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1 Homework 1: your basic toolkit

Remember:

• Homework is due on the 10th of September before class.

• Please cite any source/collaboration.

• You do not have to hand it your homework in LaTeX till the 5th Monday but you are encouraged to
start early!

Exercise 1.1. Prove the fundamental theorem of arithmetic. You might have to resort to other sources,
but please express your solution in your own words. The point of this exercise is to acquaint you with proof
techniques. Here’s the statement

Theorem 1.2. Let n be an integer > 1. Then n can be written as

n = pα1
1 · · · · · p

αk

k

where pi’s are distinct primes and αi > 0. This expression is unique up to rearrangement of the factors.

Exercise 1.3. The integers form the collection

Z = {0, 1,−1, 2,−2, · · · }

Here are the rules of arithmetic in Z:

1. If a, b ∈ Z then a+ b ∈ Z.

2. If a, b ∈ Z then a · b ∈ Z.

3. If a, b, c ∈ Z then
(a+ b) + c = a+ (b+ c).

4. If a, b, c ∈ Z then
(a · b) · c = a · (b · c).

5. If a, b ∈ Z then
a · b = b · a.

6. There exists 0 ∈ Z such that for all a ∈ Z

a+ 0 = 0 + a = a.

Such an element is called a additive identity.

7. There exists 1 ∈ Z such that for all a ∈ Z

a · 1 = 1 · a = a

Such an element is called a multiplicative identity.

8. For all a ∈ Z there exists −a such that

a+ (−a) = 0 = (−a) + a

Such an element is called an additive inverse.
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Prove, using the rules of arithmetic in Z:

1. Additive and multiplicative identities are unique.

2. Additive inverses are unique.

3. If a, b, c ∈ Z and a+ b = a+ c then b = c.

4. If a ∈ Z then (−1) · a = −a.

5. If a, b ∈ Z then (−a) · b = a · (−b) = −(a · b).

6. If a, b ∈ Z then (−a) · (−b) = ab.

Exercise 1.4. A permutation on n-letters is a way of rearranging the set n := {1, · · · , n}. So for example
we can rearrange {1, 2, 3} as {1, 3, 2}. Prove that the number of permutation on n-letters is exactly n!.

Exercise 1.5. Let X be a set with n elements. Prove that X has 2n subsets.

Exercise 1.6. Suppose that n > 4. Prove by induction that n! > 2n.

Exercise 1.7. Let X be a set and ∼ be an equivalence relation. Define C(a) := {b ∈ X : b ∼ a}. Prove

1. a ∈ C(a).

2. If a ∼ b then C(a) = C(b).

3. If a is not ∼ b then C(a) ∩ C(b) = ∅.

4.
⋃
a∈X C(a) = X.

Illustrate, by means of a picture, what an equivalence relation looks like in light of the above result.

Exercise 1.8. Let A,B,C be sets. Prove

1. A ⊆ A.

2. A = B if and only if A ⊆ B and B ⊆ A.

3. If A ⊆ B,B ⊆ C then A ⊆ C.

4. ∅ ⊆ A always.

5. A ∪ (B ∪ C) = (A ∪B) ∪ C

6. A ∩ (B ∩ C) = (A ∩B) ∩ C

7. A ∪ ∅ = A

8. A ∪B = ∅ if and only if A = ∅ and B = ∅

9. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

10. (A ∪B)c = Ac ∩Bc

11. (A ∩B)c = Ac ∪Bc.

Exercise 1.9. Prove that if A has m elements, B has n elements, then A×B has mn elements.
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Exercise 2.1. Write down explicitly the addition and multiplication table for Z/3.

Exercise 2.2. Prove that multiplication in Z/n is well-defined.

Exercise 2.3. True or false: on the set with one element, there is a unique field structure. Justify your
answer

Exercise 2.4. Let k be an field. Prove:

1. for any nonzero element x ∈ k there exists a unique y such that xy = 1. We denote this by x−1

2. For any nonzero element x ∈ k, (x−1)−1 = x.

Exercise 2.5. Let k be a field. Consider the set k × k endowed with the “pointwise” multiplication and
addition: (x, y) + (x′, y′) = (x+ x′, y + y′) and (x, y) · (x′, y′) = (x · x′, y · y′) and the additive identity being
(0, 0) and the multiplicative one being (1, 1). True or false: this endows k × k with the structure of a field.
Justify your answer.

