
LECTURE -2: SOME FEATURES OF PRISMATIC COHOMOLOGY

ELDEN ELMANTO

1. Notes on absolute prismatic cohomology (mini-course)

One of the things which is important in the prismatic theory is how simple this definition is.
To get a feel for what it is, we make the following remark:

Remark 1.0.1. [Stacks, Tag 07HL] Recall that a divided power algebra on a pair (A, I) is
the datum γ of “elements that look like xn/n!” which are denoted by γn(x). For example we

can look at the pair (Z(p), (p)) and set γn(x = pa) = pnan

n! , noting that pn/n! ∈ pZ(p). A
divided power algebra whose underlying ring is a Z(p)-algebra is said to be compatible if the
divided power structure is compatible with the one from (Z(p), (p)). Let us define the the affine
crystalline site: for A a smooth Fp-algebra, an object is a pair ((B, J, γ), α) where (B, J, γ)
is a compatible divided power algebra and α is a map α : A → B/J. We denote this site by
(A/Fp)crys. We endow this again with the indiscrete topology. The crystalline structure
sheaf is defined via

Ocrys((B, J, γ), α) = B.

Then, whatever definition of crystalline cohomology you might have defined satisfy

RΓ((A/Fp)crys,Ocrys) ' RΓcrys(A/Fp).

In particular, there is no real need to speak of Grothendieck topologies when one speaks about
defining crystalline cohomology.

Now, I want to explain what is the engine of the theory. At heart, everything we do relies
on a very basic lemma called the derived Nakayama, but first an official definition of what
we mean to be complete.

Definition 1.0.2. Let A be a ring and I an ideal of A. Let M ∈ D(A), then we say that M is
derived I-complete, if the the limit

f−→ M
f−→ M

f−→ · · · ,

is acyclic. Equivalently, the map

M→ lim(M⊗Z[x] Z[x]/(xn))

is an equivalence where M is treated as an A-module via the map classifying f : Z[x]
f−→ A.

Remark 1.0.3. I find it useful to think about the inverse limit as above as “f -coperfection”
(something like Mf[ seems like a good notation) after what happens if you do this on the
frobenius. This means that being f -complete is right orthogonal to being f -coperfect. I note
that if f is invertible in M, then M is equivalent to its f -coperfection and whence it is the exact
opposite of what it means to be complete.

Remark 1.0.4. One of the main points of working with derived completion is the following
lemma:

Lemma 1.0.5. The subcategory of ModA spanned by derived I-complete A-modules forms an
abelian category.
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2 E. ELMANTO

This is not the case for the category of classically complete A-modules. However, the functor
of derived completion is really derived: if M is discrete, the derived I-completion can produce
higher homology groups. We also note that if M is derived complete and is bounded I-torsion,
then M is classically complete.

Lemma 1.0.6. [Stacks, Tag 0G1U] Let I be a finitely generated ideal of a ring A. If M is a
derived I-complete module, and M⊗L A/I ' 0 then M ' 0.

Remark 1.0.7. The usual Nakayama’s lemma requires some finite generation hypotheses on
the module M. In lieu of this, we have the derived completeness assumption M, but M is
allowed to be an arbitrary object in D(A). In the context of this theory, we really do not want
to restrict ourselves with finiteness hypotheses.

One of the reasons why prismatic cohomology is accessible is because we can really under-
stand the Hodge-Tate complex; in conjunction with the fact that it is derived I-complete, we
can often reduce questions about prismatic cohomology to the Hodge-Tate complex.

Construction 1.0.8. Let (A, I) be a prism and assume that M ∈ D(A/I); we denote the
Breuil-Kisin twist by

M{i} := M⊗L Ii/Ii+1.

We have a Bockstein map

β : Hi(�R/A{i})→ Hi+1(�R/A{i+ 1}).
We have [BS19, Construction 4.8] a map of commutative dga:

(Ω•R/(A/I), d)→ (H•(�R/A{•}), β),

characterized by

(1) the zero-th term is an R-algebra and the map above is the structure map;
(2) Ω1

R/(A/I) → H1(�R/(A/I){1}) is given by

fdg 7→ fβ(g).

Theorem 1.0.9. The above furnishes a canonical equivalence

(Ω•R/(A/I), d)
'−→ (H•(�R/A{•}), β).

