RC is finitely generated.

The following lemma is another very useful property of reductive groups.

Lemma 3.5. Let G be a geometrically reductive group acting on an affine variety X. Let Zy and Zs
be two closed G-invariant subsets of X such that Z1nZy = @. Then there exists a G-invariant function
U e OF such that U(Zy) =1 and ¥(Zy) = 0.

Proof. Let f; € I(Z;) such that f; + fo = 1. The linear subspace spanned by {gf2|g € G} is G-invariant
and finite dimensional (exercise, or see [24, Lemma 3.1]). Let hq,...,h, be a basis of this subspace.
The action of G on the h; determine an action of G on C", and the map

Y: X >C" xw (hi(x),...,h(x))

is G-equivariant by construction. Then ¥(Z;) = 0 and v = ¥(Z3) = (1,...,1). Then since G is
geometrically reductive, there is a homogeneous f’ € C[z1,...,2,]¢ such that f'(v) # 0, and £(0) = 0.
The composition f’ o1 satisfies the requirements of the lemma. O



Now we can construct good quotients for affine varieties.

Theorem 3.6. Let X be an affine variety, G a reductive group acting on X. Thenp: X - Y :=
Spec(O(X)%) is a good quotient.

Proof. First, we show that p is G-invariant. Suppose that there is z € X, g € G such that p(z) # p(gz).
Then, since Y is affine, there is f € Oy = OF such that f(p(z)) # f(p(gz)), an obvious contradiction.

Next, we show that p is surjective. Let y € Y, and let (f1,...,fx) generate the maximal ideal
corresponding to y. There exists a maximal ideal of Ox containing the ideal generated by f1,..., fk
(one needs to check that f1,..., fr do not generate all of Ox - this follows from the fact that G is
reductive), and the point corresponding to this ideal maps under p to y.

Next, let’s show that for any open set U c Y, Oy (U) = Ox (p~1(U)). It suffices to show this for a
basis of open sets; in particular, we can consider just open sets Dy for f € Oy. That is, we want to
show that

Oy (D(f)) = (05) s = ((0x)5)¢ = Ox(D(/))€,

which is clear.
Now let Z; and Z; be G-invariant closed subsets which are disjoint. Then by Lemma [3.5] there is
a G-invariant function ¥ € Oy such that ¥(Z;) =1 and ¥(Z5) =0, so in particular p(Z1) np(Z2) = @.
The final thing to show is that if Z is a closed and G-invariant subset of X, then p(Z) is closed.
Suppose y € (p(Z)) —p(Z). Then Z and p~'(y) are both closed, and are disjoint, so we can apply the
previous statement to arrive at a contradiction. ]

Remark 3.7. If G is not reductive, it does not necessarily imply that O)G( is not finitely generated.
Considerable work has been done on extending GIT to non-reductive groups.

The quotient we have constructed separates orbits as much as possible, by which we mean:

Corollary 3.8. Suppose p(x1) = p(x2). Then Gxy N Gs # &.
Proof. If Gz, and Gz were disjoint, then their image under p would also be disjoint. O

If we look back at our first example, of C* acting on C?2, this construction still doesn’t give us a
‘correct’ answer, as C[z,y]® = C. To produce projective quotients, we need to generalise this to the
Proj construction.

4 Projective GIT

Brief aside on projective varieties There is a correspondence between pairs (X, L) where X is a
projective variety and L is an ample line bundle and graded rings (without zero divisors). The graded
ring associated to X is

R=2,H(X,L%).

The functor the other way is the Proj functor.
Mimicking what we did in the affine case, we want to take the G-invariant part of this ring and
then apply Proj. To get an action of G on the section of L, we take L to be G-linearised.

Definition 4.1. Let (X, L) be an algebraic variety, and G a linear algebraic group acting on X via
0:GxX — X. Then a G-linearisation of L is a lift of o to @ : G x L > L which commutes with o, and
such that the zero section is G-invariant.

The group G acts on the sections of a G-linearised line bundle L. Alternatively, if X = Proj(R),
then we can think of a linearisation being a lift of the G-action to R in a way that preserves the
grading.

Remark 4.2. When L is very ample, it defines an embedding of X into P(H°(X,L)*) = P*. A
linearisation is then equivalent to saying that G acts on X via a representation G - GL(k + 1).



We define the GIT quotient of (X, L) by G as
X//G = Proj(e2, HO (X, Lo™)C).

Example 4.3. We construct P" as a GIT quotient of X = C"*! by C*. Let L be the trivial line bundle
on X. Notice that a linearisation is precisely given by a character of C*. Let C"*! x C be the total
space of the dual line bundle; then for p € Z ~ x(C*), define the action to be (z,y) — (tz,tPy). Then
for f e I(C"*, L®*) = C[xo, ..., xn,y], the action of t € C* is given by

tf(z0s...,x0) =t P f(txo, ... tx,).

Note that if p < 0, there are no invariant sections, so X//G = @. If p =0, we get a point. If p >0, then
the invariant sections of L®* are the degree kp homogeneous polynomials of Clxo,...,xn]. So if we
take p = 1, we obtain P™ with its usual grading.

Notice that we could have instead embedded C" c P"*! via v + [v : 1], and then used the lin-
earisation given by weights (1,...,1,—(n + 1)). This would have given the GIT quotient above with
p=n+1.

To set this up to be more like the above construction, note that X = Proj(C[xo,...,2Zn,y]), where
the z; have degree 0 and ¢ has degree 1. The action of C* on C[xo,...,Z,,y] is then given by weights
1 on the z; and weight —p on y.

