
LECTURE 3: THE ONE IN WHICH WE SPEAK SOME FRENCH

ELDEN ELMANTO

Let us first sketch the idea of deformation theory. Suppose that Ã → A is a surjective
morphism of rings and suppose that X is a flat A-scheme. We want to ask the following
questions:

(1) does there exists a diagram

X̃ X

Spec(Ã) Spec(A);

such that X̃→ Spec(Ã) is flat and the map above is cartesian?
(2) If such a diagram exists, then how many (isomorphism classes) of them are there?

In the case that Ã→ A is square zero extension, i.e., the map is a surjection and the kernel
is square zero, then the answer can be expressed in terms of (derived) linear algebra.

The goal of this class is to prove the following result which relates deformation theory to de
Rham cohomology; for us a stack1 is a presheaf of (∞−)groupoids on the small étale site of a
scheme.

Theorem 0.0.1 (Relèvements contre scindage). Let X → S be a morphism of schemes in

characteristic p > 0 and let S̃ be a fixed, flat lift over Z/p2 of S. Then:

(1) assume that f : X→ S is lci, then there exits a (higher) X(1)-stack, denoted by,

Rel(X(1),S)

which parametrizes flat lifts of X(1) to S̃ and fits into a pullback square of stacks

Rel(X(1),S) Maps(τ61LX(1)/S̃,O[1]).

{id} Maps(O,O).

(2) There exits a (higher) X(1)-stack denoted by:

Sci(τ61FX/S∗Ω
•
X/S)

1More precisely; let Xét be the small étale site on X whose objects are étale morphisms to X. The covers are
given by joinly surjective, finite collection of étale morphisms. A prestack is functor Xop

ét → Ani and a stack is

one that satisfies the descent condition. If the prestack lands in Gpd ⊂ Ani then the descent condition is more
concrete and involves up to level 2 of the simplicial diagram.
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2 E. ELMANTO

which parametrizes splittings of the 1-truncated de Rham complex and fits into a pullback
square of stacks

Sci(τ61FX/S∗Ω
•
X/S) Maps(τ61FX/S∗Ω

•
X/S,O).

{id} Maps(O,O).

(3) In case that X→ S is smooth, we have a canonical equivalence

Rel(X(1),S) ' Sci(τ61FX/S∗Ω
•
X/S);

furthermore both stacks are X(1)-gerbes banded by H1(X(1),TX(1)/S) and the above equiv-
alence are equivariant.

To prove the last point of Theorem 0.0.1, one can proceed via the following theorem of Illusie:

Theorem 0.0.2 (Illusie). As in Theorem 0.0.1, if X → S is furthermore smooth, there exists
an equivalence

(τ61LX(1)/S̃)[−1]
'−→ τ61FX/S∗Ω

•
X/S.

Having all the above ingredients we are done: since lifts correspond exactly to splittings we
get the [0, 1] case of the result. The proof of Theorem 0.0.2 uses more ideas from crystalline
cohomology. However, let us indicate why it should be correct “by size.” The reader unfamiliar
with the cotangent complex is encouraged to skip this part and return; we will also make this
idea precise in the final part of the lecture.

Anyway, if X→ S is smooth, then we get a cofiber sequence

H0(τ61FX/S∗Ω
•
X/S)→ τ61FX/S∗Ω

•
X/S → H1(τ61FX/S∗Ω

•
X/S)[−1].

On the other hand, we have the transitivity triangle for X(1) f−→ S ↪→ S̃:

f∗LS/S̃[1]→ LX(1)/S̃ → LX(1)/S;

which, in the smooth case, unpacks to the following cofiber sequence after truncating and
shifting by [−1]:

OX(1) → (τ61LX(1)/S̃)[−1]→ Ω1
X(1)/S[−1].

We then have the Cartier isomorphisms

C−1 : OX(1)
'−→ H0(τ61FX/S∗Ω

•
X/S) C−1 : Ω1

X(1)/S

'−→ H1(τ61FX/S∗Ω
•
X/S).