This also implies that

Remark 1.0.10. One key result in characteristic p > 0 algebraic geometry is the Cartier
isomorphism: if R is a smooth algebra over a perfect field of characteristic p > 0 is that the
map

C−1 : ΩnR/k → Hn(Ω•R/k) C−1(fdg1 ∧ · · · ∧ dgn) = fpgp−1
1 · · · gp−1

n dg1 ∧ · · · ∧ dgn.
is an isomorphism; usually the map is defined but not an isomorphism unless R is smooth.
One can treat this as a kind of formality statement and Theorem 1.0.9 is a kind of mixed
characteristic analog of the Cartier isomorphism.

Here is an immediate application of Theorem 1.0.9 is the following “crystalline” property of
prismatic cohomology.

Proposition 1.0.11. Let g : (A, I) → (B, IB) be a morphism of bounded prisms. Then the
canonical map

�R/A ⊗L
A B→ �R⊗AB/B

is an equivalence.

Proof. It suffices to prove the equivalence after ⊗LB/IB. This follows, after Theorem 1.0.9, the
fact that de Rham cohomology is stable under base change:

Ω•R/(A/I) ⊗A/I B/IB ' Ω•(R⊗A/IB/IB)/(B/IB).
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LECTURE -2: SOME FEATURES OF PRISMATIC COHOMOLOGY 3

1.1. The comparison theorem. We now run through the comparison results in prismatic
cohomology without doing it much justice. I will formulate it in the simplest way possible

Theorem 1.1.1 (Bhatt-Morrow-Scholze). Let X → Zp be smooth and projective. Then there
is a natural complex

RΓ�(X/Zp[[T]])/p ∈ Perf(Fp[[T]]);

where

(étale comparison) we have a natural equivalence:

RΓ�(X/Zp[[T]])/p[ 1
T ] ' RΓét(XC;Fp)⊗Fp Fp((T));

(de Rham comparison) and another natural equivalence:

RΓ�(X/Zp[[T]])/(p,T) ' RΓdR(XFp
).

Consequently

dimFp
Hn(XC;Fp) 6 dimFp

Hn
dR(XFp

).

Let us give a “proof” of sort.

Proof Sketch. We work with the “trivial” Breuil-Kisin prism: (Zp[[T]], (T− p)) noting that the
map Zp[[T]] → Zp given by sending T to p has kernel generated by T − p; so the format of
prismatic cohomology will taken in a smooth Zp-algebra (or more generall, scheme) and outputs
a complex

�R/Zp[[T]] ∈ D(Zp[[T]]),

equipped with a Frobenius map which is semilinear with respect to the Frobenius Zp[[T]]]
determined by T 7→ Tp.

We begin by explaining why the complex is perfect. In general suppose that A is a commuta-
tive ring and I is a finitely generated ideal and M ∈ D(A) which is (derived) I-adically complete.
Being perfect means that it is in the thick subcategory generated by the unit object A; such
a condition can be checked after modding out by I. In fact, we can also check perfectness by
verifying that the cohomology modules are perfect [Stacks, Tag 066U] Therefore, we need only
verify this condition after modding out �R/Zp[[T]] by I. Then the Hodge-Tate comparison The-
orem 1.0.9 reduces us to checking the requisite statement on the level of cohomology modules,
which is a classical fact.

Next we deal with the de Rham comparison. The usual one states

RΓdR(Spec R/Zp) ' �R/Zp[[T]] ⊗Zp[[T]] ϕ
∗Zp.

So we if (derive) mod p-reduce both sides, we get the usual result. The de Rham comparison
is actually a reflection of the crystalline nature of prismatic cohomology: indeed we have a
morphism of prisms (Zp[[T]], (p− T))→ (Zp, (p)) from which we base change to get

�R/Zp[[T]] ⊗Zp[[T]] Zp ' �RZp/Zp
.

Up to a Frobenius twist, �RZp/Zp
is equivalent to RΓcrys(R/p/Zp), the crystalline cohomology

of the mod p reduction of R. But now, from the fact that crystalline cohomology is the de
Rham cohomology of a smooth module, the result follows (again up to a twist).

Let now X be a proper and smooth over Zp. The usual form of the étale comparison theorem
(which requires a base change to a perfect prism — so take the perfection of the underlying
prism which has I generated by d) tells us that for any smooth Zp-algebra we then have an
equivalence

(1.1.2) RΓét(XC;Fp) ' (RΓ�(X)/p[ 1
d ])ϕ−1.