The GIT quotient X//G is not, strictly speaking, a quotient of X, as there isn’t a natural map
X - X//G (as we see in the above example, P" is rather a quotient of C"** - {0}). To see what orbits
of X appear in the quotient, note that for some r >> 0, the quotient X//G is the image of X under
the (rational) map X -» P((H°(X,L®")%)*) which takes x € X to ev,. The linear map ev, takes s to
s(x). This map is only defined on points where some G-invariant section of L®" doesn’t vanish. It is
clearly G-invariant. This motivates the following definition:

Definition 4.4. A point x € X is L-semi-stable if there exists a G-invariant section s of L®" such that
s(x) #0. A point which is not semi-stable is called unstable.

The set of semi-stable points is denoted X**(L). This is a Zariski open subset of X. Notice that
this definition is G-invariant. The set of semi-stable elements is Zariski open.

Theorem 4.5. There is a G-invariant morphism p : X**(L) - X /|G such that p is a good quotient,
and X /|G is quasi-projective. If L is ample, then X [|G is projective.

Sketch. We prove this in the case where L is very ample, so we can assume that we have X c P*,
and R = Clxo,...,z;]/I = Oy, where X is the cone over X. Note that R® has no zero divisors, as R
doesn’t. The inclusion of algebras R® — R induces a morphism § : Spec(R) — Spec(R%); the question
is where this map descends to Proj; that is, when a point & € Spec(R) — Spec(Rp) lifting x € X gets
mapped away from the irrelevant ideal of R®. Note that

ze X% (L) « 3f € RS such that f(&) #0,m >0 < p(&) ¢ Spec(RS).

Since the algebra morphism preserved grading, we obtain a morphism p: X**(L) - Proj(R%) = X//G.

Let Y = X//G = Proj(R%); then Y is also covered by subsets Y} for f € RY, and p~'(Y}) = X;.
Also, Oy, = ((R%)s)o. The restriction of p : Xy — Y} on coordinate rings is precisely given by the
inclusion (R¢)o = ((Ry)0) = (Rf)o = Ox,. Thus by Theorem the GIT quotient X; —» Y7 is a
good quotient. Then since being a good quotient is a property local on the base, this implies that
p: X% - X//G is a good quotient. O

Remark 4.6 (]26]). Going back to the example of projective space, we see that we removed the unstable
locus to obtain a GIT quotient - this was exactly Spec(Rp), that is, the vanishing locus of the irrelevant
ideal. So GIT can be interpreted as giving a geometric reason for the irrelevance of the irrelevant ideal.



The semi-stable points are the points which appear in X//G; however, the map may collapse more
than just one orbit. We call two semi-stable orbits GIT equivalent if they are are collapsed to the same
point under p. The main point of GIT is that we can describe this equivalence geometrically. Two
semi-stable orbits are GIT equivalent if and only if

Gari1nGaanX® +g.

This follows immediately from the fact that this is a good quotient (see proof of Lemma (3.8]).
Therefore, G-invariant sections of L®" separate x from nearby orbits exactly when G.z is closed in
X5,

Definition 4.7. A point x € X*(L) is stable if G.x is closed in X** and G,, is finite.

The stable points of X are denoted X*(L), a G-invariant and Zariski open subset of X. We have
essentially proved the following statement:

Theorem 4.8. The restriction of p: X*(L), p: X°(L) - X°/G, is a geometric quotient.

4.1 Affine criterion for stability

The power of GIT is that one can find very computable characterizations of stability. We will first
show criterion for semi-stable and stable points by looking at the action of G on the total space of
L*. For this section, let’s restrict to the case where X c P¥, I = O(1) (so that a lifted point is just a
point in (C]”l). Let & be a lift of x € X. Suppose the closure of the orbit of & contains 0. Then the
G-invariant sections of L must all vanish on z, and so x is not semi-stable. In fact, this works in both
directions, and there is a similar characterisation of stability.

Theorem 4.9. The point x is semi-stable if and only if 0 ¢ G - &. Similarly, x is stable if and only if
G- & is closed in C**' and & has finite stabilizer.

Proof. We have already proved one direction of the first statement. Now suppose 0 ¢ G.&. Then
since G is a reductive group, there is a G-invariant polynomial f such that f(0) =0 and f(G.z) = 1.
Therefore the constant term of f is zero, and some homogeneous part of it must not vanish on . Then
f gives a G-invariant section of L which doesn’t vanish on z.

Now assume that x is stable. There is an invariant section of L such that = € X, that is, f is an
invariant homogeneous polynomial not vanishing on Z. By assumption, G.x is closed in X*°, and so
clearly G.z is closed in Xy. Let o= f(&), and consider the closed and G-invariant set

Zo={yeC*"'Z| f(y) = a}.

Then the map Z, — ]P”;c is surjective and finite. The inverse image is a finite collection of orbits of the
same dimension, so in particular all the orbits are closed in Z,; in particular, G.Z is closed. It clearly
has finite orbit.

For the converse, suppose G.Z is closed in C**!. Then by what we have shown, we know that z
is semi-stable. We can construct a surjective and finite map Z, — IE”’;c just as above, which maps G.&

surjectively onto G.x. Therefore G is finite and G.x is closed in IP’];; however since we can vary f this

shows that G.z is closed in X**(L). O
Now let’s apply what we have done for G = C*. Suppose G acts linearly on X c P*. Up to change
of basis, we can assume that G acts diagonally on C**1. Suppose it acts with weights wy, ..., wy: that
is, for any t € C*, and & = (zo,...,zx) € CF*1L,
t-(zg,...,xK) = (tx0,...,t"%xyL).

Define p(x) = max(-w; | z; # 0). Consider lim;ot°t- Z: if s is too big, this limit goes to 0, and if s is
too small, this limit does not exist. The integer p(x) is the unique number such that the limit exists
and is not equal 0.



Note that p(x) > 0 if and only if lim;,ot- & does not exist, and p(z) = 0 if and only if the limit
exists and is not zero. Now similarly define p~ (x) = max{w; | z; # 0}. As above, u~(x) >0 if and only
if limy_ o t - & does not exist, and p(x) =0 if and only if the limit exists and is not zero.

