
LECTURE 1: THE ONE IN WHICH WE SEE SOME MIRACLES AT p

ELDEN ELMANTO

We stated the following result last time:

Theorem 0.0.1. Let κ be a perfect field of characteristic p > 0 and X a smooth projective
k-scheme which lifts to W2κ and such that dim(X) < p, then the Hodge-to-de Rham spectral
sequence for Ω•X/κ degenerates at the E1-page.

Our goal now is to work towards the proof of Theorem 0.0.1. Let us recall some terminology
from derived categories (which we always regard as derived ∞-categories). Fix a commutative
ring A. Then D(A) admits the canonical t-structure where the non-negative part is given
by complexes which are connective: those whose homology groups are concentrated in non-
negative degrees; cohomologically this means those in non-positive degrees. We will now work
with cohomological indexing but we will be very clear about what we mean. So we use the
“upper truncation” notation, so we have endofunctors τ>i : D(A) → D(A) and we have the
“interval-wise” truncation τ [i,j], where i 6 j.

For each consecutive interval we have a cofiber sequence

Hi−1K[−i+ 1]→ τ [i−1,i]K→ HiK[−i] δ−→ Hi−1K[−i+ 2].

The map δ defines a class

δ ∈ Ext2(HiK,Hi−1K) = [HiK,Hi−1K[2]]D(A).

If the class δ disappears then the triangle above splits so that we have a decomposition

τ [i−1,i]K ' Hi−1K[−i+ 1]⊕HiK[−i].
In general we can look at “wider” truncations of the complex K, τ [a,b]K and there are higher
obstruction classes living in groups like Ext3(HiK,Hi−2K) and so on. Note that we have a
filtered object

0→ HbK[−b]→ · · · τ [a+2,b]K→ τ [a+1,b]K→ τ [a,b]K,

which defines a spectral sequence converging to the cohomology of τ [a,b]K. The higher obstruc-
tions can be interpreted as differentials in the spectral sequence and if K is decomposable, then
this spectral sequence degenerates.

We then say that K is decomposable if there is an equivalence in D(A):

K ∼=
⊕

Hi(K)[−i],

which induces the identity on cohomology. Now the choice of splitting is the same datum as
a map HiK[−i] → Hi−1K − [i + 1]; therefore the set of splittings is a torsor under the group
Ext1(HiK,Hi−1K) = [HiK,Hi−1K[1]]D(A). Thus the collection of splittings are also objects
which are reasonably parametrized; we will take this into account in what follows.

Theorem 0.0.2. [DI87, Corollaire 3.7] Let S be scheme over a perfect field κ of characteristic
p > 0, let X be a smooth S-scheme and let FX/S : X→ X(1) be the relative Frobenius. Fix a lift

S̃ to W2(κ).

(1) assume that there is a smooth lift X̃(1) to S̃, then τ [0,p]FX/S∗Ω
•
X/S is decomposable;

(2) the collection of such lifts are in bijection with all possible liftings of X.

Remark 0.0.3 (Properness). The role of properness is to ensure that the numbers hji are
actually finite so that we can run the numerical argument to degenerate the spectral sequence.
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From the Deligne-Illusie theorem is an immediate consequence. Before we proceed, let us
discuss what the de Rham complex is all about.

0.1. The de Rham complex. We fix a commutative ring A. We would like to understand
the true nature of the functor of A-algebras given by

B 7→ Ω•B/A.

We first ask ourselves: where does this functor land? It is good to keep in mind the following
caution:

Remark 0.1.1. The object ΩjB/A is naturally a B-module. However, the exterior derivative

is not B-linear but only A-linear. Hence there is no way that the above assignment lands in a
category “varying in B.”

So we first ask ourselves: what is the nature of the functor B 7→ Ω1
B/A?

Definition 0.1.2. Let B be an A-algebra. Then a A-derivation of B is the datum of a
B-module M and a map

D : B→ M,

such that D is A-linear (where M is an A-module via the forgetful functor) and the Leibniz
rule holds:

D(fg) = fDg + gDf.