I will leave out the details but one can remove the ϕ from the above statement by using
Lemma 1.1.3.
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4 E. ELMANTO

Lemma 1.1.3. Let K be an algebraically closed field of characteristic p > 0. Let M be a perfect
complex equipped with a frobenius ϕ (M is equipped with a map M→ Frob∗M where Frob is the
Frobenius in K), then if ϕ is an equivalence, we have that Hi(Mϕ=1)⊗Fp K ' Hi(M).

1.2. The Cartier-Witt stack and prismatic cohomology. I now want to speak about the
“geometry” of prismatic cohomology. More precisely, I want to explain the idea of the Cartier-
Witt stack which is a tool to produce deeper structures within this cohomology theory. If the
analogy between prismatic cohomology and de Rham cohomology is to be believed, then one
should be able to associate to any (p-adic formal) scheme X a stack WCartX with the key
property that

RΓ(WCartX,OWCartX) ' RΓ�(X).

Here’s a definition:

Definition 1.2.1. A virtual divisor on a scheme X is an OX-linear morphism α : L → OX

where L is a line bundle. A Cartier-Witt divisor on an affine scheme Spec R, where R is
p-nilpotent, is the datum of a generalized divisor on Spec W(R) subject to a derived prism
condition:

(1) the image of the map I
α−→W(R)→ R is nilpotent;

(2) the image of the map I
α−→W(R)

δ−→W(R) generated the unit ideal.

By sending a non-p-nilpotent ring to the empty set, we get a prestack

WCart : CAlg→ Spc.

The generalized prism condition is a “loosening” of the prismatic condition: it defines a
prism whenever α is actually an inclusion. However, it does impose certain restrictions.

Lemma 1.2.2. Let R be a p-nilpotent ring and I ⊂ W(R) is an invertible ideal. Then the
following are equivalent:

(1) (W(R), I) is a prism such that the (p, I)-adic topology refines the V-adic topology;
(2) (W(R), I) defines Cartier-Witt prism under the inclusion map I ↪→W(R).

Remark 1.2.3. The fact that (p, I)-adic topology refines the V-adic topology on W(R) is quite
restrictive: it basically says that the image of I under the map W(R) → R must be nilpotent.
Let us see that there are lots of examples: let R be a perfect ring of characteristic p > 0, then
we have (W(R), (d)) a prism. There are many choices of d which corresponds to various untilts
of R. I claim, in the event that the derived prism is satisfied, that d must actually be p. Indeed,
we see that d ∈ R under the map W(R) → R, which by Definition 1.2.1.(1) is assumed to be
nilpotent, must actually be zero since R is perfect hence reduced. This means that (d) ∈ pW(R).
But then this must mean that d = p by the rigidity property of prisms.

Proof. That δ(I) generates the unit ideal corresponds to the “classical” prism condition that
we have local monogenic generation.

Let (W(R), I) be a prism with the above topological condition. Then I claim that the image
of I in W(R) → R is nilpotent. To see this, the assumption on the topology means that there
exists N such that (p, I)N ∈ VW(R). Therefore, since W(R)/V = R we see that IN = 0 in R.
Now, assume that (W(R), I) defines a Cartier-Witt prism. I claim that the image of I under
W(R)→ R being nilpotent implies that W(R) is I-adically complete. Indeed, I claim that each
finite level Witt-vector is I-nilpotent (then use that inverse limit of I-nilpotent modules are
I-complete). Iterating the Witt-vector Frobenius

Fn−1 : Wn(R)→ R

furnishes R with a Wn(R)-module structure. We have an exact sequence of Wn(R)-modules

0→ Fn−1
∗ R→Wn(R)

F−→Wn−1(R)→ 0.

By induction Wn−1(R) is I-nilpotent (we have identifies the image of I under W(R)→Wn(R)).
It suffices to prove that Fn−1

∗ (I) is I-nilpotent (what I mean here is that the image of I under
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W → Wn is nilpotent). Now we note that for any morphism of rings f : R → S, then S is
an I-nilpotent R-module if and only if the image of I under f is nilpotent. Using this, it then
suffices to prove that Fn−1

∗ R is I-nilpotent. By assumption R is a p-nilpotent ring, hence it
suffices to prove that the reduction mod p of Fn−1(I) is I-nilpotent. But

Fn−1(I) = Ip
n−1

mod p.