Proposition 4.10. Let G = C* act on X c P* a projective variety. Then for all z € X,
e 1 is semi-stable if and only if u(z) >0 and p (x) > 0.
e z is stable if and only if pu(z) >0 and p~(x) > 0.

Proof. Note that the closure of G.Z is the orbit union the two limits, lim; .o ¢-Z and limy_ o t-Z. The
claim follows from the topological criteria for stability. O

What makes this perspective powerful is the surprising fact that it suffices to test this only for all
1-parameter subgroups of G. This is called the Hilbert—-Mumford numerical criterion.

5 The Hilbert—Mumford numerical criterion

Let (X, L) be a projective variety and L an ample line bundle. Let G be a reductive group acting on X,
and suppose L is linearised. A 1-parameter subgroup of G (called a 1-PS) is a morphism A : C* - G.
This defines an action of C* on X. Let & be a lift of x to the total space of L*. We can re-write the
topological criteria for stability in this language as

e 1z is semi-stable if and only if 0 ¢ G.Z (here 0 means the 0 section).
e z is stable if and only if G.Z is closed and & has finite stabilizer.

Let zq = lim;_o t-x (it exists as X is projective, if X is only quasi-projective then we need to assume
that it exists). The point zp € X is a fixed point for the G action, so C* acts on the fiber of L* over
xo. Let up(z, \) be the negative of the integer giving the character of this action.

As before, lim_o A(¢)Z does not exist if and only if ur(z,A) > 0; it exists and is not zero if and
only if pr(x,\) = 0. Therefore, one direction of the Hilbert-Mumford criterion is clear:

Theorem 5.1 (Hilbert—-Mumford numerical criterion). For all x € X, x is semi-stable if and only if
for all 1-PS X\, pup (M, ) > 0. Similarly, x is stable if and only if for all 1-PS X\, up(\, ) > 0.

Example 5.2 (The complex Grassmannian). Let 7 < n. Consider GL(r) acting on V' = Mat(r x n) =
Hom(C™,C") by multiplication on the left. Let L be the trivial line bundle on V, and linearise with
character 1 € Z. If (A,y) is in total space of L*, g-(A,y) = (gA,det(g) 'y). We claim that A € V is
stable if and only if it has full rank, and it is unstable otherwise. First, suppose that rank(A) < r, so
that A is not surjective. The matrix A is semi-stable if and only if gA is for any g, so we can assume
that the last row of A is zero, after multiplying by g. Then we can choose any 1-PS of G given by
weights (w1, ..., w,) such that w, <0, all the other w; > 0, and w; ++--+w, < 0. Then clearly lim; o ¢-A
exists, and A acts on the fiber with weight wy +---+w,, < 0. Therefore A is unstable. For the converse,
suppose A has full rank. First, note that we only need to consider diagonal 1-PS, as for any g, A

pr(x,g ' Ag) = pr(gz, A).

Let A(¢) be the diagonal 1-PS given by weights wy, ..., w,. After multiplying by an element of G, we
can assume that A is in reduced row echelon form. If the limit exists, then we must have that w; >0
for all 4. Ignoring the trivial 1-PS, we must have that pr (A, ) > 0.

Remark 5.3. To avoid the issues of when the limit exists, we could instead consider SL(r) acting on
the projectivisation of V.



6 Toric Varieties as GIT quotients

In many cases, the stable and semi-stable elements can be computed. One family for which this is
true is toric varieties. We will later see another family of examples called quiver flag varieties. A toric
variety is a normal variety which contains a torus as an open dense subset, such that the action of
the torus on itself extends to the whole variety. Although not all toric varieties can constructed via
GIT, from many perspectives, these are the central examples. They are also the type of toric varieties
where one can really view them as generalisations of projective space (we won’t develop this fully here,
but some examples include: homogeneous coordinates, the affine charts, the Euler sequence). We give
the GIT quotient construction of a toric variety, and briefly relate it to the fan construction. For a
compact description of this construction see [6].

Let K = (C*)" be a torus, and let L be the co-character lattice (the lattice of 1-PS, which is
naturally isomorphic to Z"). Let LY be the dual lattice. For any lattice M, let Mg denote M ®z Q.

Let Dq,...,D,, € NV be characters of K. This defines an action of K on V = C™. As all vector
bundles on V are trivial, a linearisation is given a character w € Lg. We call w a stability condition.
This then defines a GIT quotient X, = (C™)*(w)/K. X, is a toric variety: the open dense torus is
the quotient T = (C*)™ /K. This torus is often referred to as the big torus, to distinguish it from K.

Example 6.1 (P™!). Consider K = C* and Dy = - = D,,, = 1 € x(K) = Z. It is easy to see that
for w > 0, the set of semi-stable elements is the set of stable elements, which is C™ — {0}. The GIT
quotient is thus P™1.

We can describe the semi-stable locus explicitly for a toric variety. To do so, we need the following
notation:

e For I c{l,...,m}, let «; be the open cone over the D;, i€ I.
e Ay, :={Ic{l,....m}we 21}
o Uy i=Urea, (C*) @ (C).
Assumptions 6.2. We will make some assumptions that will hold for the rest of these notes:
1. Assume that {1,...,m} € A, (otherwise the semi-stable locus will be empty).
2. Assume that the weights Dy, ..., Dy, generate LY (this simplifies the statements).

3. Assume that the set {1,...,m}—{i} is an element of A, for alli. This assumption is definitely
not necessary; however, if it isn’t true, then we can write X,, as a quotient by a smaller torus
(and potentially a finite group).

The «1,1I € A, are called the anti-cones.
Theorem 6.3. V*°(w) =U,.

Proof. We only show one direction, and leave the other to the reader. Let A be a 1-PS of K, i.e. A€ L.
The action of C* on C™ is given by

AD1) X, Do

a-(zl,...,zm):(a< 1,...,a< )zm).

