
LECTURE 2: IN WHICH WE DO SOME DERIVED LINEAR ALGEBRA

ELDEN ELMANTO

We now discuss the “pure algebra” part of the Deligne-Illusie theorem, following ideas of
Achinger and Suh [AS20]. The Cartier isomorphism says that we have the object in the derived
category of the ringed topos (X(1),O) given by

K = FX/S∗Ω
•
X/S

which is an abstract Koszul complex. What comes next is actually very simple, at least con-
ceptually. So let me say what we are trying to do:

Remark 0.0.1. What does it mean to decompose the simplest piece of K? Well τ61K only
has two terms which are, up Frobenius twists which we will ignore:

H1 = Ω1 H0 = O.

The result then asserts that lifting to W always ensures this splitting (since we are looking at
the case of 1 = 2− 1). This is the purely geometric part of the theorem, and we will relate this
to the lifting problem, so we postpone this to the next class. But what can we do assuming
that we have this splitting? The point is that we want to spread this splitting throughout the
de Rham complex, or at least as much as possible. The Koszulity of the de Rham complex
wants us to say something like

Symq(τ61Ω) ' τ6qΩ.
Then from knowing how Sym and ⊕ interacts, and the decomposition at τ61, we obtain the
desired decomposition. This is not literally true, but will be if we are a bit more careful about
what exact we mean by the symmetric powers. Also it cannot be literally true as there is a
restriction on how much splitting we get relative to p.

To make Remark 0.0.1 precise, let us recall a construction in linear algebra and another in
derived linear algebra:

Construction 0.0.2 (Divided powers). Let A be a ring and M a finitely generated projective
(we will not consider the underived construction on general modules) A-module. Then the
divided power algebra on M is the commutative A-algebra generated by elements x ∈ M
and elements γn(x) for n > 0 subject to the divided power relations [Stacks, Tag 07GL]. Setting
|x| = 1, |γn(x)| = n, we have a decomposition into homogeneous components

ΓA(M) ∼=
⊕

ΓdA(M).

We note that there are isomorphisms M ∼= Γ1
A(M),A ∼= Γ0

A(M). Furthermore

(M⊗d)Σd ∼= ΓdA(M)

for any d > 0; this should be taken in contrast with the more familiar isomorphism (M⊗d)Σd
∼=

Symd
A(M).

Remark 0.0.3. We note that the axioms of γn(x) ensures that they behave like xn/n!. So we
have xn = n!γn(x). However, γn is not really any kind of homomorphism from M so one should
be careful about taking this relation too seriously.

Remark 0.0.4. We also recall that if M is a finitely generated free A-module, then we have
the duality isomorphism

ΓdA(M∨) ∼= (Symd
A(M))∨.
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We shall need the following basic lemma

Lemma 0.0.5. Let d! be invertible in A and M a finitely generated projective A-module. Then
the “averaging map”

Symk
A(M) = (M⊗k)Σk

→ ΓkA(M) = (M⊗k)Σk

is an isomorphism for k 6 d.

Proof. The point is that xk/k! are all defined as soon as k 6 d.
�

The following procedure will be bread and butter.

Construction 0.0.6 (Animation). Consider the category of finitely generated projective A-

modules Modfg.proj
A and suppose that we have some functor

F : Modfg.proj
A → ModA.

Then we can extend F to LF, a sifted colimits-preserving functor fitting into the following
diagram

Modfg.proj
A ModA

D(A)>0 D(A)>0.

F

LF

For us the functors we care about are

F =

i∧
,Symi,Γi.

Remark 0.0.7. One of the features of defining constructions by animation is that they are
manifestly “homotopy invariant” in that they are defined on the derived ∞-category. The
constructions do not, a priori come with preferred representatives.

Remark 0.0.8. Say M is an arbitrary, discrete A-module. In practice how one computes LF is
the following: we pick some simplicial resolution P• → M, whose terms are filtered colimits of
finitely generated projective modules. By the Dold-Kan correspondence [Lur17, Section 1.2.3],
this is exactly picking (colimits of) projective resolutions. Then

LF(M) ' colim
∆op

F(Pn).