Hence all we need to do is to ensure that we have the correct map. In order to do this, we need
to construct the following dashed arrow

(0.0.3)

τ61LX(1)/S̃ τ61FX/S∗Ω
•
X/S[1]

Ω1
X(1)/S

H1(τ61FX/S∗Ω
•
X/S)

OX(1)/S[2] H0(τ61FX/S∗Ω
•
X/S)[2],

C−1

C−1

Actually following this strategy is not so easy. In [DI87], the authors proceed by an analysis
of the stacks involved can be a bit unwieldy because one has to write explicit cocycles to
glue certain maps together. We will give a proof of Theorem 0.0.2 to after our treatment of
crystalline cohomology and we will also give the original proof of part (3) below.
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1. Deformation theory

We work with animated rings throughout; more precisely we write AniCAlgk for the ∞-
category of animated k-algebras and CAlgk ⊂ AniCAlgk to be the subcategory spanned by the
discrete ones. Let k be a fixed based ring which we assume to be classical and let A be an
animated k-algebra, then a k-linear derivation of A valued in an A-module M is a k-linear
morphism d : A→ M such that the map

sd := (id, d) : A→ A⊕M,

provides a k-algebra section, where A⊕M is the trivial square-zero extension of A by M; recall
that when everything in sight is discrete the multiplication is given by

(a,m) · (a′,m′) = (aa′, am′ + a′m).

We write

Derk(A,M)

as the ∞-groupoid of k-linear derivations of A valued in an A-module M. The (k-linear)
cotangent complex is the universal (derived) k-linear derivation of A, i.e., it is a k-linear
derivation d : A→ LA/k such that

MapsA(LA/k,M) ' Derk(A,M).

Note that this is the obvious “higher” analogue of the universal property of Ω1
A/k. For now, all

we need to know is that LA/k is an A-module satisfying the above universal property.

A square-zero extension of A is a k-algebra map Ã → A which fits into the following
pullback square in AniCAlgk

Ã A

A A⊕M[1];

sdM

0

here M is assumed to be connective just to ensure that Ã remains an animated ring. In this
diagram, the bottom arrow is the map associated to the zero derivation 0 : A → M[1]; in

particular the fiber of the map Ã → A is given by M. Therefore the datum of a square-
zero extension is entirely determined by a map dM : A → M[1]; equivalently an A-linear map
LA/k → M[1].

Definition 1.0.1. Let Ã → A be a square zero extension. A deformation of B ∈ CAlgA to

Ã is a pair (B̃, α) such that B̃ is a Ã-algebra and α is an equivalence α : B̃⊗L
Ã

A ' B.

Suppose that A, Ã, B̃ are discrete rings. We say that a deformation (A, α) of a discrete

A-algebra B is a flat deformation if B̃ is a flat Ã-algebra.

Remark 1.0.2. Let I→ Ã→ A be a fiber sequence; then if a Ã→ B̃ is the underlying algebra
of the deformation, we get that

I⊗L
Ã

B̃→ B̃→ B

is a fiber sequence as well so that B̃ is the extension of B by I⊗L
Ã

. In classical treatments of

deformation theory, we usually prescribe how the kernel looks and we will see that this is related
to some flatness hypotheses.

Some basics to get us started. As explained above, for each morphism of rings f : A → B,
we can associate to f the cotangent complex Lf = LB/A ∈ D(B) which classifies derivations. It
is functorial for pairs of morphisms in a way that we will not really spell out. Here are its key
properties, suited for our needs:

Theorem 1.0.3 (Cotangent complex). Let A ∈ AniCAlgk, then
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(1) for any animated A-algebra B, the cotangent complex LB/A is concentrated in homolog-
ically non-negative degrees in D(B);

(2) π0(LB/A) = Ω1
π0(B)/π0(A);

(3) if A → B is morphism of discrete rings, which is surjective with ideal kernel I then
π0(LB/A) = 0, π1(LB/A) = I/I2;

(4) let A→ A′ be a morphism, then LB/A ⊗L
A A′ ' LB⊗L

AA′/A′

(5) given a sequence A→ B→ B′ then we have a cofiber sequence

LB/A ⊗B B′ → LB′/A → L′B′/B

(6) if B is étale over A then LB/A ' 0; if it is smooth morphism of discrete rings then

LB/A ' Ω1
B/A[0].

