
LECTURE -3: MOTIVATION AND BEGINNING OF PRISMATIC

COHOMOLOGY

ELDEN ELMANTO

1. Notes on absolute prismatic cohomology (mini-course)

The goal of this mini-course is to say something about the following result due to Bouis,
following up on recent work by Bhatt and Mathew.

Theorem 1.0.1. Let R be a perfectoid ring and S is a perfectoid valuation ring under R, then
the map

Z/p(j)syn(S)→ RΓ(S[ 1p ];µ⊗jp ).

is an isomorphism in degrees < i− 1 and an injection in degree i− 1.

We will explain how this is a result about “resolution of singularities in mixed characteristics.”

1.1. Genesis and motivation for prismatic cohomology. The story begins with de Rham
cohomology. If S is a base scheme, then we may associate to any S-scheme X its de Rham
complex1

Ω•X/S := [O
d−→ Ω1

X/S
d−→ · · · → ΩjX/S · · · ].

This is perhaps one of the easiest invariant of a scheme that one can come up with which pops
up naturally once one learns about differential forms in algebraic geometry:

HiZar(X; Ω•X/S) =: Hi
dR(X/S).

Let us write RΓZar(X; Ω•X/S) be the global sections. One of the most pleasant results in this di-

rection is due to Grothendieck which gives a way to construct the C-valued singular cohomology
of an variety purely algebraically:

Theorem 1.1.1. Let X be a smooth C-variety, then there is a functorial equivalence

RΓ(X; Ω•X/C)
'−→ RΓ(Xan; Ωan,•

Xan/C)

Combining this result with the de Rham-Poincaré theorem tells us that we have an isomor-
phism

Hi(Xan;C) ∼= Hi
dR(X/C).

Remark 1.1.2. We have the Hodge to de Rham spectral sequence

Ep,q1 = Hq(X; Ωp)⇒ Hp+q
dR (X/C);

its E2 page is given by Hp(X; RqΩ•). This spectral sequence is also available in the analytic
setting. Serre’s GAGA theorem says that if X is a smooth projective complex variety then
coherent and coherent-analytic cohomologies coincide and therefore we have Theorem 1.1.1 in
this case. For many local-to-global arguments, however, it is crucial that one can drop the
projectivity assumption.

1While we can make sense of the de Rham complex of any morphism, it is usually a pathological object.
Illusie’s derived de Rham complex is a much more reasonable object in this setting.
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2 E. ELMANTO

Therefore, using the elementary definition of de Rham cohomology we are on our way to
producing a good Weil/motivic cohomology which reproduces singular cohomology with C-
coefficients. Of course we are restricted here to characteristic zero varieties and C-coefficients
which suffers from a number of pathologies. Let us, however, think about this as a kind of a
“baby case.”

1.1.3. Category of coefficients. From the outset, Grothendieck wanted a “category of coeffi-
cients” to exist for his theory. Indeed, Poincaré duality is but a shadow of the existence of such
a theory: given a smooth morphism f there should be two functors f ! and f∗ which are related
by some kind of a “shift and twist” formula

f∗(d)[2d] ' f !.
The correct category of coefficients for de Rham cohomology turned out to be algebraic D-
modules. There are many ways to set up this theory, but we will consider the approach of
crystals due to Grothendieck.

Definition 1.1.4. Let f : X → S be a scheme. The infinitesimal site of f , denoted by
Inf(X/S) has as objects pairs (U, g) where U ⊂ X is a Zariski open and g : U ↪→ T is a
closed immersion over S which is furthermore nilpotent. The morphisms are given by squares
of S-schemes

U T

U′ T′,

j

where j is an open immersion. We take the Grothendieck topology on Inf(X/S) where covering
sieves are generated by {(Ui,Ti)→ (U,T)} such that {Ti → T} is a Zariski open cover.