Hence we are done since I was assumed to be nilpotent in R. The condition on �

I will now discuss several ways to think about the Cartier-Witt stack.

1.2.4. As a quotient stack. We give a Zariski atlas for the Cartier-Witt stack.

Definition 1.2.5. Let R be a p-nilpotent ring. Let

WCart0(R) ⊂WCart(R)

be the set of witt vectors with expression
∑
n>0 Vn[an] such that a0 is nilpotent and a1 is a

unit. Setting the value to be empty if R is not nilpotent we get a functor

WCart0 : CAlg→ Set.

On the other hand we have W× which is an affine group scheme given by units of the Witt
vectors. W acts on W× by multiplication and preserves WCart0.

Note that if f ∈WCart0(R), then we get a Cartier-Witt divisor prescribed by I = W(R) and

the map is given by a multiplication W(R)
f−→W(R) with the conditions on WCart0(R) rigged

such that it indeed prescribes a Cartier-Witt divisor. This gives us a morphism of stacks

WCart0 →WCart

Lemma 1.2.6. The morphism above exhibits WCart as a Zariski stack quotient[
WCart0/W

×] 'WCart.

1.2.7. As the moduli space of prisms. One should think of WCart as the “classifying stack for
prism structures.” To formalize this, I claim that that there is a unique morphism Spf(A) →
WCart “classifying” the prism structure. Indeed, to construct such a morphism, I must tell you
what to do on an R-point of A: A→ R. By the universal property of W, we have a δ-ring map
A→W(R). We then have W(R)⊗A I, a generalized Cartier divisor on W(R). One checks that,
in fact, this is a Cartier-Witt divisor; all in all we get a morphism

ρA : Spf(A)→WCart.

Example 1.2.8. In fact, WCart0 is representable by the completed ring

A0 := Z[a0, a
±1
1 , a2, · · · ](p,a0).

The Witt vetor Frobenius on WCart0(R) defines a lift of Frobenius on the ring Z[a0, a
±1
1 , a2, · · · ](p,a0)

and hence the structure of a δ-ring and the ideal I0 = (a0) defines a prism (A0, I0). The map
WCart0 →WCart can be described as ρ : Spf(A0)→WCart.

Another sense in which WCart is like a classifying stack for prism structures is that it acts
like a base in which fibered products translates into products; see [BL22, Proposition 3.2.8] for
details. Another way is via its quasicoherent sheves.

The derived ∞-category of quasicoherent sheaves on WCart is easy to define:

(1.2.9) D(WCart) := lim
Spec R→WCart

D(R).

Unpacking this: to define a complex of quasicoherent sheaves on WCart is to give for each map
Spec R→WCart an object M ∈ D(R) satisfying various compatibilities.

Interpreting WCart as the moduli of prisms via 1.2.7, we also have an equivalence

D(WCart) ' lim
(A,I)

D(A)(p,I),
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the derived ∞-category of (p, I)-complete A-modules; the limit here runs through all bounded
prisms [BL22, Proposition 3.3.5]. This is much more satisfactory and we can exactly say what
it means to specify an complex of quasicoherent sheaves on WCart: we have to give, for each
bounded prism (A, I) a (p, I)-complete complex M(A,I) and for each morphism of prisms f :
(A, I) → (B, J) an equivalence f∗M(A,I) ' M(B,J). We will see how to specify such an object
soon. With this we can define:

Definition 1.2.10. An absolute prismatic crystal is an object M ∈ D(WCart).

1.2.11. Via the geometry of the Hodge-Tate locus. The story of WCart is loosely inspired by
the stack

[
A1/Gm

]
classifying virtual Cartier divisors. One should think of this stack as a

“thickening” of the stack BGm; but this can be made more precise with the stack
[
Â1/Gm

]
where we have taken the Gm-quotient of the formal completion of A1 at 0. Indeed, the Cartier-

Witt stack does have a map WCart→
[
Â1/Gm

]
which refines the map to

[
A1/Gm

]
.

The Hodge-Tate locus can be defined by the pullback:

WCartHT WCart

BGm
[
Â1/Gm

]
.