(7) if A→ B is surjective whose kernel ideal I is Koszul regular2, then LB/A
∼= I/I2[1].

Remark 1.0.4. While we will blackbox the cotangent complex, we can give the construction
(rather, a formula or sort) via animation which we already discussed: it fits as the sifted-colimit
extension of the functor of Kähler differentials

Polyk Modk

AniCAlgk D(k).

Ω1
−/k

L(−)/k

Be warned, however, that LA/k does not immediately acquire the structure of an A-module
from this formulation. In any case, we can define LA/B as the cofiber of the map

B⊗A LA/k → LB/k.

Remark 1.0.5. Explicitly, the cotangent complex can be computed as follows: pick a simplicial
A-polynomial resolution P• → A, i.e., Pn is a polynomial A-algebra for each n. Then

LB/A ' B⊗P• Ω1
P•/A

.

1.1. Gerbe of liftings. Let’s attempt to understand what it means to produce a deformation;
we work for now in the context of animated rings so that we do not have to worry about flatness
assumptions for a little while. We are staring at all the possible ways in which the following
dashed arrows can be filled:

Ã A

B̃ B,

f

such that B̃ is a deformation of B. At the beginning of time, we have fixed the top horizontal
arrow which corresponds to a k-derivation D : A → I[1] where I is the kernel of the top map.
This corresponds to an A-linear map

LA/k → I[1].

We want to end up with a square zero extension given by the bottom arrow. One thing that
one could do is to take the derived base change I[1] ⊗L

A B and we end up with a diagram of
k-modules with only one dashed arrow left:

A I[1]

B I[1]⊗L
A B,

f

2By this we mean that the Koszul complex is acyclic [Stacks, Tag 062D]; this is implied by the sequence
being regular [Stacks, Tag 062F].
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where we ask that the dashed arrow is a B-linear morphism of modules. So the space of defor-
mations is actually the space of all possible fillers of the above square; this has the advantage
of linearizing the problem but also reducing the number of arrows. How does one package this
in terms of the cotangent complex? Well we see that the above squares are the same thing as
the space of fillers:

LA/k I[1]

LA/k ⊗L
A B I[1]⊗L

A B

LB/k I[1]⊗L
A B,

=

where we might as well forget about the very top arrow since it is the same datum as the middle
one. Now, we have the transitivity sequence

LA/k ⊗L
A B→ LB/k → LB/A,

plugging this in we are looking at

LB/A[−1]

LA/k ⊗L
A B I[1]⊗L

A B

LB/k I[1]⊗L
A B,

o(A,B)

=

where the arrow o(Ã,A,B) is null if and only if the filler exists! This map is called the Kodaira-
Spencer class of the map Spec B→ Spec A. It lives in the group

[LB/A[−1], I[1]⊗L
A B] = Ext2(LB/A, I[1]⊗L

A B).

Now, say that we want to parametrize all the possible lifts; rather we should try to find what
the difference between two possible lifts look like. Well if f, g : LB/k → I[1] ⊗L

A B are lifts,
then they are subject to the constrain that f − g|LA/k⊗L

AB must be null so that we get a map

from LB/A → I[1] ⊗L
A B; actually this is not quite precise: it does not make sense to say that

f − g is nullhomotopic but, rather, it is nullhomotopic via some map which is parametrized by
LB/A → I[1]⊗L

A B. This is to say that all possible lifts form a torsor under

[LB/A, I[1]⊗L
A B] = Ext1(LB/A, I[1]⊗L

A B).