In this case, we say that D is an A-derivation of B valued in M.

One way to define Ω1
B/A is then as the universal derivation, it is a B-module which comes

equipped with a derivation d : B→ Ω1
B/A, inducing an isomorphism

HomB(Ω1
B/A,M) ∼= DerA(B,M),

where the target is the set of A-derivations of B with valued in M.

Remark 0.1.3. Here is another way to think about derivations. Let M be an B-module. We
can then form the square-zero extension of B by M, denoted by B ⊕M which is B-algebra
whose multiplication is given by

(b,m) · (b′,m′) = (bb′, bm′ + b′m).

It comes equipped with a projection map B⊕M→ B. A derivation is then the same thing as
an A-algebra section s : B→ B⊕M of the projection map.

Now, the de Rham complex is a priori given as the cochain complex whose j-th term is given
by the B-linear exterior power

∧jBΩ1
B/A =: ΩjB/A

It has two more pieces of structure:

(1) the graded module ⊕
j>0

ΩjB/A =: Ω•B/A

has the structure of a strict commutative differential graded algebra or just
strict dga. The strict adjective says that x2 = 0.

(2) there are A-linear maps called the exterior derivative or the de Rham differential

d : ΩjB/A → Ωj+1
B/A

determined by

d(b0db1 ∧ · · · dbj) = db0 ∧ db1 ∧ · · · dbj .
In fact, these two pieces of structure pins down the de Rham complex; we can think of it as

a “dga version” of the universal property of Ω1:
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Theorem 0.1.4. Let A → B be a map of rings. Then Ω•B/A is the initial strict cdga equipped

with a map from B to its degree zero component.

Proof. Recall that the exterior algebra ∧•B(M) is the quotient of the tensor algebra generated
by M modulo the two sided ideal generated by the degree two elements {m⊗m}; it inherits a
natural grading where M itself sits in degree one. In particular, it is a strict graded commutative
A-algebra (ignoring differentials!). Now, we see that to define a A-linear map ∧•B(M) → C•

where C• is a strict graded commutative A-algebra, we need to define a map of degree zero part
B→ C0, a map of the degree one part M→ C1; the maps on the higher degrees are determined
by these datum. Here is where the differentials are helpful: if we impose further that the maps
must commute with differentials, then all we need is to define a map B → C0 because the
composite B→ C0 → C1 is an A-derivation and thus the universal property of Ω1

B/A furnishes

the map on degree 1.
Now, we claim that the de Rham differentials as above define the unique structure of a strict

differential graded commutative A-algebra such that on • = 0, the map is given by B
id−→ B. In

particular, this means that d must satisfy the higher Liebniz rules:

di+j(ab) = di(a)b+ (−1)iadjb |a| = i, |b| = j.

This last claim follows from an explicit presentation of ΩjB/A as an A-module, generated by

b0dx1 ∧ · · · ∧ dxj and checking directly that the higher Leibniz rules must be satisfied. This
latter presentation then also gives us that the map constructed in the previous paragraph must
define a map of strict commutative graded A-algebras.

�

Remark 0.1.5. It is not hard to give a globalization of the de Rham complex using the language
of a ringed topos; I encourage the reader to prove and formulate it.

0.2. The Cartier isomorphism. Throughout this class, we will refer to the following diagram.
Let S be a scheme of characteristic p > 0 and let Frob : S → S be the absolute Frobenius.
This is a map which, on the level of rings, is given by

A
Frob−−−→ A x 7→ xp.

For any S-scheme X with structure map π : X→ S, we then form:

X

X(1) X

S S.

FX/S

Frob

π(1)

W

π

Frob

Here FX/S is called the relative Frobenius, in contrast to the absolute one.

Remark 0.2.1 (The object F∗Ω
•
X/S). A priori the object F∗Ω

•
X/S does not quite make sense

since Ω•X/S is not OX-linear. However, observe that the differential is actually OX(1)-linear: for

any f ∈ OX we have
d(fpg) = fpdg + 0.