One of the key points of the infinitesimal site is that its category of sheaves is easy to describe.
Recall that if f : X→ Y is a morphism of schemes, then we can define a sheaf-theoretic pullback
f−1 : Shv(Y)→ Shv(X); this is to be distinguished from f∗ where we further tensor with some
sheaf of rings. Then the datum of sets F on the infinitesimal site is a collection

F(U,T) ∈ Shv(T) (U,T) ∈ Inf(X/S)

and maps
f−1F(U′,T′) → F(U,T) (U,T)→ (U′,T′),

and compatibilities among them subject to the following “local-constancy” condition: if T→ T′

is an open immersion then
f−1F(U′,T′)

∼= F(U,T).

Grothendieck’s idea of a crystal is that we further add on a sheaf of rings and demand that F

forms a “cartesian section.” Indeed, we have the following sheaf on the infinitesimal site which
we call the structure sheaf

Oinf : Inf(X/S)op → CAlg (U→ T) 7→ O(T);

note that we also have a variant

Oinf(U→ T) 7→ O(U).

Definition 1.1.5. An infinitesimal crystal is a sheaf of Oinf -modules such that we have
isomorphisms f∗F(U′,T′) ' F(U,T). We denote this category by Crys(X/S).

Grothendieck proved the following striking theorem. Recall that a morphism of sites (C, t)→
(D, t′), in particular, defines a functor D→ C. The functor

(X/S)inf → SchS,

defines a morphism of sites λ : (SchS)Zar → (X/S)inf ; and restriction of a sheaf E on the
Zariski site defines an infinitesimal sheaf λ∗E; for example λ∗O = Oinf . We have the stupid
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truncation functor Ω• → O which defines a morphism of complexes of sheaves of O-modules on
the infinitesimal site:

λ∗Ω• → Oinf .

Theorem 1.1.6. Let S = Q and assume that X is essentially smooth. Then the map λ∗Ω• →
Oinf is an equivalence. Concretely,

H∗inf(X;Oinf) ∼= H∗dR(X/Q).

Theorem 1.1.6 tells us that, morally, Crys(X/S) has the de Rham complex a monoidal unit,
whence it is a kind of “category of modules over de Rham cohomology.” In fact, one can give
a description of the category of crystals.

Theorem 1.1.7. As in Theorem 1.1.6, there is a canonical equivalence of categories:

Crys(X/Q) 'ModDX

where DX is the sheaf of different operators.

1.2. The de Rham stack. To get feeling on what Theorem 1.1.7 is about let us adopt the
following notion: suppose that X is a scheme over a field and R is a ring, we say that two
points x, y ∈ X(R) are infinitesimally close if under the map X(R) → X(Rred), x and y
goes to the same image. This captures the notion of a point being nearby. It is not hard to
imagine that the notion of a crystal has something to do with identifying sheaves whose stalks
are infinitesimally close. To make this more precise, we can associate to X a stack where we
have identified infinitesimally close points

Definition 1.2.1 (Simpson). Let X : CAlg → Set be a functor. Its associated de Rham
prestack is the functor XdR where

XdR(R) = X(Rred)

We then have the following result.

Theorem 1.2.2. As in Theorem 1.1.6, we have an equivalence of categories

QCoh(XdR) ' Crys(X/Q).

The de Rham prestack is a stack whenever X is one, whence we may think of it as a reasonably
geometric object. We can unpack what it means to be a quasicoherent sheaf on the de Rham
prestack in the following manner:

(1) a quasicoherent sheaf F on X;
(2) for every pair x, y ∈ X(R) which are infinitesimally close, an isomorphism of R-modules

ηx,y : x∗F ' y∗F;

these isomorphisms are stable under base change;
(3) for three points x, y, z ∈ X(R) which are infinitesimally close, the requirement that

ηx,y = ηx,z ◦ ηz,y.

Combining the above theorem and Theorem 1.1.6 we may regard XdR as a stack whose
structure sheaf computes the de Rham cohomology of X:

RΓ(XdR,O) ' RΓ(X,Ω•X/Q).