The limit lim, g a- z exists if z; # 0 implies (X, D;) > 0. If z € U,, then I = {j|z; # 0} € A, so we can
write w = ¥,.; b;D; for b; > 0. The 1-PS X acts on all fibers of L with the character (\,w), so

/,LL(Z,/\) = (/\,w) = sz</\;Dz) >0.

iel

So every element in U, is semi-stable. O



The combinatorial data of L and Dy, ..., D,,,w encodes a lot of information about the geometry of
X (many of the results for fans can be translated into the language of weights). For example, X, is
smooth if and only if the set {D; :i € I'} contains a Z-basis for all I € A,,. If the condition is weakened
to assuming that every anti-cone contains a QQ-basis, then it isn’t hard to show that V*° = V¥ and the
resulting quotient is orbifold (this last part is because it implies that all semi-stable points have finite
stabilizers).

Not all toric varieties can be constructed as GIT quotients in this way. Considering the definition of
GIT, we see that any toric variety produced in this way is projective over the affine variety Spec(RX),
where R =C[x; ...,z ] and K acts on z; with weight D;. On the other hand, general toric varieties can
have torus factors, for example. The GIT quotient X, is projective precisely when C[x1, ..., 2, ]% = C,
which can also be characterised as follows:

Proposition 6.4 ([11]). X, is projective if and only if 0 is not contained in the convex hull of the
D;.

Consider the exact sequence
0->M" 52" 5L 50

where 7(e;) = D;. The ey, ..., e, are the standard basis of Z™, and M" is defined to the kernel fo 7.
The lattice M has rank n:=m —r.

The fan construction For those who are familiar with the fan construction of a toric variety, the
fan construction of X,, can be recovered as follows. First, dualise this sequence:

0> L —>7Z™ 5 M 0.

Let p; =iV(e;). Let ¥ be the fan with rays p; and cone o7 € ¥ if T € A,,. The toric variety associated
to this fan is X,,.

Given a toric variety X g associated to a fan F' with rays p1,..., pm, there’s a well-known construc-
tion of X as a quotient of an open subset of (C*)™ by a torus K. The weights Dy, ..., D,, of the
torus K giving the quotient are defined by reversing the process by which we found the rays (we can
assume that the rays generate the lattice by adding extra rays if necessary). However, as mentioned
above, there may not be a stability condition for which this open set is the set of semi-stable elements.
The existence of such a stability condition is equivalent to the existence of a strictly convex piece-wise
linear function on the support of the fan, linear on each cone.

Line bundles and divisors The sequence
0->M">Z" L0 (1)

also has a very important geometric interpretation. Suppose we have another character v of K.

Consider the construction
L,=(CxV*)/K > X,,

where K acts on C with character v. When is this a line bundle? If it isn’t, the problem lies with
semi-stable points (which could be glued together) or non-trivial stabilizers. Suppose for the moment
that V¢ = V*; that is, X, has orbifold singularities. Then it follows from Kempf’s descent lemma
that L, is a line bundle if and only if for all x € V*°, g € K, g acts trivially on the fiber C,. So in
particular, when X, is smooth, L, is always a line bundle. When X, is an orbifold, for any v there is
some multiple of v that produces a line bundle. More generally, a character produces a rank 1 reflexive
sheaf on X,,. This construction is done by using that X,, is constructed via Proj, and using modules
to construct sheafs (details can be found in [9]).
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The middle lattice in the exact sequence can be identified with Divy(X,,), the group of T-
invariant divisors. This identification is given by associating to the standard basis element e; the
divisor in X,, given by setting the i*" coordinate zero in U, c C™, that is, the divisor

{z:=0}n (C") (w)/K.

There is natural map from the lattice of T-invariant divisors to the class group (divisors up to linear
equivalence), which is also the group of rank 1 reflexive sheaves. A main result in toric geometry says
that this map is in fact 7; the above exact sequence can be identified with the sequence

0— M"Y - Divp(X,) = Cl(Xy) = 0.
If X, is smooth, then all divisors are Cartier and the sequence simplified to
0— M"Y - Divy(X,) = Pic(X,) = 0.

As suggested by the above discussion, when X, is an orbifold Pic(X,,) has finite index in Cl(X,),
and T-invariant Cartier divisors C'Divr(X,,) have finite index in Divp(X,). In general, there is an

exact sequence
0> M" - CDivr(X,) - Pic(Xy) > 0.

Variation of GIT The D; define a wall-and-chamber decomposition of Lg . As the weight w varies,
the toric variety X, doesn’t change until it crosses a wall: this is the only way that the semi-stable locus
can change, as suggested by Theorem This phenomenon is illustrated in the following example.

Example 6.5 (Blow-up of P3). Let K = (C*)?2, and let the weight matrix be
1 1110
0 00 1 1

The columns of this matrix are the D;. Drawing them as vectors in R?, we see that they divide the
positive orthant into two chambers.

e Ds o Dy

e W2

Dl,D23D3

A stability condition in the lower chamber (for example, ws) gives the blow-up of P3 in a point, and
a stability condition chosen in the other chamber gives P? (for example, w1). Notice that w; does not
satisfy the third assumption in and we can write P as a quotient by a 1-dimensional torus.

The wall-and-chamber structure on L(\é given by the D; give a wall-and-chamber structure on the
cone of effective divisors on X, using the identification we have sketched between L¢ and Pic(Xy).
These chambers can be used to identify the cones of ample, moving, and effective divisors. The
pseudo-effective cone (the closure of the cone of effective divisors; i.e. divisors with global section) is
the positive span of the all of the weights. The ample cone is the cone containing the stability condition
w, that is,

N <r

Te A,

In the above example, the ample cone if X, is the lower chamber. One can show that -Kx =
D1 + -+ Dyy,; it is therefore straightforward to check whether a toric variety is Fano. In the above
example, as ~Kx, = [4,2], it is Fano.
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Representation theoretic subvarietes The Fano varieties most accessible to mirror constructions
(and quantum period calculations) seem to be Fano varieties that are representation theoretic sub-
varieties of GIT quotients of V' = C™. A representation theoretic subvariety is a subvariety constructed
as follows. Let G be a reductive group acting on V. As for toric varieties, a linearisation of G is given
by a character w € x(G). Let E be a representation of G and suppose that

Eq:=ExV*(w)/G - V*(w)/G

is a vector bundle (this will be the case if it is a smooth GIT quotient). If E¢ is globally generated,
then a generic section s € I'(Eg) defines a smooth subvariety

Z(s) c V¥ (w)/]G =X

which is either empty or of dimension dim X —rank(E¢g). The zero locus Z(s) is called a representation
theoretic subvariety. If G = K such a subvariety is a toric complete intersection.