This is what the de Rham complex FX/S∗Ω
•
X/S is all about. This alone buys us a little miracle:

the cohomology sheaves Hi(FX/S∗Ω
•
X/S) are, in fact, linear over OX(1) .

Here is a remarkable construction in characteristic p > 0:

Lemma 0.2.2. Let S be an Fp-algebra. Then there exists a OX(1)-linear map called the inverse
Cartier map

C−1 : Ωj
X(1)/S

→ Hj(FX/S∗Ω
j
X/S).

which are determined uniquely by the following properties:
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(1) C−1(1) = 1;
(2) C−1(ω ∧ τ) = C−1(ω) ∧ C−1(τ);
(3) C−1(df) = fp−1df .

Let us postpone the construction of Construction 0.2.2 for a moment. The reason why C−1

has a −1 on it is because the inverse map was first defined, and is an isomorphism within the
context of smooth schemes:

Theorem 0.2.3. Let X→ S be a smooth morphism of characteristic p > 0 schemes. Then the
map

C−1 : Ωj
X(1)/S

→ Hj(FX/S∗Ω
j
X(1)/S

),

is an isomorphism for all j > 0.

Proof. The easiest example of a smooth morphism is the projection map AnS → S, so let us try
to prove the result in this generality first. Let us observe the following: the cdga F∗Ω

•
(AnS )(1)/S

is the O(AnS )(1)-linear complex generated by

xw1
1 · · ·xwnn dxα1 · · · dxαj

where
wi ∈ [0, p− 1] 1 6 α1 < α2 < · · ·αj 6 n,

and the differential is given by the usual exterior derivative. More precisely, let us write

K(n)•

as the Fp-linear cdga generated by the above. Then we have an isomorphism of O(An)(1)-linear
complexes

K(n)• ⊗Fp O(AnS )(1)
∼= F∗Ω

•
(AnS )(1)/S

.

With this presentation, the cohomology of this complex is given by

Hi(F∗Ω
•
(AnS )(1)/S

) ∼= Hi(Kos(n)•)⊗Fp O(AnS )(1)

Now, we have an equivalences:

K(n)• ' K(1)• ⊗L · · · ⊗L K(1)• ' K(1)• ⊗ · · · ⊗K(1)•,

where there are n-tensor factors. Therefore, by the Künneth formula it suffices to prove the
result for n = 1 in which we are reduced to the following claims:

(1) H0(K(1)•) = Fp;
(2) H1(K(1)•) = xp−1dx;
(3) Hj(K(1)•) = 0 for j > 2.

This is easy to verify by hand: the point is that if n < p− 1, then xndx has a primitive given
by 1

n+1x
n+1 since n+ 1 is a unit in Fp.

We now reduce to the general case. We note that both source and target of C−1 are actually
“local” on X in the sense that they form Zariski sheaves on X:

Ωj
(−)(1)/S,H

j(FX/S∗Ω
j
(−)(1)/S) : Xop

Zar → Ab,

and that they map C−1 is a morphism of sheaves. Therefore it suffices to prove the result
for local rings of X. However any smooth morphism X → S is, Zariski-locally on X, an étale
morphism over an affine space, i.e., X is of the form

X
f−→ AnS → S,

where f is an étale morphism and the first map is the projection map. We now conclude the
result from the previous computation and the fact that if f : X → Y is an étale morphism of
S-schemes, then we have isomorphisms:

Ωj
X(1)/S

∼= (f (1))∗Ωj
Y(1)/S

Hj(FX/S∗Ω
j
X(1)/S

) ∼= (f (1))∗Hj(FY/S∗Ω
j
Y(1)/S

).

�
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Remark 0.2.4. We can enhance the above theorem slightly. Recall that a morphism of schemes
f : X → Y is said to be regular if it is flat, every fiber Xy is locally noetherian and Xy is
geometrically regular over κ(y) in the sense that any for any finite, purely inseparable field
extension κ′/κ(y), Xκ′ is a regular scheme. The following is landmark result in commutative
algebra:

Theorem 0.2.5 (Popescu). Any regular morphism of rings A→ B can written as a cofiltered
limit of smooth ring maps A→ Aα.