Exercise 2.6. Let k be a field and x, y, z ∈ k. Then x = y if and only if x+ z = y + z.

Exercise 2.7. Let p be a prime. Prove that the following equation holds in Fp:

(x+ y)p = xp + yp.

Exercise 2.8. Let f : X → Y, g : Y → Z be functions. Prove that

1. if f, g are injective then g ◦ f is injective.

2. if g ◦ f is injective then f is injective.

3. True or false: if g ◦ f is injective then g is injective. Prove or give a counterexample.

Exercise 2.9. Let f : X → Y, g : Y → Z be functions. Prove that

1. if f, g are surjective then g ◦ f is surjective.

2. if g ◦ f is surjective then g is surjective.

3. True or fase: if g ◦ f is surjective then f is surjective. Prove or give a counterexample.

3 Homework 3: Vector spaces, subspaces and spans

Exercise 3.1. Let k be a field and S be a set. Then let kS denote the set of functions

f : S → k.

For f, g ∈ kS , define addition f+g to be the function that sends s ∈ S to f(s)+g(s), i.e. (f+g)(s) = f(s)+g(s).
For a ∈ k and f ∈ kS , define scalar multiplication af to be the function that sends s ∈ S to af(s),
i.e. (af)(s) = af(s).

1. Prove that with this addition and scalar multiplication, kS is a vector space over k.

2. What is the additive inverse −f of a function f ∈ kS?



4 3. Homework 3: Vector spaces, subspaces and spans

Exercise 3.2. Which of the following is not a vector space over R? If it is not, explain why.

1. R itself, with its ordinary addition and scalar multiplication.

2. C with ordinary addition and scalar multiplication.

3. The set {0}, with the only possible addition and scalar multiplication.

4. The empty set ∅ (which has no elements).

5. The set R ∪ {∞,−∞} with elements given by the real numbers together with two additional elements
∞ and −∞. The addition and scalar multiplication is as usual on the subset of R of R ∪ {∞,−∞}.
We extend addition to all elements of (R ∪ {∞,−∞})× (R ∪ {∞,−∞}) by

x+∞ =∞ =∞+ x for all x ∈ R
x+ (−∞) = −∞ = (−∞) + x for all x ∈ R
∞+∞ =∞

(−∞) + (−∞) = −∞
∞+ (−∞) = 0 = (−∞) +∞,

and extend scalar multiplication to all elements of R× (R ∪ {∞,−∞}) by

a∞ =


∞ if a > 0

0 if a = 0

−∞ if a < 0,

a(−∞) =


−∞ if a > 0

0 if a = 0

∞ if a < 0.

Exercise 3.3. Let V be a k-vector space. Suppose that 0k is the additive identity in the field and 0V is the
additive identity of the vector space. Then prove:

1. The additive identity 0V of V is unique.

2. 0kv = 0V for all v ∈ V

3. α0V = 0V for all α ∈ k

4. (−1)v = −v for all v ∈ V .

Exercise 3.4. Let k be a field and V a vector space. Consider the function

α· : V → V v 7→ α · v.

Is the function

1. injective?

2. surjective?

3. bijective?

Prove or give a counterexample.
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Exercise 3.5. Consider the vector space from Question 3.1, which we denote by kS . Consider the subset

kSfin := {f : S → k : for all but finitely many s ∈ S, f(s) = 0}.

Prove or disprove: kSfin is a subspace of kS .

Exercise 3.6. Let k be a field and consider

Polyk := {p(x) = anx
n + an−1x

n − 1 + · · ·+ a0 : ai ∈ k},

the set of polynomials over k. Take for granted that Polyk is a vector space over k. Let m > 0. True or false:
the subset

Polyk,6m := {p(x) = anx
n + an−1x

n − 1 + · · ·+ a0 : ai ∈ k, n 6 m}

is a subspace of Polyk.

Exercise 3.7. Let V be a vector space and let U1, U2 be subspaces of V . Prove that

1. U1 ∩ U2 is a subspace of V .

2. Define U1 + U2 := {u1 + u2 : u1 ∈ U1, u2 ∈ U2}; this is a subspace of V .

Is the union U1 ∪ U2 a subspace of V ?