7 Mirror symmetry for Fano toric complete intersections

We now describe how to produce Laurent polynomial mirrors to Fano toric complete intersections.
This is given by matching of the quantum period of a Fano variety to the classical period of a Laurent
polynomial.

7.1 The Laurent polynomial mirror of a Fano toric variety

Let Dq,..., Dy, K,w be the GIT data for a smooth Fano toric variety X,,. We can use the map
7" - LY -0

to define a map
T (C*)m s (C*)T‘
via

al D;,ej)\r
W(w17-~-,wm):(nw§ > j:l)
=1

Here e, is a choice of basis for L.

Let W = wy + -+ + wy. Then (W,m) is a Landau—Ginzburg model. The full version of mirror
symmetry matches the algebra of fibre-wise critical points of W with quantum cohomology and the
Dubrovin connection.

The restriction of W = wj + -+ w,, to the fiber of 7w over (1,...,1) € (C*)" is a Laurent polynomial
in dim(X,,) variables. This Laurent polynomial f is what we define to be the mirror of X,,.

Example 7.1. The GIT data for P? is K = C*, D; = Dy = D3 = w = 1. Therefore m(w1,ws,w3) =
wiwows. The restriction of W = wy +wq + w3 to 7 1(1) = {wiwews = 1} is

f:w1+w2+ .
wiws2

It requires only simple combinatorics to see that

f(t) Z (3'2))3 31.

The regularised classical period is thus

Fp(t) = Z Wt?”.
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Now suppose Y is a Fano toric complete intersection. That is, Y is determined by
e the GIT data D,,...,D,,, K, w defining a smooth toric variety, and
e line bundles L,,, ..., Lq,, where a; € LY,
satisfying
e cach L,, is a nef line bundle (in fact, this implies that they are globally generated), and

e the divisor -Kx, — ¥F | a; is in ample cone of X,, (therefore, by the adjunction formula, Y is
Fano).

The Landau—Ginzburg model of Y is obtained from the Landau—Ginzburg model of X, by adding
extra restrictions. These extra restrictions are given by choosing a partition of the weights, that is a
partition Sou S U--u S, ={1,...,m} such that for i =1,... k

Z Dj = Q4.

jeSs.
The new constraints placed on the LG model w, W are, for all i =1,...,k,
Fi = Z wj = 1.
JjeSi

The Sy are called the unused divisors. In certain circumstances (one of which is that the unused divisors
contain a basis of L), we can solve these constraints in order to write down a Laurent polynomial
mirror in dim(Y') = n — k variables. This is called the Przyjalkowski method. We'll illustrate it in an
example.

Example 7.2. Consider the complete intersection in P° cut out by a section of O(2) @ O(3). That
is, the weight matrix is [1,1,1,1,1,1] and the line bundles are given by the weights [2] and [3]. If we
take So = {1}, S1 ={2,3} and So = {4,5,6} then constraint coming from the ambient space is

wi-We = 1
and the constraints coming from the line bundles are
Wwo + W3 = 1,w4+w5+w6 =1.

Let’s solve the first constraint by replacing w; with 1/(ws--wg). For the second set, introduce new
variables y1,y2 and y3 and set

1 Y1 1 Yo Y3
We = ——,W3 = , Wy = , W5 = , We = .
1+ T+ 1+y2+ys3 1+ya+ys3 1+y2+ys3

We now write W — 2 using these substitutions, and obtain

(1+ y1)2(1 + Y2+ y3)3
Y1Y2Y3

This is a Laurent polynomial in 3 variables.

In general, for each S; corresponding to a line bundle, one uses the pattern above to solve the
constraint and reduce the number of variables by 1. One then uses the original constraints coming
from 7w(w) = 1 to solve for the basis elements. The conditions that ensure this procedure outputs
a Laurent polynomial (and not just a rational function) is that the partition Sy u ---Sg is a convex
partition: namely, that each L; can be written as a positive combination of the basis elements. See [7]
for full details, and [3] for the relationship of Laurent polynomial to the LG model.

Let Y be a Fano toric complete intersection as above, and suppose f is a Laurent polynomial
produced via the method outlined above. The mirror theorem for Fano toric complete intersections
(which is a corollary of stronger mirror statements involving the full Landau-Ginzburg model) is then
the following statement.

13



Theorem 7.3. [13/The regularised classical period of the Laurent polynomial mirror of f is equal to
the quantum period of Y.

We haven’t yet defined the quantum period. This is what we will do now, before proving the
theorem for P2.

7.2 The quantum period of a Fano variety

Good references on Gromov—Witten invariants and quantum cohomology for Fano varieties include
[, [25], [14] and [13]. We can define it directly as a power series with coefficients given by genus 0
descendent invariants: -
* d-2
Gx)-% % St gy e
However, it is easier to understand the differential equations that the quantum period satisfies.
These differential equations are called the quantum differential equations. The mirror theorem can
be rephrased as the statement that the regularised classical period satisfies the quantum differential
equations.
Below, we explain how to find the quantum differential equations of a smooth n-dimensional Fano
variety X using quantum cohomology.