Definition 0.0.9 (Higher Koszul complexes). Let (X,O) be a ringed topos and let f : M→ N
be a map of flat O-modules and let F be the fiber of the map in the ∞-category D((X,O)).
Then the q-th Koszul cohomology of f is given by

Kosq(f) := L

q∧
(F[1])[−q].

Remark 0.0.10. The object F[1], is just another name for C, the cofiber of f ; the reason
why we shift by [1] is purely technical: we have only defined these derived constructions on
connective objects and the fiber might go into negative degrees1; but they actually do extend
to non-connective ones as first observed by [Ill71, Chapter I.4]. In fact he does this in generality
of bounded below objects (those whose cohomology vanishes in large enough degrees, equiva-
lently those that vanish in small enough degrees). Moreoever, we have an equivalences (in this
generality):

L

q∧
(F[1])[−q] ' LΓq(F),

1To clarify the confusion in class: the cofiber is the complex [M → N] where M is placed in homological
degree 1 and N is in degree zero; the fiber is cofiber shifted by −1 which means that M is in degree zero and N
is in homological degree −1.
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first proved by Illusie in [Ill71, Proposition 4.2.3.1] (see also [Lur18, Section 25.4.2]); this is also
true for a (suitably defined extension) of F ∈ D(A). There is also another equivalence:

LSymq(F[1])[−q] ' L

q∧
(F).

With this in mind, we define the q-th Koszul homology of f as

Kosq := LSymq(F[1])[−q];

this could be more familiar to more people. Anyway, the above two equivalences basically states
that we can produce the derived divided and exterior power from just the symmetric powers
construction.

Remark 0.0.11. Let V be a free module over a ring R. Then we can look at the graded
algebra whose terms are given by

Sym∗(V∨) Sym∗(V∨)⊗V∨ Sym∗(V∨)⊗
∧2

V∨ · · · Sym∗(V∨)⊗
∧k

V∨

There are the underlying dga’s of both the de Rham complex of A(V)→ Spec R and the Koszul
complex of the map of k[x1, · · · , xn]

⊕
n → k[x1, · · · , xn] classifying the elements x1, · · · , xn (or

the Koszul complex of the ideal (x1, · · · , xn)). However, the de Rham complex has a differential
that “goes cohomologically up”:

Sym∗(V∨) Sym∗(V∨)⊗V∨ Sym∗(V∨)⊗
∧2

V∨ · · · Sym∗(V∨)⊗
∧k

V∨,

while the Koszul complex has one that goes “cohomologically down”

Sym∗(V∨) Sym∗(V∨)⊗V∨ Sym∗(V∨)⊗
∧2

V∨ · · · Sym∗(V∨)⊗
∧k

V∨

The point here is that the de Rham complex is a case of the Koszul cochain complex.

What is the significance of Kosq(f)? Manifestly, the definition of the complex Kosq(f) only
depends only on the fiber of the map f . Therefore, if the object Fib(f) is decomposable as
an object in the derived ∞-category, then so does Kosq(f). Therefore, to accomplish our goal
of splitting K, it is useful to express it in terms of the Koszul complex. This is the result of
Achinger and Suh.

Theorem 0.0.12 (Achinger-Suh). Let m be an integer such that m! be invertible in O and let
q > m. Assume either:

(1) that q = m or
(2) m+ 1 is a nonzero divisor in O.

Let K be an abstract Koszul complex and write:

τ61K = [K0 ∂−→ Z1K],

such that K0,B1K,Z1K,H1(K) are all flat. Then we have an induced quasi-isomorphism

τ>q−mKosq(∂) ' τ [q−m,q]K.

In particular, if τ61K is decomposable, then so is τ [0,q]K.