The identification with D-modules is then more believable if we believe in the Riemann-Hilbert
correspondence: D-modules are the same thing as sheaves with a notion of parallel transport
that identifies points which are close together (vector bundles with an integrable connection).

Thinking of crystals as quasicoherent sheaves on a particular stack is not merely a frivolous
exercise. One of the key points of de Rham theory is that if X is furthermore projective, then
the Hodge-to-de Rham spectral sequence

Ep,q1 = Hq(X; ΩpX/Q)⇒ Hp+q
dR (X)
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degenerates and endows de Rham cohomology with the Hodge filtration. This is a split
filtration after base change to C and, in conjunction with Theorem 1.1.6 we endow the C-
singular cohomology of smooth projective variety with a Hodge decomposition. Of course all
of this story is classical, but the de Rham stacks lets us see more structure:

Example 1.2.3. The following elaboration will not do the whole story justice. Let X be a
smooth projective C-variety. As already explained above, we have the Hodge decomposition

Hn(X;C) ∼=
⊕
i+j=n

Hi(X; Ωj).

Now, there is a dictionary between grading and an action of the group (C×)δ (the multiplica-
tive group viewed as a discrete group). The work of Simpson and Katzarkov, Pantev, Toen
constructs this action on the level of XdR; the induced action recovers the usual Hodge decom-
position. This lets us, for example, speak of Hodge structures on fundamental group and other
invariants that one can extract out of XdR.

Prismatic cohomology is actually more accurately related to crystalline cohomology which
is a cohomology theory for Fp-schemes taking values in Zp-algebras; one of the main features
of this theory is that it agrees with the de Rham cohomology of a (smooth) lift. We will not
elaborate more on this theory (noting that one can use prismatic cohomology to reproduce to
crystalline theory) and instead provided the reader with the following table.

de Rham cohomology Crystalline cohomology
Usual input Q-scheme Fp-scheme
Output D(Q) D(Zp) + Frobenius
Thickening datum infinitesimal thickenings PD-thickenings
Hodge-to-de Rham/slope Ep,q1 = Hq(X; Ωp) E1

p,q = Hq(X,WΩp)

Conjugate Ep,q2 = Hp(X;Hq(Ω•)) Ep,q2 = Hp(X;Hq(WΩ•))
Stacky approach XdR W(Xperf)/G (Drinfeld).

1.3. A sketch of the construction of crystalline cohomology. The following is a theorem:

Theorem 1.3.1. Let X be a smooth Fp-algebra such that X′ is a lift of X to a smooth scheme
over Zp. Then RΓdR(X) ' RΓcrys(X/Zp).

We can also turn Theorem 1.3.1 into a construction of crystalline cohomology. I learned this
from A. Raksit and it is apparently due to Drinfeld and written by by Li-Mondal [].

Theorem 1.3.2. The functor of p-completed derived de Rham complex into p-complete E∞-
Zp-algebras:

L̂Ωp : AniZp → ̂(CAlgZp

)
p

factors through the functor of mod-p reduction

AniZp → AniFp .

The resulting functor

AniFp
→ ̂(CAlgZp

)
p

is equivalent to (derived) crystalline cohomology.

Proof. The functor L̂Ωp is a symmetric monoidal functor (which amounts to the Künneth
formula and is equivalent to saying that it preserves finite coproducts) which preserves colimits
(since, by construction, it preserves sifted colimits). Hence it is determined completely by what
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happens on the level of L̂Ωp on PolyZp
. Any such functor F : PolyZp

→ ̂(CAlgZp

)
p

will factor

through PolyFp
if and only if when F is applied to the two maps:

t 7→ 0, t 7→ p : Zp[t]→ Zp,
the induced maps are homotopic. In order to check this, we consider the pushout diagram

L̂Ωp(Zp[t]) L̂Ωp(Zp)

L̂Ωp(Zp) L̂Ωp(Fp).

t 7→0

t 7→p

where we have used that the functor preserves finite coequalizers. The resulting pushout is the
derived de Rham complex of Fp relative to Zp. Bhatt has computed this as