Quantum cohomology Quantum cohomology is a way of “deforming” the cup product for every
te H*(X,C). Given a,be H*(X,C), to define a ; b, it suffices to define (a *; b, c) is for all ¢, where
(,) is the intersection pairing. We set

(axibe)= Y elriabc)oss
BeHs(X,Z)

(a,b,¢)o,3,p is a genus 0 Gromov—Witten invariant. Very approximately, it is a count of the number of
genus 0 curves in X with three marked points such that one of each of three marked points lies in the
class Poincaré dual to a,b, and ¢. To define this properly requires a definition of the moduli space of
stable maps:

M0,3 (Xa ﬁ)

which parametrizes maps f: C — X up to isomorphism where
e (' is a genus 0, possibly nodal curve with three marked points =1, x2, x3
o f([C]) =5
e There are stability conditions ensuring that f has a finite stabilizer.

This space comes with natural evaluation maps evy, eve, evs : Mg 3(X, 3) mapping ev;(f) = f(x;). This
moduli space may be very poorly behaved: it may have components of different dimension. However,
it is equipped with virtual fundamental class which is a cohomology class of the expected dimension
dim X +(-Kx, 8) (although in the case of P", the virtual fundamental class is not needed as the moduli
space is sufficiently nice). For an introduction to the virtual fundamental class, see [§]. Given this,
however, we make sense of the definition

* * *
(a,b,¢)o3,8 = L ~evjauevsbuevic.
[Mo,5(X,B8)]virt

In fact, *; defines an associative, commutative product.
Example 7.4. The quantum cohomology ring of P? is
C[H]/(H?-¢Y).

This isn’t hard to compute because almost all of the Gromov-Witten invariants vanish for dimensional
reasons, or can be reduced to the usual pairing. We leave this as an exercise to the reader.
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7.3 The Dubrovin connection

Consider the trivial vector bundle
H*(X,C)x H*(X,C) - H*(X,C).

We can define a connection on it using the quantum product. Recall that a connection on a vector
bundle is a way of differentiating sections. Given V' a section of the tangent bundle, and s a section of
this vector bundle, we define

Vv (s)le =V -s(t) =V % s(t).

In fact, V is a flat connection: that means V2 = 0. Flat sections — that is, sections such that V(s) =0 —
satisfy differential equations (or more precisely, they define a matrix differential equation, and we can
consider the associated higher order scalar differential equations). We define the quantum differential
equations to be the differential equations satisfied by flat sections of V|c._k: that is, we restrict this
entire picture to the line generated by —Kx.

Example 7.5. Let X = P2. Choose generators of the cohomology given by Ty = 1,7} = 3H, and
Ty = 9H?. Let t; be coordinates for this basis. This basis is chosen because we want to find the
differential equations over the line generated by 3H = -Kx. Let s = (s, $1,52) be a section of trivial
vector bundle (so that s; is a function of tg,%1,t2). Then in this basis, the Dubrovin connection is
given by

V.o s —SAi

=—3
9ty (r“)ti
where A; is the matrix of multiplication by T;. By example[7.4] the matrix of multiplication by 7T} is
given by

0 0 2730
1 0 0
0 1 0
If s is a flat section, we can see that
3

— 50 =27 5.

a1, 0 0
Let ¢ = e!*, so that D = t% = %. The differential equation is then D3 — 27¢3.

The mirror theorem as we have stated now follows from the easy check that the regularised classical
period of o +y + 1/(wy) satisfies the differential equation D? - 27¢3.

The proof in general The proof of Theorem for a Fano toric complete intersection is a corollary
of a stronger theorem due to Givental [I3] and Lian-Liu-Yau [2I], which gives a closed formula for
the generating function for more general descendent invariants of X (so that the quantum period is
just once piece of it). This generating function is called the small J-function. It satisfies the quantum
differential equations given by the Dubrovin connection when one does not restrict to the line generated
by —Kx. The closed formula for the J-function is a hypergeometric function called the I-function.
The I-function and the Landau—-Ginzburg model are closely related. The closed formula allows one
to write down the closed formula for the quantum period of a Fano toric complete intersection. For a
Fano toric complete intersection Y given by the GIT data T',Di,..., Dy, Lq,,..., L, , and satisfying
the conditions of [[.1] it is

Gy () = e 5 OO T (B, i)
. BeH. ; 1 <B D2>'
2(X,Z),{B,D;)>0 i=1\F>

Here c is the unique rational number ensuring that the coefficient of ¢ is 0. The mirror theorem as we
have stated then follows from this closed formula. For a proof of the case of a Fano toric complete
intersection, see [8].

15



7.4 The mirror conjectures

To a smooth Fano toric variety X, we can now associate a Laurent polynomial f such that the classical
period of f computes the quantum period of X. By construction, the exponent vectors appearing in
the monomials of f are the generators of the rays of the fan defining X. Let P be the Newton polytope
of f, that is, the polytope which is the convex hull of the exponent vectors of the monomials of f. To
rephrase, the spanning fan of the Newton polytope of f is the fan of the toric variety X.

If Y is a Fano toric complete intersection, then the Przyjalkowski method produces a Laurent
polynomial f — in fact, one for every choice of convex partition, of which there might be many. Two
natural questions arise.

1. How does the Newton polytope of a Laurent polynomial mirror relate to Y7
2. How are these different Laurent polynomial mirrors related?