Continuing this trend, we see that automorphisms of such a lift is parametrized by

[LB/A[1], I[1]⊗L
A B] = Ext0(LB/A, I[1]⊗L

A B).

Therefore, we have that:

(1) the obstruction to finding a diagram is given by a class

o(Ã,A,B) ∈ Ext2(LB/A, I[1]⊗L
A B);

(2) the set of diagrams form a torsor under

Ext1(LB/A, I[1]⊗L
A B);

(3) automorphisms of a fixed lift is described by the group

Ext0(LB/A, I[1]⊗L
A B).
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1.2. Flat deformations. We will now do three things simulataneously: we do everything in
the discrete setting, globalize everything to schemes and ask to classify flat deformations. So
let us contemplate the following deformation problem: let us look at a particular diagram:

X X̃

S S̃,

f f̃

where S ↪→ S̃ is a square-zero extension (no assumptions yet). Because we want everything to
be discrete, let us assume that all schemes in sight are classical and understand what constrains
we get.

First, every such picture means that we have an S̃-linear deformation of X given by X̃
(ignoring the S). This means that it is classified by a map

LX/S̃ → J[1]

for some OX-module J. Since we insist on everything being discrete, we learn that J must be
discrete. At this point, we can ask for two conditions which are natural and inspired by the
derived picture above:

(1) we ask that Lf̃∗I ' J (so, implicitly Lf∗ = f∗, i.e., f is flat) where I is the ideal of

definition of S ↪→ S̃;
(2) we ask that the above diagram is derived cartesian.

Indeed, by Remark 1.0.2 we see that condition (2) must imply (1). But we will soon see that
they are, in fact, equivalent.

Lemma 1.2.1. As in the situation above, the following are equivalent:

(1) condition (1) is true;
(2) condition (2) is true;

(3) the morphism f̃ is flat.

Proof. We can translate everything to algebra and contemplate the square of discrete rings

Ã A

B̃ B,

f̃ f

say the kernel of the top map is I and the kernel of the bottom is J.

Assume that (1) is true. We have a morphism B̃⊗L
Ã

A→ B and we wish to prove that this

map is an equivalence. Then we have a cofiber sequence of B̃-modules

B̃⊗Ã I→ B̃→ B̃⊗L
Ã

A;

but comparing this to the cofiber sequence

J→ B̃→ B,

we see that the desired map is an equivalence under the assumption B̃⊗Ã I ' J.

We have seen that (2) implies (1). Assume (2), let us see that f̃ must be a flat morphism.

Indeed let N be a Ã-module, whence we have an exact sequence

0→ IN→ N→ N/IN→ 0;

this tells us that we need only check that B̃ ⊗L
Ã

M is discrete for M = IN or N/IN. Since I is

square zero, this tells us that we can assume that N is killed by I, whence N is naturally an
A-module. IN this case, we have

B̃⊗L
Ã

N ' B̃⊗L
Ã

A⊗L
A N.
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Now, discreteness happens if and only if B̃ ⊗L
Ã

A ' B̃, which is exactly (2). This also proves

that (3) implies (2). �

Hence, everything is governed by the condition that Lf∗I ' f∗I ' J. So let us recap our
discussion. We want to ask for all fillers:

X X̃

S S̃,

f f̃

where f̃ (and hence f) is flat, hence we are looking for an S-linear square-zero extension of X
which is classified by a map LX/S → J[1]. By the discussion above, flatness forces the identity

of J[1] as J[1] ' f∗I[1] ' Lf∗I[1]. Now, I plug in the transitivity triangle for X → S → S̃ and
get a diagram:

f∗LS/S̃ LX/S̃ LX/S

f∗I[1] J[1] .

Here, the morphism f∗LS/S̃ → f∗I[1] is induced by the “lowest homotopy group” map: LS/S̃ →
π1(LS/S̃) = I furnished by Theorem 1.0.3(3). Now let us truncate the transitivity sequence by

τ61. It is not necessarily true that the τ61 preserves cofiber sequences. However, if LX/S is

concentrated in degrees 6 1 (for example if it is smooth, or even lci) we get a cofiber sequence3:

τ61f
∗LS/S̃ → τ61LX/S̃ → τ61LX/S.