Exercise 3.8. Let k be a field with finitely many elements. Prove that

1. Prove that a vector space V over k is finite-dimensional if and only if it has finitely many elements.

2. Prove that if V is a finite-dimensional vector space over k, it has (#k)dim(V ) elements.

Exercise 3.9. Which of the vector spaces (and subspaces) above are finite dimensional? (No need to give
detailed proof)

4 Homework 4: linear transformations

Exercise 4.1. Let V,W be vector spaces over a field k and f : V →W a linear transformation. Then prove
that f(0) = 0 and f(−v) = −f(v).

Exercise 4.2. Suppose that f : V →W, g : W → U be linear maps, then prove that

1. g ◦ f : V → U is a linear map,

2. If h : W → U is another linear map prove that (h+ g) ◦ f = h ◦ f + h ◦ g,

3. if i : V →W is another linear map prove that g ◦ (f + i) = g ◦ f + g ◦ i.

Exercise 4.3. Let f : V →W be an injective linear transformation. Suppose that {v1, · · · , vn} is a linearly
independent list of vectors, prove that {f(v1), · · · , f(vn)} is linearly independent.

Exercise 4.4. Let k be a field, consider the function

σn : k×n → k×n (x1, · · · , xn) 7→ (xn, x1, · · · , xn−1)

Prove that this a linear transformation and write down the corresponding matrix.



6 5. Homework 5: rank-nullity, duals

Exercise 4.5. Prove that the only linear transformations from a 1-dimensional vector space to itself is given
by scalar multiplication.

Exercise 4.6. Let D : Poly6d(k)→ Poly6d−1(k) be “differentiation” as a linear map. Prove that Dd+1 is
the zero transformation.

Exercise 4.7. Let g, f : V → V be a linear transformation and suppose that dimV = n. Prove that

1. dim(Im(f ◦ g)) 6 min{dim(Im(f)),dim(Im(g))}.

2. dim(Im(f)) + dim(Im(g)) 6 dim(Im(f ◦ g)) + n.

5 Homework 5: rank-nullity, duals

Exercise 5.1. Suppose that V,W are vector spaces over a field k. Then dim(V ) = dim(W ) if and only if V
is isomorphic to W (hint: please construct the linear map f : V →W or g : W → V ).

Exercise 5.2. Suppose that W0
f→W2

g←W1 are linear maps. Consider the vector space

W0 ×W2
W1 := {(w0, w1) : f(w0) = g(w1)}.

Prove that

1. under pointwise addition and scalar multiplication, W0 ×W2 W1 is a vector space.

2. Prove that the kernel of the map

W0 ×W2 W1 →W0 (w0, w1) 7→ w0

is isomorphic to the kernel of the map W1 →W2.

3. Assume that W1 →W2 is surjective. Compute the dimension of W0 ×W2 W1.

Exercise 5.3. Consider an exact sequence of finite dimensional vector spaces 0→ V1 → V2 → · · · → Vn → 0
(this means that 0 → V1 → V2 is exact for all i Vi → Vi+1 → Vi+2 is exact and Vn−1 → Vn → 0 is exact).
Prove that

n∑
i=0

(−1)i dimVi = 0.

Exercise 5.4. Prove that if U1, · · ·Un are subspaces of V , then U1 + U2 + · · · + Un is isomorphic to
U1 ⊕ U2 ⊕ · · ·Un if and only if dim(U1 + · · ·+ Un) = dim(U1) + dim(U2) + · · ·+ dim(Un).

Exercise 5.5. Suppose that 0 → V ′ → V → V ′′ → 0 is an exact sequence of vector spaces, then V is
isomorphic to V ′′ ⊕ V ′.

Exercise 5.6. Suppose that V ′ → V → V ′′ is an exact sequence of vector spaces, then prove that taking
duals preserves exactness, i.e., the following is an exact sequence

(V ′)∨ → V ∨ → (V ′′)∨.
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Exercise 5.7. Let V be a finite dimensional vector space. Define a map

T : V → (V ∨)∨,

by sending v to the linear functional on the dual given by

(Tv)(φ) = φ(v).

Prove that this map is linear and that it is an isomorphism.

Exercise 5.8. Consider Poly62(k) as a vector space and consider the subspace spanned by x2, which we
call U . Consider the function

φ : Poly62(k)→ k φ(p) = p′(0).

1. prove that φ is a linear functional.