In particular, it is a Cartier divisor inside WCart and comes equipped with a line bundle given
by the map to BGm. Which line bundle is it?

Construction 1.2.12. Let X be a bounded p-adic formal scheme, then the stack WCartX is
a functor from rings to groupoids, whose value on a p-nilpotent ring is the groupoid of pairs

(I
α−→ W(R); Spec W(R) → X) where W(R) is the derived quotient : formally a Cartier-Witt

divisor classifies a map Spec W(R)→ [A1/Gm] and Spec(W(R)) is defined via pullback:

Spec(W(R)) := BGm ×[A1/Gm] Spec W(R).

Another feature of the Hodge-Tate locus is that it is actually quite simple to describe. Here’s
a starting observation which states that a point surjects onto the Hodge-Tate locus.:

Lemma 1.2.13. The map η : Spf(Zp) → WCart defined by sending a p-nilpotent ring R to

the prism (W(R)
V(1)−−−→ W(R)) factors through the Hodge-Tate locus Spf(Zp) → WCartHT and

defines a (fpqc-locally) surjective morphism of stacks.

Proof. Indeed, V(1) = (0, 1, · · · ) is the most canonical element that goes to zero under the
map W(R) → R. Now, we can reduce to the following situation: we have a Cartier-Witt

divisor prescribed by a map W(R)
V(u)−−−→ W(R) where u is a unit in R; this is what typically

an element of the Hodge-Tate locus looks like. Then use the fact that, as maps of group
schemes, the Frobenius F : W× → W× is faithfully flat [BL22, Proposition 3.4.7]. This then
means that we may write u as F(u′) where u′ is a unit, whence the element of interest is given
by V(F(u′)) = u′V(1). But then this means that the Cartier-Witt divisor is isomorphic to
(W(R),V(1)) as desired. �

General results about stacks then tells us that WCartHT is equivalent, over SpfZp to a
classifying stack of a group: take Gm and take the divided power completion at 1; this is an
affine group scheme denoted by G]m. It can be described as follows:

(1) its ring of functions is the subring of Q[t±1] together with t−1 and the divided powers
(t− 1)n/n!;

(2) rationally: Gm,Q ' G]m,Q;

(3) p-locally it is equivalent to the frobenius kernel of the units Witt vectors W×[F].
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Hence, p-locally, we have that BG]m 'WCartHT. This leads to a description of the derived
∞-category of quasicoherent sheaves

1.2.14. The “sheafy” prismatic cohomology. We now assemble relative prismatic cohomology
into a prismatic crystal:

Construction 1.2.15. Let X be a formally smooth p-adic formal scheme, then we define

H�(X) ∈ D(WCart)

as the prismatic crystal which assigns to a bounded prims (A, I) 7→ �X×A/IA/A; the crystallinity
property is a consequence of the base change property from Proposition 1.0.11. The absolute
prismatic cohomology of X is the global section

RΓ�(WCart,H�(X)) =: RΓ�(X).

Remark 1.2.16. In general, just as in the story with de Rham cohomology, RΓ�(X) is only
reasonable when X is formally smooth over Zp. One should take the derived version (obtained
by left Kan extension) LSmRΓ�(−)(X) in general to get a well-behaved theory.

1.2.17. Prismatization. We note that there is also a relative variant of WCart which parallels
the story of the de Rham prestack. The definition is kind of straightforward having seen the
relative prismatic site: recall that we have a formally smooth algebra R over A/I where (A, I) is
a base prism, then the relative prismatic site is constructed by probing R via prisms over (A, I):
maps R → B/IB. But we have seen that Cartier-Witt divisors constitute a generalization of
prisms where I is allowed to be an invertible sheaf. Consequently, we need to take the quotient
A/L and this needs to be taken in the context of derived algebraic geometry. We can still do
this but we need to invoke (very mild) amount of derived schemes.

Construction 1.2.18. Let X be a bounded p-adic formal scheme, then the stack WCartX is
a functor from rings to groupoids, whose value on a p-nilpotent ring is the groupoid of pairs

(I
α−→ W(R); Spec W(R) → X) where W(R) is the derived quotient : formally a Cartier-Witt

divisor classifies a map Spec W(R)→ [A1/Gm] and Spec(W(R)) is defined via pullback:

Spec(W(R)) := BGm ×[A1/Gm] Spec W(R).
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