̂(LΩFp/Zp

)
p
' Zp〈t〉/(t = p),

where 〈t〉 are the divided power variables. But now it suffices to construct splittings of the right
vertical and bottom horizontal maps, i.e., maps

Zp〈t〉/(t = p)→ Zp ' L̂Ωp(Zp),
which we can do because of the universal properties of Zp〈t〉 and the natural divided power
structure on Zp. �

1.4. Prismatic cohomology. We would like to construct a cohomology theory of schemes
over Zp which, morally, interpolates between the de Rham cohomology of the special fiber and
the étale cohomology of the generic fiber. As a first approximation, one should think of it as a
fancy version of “integral” de Rham cohomology. Furthermore, this cohomology theory will be
the derived global sections of the structure sheaf on a stack.

Definition 1.4.1. Let R be a Z(p)-algebra. A δ-ring is the datum of an endomorphism

ϕ : R→ R and a path h ∈ π1(End(R/Lp)) between ϕ/Lp and Frob/Lp .

Here, we note that the definition of a δ-ring can easily be extended to one involving an
animated ring or even a derived ring (a non-connective generalization of animated rings). One
could also have worked with a more explicit definition of a δ-ring where we are given a set map
δ : R→ R such that the map

ϕ(x) := xp + pδ(x)

defines a Frobenius after reduction modulo p. We will not elaborate on what δ is supposed to
specify but it not too hard to reinvent them. We will use the following terminology:

(1) we say that an element x ∈ R is distinguished if δ(x) is a unit;
(2) it is rank one if δ(x) = 0.

Rank one elements satisfy ϕ(x) = xp so it is some kind of “fixed points” of the Frobenius. That
the two notions coincide is proved in [BS19, Remark 2.5].

Definition 1.4.2. A prism is a pair (R, I) where R is a δ-ring and I is a Cartier divisor on
Spec R, subject to two conditions:

(1) it is (p, I)-complete;
(2) p ∈ I + ϕ(I)R.

1.4.3. Examples. We now give some examples of prisms before we proceed. We will make us of
the following lemma to check the prism condition:

Lemma 1.4.4. Let A be a δ-ring such that p is in the radical of A. Then for an element d in
the radical, the following are equivalent:

(1) p ∈ (d, ϕ(d));
(2) d is distinguished.
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Proof. If d is distinguished, then the equation ϕ(d) = dp + pδ(d) implies that p = ϕ(d)+dp

δ(d) ,

whence the claim. The converse is an exercise in unpacking definitions and is [BS19, Lemma
2.24-25].

�

Example 1.4.5. A prism is said to be crystalline if I = (p). The simplest example is given
by taking a characteristic p ring R which is perfect and forming the Witt vectors, W(R); it
has a universal property as a unique (derived) p-adically complete, flat Zp-algebra for which
W(R)/p = R. The kernel of the natural map W(R)→ R is given by p and the Frobenius on R
(which is an automorphism) lifts to an automorphism of W(R); this is an example of a perfect
prism: one in which the Frobenius map is an automorphism. For concreteness if R = Fp then
W(R) = Zp.

Example 1.4.6. Let A = Zp[[q − 1]], and consider

[p]q := 1 + q + · · ·+ qp−1 = qp−1
q−1 .

The element [p]q has the property that A/[p]q = Zp[ζp], the ring of integers of the cyclotomic
extension Qp[ζp]. Furthermore it has the property that setting q = 1 gets us

[p]q = p mod (q − 1).

This proves that [p]q is distinguished since δ([p]q) = δ(p) modulo q − 1 and the element q − 1
is in the radical of A (whence we may detect units after modding it out). Note that we have

used that the map A
q=1−−→ Zp is a δ-map.