2. Show that Span(φ) ⊂ Ann(U); show that the inclusion is proper and complete explicitly to a basis of
Ann(U).

Exercise 5.9. Consider Poly6d(k) and suppose that x ∈ k is a non-zero element. Prove that 1, x− k, (x−
k)2, · · · , (x− k)d is a basis. Write down the dual basis, i.e., define linear functions φi : Poly6d(k)→ k which
is dual to the above basis.

6 Homework 6: duals and transposes, a little eigenstuff

Exercise 6.1. Consider D : Poly6d(k)→ Poly6d−1(k) be “differentiation” as a linear map. Write down D
as a matrix and write down its transpose.

Exercise 6.2. Let k be a field, consider the linear map

σn : k×n → k×n (x1, · · · , xn) 7→ (xn, x1, · · · , xn−1)

Write down its transpose matrix.

Exercise 6.3. Let f : V → W be a linear map between finite dimensional vector spaces. Prove that
Im(f∨) ⊂ Ann(ker(f)).

Exercise 6.4. Suppose that f : V → V is an isomorphism with inverse g. Prove that f∨ is an isomorphism
as well and that the inverse of f∨ is given by g∨. Conclude that if A is an n× n-matrix with transpose At

then (A−1)t = (At)−1.

Exercise 6.5. Let V be a finite dimensional vector space and U,W ⊂ V are subspaces. Prove that
Ann(U ∩W ) = Ann(U) + Ann(W ).

Exercise 6.6. Let V be n-dimensional and suppose that a linear map f : V → V satisfies f2 = f (then it is
called an idempotent).

1. Prove that the identity and the 0 maps are idempotent.

2. Produce an idempotent on k×2 which is not the identity or the zero map.

3. Prove that (id− f)2 = id− f .

4. Prove that dim im(id− f) = dim ker(f) and dim im(f) = dim ker(id− f).

5. Prove that V = im(f)⊕ im(id− f).

6. Prove that only 0, 1 can be eigenvalues of f .



8 7. Homework 7: eigenstuff

7 Homework 7: eigenstuff

Recall that the determinant of a 2× 2 matrix:

M =

[
a b
c d

]
is given by det(M) = ad− bc while the trace is given by tr(A) = a+ d

Exercise 7.1. Let M be a 2 × 2 matrix. Prove that the eigenvalues of M are given by the roots of the
polynomial

x2 − tr(M)x+ det(M)

Exercise 7.2. Define numbers by setting F1 = 1 , F2 = 1, and Fn = Fn−1 + Fn−2 for n > 3. The sequence
{Fn} is known as Fibonacci’s sequence.

1. Define a linear map f : R2 → R2 by f(x, y) = (y, x + y). Prove that fn(0, 1) = (Fn, Fn+1); here fn

indicates the composition of f with itself n-times.

2. Find the eigenvalues and corresponding eigenvectors of f .

3. Use this to prove that

Fn =
1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]
.

Exercise 7.3. A matrix is called nilpotent if An = 0 for some n > 0. Prove that if A is a nilpotent matrix
then (1−A) is invertible (Hint: if x is an indeterminate then it is always true that

1

1− x
= 1 + x+ x2 + · · ·xn + · · · .

)

Exercise 7.4. Let A be a matrix with a nonzero eigenvalue λ. Show that there is a vector v such that
Akv = 0 for all k > 0. Prove that every nilpotent matrix must have eigenvalue zero.

Exercise 7.5. Consider a linear map

f : k×n → k×n : (x1, · · · , xn) 7→ (x1 + x2, x2 + x3, · · · , xn−1 + xn, xn).

Prove that the matrix of f in the standard basis is upper triangular. What are its eigenvalues? Is it
diagonalizable?

Exercise 7.6. True or false. Justify your answers.

1. Consider the linear map k×2 → k×2, (x, y) 7→ (y, x). Then its matrix is diagonalizable over the real
numbers.

2. Consider the linear map k×2 → k×2, (x, y) 7→ (−y, x). Then its matrix is diagonalizable over the real
numbers.

3. Consider the linear map k×2 → k×2, (x, y) 7→ (−y, x). Then its matrix is diagonalizable over the
complex numbers.
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4. Consider the matrix

M =

[
1 x
c 1

]
Then if k is a field of characteristic p, Mp = id.

5. Consider the situation of the previous question. Then M is diagonalizable (Hint: use the first problem
to determine the eigenvalues of M).

Exercise 7.7. Let f : V → V be a linear map. Prove that the generalized eigenspace of λ is equal to the
kernel of the linear map (f − id)dimV .
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