With this assumption on LX/S, the discussion of Section 1 tells us that the whole deformation
problem only depends on τ61LX/S ' LX/S, hence we are at liberty to work with truncations of
τ61LX/S̃ and τ61f

∗LS/S̃. We note that, in general, τ61f
∗LS/S̃ need not be equivalent to f∗LS/S̃.

Indeed, by flatness of the map g : S̃→ SpecZ/p2 and Theorem 1.0.3(4), LS/S̃ ' Lg∗LFp/(Z/p2) '
g∗LFp/(Z/p2) which means that it is concentrated in homological degrees 1 and 24. In any case,
we get that τ61f

∗LS/S̃ ' f
∗g∗τ61LFp/(Z/p2). We claim:

Lemma 1.2.2. The canonical map LFp/Zp
→ LFp/(Z/p2) is a τ61-equivalence, whence τ61LFp/(Z/p2) '

Fp[1].

Proof. The transitivity triangle for Zp → Z/p2 → Fp gives the first claim immediately. The
second claim follow from Theorem 1.0.3(7) and the fact that p is a nonzero divisor in Zp. �

By flatness of g we also have that I = O. Hence we get a diagram (still under the assumption
that LX/S is concentrated in degrees 6 1):

τ61f
∗LS/S̃ τ61LX/S̃ LX/S

f∗O[1] J[1] .

'

Hence the flatness condition, which is equivalent to saying that f∗O ' I, can be summarized
as saying that the map LX/S̃ → f∗I[1] classifying the flat deformation above is a splitting of

the transtivity triangle. We conclude:

3The key point here is that the map on H1 of f∗L
S/S̃
→ L

X/S̃
is injective.

4The transitivity triangle yields LFp/Zp
→ LFp/(Z/p2) → Fp ⊗Z/p2 L(Z/p2)/Zp

[1].
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Lemma 1.2.3. As in Theorem 0.0.1, we have a pullback square

Rel(X,S) Maps(τ61LX/S̃, f
∗I[1]).

{id} Maps(f∗I, f∗I).

Here’s a sample application

Proposition 1.2.4. Let R be a perfect Fp-algebra. There exists a unique, flat Zp-algebra W(R)
such that W(R)/p = 0. Furthermore it enjoys the following universal property: if S is a p-
complete ring then any map R→ S/p lifts uniquely to a p-adically continuous map W(R)→ S.

Proof. First, we solve the (derived) deformation problem of the following form:

Z/p2 Fp

R̃ R,

f

By the discussion above, this is controlled by the cotangent complex LR/Fp
. But this object is

acyclic: indeed the frobenius FR induces the zero map on cotangent complexes on any Fp-algebra
(because dxp = 0). But it is also an isomorphism because R is perfect. Hence, there is a unique
solution to the above problem. Furthermore, we see that the sequence R[1]→ LR/Z/p2 → LR/Fp

splits since the last term is zero and hence the lift must be flat as explained above. We write

W2(R) to be R̃ We then successively solve the deformation problem by induction and produce
Wn(R)’s and take the inverse limit. We note that, at each stage, the obstruction to lifting is
governed by the cotangent complex LWn(R)/Z/pn . But this complex is acyclic since it is acyclic
after derived base change to Fp and appeal to derived Nakayama [Stacks, Tag 0G1U]. The
universal property follows from another deformation theory argument and the vanishing of the
cotangent complex, which we leave to the reader. �

This is a general case of Theorem 0.0.1(1). So what is this gerbe thing all about? Well the
fiber Rel(X(1),S) → id is the fiber of the map Maps(LX(1)/S̃, f

∗I[1]) → Maps(f∗I, f∗I) which,

by the transitivity triangle, is exactly equivalent to

Maps(LX(1)/S, f
∗I[1]).