Example 1.4.7. Let K/Qp be a discretely valued extension of Qp; this means that OK ⊂ K
is a discrete valuation ring (with residue field κ) for which we may choose a uniformizer π. We
have the maximal unramified subring W ∼= W(κ) ⊂ OK and we have W[[u]] which is a δ-ring
whose lift of Frobenius is determined by u 7→ up. We have a map W[[u]]→ OK determined by
setting u 7→ π. In fact, its kernel is principal and generated by E(u), the minimal polynomial
for π over W (it is usually called the Eisenstein polynomial of π). Then the pair (W[[u]], (E(u)))
is a prism called the Breuil-Kisin prism.

It is good for intuition to see why this is a prism. As above, we may do so after reducing
modulo u; now E(u) is characterized by the fact that the constant coefficient is p-adic valuation
1 (not divisible by p2). One of the things that the δ-structure does is that it lowers the p-adic
valuation of a non-unit by one (one checks this on the initial δ-ring Z(p)) and thus modulo
u, δ(E(u)) is a unit. One of the motivation for integral p-adic Hodge theory is to construct a
cohomology theory valued in Breuil-Kisin-Fargues modules which are essentially W[[u]]-modules
with extra structure.

Remark 1.4.8. One of the most remarkable properties of a prism is the following “rigidity”
lemma:

Lemma 1.4.9. [BS19, Lemma 3.5] Suppose that (A, I)→ (B, J) is a map of prisms (defined as
a map of the underlying δ-rings preserving the ideal), then we have an isomorphism I⊗A B ∼= J.
In particular, IB = J.

Therefore, once we fix a base prism that we are working over, everything else under it is
determined. This observation has led to the definition of the prismatic cohomology of a δ-ring
(as constructed by Antieau-Krause-Nikolaus) which interpolates between absolute and relative
prismatic cohomology.

The following property will be assumed for many of the results to hold (all the examples
above satisfy this condition):

Definition 1.4.10. A prism (A, I) is said to be bounded if A/I has bounded p∞-torsion.

We are now ready to define prismatic cohomology.
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Construction 1.4.11. Let (A, I) be a prism and R be a formally smooth A/I-algebra. The
relative prismatic site of R over A, denoted by (R/A)� is the category whose objects are
bounded prisms (B, J) (necessarily of the form (B, IB)) together with a map R → B/IB. It is
equipped with the indiscrete topology so that

Shv((R/A)�) ' PSh((R/A)�).

The prismatic structure sheaf is the functor

O(R→ (B, J)) = B,

while the Hodge-Tate sheaf is the functor

O(R→ (B, J)) = B/J.

Remark 1.4.12. There is a variant called the absolute prismatic site (this is not to be confused
with the prismatic site relative to the crystalline prism (Zp, (p)). The input is a p-adically
complete, formally smooth ring R. The objects of this site are maps R → A/I where (A, I)
is a prism. This definition is very abstract, but the resulting prismatic cohomology �R is, in
some sense, the most important object in the theory. The Cartier-Witt stack is a geometric
incarnation of this construction which will be more useful.

Remark 1.4.13. If C is a small category with the indiscrete topology and F is a presheaf
(hence a sheaf) on C we have that the sheaf cohomology of F is computed by

RΓ(C,F) ' lim
A∈C

F(A).

Hence, we should think of defining sheaf cohomology in this case as something elementary (as
one only needs the notion of a limit), but can be quite unwieldy.

Construction 1.4.14. As in Construction 2.0.11, the prismatic complex of R relative to A
is defined as

�R/A := RΓ((R/A)�,O�) ' lim
(R/A)�

B.

Here the inverse limit is taken in the ∞-category of (p, I)-complete derived A-modules. On the
other hand, we define

�R/A := �R/A ⊗L
A A/I,

as the Hodge-Tate complex. It is also easy to check that the Hodge-Tate complex is the
global sections of the Hodge-Tate sheaf.

Remark 1.4.15. There is a frobenius action on O� by definition and thus we have a frobenius
action on the prismatic complex, which is semilinear for the frobenius on A:

ϕ∗A�R/A
ϕ−→ �R/A.

It is common to denote �(1)
R/A := ϕ∗A�R/A.
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