In answer of the first question, Doran—Harder [I2] show that there is a toric degeneration of ¥ to the
toric variety defined by the spanning fan of the Newton polytope of a mirror f. A toric degeneration
of Y to a toric variety Y’ is a flat family m : X — C such that the general fiber is Y and the special
fiber is Y’ (for our purposes, we also require that the family is Q-Gorenstein). This is expected to hold
more generally: if Y is any smooth Fano variety (not necessarily a toric complete intersection) with a
Laurent polynomial mirror f, then conjecturally there is a toric degeneration of Y to the toric variety
whose fan is the spanning fan of the the Newton polytope of f. Thus, given a Fano variety Y with
a toric degeneration to a Fano toric variety, we expect to be able to find a mirror of Y by assigning
coefficients to the lattice points of the polytope (that is, the polytope whose spanning fan defines Y).
But how should we assign coefficients? This motivates the third question:

3. What class of Laurent polynomials are mirror to smooth Fano varieties?

Kasprzyk—Tveiten [I9] conjecture answers to the last two questions. Laurent polynomial mirrors
of a fixed Fano variety Y are related via mutations, and the class of Laurent polynomials is the
class of rigid mazimally mutable Laurent polynomials. See [I] and [I6] for the precise definitions of
mutations and rigid maximally mutable Laurent polynomials. Roughly speaking, however, mutations
are combinatorial moves on polytopes that induce a transformation of any Laurent polynomial f to
a rational function. If this rational function is in fact a Laurent polynomial, then we say that f
is compatible with the mutation. Mutations preserve period sequences. A Laurent polynomial is
maximally mutable if it is compatible with a maximal set of mutations of its Newton polytope, and it
is rigid maximally mutable if f is the only such Laurent polynomial. We’ll discuss some evidence for
this conjecture that arises in the search for mirrors for Fano quiver flag zero loci.

Quiver flag zero loci can be considered the next level of complexity after toric complete intersections:
while they are still GIT quotients of vector spaces, the quotienting group is no longer abelian. The
sets of Fano toric complete intersections and Fano quiver flag zero loci together contain all dimension
less than 3 Fano varieties, and are expected to contain at least most small dimensional Fano varieties.

8 Quiver flag varieties

Quiver flag varieties are a generalisation of type A flag varieties introduced by Craw [I0] based on
work of [20]. They are a family of very nicely behaved GIT quotients that are also fine moduli spaces.

A quiver flag variety M (Q,r) is determined by a quiver @ and a dimension vector r. The quiver
@ is assumed to be finite and acyclic, with a unique source. Let Qo = {0,1,...,p} denote the set of
vertices of ) and let @)1 denote the set of arrows. Without loss of generality, after reordering the
vertices if necessary, we may assume that 0 € () is the unique source and that the number n;; of
arrows from vertex ¢ to vertex j is zero unless ¢ < j. Write s, t: Q1 - Qo for the source and target
maps, so that an arrow a € Q1 goes from s(a) to t(a). The dimension vector r = (rg,...,7,) lies in
NP+ and we insist that ro = 1.
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8.1 Quiver flag varieties as GIT quotients.

Consider the vector space
Rep(Q,r) = @ Hom(C"+, C" =)
acQq
and the action of GL(r) := [1%_, GL(r;) on Rep(Q, r) by change of basis. The diagonal copy of GL(1) in
GL(r) acts trivially, but the quotient G := GL(r)/ GL(1) acts effectively; since rg = 1, we may identify
G with [T/, GL(r;). The quiver flag variety M(Q,r) is the GIT quotient Rep(Q,r)/¢ G, where the
stability condition 6 is the character of G given by

p

0(g) - ﬁldet(gn, 9= (g1 9) € [TGL(r).

i=1

For the stability condition #, all semi-stable points are stable. To identify the #-stable points in
Rep(Q,r), set s; = Y acQr t(a)=i T's(a) and write

P
Rep(Q.r) = @) Hom(C*,C"),
=1

It is only slightly more difficult than the example to show that a point w = (w;)?_; is f-stable if
and only if w; is surjective for all i (see [I0] for the proof).

Example 8.1. Consider the quiver @ given by
Oz
so that p = 1, ng; = n, and the dimension vector r = (1,7). Then Rep(Q,r) = Hom(C",C"), and

the O-stable points are surjections C* — C". The group G acts by change of basis, and therefore
M(Q,r) = Gr(n,r), the Grassmannian of r-dimensional quotients of C™. More generally, the quiver

OENORORINENG

gives the flag of quotients Fl(n,a,b,...,c).

Theorem 8.2. M(Q,r) is smooth and projective. It is a fine moduli space for 0-stable representations
of the quiver.

As fine moduli spaces, quiver flag varieties carry universal bundles W;, where Wy is the trivial line
bundle. In the Grassmannian case, W7 is the tautological quotient bundle.

As for toric varieties, elements of x(G) define line bundles on M(Q,r). Craw also proves that
M(Q,r) is a Mori dream space, which in particular gives an isomorphism Pic(Q) = x(G) and implies
that we can characterise the nef and effective cones using GIT (much as we did for toric varieties —
toric varieties are also Mori dream spaces).

Higher dimensional representations of GG give the representation theoretic subvarieties we are inter-
ested in. Representation theoretic subvarieties of quiver flag varieties are called quiver flag zero loci.
We have expressed the quiver flag variety M(Q,r) as the geometric quotient by G of the stable locus
Rep(Q,r)*® c Rep(Q,r). A representation E of G, therefore, defines a vector bundle Eg — M(Q,r)
with fiber E; here Eg = FE xg Rep(Q,r)®°. The Fano varieties we are interested in are subvarieties of
quiver flag varieties cut out by regular sections of such bundles. If F¢g is globally generated, a generic
section cuts out a smooth subvariety.

The representation theory of G = [17_; GL(r;) is well-understood, and we can use this to write down
the bundles Eg explicitly. Irreducible polynomial representations of GL(r) are indexed by partitions
(or Young diagrams) of length at most r. The irreducible representation corresponding to a partition
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a is the Schur power S*C" of the standard representation of GL(r). For example, if « is the partition
(k) then S*C" = Sym" C”, the kth symmetric power, and if « is the partition (1,1,...,1) of length k
then S®C" = A¥ €7, the kth exterior power. Irreducible polynomial representations of G are therefore
indexed by tuples (a,...,q,) of partitions, where «; has length at most r;. The tautological bundles
on a quiver flag variety are representation theoretic: if E = C™ is the standard representation of the i**
factor of G, then W; = E¢;. More generally, the representation indexed by (aa,...,a,) is @%_; S“C",
and the corresponding vector bundle on M (Q,r) is ®"_; S*W;.