To prove this result, we pick a model of Kosq; which we call Kos•q . We sort of have to — the
proof of the theorem does rely on choosing an explicit representative of the truncated de Rham
complex (even though the conclusions do not).
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Construction 0.0.13. Let f : M → N be a morphism of flat O-modules. Then construct a
cochain (cohomologically nonnegative) complex of the form

Kos•q := 0→ ΓqO(M)→
1∧
O

N⊗ Γq−1
O (M)→

2∧
O

N⊗ Γq−2
O (M)→ · · ·

q∧
O

N→ 0,

where the leftmost term is placed in degree zero. We denote the differential by

d(y ⊗ γe1(x1) · · · γer (xr)) =
∑
j

y ∧ f(xj)⊗ (γe1(x1) · · · γej−1(xj) · · · γer (xr)).

Lemma 0.0.14. Let f : M→ N be a morphism of flat O-modules. Then there is an equivalence:

Kos•q(f) ' Kosq(f).

Proof sketch. We only make some comments on the proof and give a reference at the end. We
start with some general comments. Assume that we have an exact sequence

0→ M′ → M→ M′′ → 0;

where everything in sight are finitely generated free modules. In this case, consider the following
“Koszul-type” chain omplex

0→
q∧
O

M′ →
q−1∧
O

M′ ⊗ SymOM→ · · · → M′ ⊗ Symq−1
O M→ Symq

OM→ 0.

Where might have one seen this complex? Well we are writing down the q-homogeneous compo-
nent of the Koszul complex [Stacks, Tag 0623] associated to elements f1, · · · fn in Sym∗OM which
are the image of the generators of M′. These form a regular sequences in Sym∗OM and thus
the Koszul complex is acyclic [Stacks, Tag 062D] (by regularity of the sequence) and computes
Sym∗OM/(f1, · · · , fn). But the latter is nothing by Sym∗OM′′. Therefore we have proved that
the above complex computes Sym∗OM′′ ' LSym∗OM′′ ' Sym∗O(F[1]) where F is the fiber of the
map M′ → M. Sorting out the homogeneous degree q piece we obtain a complex computing
Kosq•(M

′ → M).
Now we dualize the argument. recall that for any flat module M we have duality isomor-

phisms:

ΓnO(M∨) ∼= Symn
O(M)∨

∧
O

(M∨) ∼= (
∧
O

M)∨.

Dualizing the above exact sequence

0→ (M′′)∨ → M∨ → (M′)∨ → 0;

we get a dual complex

0→ ΓqO(M)→ M′′ ⊗ Γq−1
O (M)→

2∧
O

M′′ ⊗ Γq−2
O (M)→ · · ·

q∧
O

M′′ → 0.

Now, this complex computes LSym∗O((M′)∨)∨ ' LΓ∗(M′). In our situation, let us assume that
we are in the special case where M→ N is surjective so that the fiber is exactly just the kernel,
denoted by F. We see that the complex Kos•q(f) is exactly the one given as above.

An “official proof” of this result can be found in the references of [AS20, Proposition 2.5];
but we can also reduce to the above case by the techniques of the proof of [Lur18, Proposition
25.2.4.2].

�

Proof of Theorem 0.0.12. First, we begin by constructing a map on stupid truncations

µ : σ>q−mKos•q → σ>q−mτ6qK,

which is of the form:
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0→
∧q−m

O Z1K⊗ Symm
O (K0)

∧1
O Z1K⊗ Symq−1

O (K0) · · ·
∧q

O Z1K 0

0→ Kq−m K1 · · · ZqK.

Here we are already using Lemma 0.0.5 and the assumption that m! is invertible in O to convert
the divided powers into symmetric powers. Notice that when q = m, the map of complexes we
are interested in is of the form

Kos•m(∂) ' LΓq(H1(K)[−1]) ' LSymq(H1(K)[−1])→ K,

and such a map can be constructed without any problems using the universal property of LSym.
So now, let us assume that m + 1 is a nonzero divisor. To promote the above to the clever

truncation we need to prove that the image of

q−m−1∧
O

Z1K⊗ Γm+1
O (K0)→

q−m∧
O

Z1K⊗ Symm
O (K0)

into dKm−n−1. We leave this as an exercise the reader, or see the proof of [AS20, Theorem
2.8]. Instead we explain the minimal failure of this (due to Achinger-Suh): set m = p−1, p = q.
Then we can consider the de Rham complex of the polynomial algebra Fp[x] as a Fp[xp]-module.
We are trying to understand the boundary cycles going into:

Kosp(∂)1 → K1.