Therefore, the Cartier isomorphism holds for X → S which is regular. A useful situation is
this: suppose that X is a regular Fp-scheme; this means that the structure map X → SpecFp
is a regular. Then the inverse Cartier map is an isomorphism:

ΩjX/Fp
C−1,∼=−−−−→ Hj(Ωj

X/Fp
).

Here we have used the fact that the frobenius on Fp is just the identity.

Remark 0.2.6. It is useful to isolate the following property from the proof above, first recog-
nized by Achinger and Suh:

Definition 0.2.7. Let (X,O) be a ringed topos. A coconnective commutative differential O-
algebra K• is said to be an abstract Koszul complex if

(1) the map O→ H0(K•) is an isomorphism;
(2) for every q > 1, the induced multiplication H1(K•)⊗q → Hq(K•) factors through an

isomorphism
∧qOH

1(K•)→ Hq(K•).

The above result, and its generalization as in Remark 0.2.4 states that the de Rham complex
is abstract Koszul in the above sense. This notion also captures seemingly unrelated phenom-
enon: let X be the topological torus of complex dimension g, i.e., it is homotopy equivalent to
(S1)2g. Then the complex C∗(X;Q) is also abstract Koszul in the sense that H0 is just Q and
we have an isomorphism

∧qQH1(X;Q) ∼= Hq(X;Q) j > 1,

via the multiplication.

We now discuss the proof of Lemma 0.2.2.

Proof of Lemma 0.2.2. We work with X,S affine and globalize as usual. First let me say what
the Cartier operator is all about. Let p be a prime and pretend that p 6= 0; so for example we
are working in something like Z/p2. Then the Frobenius pullback of differential form gives us

F∗(dx) = dxp = pxp−1dx.

The observation here is that F∗ is p-divisible on Ω1. More generally, on a j-form, F∗ is divis-
ible by pj on something like Z/pj . Morally speaking, the Cartier operator is a “divided” or
“weighted” Frobenius — a very common theme among all Frobenius action in motives. Hence
to compute C−1 what one does is to lift a differential form ω in degree j to an algebra over
Z/pj , divided by pj and reduce back. This is why the definition involves choices and only
makes sense after taking cohomology. More concretely, the point is that we want to define a
map C−1(dx) = xp−1dx. But to ensure that this is a homomorphism we need to say that

(x+ y)p−1d(x+ y) = xp−1dx+ yp−1dy.

This is not true, but off by a factor of d of a sum involving factorials. For details on the
construction, we refer the reader to [Kat70].

Now, on a ring A, it is not necessarily the case that A lifts to Z/p2 or even to Zp. But there
is a gadget that accomplishes this called crystalline cohomology. For now let us construct
the Cartier operator in a more restricted setting by assuming that S = Spec A admits a lift to

p-torsion free algebra Ã (this is equivalent to asking that Ã is a flat lift). Then the relative
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crystalline cohomology is a complex of Ã-modules RΓcrys(X/Ã) with the property that there is
a natural quasi-isomorphisms:

RΓcrys(X/Ã)⊗L
Ã

A ' Ω•X/A.

Now, the upshot is that we have the Bockstein homomorphisms coming from the cofiber se-

quence of Ã-modules

0→ A→ Ã/p2 → A→ 0,

whence the Bockstein map

β : RΓcrys(X/Ã)⊗L
Ã

A→ RΓcrys(X/Ã)⊗L
Ã

A/p[1].

We thus can form the chain complex (because the Bockstein is a derivation)

(Hi(F∗Ω
•
X/S), β),

the universal property of the de Rham complex (note that, by OX(1)-linearity, we have a map
OX(1) → H0(F∗Ω

•
X/S)) then furnishes a map

C−1 : (ΩiX(1)/S, d)→ (Hi(F∗Ω
•
X/S), β),

which one can check satisfies the inverse Cartier map axioms. �
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