8.2 Abelianisation

One important tool for understanding a quiver flag varieties is to relate it to a toric variety via
abelianisation. Given any GIT quotient X//G, one can instead consider the GIT quotient X//T,
where T is a maximal torus of G. These two GIT quotients are of different dimensions, and on the face
of it may seem quite unrelated - however, it turns out, you can learn a lot about X//G from X//T. If
X =V is a vector space, then V//T is a toric variety, and as we have seen, many properties of toric
varieties can be read off from the associated GIT data. For example, the cohomology of a toric variety
can be easily described (see for example [9]), and one of the first results relating X //T and X//G is a
theorem of Martin [22] describing the cohomology ring of X//G from that of X//T.

Remark 8.3. We have already seen that associating a toric variety Y’ to a variety Y via toric degener-
ation can be a powerful tool. Abelianisation is another way of associating a toric variety in the special
case that Y is a GIT quotient of a vector space. Toric degenerations are in general not particularly
easy to work with — abelianisation however is easily described.

We now describe abelianisation carefully when X//G is a quiver flag variety. Let T ¢ G be the
diagonal maximal torus. Then the action of G on Rep(Q,r) induces an action of T' on Rep(@,r), and
the inclusion i : x(G) < x(T') allows us to interpret the special character 6 as a stability condition for
the action of 7" on Rep(Q,r). The Abelian quotient is then Rep(Q,r)/;s)T .

Remark 8.4.
In fact, Rep(Q,r)/oT is a toric quiver flag variety. The quiver is Q® with vertices

o= L 0<i<p 1<j<r)

and the number of arrows between v;; and vy is the number of arrows in the original quiver between
vertices i and k. We call Q% the Abelianized quiver.

Example 8.5. Let () be the quiver

Then Q is

The inclusion of character groups x(G) - x(T)" induces an inclusion of Picard groups. Here W
is the Weyl group, in this case []}_; Sym.,,.
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Proposition 8.6 ([I7]). The map i : Pic(Mg) — Pic(Mga) induces an inclusion of the effective cones.
The wall-and-chamber decomposition of Q is just the one restricted from Q. The ample cone of Mg
is the Weyl invariant part of the ample cone of Mgas.

Ciocan-Fontanine-Kim—Sabbah conjectured a relationship between the J-functions and quantum
cohomology rings of X//G and X//T, for a general X, which they proved for flag varieties [2]. The
conjecture also holds for quiver flag varieties [I7] and for general GIT quotients of vector spaces [28].
Restricting to the quantum period, we obtain the following theorem.

Theorem 8.7 (The Abelian/non-Abelian correspondence). The quantum period of a Fano quiver flag
zero locus can be computed from the associated Fano toric complete intersection.

For the precise statement, one needs to use the J-function. As for toric complete intersections,
this allows us to explicitly compute terms of the quantum period. However, it does not give a closed
formula for the quantum period. There also is no known way of moving from the abelianisation to a
Laurent polynomial mirror to the quiver flag zero locus.

Using this theorem, with Coates and Kasprzyk, we completed an exhaustive computer search for
all Fano fourfolds which are quiver flag zero loci in codimension at most four. We found 141 new Fano
varieties.

8.3 Finding mirrors to Fano quiver flag zero loci

As mentioned, there is no known way to use abelianisation to find a Laurent polynomial mirror to a
quiver flag zero locus. Instead, we must use toric degenerations. Toric degenerations are not easy to
produce in general. However, for quiver flag varieties, this is made easier via their description as a GIT
quotient. In [I6], I describe a toric degeneration of a family of quiver flag varieties called Y-shaped
quiver flag varieties. The degeneration is to a special type of toric variety: a toric variety which is also
a canonical quiver variety (a quiver variety where the stability condition is the anti-canonical class).
The representation theoretic bundles Eg degenerate in some sense to direct sums of rank 1 reflexive
sheaves (Weil divisors). If a convex partition exists, one can then formally apply the methods for toric
complete intersections described to find a Laurent polynomial.

Of the 141 four dimensional Fano quiver flag varieties mentioned above, the method works for 99
of them [16]. The Laurent polynomials produced, however, are often not rigid maximally mutable but
also not mirrors to the Fano variety. If, however, we adjust the coefficients of the Laurent polynomial
(i-e. keep the same Newton polytope) so that the Laurent polynomial is rigid maximally mutable, then
in all examples the resulting Laurent polynomial has the correct period sequence, up to 20 terms. This
provides significant evidence towards rigid maximally mutable Laurent polynomials being the correct
class to consider, as it precisely allows us to write down the correct coeflicients once given a polytope.
We conclude with an example of this in action.

Example 8.8. Consider the quiver flag zero locus X given by the quiver

with bundle W; ® Ws. The diagram below describes a quiver by taking vertices to be the black dots,
and arrows to be paths going up and right between vertices not passing through any other vertices.
The associated canonical toric quiver variety is a toric degeneration of the ambient quiver flag variety.
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Each arrow in the diagram describes Weil divisor on the toric degeneration; a collection of arrows
corresponds to the sum of the divisors associated to each arrow in the collection. The bundle W; ® W5
corresponds to the two divisors associated to the red collection and the yellow collection below.

mREN

Using the Przyjalkowski method of [7], we can produce a Laurent polynomial from this data, which has
Newton polytope P. The following rigid maximally mutable Laurent polynomial f also has Newton
polytope P:

rryw+y+z+w+ 1z +1/(aw) + 1/(22) + z/(zyw) + 1/(2y) + 1/(zyw) + 1/(xyz).

Up to the first twenty terms, the period sequence of f matches with the period sequence of the quiver
flag zero locus X, which means that this Laurent polynomial is almost certainly a mirror of X.
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