In other words we are contemplating the diagram

ΓpFp[xp](Fp[x]) (Γp−1
Fp[xp](Fp[x]) ∼=) Symp−1

Fp[xp](Fp[x])⊗ Fp[x]dx

d(Fp[x]) Fp[x]dx;

µ

and we want the dashed arrow to exist. But it does not because the class γp(x) gets mapped

to γp−1(x) ⊗ dx is then equal to xp−1

(p−1)! ⊗ dx = −xp−1 ⊗ dx (modulo p of course!) and thus

get mapped to −xp−1dx, which is decidedly not a boundary since it does not have a primitive
(which would involve dividing by p!).

Then using Lemma 0.0.15, at each j, the effect on taking cohomology is given by

j∧
O

(H1(K))⊗O Γq−jO (H0(K))
∼=−→ Hj(Kos•(f))→ Hj(K),

where the total composite is induced by multiplication. Since K is assumed to be abstract
Koszul, the composite is an isomorphism, whence we are done.

�

We leave the next lemma as an exercise: they point is that Kos• converts sums to tensor
products; see [AS20, Proposition 2.7] for the solution.

Lemma 0.0.15. Given a map f : M→ N of flat O-modules, there exists, for each j, a unique
arrow

j∧
O

(coker(f))⊗ Γq−jO (ker(f))→ Hj(Kos•(f)).

which is an isomorphism.
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Remark 0.0.16. We remark on several interesting aspect of the proof. Firstly, we use the fact
that the Kos•q is manifestly a functor of ∞-categories to spread information from the τ61 part
of K to the rest of K. However, we need an explicit description of the complex to relate it back
to Sym∗, at least in the second case; this later maneuver is not “model-independent.”

Corollary 0.0.17. Let X/S be of relative dimension < p. Assume that the truncation τ61FX/S∗Ω
•
X/S

decomposes. Then there is an quasi-isomorphism⊕
j

Ωj
X(1)/S

[−j] '−→ FX/S∗Ω
•
X/S,

which induces the Cartier isomorphim:

C−1 : Ωj
X(1)/S

→ Hj(FX/S∗Ω
•
X/S),

for each j > 0. More generally, any truncation of the form [a, a+ p− 2] for p > 2 and [a, a+ 1]
splits in the same fashion.

Proof. The truncation of the de Rham complex takes the form

τ61FX/S∗Ω
•
X/S
∼= [OX(1) → Z1F∗Ω

1
X/S].

Since X → S is smooth, the flatness assumption on the ringed topos of (X
(1)
Zar,O)) is satisfied.

So we may apply the Achinger-Suh theorem to conclude that FX/S∗Ω
•
X/S abstractly decomposes

(after taking Kosdim(X/S) which bounds above the de Rham complex). But let us be more precise

about this; knowing that we have a decomposition on τ61, we may choose a quasi-isomorphism

τ61FX/S∗Ω
•
X/S ' [H0(FX/S∗Ω

•
X/S)

0−→ H1(FX/S∗Ω
•
X/S)],

thus we have a map of complexes, induced by the Cartier isomorphism:

[OX(1)
0−→ Ω1

X(1)/S]
C−1

−−−→ [H0(FX/S∗Ω
•
X/S)

0−→ H1(FX/S∗Ω
•
X/S)].

Taking Kos•p on this isomorphism we get a quasi-isomorphism⊕
j

Ωj
X(1)/S

' Kos•p([OX(1)
0−→ Ω1

X(1)/S])
'−→ FX/S∗Ω

•
X/S,

The stronger claim follows from Theorem 0.0.12 by setting m = p− 2 when p > 2.
�
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