When X/S is smooth, then LX(1)/S ' Ω1
X(1)/S

[0] and the anima above is discrete and equivalent

to the sheafy-ext (which is really a group scheme over X)

Ext(Ω1
X(1)/S, f

∗I);

and if I is the structure sheaf (as in the situation of the Deligne-Illusie theorem), then this is
just the sheafy cohomology group

H1(X(1),TX(1)/S).

1.3. Proof of Theorem 0.0.1.(3). Let us place ourselves in the context where X → S is a
smooth morphism. We have seen two gerbes:

(1) the gerbe of liftings, whose band is given by H1(X(1),TX(1)/S) as explained in the
preceding paragraph;
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(2) the gerbe of splittings. From the diagram

Sci(τ61FX/S∗Ω
•
X/S) Maps(τ61FX/S∗Ω

•
X/S,O).

{id} Maps(O,O),

the fiber of the map Sci(τ61FX/S∗Ω
•
X/S)→ {id} is the fiber of the map Maps(τ61FX/S∗Ω

•
X/S,O)→

Maps(O,O) which we once again see to be H1(X,TX/S).

That means that any choice of a splitting, and any choice of a lifting, differs by a section of
H1(X,TX/S). Let us keep that in mind as we prove the result.

We want to make a map

Rel(X,S)→ Sci(τ61FX/S∗Ω
•
X/S);

we first make a map from auxlliary stacks

˜Rel(X(1),S)→ ˜Sci(τ61FX/S∗Ω
•
X/S);

Here, the left hand side parametrizes the datum of 1) an étale map Y → X, 2) a S̃-lift off Y(1)

called Ỹ(1) (this is so far just a point of ˜Rel(X(1),S)), together 3) with a lift of the relative

Frobenius: an S̃-lift of Y and a map

ϕ : Ỹ → Ỹ(1)

whose mod p reduction is

FY/S : Y → Y(1).

To each such choice, we assign a splitting. The right hand side parametrizes splittings in the
category of complexes: this means we pick a representative

τ61FY/S∗Ω
•
Y/S ' [Z0

Y → Z1
Y]

and a map H1(τ61FY/S∗Ω
•
Y/S) → Z1

Y splitting the canonical map. In fact, the resulting mor-

phism of stacks is a certain morphism of gerbes (whose band we will see soon!).
Now, to each lift, by the previous lecture, we get divided Frobenius map

ϕ∗/p : Ω1
Ỹ(1)/S̃

→ ZFY/S∗Ω
1
Y/S

whose mod p-reduction is the diagram refining the inverse Cartier map:

Ω1
Y(1)/S

ZFY/S∗Ω
1
Y/S

Ω1
Y(1)/S

H1(FY/S∗Ω
•
Y/S).

ϕ∗/p

=
C−1

∼=

Which means we can send this to the splitting (in the category of complexes) prescribed by the
complex

[F∗O
d−→ ZFY/S∗Ω

1
Y/S]

by going H1(FY/S∗Ω
•
Y/S) ∼= Ω1

Y(1)/S

ϕ∗/p−−−→ ZFY/S∗Ω
1
Y/S. We need to check three things:

(1) we have a morphism of stacks;
(2) the map is independent of choices;
(3) we obtain a map of gerbes.
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To check that we have a morphism of stacks rigorously we use the technology of cartesian fibra-
tions, this will take us too far afield. To prove that it is independent of choices: deformation the-
ory tells us that lifts with frobenii form a gerbe banded by H0(Y,F∗TY/S) = Hom(Ω1

Y(1)/S
,F∗O),

i.e., any two lifts differ by map Ω1
Y(1)/S

→ F∗O. Each such a datum then defines a homotopy

between any two lifts5. As a result we get a map of gerbes:

Rel(X(1),S)→ Sci(τ61FX/S∗Ω
•
X/S).

To prove that the map is an isomorphism is then a local check or note that we have the dashed
map map as in Theorem (0.0.3) which is an equivalence.
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